Available online at www.joac.info

ISSN: 2278-1862

Journal of Applicable Chemistry

Review

Piscimetrics II^{\$}: Neural network models in fisheries research

K. Somasekhara Rao¹, K. Ramadevi², K. Ramakrishna³, Ch. V. Kameswara Rao³, K. M. M. Krishna Prasad⁴ and R. Sambasiva Rao^{4*}

Dept. of Chemistry, Acharya Nagarjuna Univ., Dr. M.R.Appa Rao Campus, Nuzvid-521 201, INDIA
PG Department of Chemistry, Sir C.R. Reddy College for Women, Eluru-534001, INDIA
Department of Chemistry, Gitam Institute of Science, Gitam University, Visakhapatnam-530 017, INDIA
Department of Chemistry, Andhra University, Visakhapatnam 530 003, INDIA
Email: sraokaza1947@gmail.com, karipeddirk@gmail.com, kmmkp1950@yahoo.com, rsr.chem@gmail.com

Accepted on 18th March, 2023

Dedicated to Dr (Emeritus Professor) Antonio Braibanti, Department of Food and Drug, University of Parma, Italy who lived 95years on the lap of Mother Earth

ABSTRACT

eXPisciMetrics (i.e. evolving + Xplanatory+ Pisci+metrics; or in general eX\$\$\$Metrics) had been a sought after high-end-frame-of-tools(Heft) in computational science (CS) during past two decades in fisheries research. The studies are moving forward to shed more light with state-of-knowledge-of-instrumentation, large databases, output of knowledge/intelligence extraction tools, deep learning (with attention/self-attention) of I/O mapping with hierarchical/parallel/sequential neural nets, capsule (vector/ matrix) nets, GenerativeAdversarial Networks (GANs), transformer-NNs classical/advanced machine learning tool-box of methods, functional (operator-valued kernel based) generalization of Nets, and nets in net (NiN), controlled by total quality assurance (TqA) with metro-metrics-measures(MCube) adhering to DARPA/NSF (USA) and European/Japanese agenda of target standards.

The application fields of research in fisheries covered in this review include recruitment/ settlement/distribution of fish species, their detection, re-identification and confirming micro-fossil fish teeth. The fore-casting of catches, classification (order, family/species) /discriminationof different varieties of live fish from dead-eggs, bio-mass, CPUE, and fish assessment index were studied with NN-architectures. The freshness, concentration of toxins, shelf-life, separation of healthy from unhealthy ones, segmentation of fish skin and mortality have been investigated. Fish appetite, feeding intensity, feed-in take was reported using advanced NN models. The fishing operations, closures, management paved way for planning potential economic fishery zones. The complex tasks like shrimp egg counting, arriving at day-light images of fish from those under various intensities and sonar signals are investigated with CNNs, DeepNNs etc. The design of futuristic fisheries research programs will be benefitted by rational/scientific xAI and Hierarchical-knowledge-based-machine learning as well as Deep-architectures with capsules-of -neurons as processing units making use of tensorial-fusion-data structures and ensemble-methods for robust output.

^{\$}Part 1: Neural network models in fisheries research (Review), Fisheries Research 92 (2008) 115–139, Iragavarapu Suryanarayana, Antonio Braibanti, Rupenaguntla Sambasiva Rao, Veluri Anantha Ramam, Duvvuri Sudarsan, Gollapalli Nageswara Rao.

Keywords: Piscimetrics, DeepNNs-xAI, Classification of fish-Health, Forecating, fisheries management, machine learning, CapsuleNets-fish images.