Available online at www.joac.info

Journal of Applicable Chemistry, 2012, 1 (2):319-329



(International Peer Reviewed Journal)



ISSN: 2278-1862

# Study of Ozone Depletion by Halon-2402 in Stratospheric Layer Using Quantum Calculation Methods

Aqeel A-Hussein and Abbas A-Ali Drea\*

Chemistry Department, College of Science, Babylon University, Hilla, IRAQ E-mail: <u>aadreab@yahoo.com</u>

#### ABSTRACT

Structural properties of ozone and Halon-2402(1,2-dibromotetrafluoroethane) have been calculated using quantum methods likes DFT, ab-initio and semi-empirical ( implemented in Hyperchem package 8.0) .Examination of bond reactivity for reaction component have been determined according to MP2//6-31G\*\*(p,d) level of theories. Molecular orbital and their energy gap has been calculated using B3LYP//6-31G(d) and B3LYP//3-21++G\*\*(p,d) level and parameter of bonds by ROHF//6-31G\*\*(p,d) level. Values of rate constant and the reaction energy barrier were determine for all free radical reactions using MP2//3-21G\*\*(2spd) level of theory. Steady state approximation method has been used to estimate the rate law of the depletion reaction.

It was found that the energy gap of ozone and Halon-2402 is 90.23 and 163 kCal/mol respectively. Photolysis reaction of Halon-2402 occurs through C-Br bond by 92.3 kCal/mol (309.95 nm)of light energy. The reaction of bromine radical with ozone is spontaneous and exothermic with energy barrier equal to 0.044 kCal/mol and rate constant equal to  $3 \times 10^{13}$  mol<sup>-1</sup> dm<sup>3</sup>s<sup>-1</sup>, A=  $2.33 \times 10^{13}$  at STP. The mechanism of ozone depletion produced alkoxy radical by consuming four moles of ozone.

**Keywords:** Halone-2402, photolysis, Ozone depletion, Radical, potential energy surface, bond dissociation energy, MP2, B3LYP, and PM3.

#### **INTRODUCTION**

Photolysis of molecular oxygen leads to ozone formation, this process absorbed all wavelengths shorter than 200 and 310 nm of sun light radiation but ozone is less stable than oxygen, though this phenomena play an important role for atmosphere protection from harmful

radiations[1-7]. Different pollutants can reach Ozone's layer, that may be due to human uses. Halo-hydrocarbons are the major sources of the most common pollutant agent in the atmosphere. Organic halides act as an important agent in the ozone depletion due their providing of anthropogenic halogen atoms into atmospheric layers [8,9]. Halon-2402(1,2dibromotetrafluoroethane) is a colorless liquid with a boiling point of 47.2 °C and it is occasionally used in different manner commercially [10]. Halon-2402 has relatively long lifetime in the atmosphere, and they break in the stratosphere to release reactive bromine that causes severely damaging to ozone with 10-100 times more than chlorine [11,12]. Reactions involving bromine are estimated to be responsible for 25 percent of the chemical destruction of ozone over Antarctica and 50 percent over the Arctic [13]. The measurements of the halogenated species in the tropical troop use found that Halon-2402 detected between 30 °S and 30 °N latitudes. Transporting from the troposphere into the stratosphere occurs mainly in this region. Since the concentration of Halon-2402 in tropical use provides a good measure of the relative mixing ratio in the stratosphere. The chemistry of intermediate compounds that are involved by Ozone's reaction with pollutant agents is limited, however laboratory and modeling studies are helping to quantify and reduce some of the uncertainties [14-17]. Great interest of theoretical studies to investigate the mechanisms for these reactions to find them according to most probable suggested mechanism in stratosphere layer [18,19].

In the present work, the quantum calculation methods are using such as HF, DFT and MP2 methods in combination with 6-31G\*\*, 3-21G+(s,sp,6d) and 3-21++G\*\* basis sets for C, F and Br atoms in addition to PM3CI(4x4) to estimate the geometry optimization and single point calculations for Halon-2402 ,ozone and all chemical species that are involved in the suggested depletion mechanism. Calculations of first and second dissociation energy carry out on  $C_2F_4Br_2$ . Study of the reactions and the suggested transition states through the thermodynamic and kinetic results in vacuum. Suggested reaction mechanism of ozone depletion through Halon-2402, and the rate law estimation by steady-state approximation.

