

Journal of Applicable Chemistry

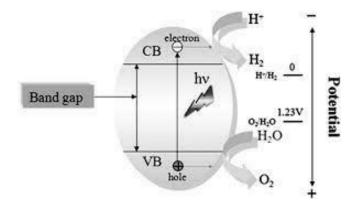
2018, 7 (1): 130-137

ISSN: 2278-1862

Photocatalytic Degradation of Malachite Green over CuO/Al₂O₃Composite

Deepika Paliwal^{1*}, Hari Shankar Sharma², Rakshit Ameta³ and Bindu Kataria⁴

- 1. Research Scholar, Department of Chemistry, PAHER University, Udaipur 313003 (Raj.) INDIA 2. Lecturer, Department of Chemistry, Govt. College, Kota – 324001 (Raj.) INDIA
- 3. Associate Professor, Department of Chemistry, PAHER University, Udaipur 313003 (Raj.) INDIA
- 4. Lecturer, Department of Chemistry, S.M.B. Govt. P.G. College, Nathdwara 313001 (Raj.) INDIA


Email: somya.deepika06@gmail.com

Accepted on 16th December 2017, Published online on 27th January 2018

ABSTRACT

Waste water containing dyes emanating from textile mills is strongly coloured and it is carcinogenic in nature. In order to reduce pollution load, it is desirable to degrade the dye into nontoxic form before it is discharged into the main stream. Malachite green is used as dye material like silk, paper and leather industries. Degradation of malachite green was investigated using CuO/Al_2O_3 composite as a semiconductor. Decolourization assay was performed by monitoring the programs of the reaction spectrophotometrically. The optimum conditions were obtained as; pH = 9, dye concentration = 1.0×10^{-5} M, amount of composite (CuO/Al_2O_3) = 0.1g and light intensity = 60.0 mWcm⁻²where the rate constant was found as 2.43×10^{-4} sec⁻¹.

Graphical Abstract:

Keywords: Photocatalysis, Malachite green, CuO/Al₂O₃ composite.