

Journal of Applicable Chemistry

2016, 5 (1): 1-20 (International Peer Reviewed Journal)

Intelligent Pedagogical Reviews (IPR)

HotIce: Hands-on-tutorial for intelligent computational Evolution Part 1: Quaternions in Omnimetrics (QuO)

K. Ramakrishna¹ and R. Sambasiva Rao^{2*}

 Department of Chemistry, Gitam Institute of Science, Gitam University, Visakhapatnam, 530 017, INDIA
School of Chemistry, Andhra University, Visakhapatnam 530 003, INDIA

Email: karipeddirk@gmail.com, rsr.chem@gmail.com

Accepted on 20th January 2016

(Dedicated with profound respects to Dr. J.R. Isaac, former professor of computer science, IIT, Bombay on his eighty fifth birth anniversary)

ABSTRACT

Quaternions, invented by Hamilton 1863, are extended complex numbers. A quaternion is represented by quadruple of 1 and zeros and geometrically by four axes. It surmounted the classical gimbal lock. Also, smooth rotations of 3D-objects are possible, thus circumventing hurdle of classical methods where 3D-highways lead to dead ends. Quaternion frame not only solves all earlier tasks with vector analysis, but instrumental to successfully arrive at an answer for unsolved riddles in 3D-object rotations. Rotation through 720° is achievable and finds extensive applications in proteins, missiles, space shuttles etc. Altogether, a new branch of computational mathematics grew and showed a new path in solving Schrodinger wave equation, optimizations, and nature inspired algorithms. It is a coveted tool in the armor of 21^{st} century computational science.

Keywords: Quaternion, Complex (imaginary), Protein molecules, rotation, Schrodinger wave equation, optimization.