### MATERIALS AND METHODS

**Calculation Details:** All theoretical calculations were performed using computational implemented in the Hyperchem package 8.0.9 [20]. Optimized geometries of Halon-2402 and ozone have been done using the B3LYP of DFT[21-23] and MP2 of Ab-initio[24,25] methods with basis sets are 3-21G\* [26-28] and 6-31G\*\*[29-32], in addition to Restricted open shell Hartree-Fock (ROHF)[33-35] and also PM3CI(4x4) of semi-empirical[36-37]. A single point calculation had been used to give up the static properties of a molecule includes potential energy , electrostatic potential, molecular orbital energies, and the coefficients of molecular orbital's for ground ,or excited states. Vibrational analysis carried out through the same methods to deduced the nature of stationary points with zero point energy and all the stationary points have been identified with imaginary frequency[38]. Potential energy stability had been performed at B3LYP/3-21G+(s,sp,6d)//MP2/3-21G(s,sp,6d) level of theory for length, angle and torsion of bonds in  $C_2F_4Br_2$  while at MP2//6-31G<sup>\*\*</sup>(p,d) level of theory. First and second dissociation reaction for C-Br bonds in C<sub>2</sub>F<sub>4</sub>Br<sub>2</sub> had been studied by HF, MP2 and DFT(B3LYP,B3PW91) combining with 6-31G, 6-31G\*, 6-31G\*\*, 4-31G, 4-31G\*[39], 3-21G (s,sp,6d) and 3-21++G\*\* basis sets in addition to PM3CI(4x4). Geometry optimization of reactants, transition states and products for reaction between Br and C<sub>2</sub>F<sub>4</sub>Br with ozone at PM3CI(4x4) and MP2//3-21G\*\*(2spd) level. Potential energy surface performed by mapping reactants into products in order to calculate the energy barrier at PM3CI(4x4) and MP2//3-21G\*\*(2spd) level of theory. Semi-empirical calculations at PM3 have been performed to estimate the thermodynamic values at 298.15 K. To ascertain that the identified transition states connect reactant and products smoothly [38]

### **RESULTS AND DISCUSSION**

Structural properties of ozone have been studied using different quantum calculations methods to estimate the chemical reactivity. Table 1 shows the structural properties of ozone, The symmetry of ozone is  $C_{2y}$  measured by all methods [40]. The heat of formation calculated by PM3 equal to 31.4 kCal/mol that's good agreement with the experimental (34.6 kCal/mol). The MP2//3-21G(d) method give up low value of dipole moment equal to 0.107277 D, while same basis set gives 0.38688 D with B3LYP. The high dipole moment value is measured by PM3 follow its B3LYP//6-31G\*\*(p,d) level of theory. There is good agrees between the MP2//6-31G\*\*(p,d) and B3LYP//6-31G(d) level of theory with experimental value (0.5 D). The O-O bond measured by MP2 method with basis sets 3-21G(d), 6-21G(d) and 6-31G\*\*(p,d) are equal to 1.3893, 1.3002 and 1.3007 Å respectively. Net atomic Mullikan charge calculated by B3LYP//6-31G<sup>\*\*</sup>(p,d) level give up more negative charge on the oxygen atom  $O_1$  and  $O_3$  equal to -0.129335 and -0.129327 coulomb respectively and more positive charge on O<sub>2</sub> equal to 0.258662 coulomb, come after the B3LYP//6-31G(d) level. While the MP2//3-21G(d) level given less negative charge on  $O_1$  and  $O_3$  equal to -0.044332 and -0.044382 coulomb respectively. The HOMO, LUMO and the lowest energy band gap, and energy excitation equal to 90.23 kCal/mol by B3LYP//6-31G(d) level of theory[43].

