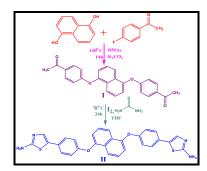
ISSN: 2278-1862

Journal of Applicable Chemistry

2018, 7 (4): 806-815 (International Peer Reviewed Journal)

Synthesis and Characterization of Novel Processable Poly (Ether-Azomethine)s Containing Naphthyl Moiety

V.N. Kadam¹, P.H. Salunkhe², S.S. Ankushrao², Y.S. Patil², J.N. Mahindrakar², V.P. Ubale³ and A.A. Ghanwat²*


Baburao Patil College of Arts and Science, Anagar-413213, Maharashtra, INDIA
School of Chemical Sciences, Solapur University, Solapur-413 255, Maharashtra, INDIA
D. B. F. Dayanand College of Arts and Science, Solapur-413002, Maharashtra, INDIA
Email: anil ghanwat@yahoo.com

Accepted on 8th July, 2018

ABSTRACT

A new diamine1, 5-bis (4-(2- aminothiazol-4-yl)phenoxy) naphthalene (II) was synthesized starting from 1,5- naphthol. New series of poly (ether-azomethine)s were synthesized from 1, 5-bis (4-(2- aminothiazol-4-yl)phenoxy) naphthalene (II)with different compositions of dialdehydes such as isophthaldehyde and terphthaldehyde in N, N'-dimethylacetamide (DMAc) with 5 wt% LiCl by the solution polycondensation method. Inherent viscosities of these polymers were in the range 0.29 to 0.44dL g^{-1} . indicating formation of moderate molecular weights. These polymers exhibited good solubility in various polar aprotic solvent such as N-methyl-2-pyrrolidone (NMP) and H_2SO_4 etc. However, some polymers showed partial solubility in DMF, DMAc and THF etc. X-Ray diffraction pattern of polymers showed amorphous nature. Thermal stability was assessed by 10% weight loss temperature and the degradation temperature of the resultant polymers falls in the ranges from 396°C to 489°C in nitrogen. The glass transition temperature was in the range of 168-205°C. The structure-property correlation among these polyazomethines were studied; in view of their potential applications as high-performance polymers.

Graphical Abstract

Synthesis of 1, 5-bis (4-(2- aminothiazol-4-yl) phenoxy) naphthalene (II)

Keywords: 1, 5-bis (4-(2- aminothiazol-4-yl)phenoxy) naphthalene (II), processability, Viscosity, Thermal stability.