## Available online at www.joac.info

ISSN: 2278-1862



# Journal of Applicable Chemistry



2018, 7 (4): 1063-1071 (International Peer Reviewed Journal)

## Refractive Indices and Excess Properties of Binary Mixtures of p-Cymene with Fluorobenzene, Chlorobenzene and Bromobenzene at T = 303.15, 308.15 and 313.15 K

## Madhuresh Makavana<sup>1</sup> and Sangita Sharma<sup>2\*</sup>

 Department of Chemistry, Mehsana Urban Institute of Sciences, Ganpat University, Ganpat Vidyanagar, Kherva, Mehsana, Gujarat-384012, INDIA
Department of Chemistry, Hemchandracharya North Gujarat University, Patan, Gujarat-384265, INDIA Email: smridhee2000@yahoo.co.in

### Accepted on 9<sup>th</sup> July, 2018

## ABSTRACT

Refractive indices  $(n_D)$  of binary mixtures of p-cymene with fluorobenzene, chlorobenzene and bromobenzene were measured using Abbe refractometer at 303.15, 308.15 and 313.15 K along the whole composition range and at normal pressure. From the experimental data, deviation in refractive indices  $(\Delta n_D)$ , molar refraction  $(\Delta R_m)$  and deviation in molar refraction  $(\Delta R_m)$  were calculated. Excess properties were satisfactorily fitted using the Redlich-Kister polynomial equation to derive the standard deviations  $(\sigma)$ . These values were reported as a function of volume fraction  $(\phi_l)$  or mole fraction  $(X_l)$  of p-cymene. Theoretical study of nine mixing rules of refractive index has been carried out to investigate their validity for these mixtures over the whole mole fraction of p-cymene at all studied temperatures. Results indicated that there is a strong dipole-dipole interaction present in the p-cymene + fluorobenzene binary mixture when compared to chlorobenzene and bromobenzene binary mixtures.

### **Graphical Abstract**



Deviation in refractive index  $(\Delta n_D)$  as a function of volume fraction  $(\phi_1)$  for p-Cymene (1) + Fluorobenzene (2)(**a**), p-Cymene (1) + Chlorobenzene (2) (**•**), p-Cymene (1) + Bromobenzene (2) (**•**) at *T* = 303.15K.

Keywords: Refractive Index, Molar Refraction, Theoretical mixing rules, Intermolecular interaction.