| Method                     |                                | PM3-     | MP2//     | MP2//     | MP2//     | B3LYP//   | B3LYP//   | B3LYP//    |
|----------------------------|--------------------------------|----------|-----------|-----------|-----------|-----------|-----------|------------|
|                            | Туре                           | CI(4x4)  | 3-21G(d)  | 6-31G(d)  | 6-31G**   | 3-21G(d)  | 6-31G(d)  | 6-31G**    |
| of ca                      | alculation                     |          |           |           | (p, d)    |           |           | (p,d)      |
| Total energy $\times 10^4$ |                                | -2.01644 | -14.02302 | -14.11077 | -141118.1 | -14.06007 | -14.13878 | -14.139604 |
| Dipole                     | e moment                       | 0.763    | 0.107277  | 0.398041  | 0.467235  | 0.386880  | 0.514609  | 0.685610   |
| Zero point energy          |                                | 4.6      | 7.164847  | 6.111405  | 6.131970  | 3.94896   | 4.641621  | 4.5866564  |
| НОМО                       |                                | -289.41  | -296.25   | -309.34   | -301.3    | -187.43   | -213.93   | -204.13    |
| LUMO                       |                                | -58.3    | -21.55    | -37.98    | -20.42    | -96.4     | -123.7    | -112.2     |
| Eg                         |                                | 231.11   | 274.7     | 272       | 280.88    | 91.03     | 90.23     | 91.93      |
| Bond                       | O <sub>1</sub> -O <sub>2</sub> | 1.255    | 1.3893    | 1.3002    | 1.3007    | 1.3670    | 1.2647    | 1.2636     |
| length                     | O <sub>2</sub> -O <sub>3</sub> | 1.255    | 1.3893    | 1.3002    | 1.3007    | 1.3669    | 1.2647    | 1.2638     |
| Bond angle                 |                                | 114.3    | 113.4884  | 116.3031  | 116.4950  | 116.029   | 117.1285  | 117.1009   |
| Mulliken                   | O <sub>1</sub>                 | -0.282   | -0.044332 | -0.086532 | -0.110148 | -0.058445 | -0.115568 | -0.129335  |
| charges                    | O <sub>2</sub>                 | 0.563    | 0.088714  | 0.172921  | 0.220287  | 0.116906  | 0.231147  | 0.258662   |
|                            | O <sub>3</sub>                 | -0.281   | -0.044382 | -0.086389 | -0.110139 | -0.058461 | -0.115579 | -0.129327  |

| <b>Fable 1. Structural properties</b> | of ozone calculated at diff | erent quantum methods |
|---------------------------------------|-----------------------------|-----------------------|
|---------------------------------------|-----------------------------|-----------------------|

Energetic values in kCal/mol, bond length in Å, bond angle in degree, Dipole moment in Debye (D), Mullikan charges in coulomb units.

Structural properties of Halon-2402 had been performed at PM3, Hartree-Fock (ROHF), MP2 and B3LYP. 1,2-dibromotetrafluoroethane is a weak polar molecule as shown in table 2. The zero point energy is 14.59 kCal/mol calculated by B3LYP//3-21++G\*\*(p,d) level. Frontal Molecular Orbital's the HOMO and LUMO results are given in table 2. The B3LYP//3-

### www.joac.info

 $21++G^{**}(p,d)$  given lowest energy band gap equal to 163.7 kCal/mol therefore any excitation process occurrence will be needed to 163.7 kCal/mol of energy[44]. The calculated atomic charge for bromine atom by all method have positive excess charge except B3LYP,MP2//3-21+G(s,sp,6d) level is negative excess charge while at same time fluorine atom have negative excess charge with all methods, subsequently, the C-Br bond is more chemical reactivity than C-F bond[45].

|                            |   |                       | D1 (0      | DOIT       |             |                  |            |           |
|----------------------------|---|-----------------------|------------|------------|-------------|------------------|------------|-----------|
| Method                     |   | PM3-                  | ROHF//     | MP2// 6-   | B3LYP,      | B3LYP//          | B3LYP//    |           |
|                            |   |                       | microstate | 6-31G**    | 31G** (p,d) | MP2 //           | 3-21++G**  | 6-31G**   |
|                            |   | Energy                | CI(4x4)    |            |             | 3-21G+           | (p,d)      | (p,d      |
|                            | C | alculation            |            |            |             | (s.sp.6d)        |            | <i></i>   |
|                            |   |                       |            |            |             | (-,- <b>F</b> ,) |            |           |
| Total energy $\times 10^5$ |   | -0.624088             | -35.224133 | -35.236292 | -34.90277   | -35.12026        | -35.257115 |           |
| Dipole moment              |   | 0.0002                | 0.0001     | 0.0001     | 0.0002      | 0.000102         | 0.000104   |           |
| Zero point energy          |   | 17.03                 | 17.001     | 15.7       | 15.212      | 14.95            | 15.284     |           |
| НОМО                       |   | -277.411              | -260.33    | -244.5     | -115.531    | -183.4           | -110.55    |           |
| LUMO                       |   | -53.176               | -60.4      | -47.47     | 70.794      | -19.7            | 64.35      |           |
| $\Delta_{ m g}$            |   | 224.235               | 199.93     | 197.03     | 186.325     | 163.7            | 175.05     |           |
|                            |   | <b>C</b> <sub>1</sub> | 0.16307    | 0.267547   | 0.209310    | 0.180457         | 0.305404   | 0.191112  |
| SS                         |   | $C_2$                 | 0.16307    | 0.267547   | 0.209313    | 0.180553         | 0.305350   | 0.191096  |
| arge                       |   | Br <sub>3</sub>       | 0.009109   | 0.030108   | 0. 039693   | -0.020653        | 0.205613   | 0.016529  |
| l ch                       |   | Br <sub>4</sub>       | 0.009109   | 0.030108   | 0.039699    | -0.020678        | 0.205641   | 0.016527  |
| kan                        |   | F <sub>5</sub>        | -0.08608   | -0.148787  | -0.124541   | -0.079961        | -0.255517  | -0.103911 |
| illi                       |   | F <sub>6</sub>        | -0.0861    | -0.148867  | -0.124459   | -0.079889        | -0.255481  | -0.103721 |
| Σ                          |   | F <sub>7</sub>        | -0.08608   | -0.148787  | -0.124556   | -0.079905        | -0.255514  | -0.103911 |
|                            |   | F <sub>8</sub>        | -0.0861    | -0.148867  | -0.124461   | -0.079922        | -0.255495  | -0.103720 |

