

Journal of Applicable Chemistry

2015, 4 (2): 550-556

(International Peer Reviewed Journal)

ISSN: 2278-1862

Synthesis, Characterization and Antitumor activity of Fe₂O₃-Ag₂O-TiO₂ Nanocomposite on MCF-7 Human Breast Cancer Cells

P. Babji^{1*}, I. Nageswara Rao¹ and S. K. Das²

 Department of Physical, Nuclear Chemistry & Chemical Oceanography, School of Chemistry, Andhra University, Visakhapatnam 530 003, Andhra Pradesh, INDIA
School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, INDIA

Email: babjichemistry007@gmail.com

Accepted on 27th February 2015

ABSTRACT

The study deals with the Magnetic Fe₂O₃-Ag₂O-TiO₂ nanocomposite has been prepared by using sol gel method and characterized by X-Ray Diffraction, Fourier transform-infra red spectroscopy (FT-IR), Field Emission- Scanning Electron Microscopy and Energy dispersed spectroscopy has been applied to investigate the structure and morphology. X-ray diffraction studies of the Fe₂O₃-Ag₂O-TiO₂ show the presence of anatase phase of TiO₂. 1 mmol of the prepared sample from had also shown the presence of anatase phase only. The FE-SEM images of the prepared samples showed the decrease in size and morphological change of the TiO₂ particles when compared to undoped TiO₂. The presence of elements iron, silver, titanium and oxygen were characterized by Energy dispersed spectroscopy (EDS). For comparison, the anticancer activity was carried out by using Temoxifen as a standard with Fe₂O₃-Ag₂O-TiO₂ nanocomposite. The anticancer activity of the synthesized catalysts was investigated by the MCF-7 cell line, and it was found that the Fe₂O₃-Ag₂O-TiO₂ catalysts have better anticancer activity than undoped TiO₂. The present results showed that this prepared nanocomposite might be a potential alternative agent for human breast cancer therapy.

Keywords: TiO₂, Fe₂O₃-Ag₂O-TiO₂, Anticancer activity, magnetic.