Available online at www.joac.info

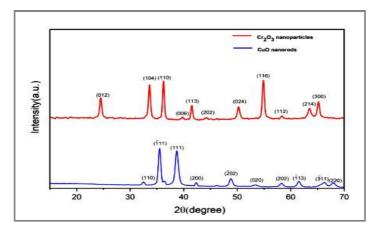
ISSN: 2278-1862

Journal of Applicable Chemistry

2020, 9 (3): 451-458 (International Peer Reviewed Journal)

NH₄ClO₄ Decomposition with Nano-CuO, Cr₂O₃ and Mixed Catalysts

Rashmi Kumari¹ and M. R. R. Prasad²*


 M. Tech. Research Scholar, Department of Nano Science and Technology, Central University of Jharkhand, Ranchi-835205 INDIA
Scientist / Engineer-SF (Retired), Vikram Sarabhai space Centre, Thiruvananthapuram-695022, Kerala, INDIA Email: mandapaka.p@gmail.com, rashmi809@gmail.com

Accepted on 14th May, 2019

ABSTRACT

Modification of thermal decomposition of ammonium per chlorate (AP) by Nano-Copper Oxide (CuO) and Nano-Chromium Trioxide (Cr₂O₃); and combinations of CuO and Cr₂O₃ are discussed. These studies were carried out employing XRD, FESEM, HRTEM, TG and DSC techniques. Presence of CuO or Cr₂O₃, or combinations of these oxides does not influence the endothermic crystallographic phase-transition temperature of AP from orthorhombic to cubic phase. Thermal stability of systems under consideration are in the order of: [AP: CuO: Cr₂O₃:: 100: 0.99: 0.01]> (AP–CuO) > [AP: CuO: Cr₂O₃:: 100: 0.995: 0.005] > [AP: CuO: Cr₂O₃:: 100: 0.98: 0.02]> (AP–Cr₂O₃) > AP. The catalyst system of [AP:CuO:Cr₂O₃:: 100:0.99: 0.01] gives maximum catalytic effect, and maximum enthalpy of 2131.9 J g⁻¹.

Graphical Abstract

XRD spectrum of CuO-nanorods; and Nano-Cr₂O_{3.}

Keywords: Ammonium per chlorate, Chromium Tri-oxide, Copper Oxide, Enthalpy, Mixed metal oxides.