| Table 2   | Enoratio | nronartics of | C.F.Br. | and and a    | t different | auontum | mothoda |
|-----------|----------|---------------|---------|--------------|-------------|---------|---------|
| I abic 2. | Energene | properties of | C2F4D12 | calculated a | at unierent | quantum | memous  |

Energetic values in kCal/mol, Dipole moment in Debye (D) and Mullikan charges in coulomb

There are two bonds in C<sub>2</sub>F<sub>4</sub>Br<sub>2</sub> molecule ,since the length of C-Br bonds with 1.9211 Å according to ROHF//6-31G\*\*(p,d) and MP2//6-31G\*\*(p,d) level of theory but the length of C-C bond is 1.5441 Å . The C-F bond has 1.3363 Å according to B3LYP,MP2//3-21G(s,sp,6d) level of theory. According to calculations, the C-Br bond is more reactive toward the dissociation process due to lowest stability and its required lowest energy to scission into two free radicals Br and C<sub>2</sub>F<sub>4</sub>Br than C-C and C-F bond[46]. There are four types of bond angles ,as F-C-C, Br-C-C, F-C-F and Br-C-F. They found F-C-C angle equal to 109.2° and 109.2010° calculated by ROHF//6-31G\*\*(p,d) and MP2//6-31G\*\*(p,d) method respectively[47] as shown in table .3 . The ROHF//6-31G\*\*(p,d) and MP2//6-31G\*\*(p,d) method given up 110.6259° and 110.626° respectively for Br-C-C angle . The F-C-F angle is 108.8178° and 108.818° by ROHF//6-31G\*\*(p,d) and MP2//6-31G\*\*(p,d) method. The calculated Br-C-F angle is equal to 109.48° according to ROHF//6-31G\*\*(p,d) and MP2//6-31G\*\*(p,d) method. The torsion angle of Br-C<sub>1</sub>-C<sub>2</sub>-Br is 180.00° (fixed) calculated by B3LYP, MP2//3-21G+(s, sp,6d) method.

| Table 3 Bonds parameters of C <sub>2</sub> F <sub>4</sub> Br <sub>2</sub> calculated at different calculation methods (bond |
|-----------------------------------------------------------------------------------------------------------------------------|
| length in Å and bond torsion angle in degree)                                                                               |

