ISSN: 2278-1862

Journal of Applicable Chemistry

2014, 3 (2): 696-701

Visible Light Induced Synergistic Degradation of Rhodamine-B, Methylene Blue And Malachite Green By Fe₂(MoO₄)₃ And MoO₃

P. Suresh*, A.M. Umabala, T. Siva Rao and A. V. Prasada Rao

Department of Inorganic and Analytical Chemistry, Andhra University, Visakhapatnam, 530003, INDIA

*Email: sureshp12345@gmail.com

Accepted on 9th March 2014

ABSTRACT

Fe₂(MoO_4)₃ with excess MoO_3 has been prepared by combustion method using Ferric nitrate, MoO_3 and glycine. The calcined powder showed a band gap of 2.6 ev as calculated from UVDRS. SEM studies revealed particle size in the μ m region. The sample as prepared showed excellent photo catalytic activity for the degradation of Rhodamine- B, Methylene blue and Malachite green in presence of H_2O_2 under visible light irradiation. Photo catalytic studies on 100 ml aqueous solution containing 5ppm indicator with 100 mg of dispersed catalyst indicated degradation of 99.8% of Rhodamine-B, 98% of Methylene blue and 99.6% of Malachite green in 40 min, 30 min and 15 min respectively.

Keywords: Fe₂(MoO₄)_{3,} Rhodamine-B, Methylene Blue, Malachite green, photo catalytic degradation, Combustion synthesis.