Available online at www.joac.info

ISSN: 2278-1862

Journal of Applicable Chemistry

2019, 8 (6): 2449-2456 (International Peer Reviewed Journal)

Thermal Decomposition of Mixtures of Ammonium per chlorate with Nd₂O₃ and Pr₂O₃

Rashmikumari¹ and M. R. R.Prasad²*

 M. Tech. Research Scholar, Department of Nano Science and Technology, Central University of Jharkhand, Ranchi–835205, INDIA
Scientist/Engineer–SF (Retired), Vikram Sarabhai Space Centre, Indian Space Research Organization (ISRO), Department of Space, Government of India, INDIA E mail: mandapaka.p@gmail.com, rashmi809@gmail.com

Accepted on 3rd November, 2019

ABSTRACT

Thermal decomposition of ammonium per chlorate (AP) in the presence of lanthanide oxides L_2O_3 , where L=Nd, and Pr, has been studied with TG–MS approach towards understanding the mechanistic aspects of thermal decomposition. Nd_2O_3 has no appreciable influence on the onset temperature of AP decomposition; and it brings down the end set temperature of AP decomposition. Pr_2O_3 influences both the LTD and HTD of pure AP. Addition of either Nd_2O_3 or Pr_2O_3 does not catalyze the evolution of HCl. Presence of Pr_2O_3 catalyzes both the LTD and HTD of AP. Both the catalysts contribute to the oxidation of ammonia to NO_2 , rather than NO as in the case of pure AP. Release of O_2 is another favorable contribution by these oxides that have profound influence on the energetic of composite solid rocket propellants based on AP.

Graphical Abstract

MS Peaks corresponding to AP - Nd₂O₃ System.

Keywords: Ammonium per chlorate, Nd₂O₃, Pr₂O₃, TG-MS.