| Method                                                           | PM3-       | ROHF//   | MP2//   | B3LYP,    | B3LYP//   | B3LYP//  |
|------------------------------------------------------------------|------------|----------|---------|-----------|-----------|----------|
|                                                                  | microstate | 6-31G**  | 6-31G** | MP2//     | 3-21++G** | 6-31G**  |
|                                                                  | CI(4x4)    | (p,d)    | (p,d)   | 3-21G+    | (p,d)     | (p,d)    |
| Bond                                                             |            |          |         | (s,sp,6d) |           |          |
| C <sub>1</sub> -Br <sub>3</sub>                                  | 1.9390     | 1.9211   | 1.9211  | 1.9393    | 1.8893    | 1.9306   |
| C <sub>2</sub> -Br <sub>4</sub>                                  | 1.9392     | 1.9211   | 1.9211  | 1.9393    | 1.8893    | 1.9305   |
| C <sub>1</sub> -C <sub>2</sub>                                   | 1.55373    | 1.535    | 1.5348  | 1.5536    | 1.5441    | 1.5395   |
| C1-F5                                                            | 1.3366     | 1.3166   | 1.3166  | 1.3363    | 1.4134    | 1.3462   |
| C1-F6                                                            | 1.3368     | 1.3166   | 1.3166  | 1.3363    | 1.4134    | 1.3463   |
| C <sub>2</sub> -F <sub>7</sub>                                   | 1.3361     | 1.3166   | 1.3166  | 1.3363    | 1.4134    | 1.3463   |
| C <sub>2</sub> -F <sub>8</sub>                                   | 1.3366     | 1.3166   | 1.3166  | 1.3363    | 1.4134    | 1.3462   |
| F <sub>8</sub> -C <sub>2</sub> -F <sub>7</sub>                   | 106.3305   | 108.8178 | 108.818 | 106.302   | 106.8401  | 109.1157 |
| F <sub>8</sub> -C <sub>2</sub> -Br <sub>4</sub>                  | 112.4243   | 109.4825 | 109.482 | 112.484   | 110.4296  | 109.6092 |
| $F_8-C_2-C_1$                                                    | 112.2887   | 109.2    | 109.201 | 112.26    | 107.4420  | 109.0668 |
| F <sub>7</sub> -C <sub>2</sub> -Br <sub>4</sub>                  | 112.4369   | 109.4836 | 109.484 | 112.483   | 110.4307  | 109.6063 |
| $F_7-C_2-C_1$                                                    | 112.2997   | 109.2    | 109.201 | 112.26    | 107.4424  | 109.0626 |
| $Br_4-C_2-C_1$                                                   | 101.2127   | 110.6259 | 110.626 | 101.209   | 113.9482  | 110.3576 |
| F <sub>5</sub> -C <sub>1</sub> -Br <sub>3</sub>                  | 112.4349   | 109.4830 | 109.483 | 112.483   | 110.4303  | 109.6092 |
| F <sub>5</sub> -C <sub>1</sub> -F <sub>6</sub>                   | 106.3187   | 108.8182 | 108.818 | 106.302   | 106.8394  | 109.1160 |
| F <sub>5</sub> -C <sub>1</sub> -C <sub>2</sub>                   | 112.2931   | 109.2    | 109.202 | 112.26    | 107.4430  | 109.0684 |
| Br <sub>3</sub> -C <sub>1</sub> -F <sub>6</sub>                  | 112.4305   | 109.4839 | 109.484 | 112.484   | 110.4314  | 109.6069 |
| $Br_3-C_1-C_2$                                                   | 101.2107   | 110.6249 | 110.625 | 101.209   | 113.9474  | 110.3563 |
| $F_{6}-C_{1}-C_{2}$                                              | 112.3016   | 109.1999 | 109.20  | 112.26    | 107.4415  | 109.0613 |
| $F_6-C_1-C_2-Br_4$                                               | -59.8738   | -59.4399 | -59.44  | -59.843   | -57.3226  | -59.5435 |
| $F_6-C_1-C_2-F_7$                                                | -179.999   | 179.9993 | 179.99  | 180.000   | 179.9997  | 179.9993 |
| $F_6-C_1-C_2-F_8$                                                | 60.2284    | 61.1194  | 61.1194 | 60.3136   | 60.3535   | 60.9198  |
| Br <sub>3</sub> -C <sub>1</sub> -C <sub>2</sub> -Br <sub>4</sub> | -179.995   | -179.999 | -180.00 | 180.00    | -180.00   | -179.999 |
| $Br_3-C_1-C_2-F_7$                                               | 59.8823    | 59.4393  | 59.4393 | 59.8447   | 57.3223   | 59.5430  |
| $Br_3-C_1-C_2-F_8$                                               | -59.8902   | -59.4408 | -59.44  | -59.843   | -57.3239  | -59.5365 |
| $F_5-C_1-C_2-Br_6$                                               | 59.8878    | 59.4398  | 59.4398 | 59.8447   | 57.3229   | 59.5365  |
| $F_5-C_1-C_2-F_7$                                                | -60.2376   | -61.1211 | -61.121 | -60.310   | -65.3548  | -60.9207 |
| F <sub>5</sub> -C <sub>1</sub> -C <sub>2</sub> -F <sub>8</sub>   | 179.9900   | 179.9991 | 179.999 | 180.000   | 179.9990  | 179.9999 |

The physical properties of Halon-2402 represented in figure 1. The negative electrostatic potential regions are diffuse on some atoms therefore there are incomplete distribution of electrostatic potential on the atoms and also in total charge. Also geometry optimization shapes at the two and three dimension for Halon-2402 shows the frontal orbital's distribution for high occupied orbital (**HOMO**) and low unoccupied orbital(**LUOM**).



