Available online at www.joac.info

ISSN: 2278-1862

Mini Review

Journal of Applicable Chemistry

2023, 12 (2): 58-66 (International Peer Reviewed Journal)

An Overview on the Photocatalytic Degradation of Organic Pollutants using TiO₂ and Metal doped TiO₂ from Industrial Wastewater

Ashish Kumar and Shivalini Singh*

Department of Chemistry, Agra College, Agra 282001, INDIA Email: shivalini.chaharag@gmail.com

Accepted on 16th March, 2023

ABSTRACT

Organic compounds, which are produced by various industries, result in a variety of contaminant problems. TiO_2 based photocatalysts can be used to improve the quality and quantity of organic molecules in wastewater. TiO_2 is better because of its nontoxicity, strong degradation ability, and great thermal and chemical stability. The annihilation or transformation of dangerous chemical wastes to harmless end-products, such as CO_2 and H_2O , is the purpose of titanium dioxide nanoparticles, which are meant to be both supplemental and complimentary to current watertreatment technologies. The use of doped TiO_2 nanoparticles in photocatalytic waste water degradation has shown enormous potential in eliminating these complex organic pollutants. Visible light and solar light may now be used effectively as a light source because to advancements in the properties of doped TiO_2 nanoparticles. Doped TiO_2 nanoparticles have a lot of potential in terms of water and energy issues because they have two main characteristics: they are effective at eliminating pollutants that are persistent in nature and they use energy efficiently. The relevance of doped TiO_2 nanoparticles in the water-energy nexus is briefly discussed in this context. As a result, this paper examines and summarises recent efforts in the field of titania nanoparticle synthesis, modifications, and water treatment applications.

Mechanisms of metal-doped TiO₂ photocatalysis.

Keywords: TiO₂ photocatalyst, Metal doped TiO₂, Photocatalytic degradation, Organic pollutants, Wastewater.