Available online at www.joac.info

Journal of Applicable Chemistry

2014, 3 (6): 2384-2392 (International Peer Reviewed Journal)

ISSN: 2278-1862

Synthesis and Molecular Docking Study of Novel Pyrazolo[3,4-*b*]quinoline Derivatives

H.B.V. Sowmya¹, T.H. Suresha Kumara^{1,2}*, Gopalpur Nagendrappa¹, Jerry P. Jasinski³, Sean P. Millikan³, Vivek Chandramohan⁴, Gilish Jose¹, S.K. Rashmi¹, N. Chandrika¹ and Appaji M. Ashwini⁵

 P.G. Department of Chemistry, Jain University, 52 Bellary Road, Hebbal, Bangalore - 560024, INDIA
Department of Chemistry, UBDT College of Engineering (A Constituent College of VTU), Davanagere, Karnataka, - 577004, INDIA

3. Department of Chemistry, Keene State College, Keene, N.H. 03435-2001, USA

4. Department of Biotechnology, Siddaganga Institute of Technology, Tumkur-572103, Karnataka, INDIA

5. Department of Biotechnology, CPGS, Jain University, Jayanagar 3rd block, Bangalore, Karnataka, INDIA

Email: suresha.kumara@gmail.com, gnagendrappa@gmail.com

Accepted on 10th October 2014

ABSTRACT

Phenylpyrazolo[3,4-b]quinolin-3-ols were prepared by using 2-chloroquinoline-3-carboxylic acids and phenyl hydrazine hydrochlorides in the presence of $POCl_3$. One of the phenylpyrazolo[3,4-b]quinolin-3-ols underwent chlorination (9). To check binding modes and binding affinity of synthesized compounds were docked with the active sites of human telomerase (hTERT). The results indicated that compound 4b has good affinity to the active site residue of human telomerase, least energy (-23.012 score).

Keywords:Phenylpyrazolo[3,4-*b*]quinolin-3-ols, POCl₃, Molecular Docking Studies.

3-Chloro-2-p-tolyl-2H-pyrazolo[3,4-b]quinoline,