Figure 1. Geometry optimization of C<sub>2</sub>F<sub>4</sub>Br<sub>2</sub> calculated at B3LYP/3-21G+ //MP2/3-21G+(s,sp,6d) level of theory.

Figure .2 illustrates the stability of C-Br, C-F and C-C bond . The C-Br bond is more active toward the reactions than C-C and C-F bond. The equilibrium length C-Br bond at 1.93 Å (-3500260.5 kCal/mol) but at 3.4 Å (-3500204.06 kCal/mol) is broken down that's means the bond dissociation energy has to be 56.44 kCal/mol. The F-C bond is stable at 1.338 Å (-3490270.44 kCal/mol) and broken down at 2.93 Å (-3490130.55 kCal/mol) that's refer to the bond dissociation energy equal to 139.89 kCal/mol. The C-C bond have length stability equal to 1.546 Å (-3490320.33 kCal/mol) whereas 3.0 Å (-3490237.6 kCal/mol) therefore the bond dissociation energy is 82.73 kCal/mol. The values of energy C-Br and C-C bond equal to 66 and 83-85 kCal/mol respectively are calculated at 298.15 K over a large series of compounds[48]. This indication proof that the reaction of  $C_2F_4Br_2$  molecule occurs through C-Br bond scission with high probability than C-C, C-F bond scission.



Figure 2. Potential energy stability curves of  $C_2F_4Br_2$  molecule bonds length in calculated at B3LYP//3-21G+(s,sp,6d) level of theory .

The photolysis of Halon-2402 under atmospheric conditions will form the  ${}^{\circ}C_{2}F_{4}Br$  and Br radicals. The  ${}^{\circ}C_{2}F_{4}Br$  radical undergoes secondary decomposition depends upon the energy light of photolysis. The suggested reaction including  ${}^{\circ}C_{2}F_{4}Br$  radical formation, that's rapidly react with O<sub>2</sub> to form a peroxy radical (C<sub>2</sub>F<sub>4</sub>BrO<sub>2</sub>). The radical C<sub>2</sub>F<sub>4</sub>BrO<sub>2</sub> will react primarily with NO to produce C<sub>2</sub>F<sub>4</sub>BrO and NO<sub>2</sub>. The alkoxy radical C<sub>2</sub>F<sub>4</sub>BrO undergo C-C bond scission give up CF<sub>2</sub>Br and CF<sub>2</sub>O[15]. However, since the C-F bond is significantly stronger than the C-Cl bond. Little C–F bond cleavage channel would be expected for C<sub>2</sub>F<sub>4</sub>BrO radical dissociation[49]. The C-C bond breakage has been previously reported for C<sub>2</sub>F<sub>5</sub>O radicals .The  ${}^{\circ}CF_{2}Br$  undergo subsequent oxidation to yield CF<sub>2</sub>O and Br [50]. As a result, may be expected that both Br in the CF<sub>2</sub>BrCF<sub>2</sub>Br will be released as active bromine upon absorption of UV energy, that's leads to the ozone depletion process by conversion of O<sub>3</sub> into O<sub>2</sub> [51,52].

