Available online at www.joac.info

ISSN: 2278-1862

Journal of Applicable Chemistry

2020, 9 (1): 159-170 (International Peer Reviewed Journal)

A Facile, One-Pot and Eco-Friendly Synthesis of V₂O₅ Nanoparticle for Enhanced Catalytic Reduction of Celestine Blue

C. Sudhakar¹, B. Tamil selvi², A. Karthika², A. Suganthi² and M. Rajarajan¹*

 Madurai Kamaraj University, Madurai-625 021, Tamilnadu, INDIA
PG and Research Department of Chemistry, Thiagarajar College, Madurai-625009, Tamilnadu, INDIA Email: suganthiphd09@gmail.com, rajarajan1962@yahoo.com

Accepted on 20th January, 2019

ABSTRACT

A one-pot synthesis of V_2O_5 nanoparticle using Image result for eucalyptus tree Eucalyptus leaf extracts (G-V₂O₅) as a reducing and stabilizing agent is reported herein. The G- V_2O_5 was synthesized by the co-precipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Field emission scanning electron microscopy (FE-SEM), elemental analysis (EDX) and photocatalytic degradation. The prepared nanoparticles were tetragonal and monoclinic in structure and confirmed by the XRD patterns. The photocatalytic activity of the mixture of 2% G- V_2O_5 , 3% G- V_2O_5 and 5% G- V_2O_5 were studied in Celestine Blue degradation reaction. 3% G- V_2O_5 showed the highest photocatalytic activity among the mixtures. The dye Celestine Blue (CB) showed 89 percentage of degradation obtained in180 min with the mixture of G- V_2O_5 .

Graphical Abstract

Keywords: Celestine Blue, G-V₂O₅, Photocatalytic activity, Degradation.