The reaction mechanism of ozone depletion is began by the reaction of  $C_2F_4Br$  with  $O_3$ (instead of the reaction with  $O_2$ ) to produce alkoxy radical  $C_2F_4BrO$  with  $E_b=12.5$  kCal/mol, k=  $1.1 \times 10^7$  and A=  $1.6 \times 10^{16}$  mol<sup>-1</sup> dm<sup>3</sup>s<sup>-1</sup> calculated by PM3CI(4x4) method. The reaction of ozone with  $C_2F_4Br$  is exothermic property ( $\Delta H_r = -50.1 \text{ kCal/mol}$ ), spontaneous ( $\Delta G_r = -51.6 \text{ and } \Delta S$ r = 0.050 kCal/mol) and the probability is increased with temperatures raised. The reaction of  $C_2F_4Br + O_2 \rightarrow C_2F_4BrO_2$  has activation energy equal to 14.3 kCal/mol, which is more than the reaction with ozone. Also the reaction with oxygen molecule is exothermic  $\Delta H_r$ = -51.1 kCal/mol), and rate constant is  $k = 8.3 \times 10^2$  and Arrhenius is  $A = 2.5 \times 10^{13}$  their lower than the reaction with ozone. But the only favorable for the reaction with  $O_2$  is in the spontaneous state. The reaction with O<sub>2</sub> has  $\Delta G_r$ = -75.7 kCal/mol and  $\Delta S_r$ = 0.0824 kCal/mol that's more spontaneous in the view of thermodynamic aspect than with O3, therefore, increasing of temperatures is more active with  $O_2$  than  $O_3$ . At this point, the reaction with  $O_2$  is more favorable in the thermodynamic aspect than kinetic aspect whereas the reaction with O<sub>3</sub> is more considering in the kinetic aspect than thermodynamic, but in any reaction, the kinetic considerations which is controlling and arbitrariness on the reaction [53,54]. Under this results, the dissociate of bromotetrafluoroethyle radical not requested to nitrogen oxide (NO) in order to convert peroxy radical ( $C_2F_4BrO_2$ ) into alkoxy radical( $C_2F_4BrO_2$ ). The alkoxy radical undergoes dissociation C-C bond into FCOF+ CF<sub>2</sub>Br by 11.2 kCal/mol of energy barrier and  $9.9 \times 10^4$  s<sup>-1</sup> of rate constant with A=  $1.6 \times 10^{13}$  s<sup>-1</sup> due to the C-F bond is significantly stronger than the C-C bond[38]. This dissociation is exothermic ( $\Delta H_r$ = -15.9) kCal/mol) and spontaneous reaction  $(\Delta G_r = -30.2 \text{ and } \Delta S_r = 0.048 \text{ kCal/mol})$  in addition to that rising of temperatures will increased the spontaneously of reaction because of the  $\Delta S$  is positive. The 'CF<sub>2</sub>Br react with oxygen atom is exothermic and spontaneous in the view of thermodynamic aspect ( $\Delta H_r$ = -114.1,  $\Delta G_r$ = -104.4 and  $\Delta S_r = -0.0352$  kCal/mol) producing CF<sub>2</sub>BrO by  $E_b = -2.5$  kCal/mol and  $k = 5 \times 10^{12}$  mol<sup>-1</sup>dm<sup>3</sup>s<sup>-1</sup> <sup>1</sup> with A=  $6.2 \times 10^{10}$  mol<sup>-1</sup> dm<sup>3</sup>s<sup>-1</sup>. But the reaction 'CF<sub>2</sub>Br+O is barrierless reaction[55,56] and increasing the temperatures leading to decrease the rate and spontaneously reaction due to the Entropy is negative value. The CF<sub>2</sub>BrO released of bromine radical to produced FCOF with low  $E_b = 0.48$  kCal/mol and highest rate constant k =  $6.7 \times 10^{12}$  and A=  $1.5 \times 10^{13}$  s<sup>-1</sup>. Releasing of bromine radical also is exothermic and spontaneous in the view of thermodynamic ( $\Delta H_r$ = -9.7,  $\Delta G_r$  = -18.62  $\Delta S_r$  = 0.0299 kCal/mol) and rise of temperatures is increasing for rate of reaction because of this step is broken bond. The two bromine radicals are reacts with ozone producing bromine oxide (BrO) and the last react with atomic oxygen to completely the depletion of ozone as shown in scheme- 1.

| $C_2F_4Br_2 + hv \xrightarrow{k_1} C_2F_4Br + Br$                                                                                                                                                                                  |                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $C_2F_4Br + O_3 \xrightarrow{k_2 = 1.1 \times 10^7} C_2F_4BrO + O_2$                                                                                                                                                               | $\Delta H = -50.1$                                                                                                                                                                                                                  |
| $C_2F_4BrO \xrightarrow{k_4=9.9 \times 10^4} FCOF + CF_2Br$                                                                                                                                                                        | $\Delta H = -15.9$                                                                                                                                                                                                                  |
| $CF_2Br + O \xrightarrow{k_5=5\times10^{12}} CF_2BrO$                                                                                                                                                                              | ΔН -114.1                                                                                                                                                                                                                           |
| $CF_2BrO \xrightarrow{k_6=6.7\times10^{12}} FCOF + Br$                                                                                                                                                                             | $\Delta H = -9.7$                                                                                                                                                                                                                   |
| $O_3 \longrightarrow O_2 + O$                                                                                                                                                                                                      | $\Delta H = + 32.75$                                                                                                                                                                                                                |
| Net : $C_2F_4Br_2 + 2O_3$<br>$Br + O_3 \frac{k_7 = 2.73 \times 10^{10}}{E_b = 3.76} BrO + O_2$<br>$BrO + O \frac{k_8 = 2.8 \times 10^7}{E_b = 5.4} Br + O_2$<br>$O_3 \longrightarrow O_2 + O$<br>Net : $4O_3 \longrightarrow 6O_2$ | 2FCOF<br>$\Delta H_r$ = -157.05 kCa/mol<br>$\Delta H$ = -36.9 ) x 2<br>$\Delta H$ = -43.9 ) x 2<br>$\Delta H$ = +32.75 ) x 2<br>$\Delta H_r$ = -96.1 kCal/mol<br>for two Br radicals.<br>or = -48.05 kCal/mol<br>for one Br radical |

Scheme 1. Net equation of ozone depleting reaction mechanism when C<sub>2</sub>F<sub>4</sub>Br is dissociate calculated by PM3 CI(4x4).

The reaction of BrO+O is exothermic and spontaneous but increasing of temperatures is decline of the reaction probability ( $\Delta H_r$ = -43.9  $\Delta G_r$ = -43.155  $\Delta S_r$ = -0.0025 kCal/mol). The BrO+O $\rightarrow$ Br<sup>•</sup> + O<sub>2</sub> required to energy barrier is 5.4 kCal/mol with k= 2.8×10<sup>7</sup> and A= 2.5×10<sup>11</sup> mol<sup>-1</sup>dm<sup>3</sup> s<sup>-1</sup>. Scheme 1 shows the dissociation of halon-2402 into 2FCOF + 2Br<sup>•</sup> and ozone depletion cycle through bromine radical. The radical C<sub>2</sub>F<sub>4</sub>BrO not making the depletion ozone cycle as shown in scheme 1. The depletion of ozone resulted with two molecules that's needed to dissociate the Halon-2402 into 2Br<sup>•</sup> + 2O<sub>2</sub> + 2FCOF as a first step ( $\Delta H_r$ = -157.05 kCal/mol), and four molecules from bromine of depletion cycle have  $\Delta H_r$ = -96.1 kCal/mol for two Br<sup>•</sup> radicals and  $\Delta H_r$ = -48.05 kCal/mol for one Br radical (two ozone molecules is depletion at the same time). The final depletion in this state is four molecules in each two bromine radicals-ozone depletion cycle is depletion radicals in this state.

#### APPLICATIONS

The quantum calculation method suggest some reasonable mechanism for ozone depletion by Halon-2402 in stratospheric layer and estimation of the controlling condition that lead to consuming ozone layer.

## CONCLUSION

- Depletion of ozone in stratospheric layer occurs by the photolysis reaction of Halon-2402 through C-Br bond, which needed 92.3 kcal/mol (309.95 nm) with highly probability than other bonds .
- The reaction of bromine radical with ozone is spontaneous and exothermic in gas phase has  $E_b= 0.044 \text{ kCal/mol}$  with  $\Delta H_r= -34.5 \text{ kCal/mol}$  and the rate constant is  $k= 3 \times 10^{13} \text{ mol}^{-1} \text{dm}^3 \text{s}^{-1}$  and  $A=2.33 \times 10^{13} \text{ at STP}$ .
- The energy barrier of reaction  $C_2F_4Br+O_3$  equal to 11.9 kCal/mol,  $\Delta H_r$ = -55.5 kCal/mol, k= 1.6  $\times 10^7 \text{ mol}^{-1}\text{dm}^3\text{s}^{-1}$  and A= 2.7×10<sup>15</sup> mol<sup>-1</sup>dm<sup>3</sup>s<sup>-1</sup> at STP.
- The depletion of ozone resulted by two moles of ozone through the photolysis of Halon-2402 into  $2Br' + 2O_2 + 2FCOF$ .

#### REFERENCES

- [1] World Meteorological Organization (WMO), Scientific assessment of ozone depletion: 1991, WMO Global Ozone Res. and Monit. Proj. Rep. 25, **1992**.
- [2] D. J. Chartrand, J. de Grandpré, and J. C. McConnell, Atmosphere-Ocean, 37, 4, 309–367, **1999**.
- [3] A. C. Voukides, K. M. Konrad, and R. P. Johnson, J. Org. Chem., 74, 5, 2108-2113, 2009.
- [4] M. A. Mendes, L. A. B. Moraes, R. Sparrapan, M. N. Eberlin, R. Kostiainen, and T. Kotiaho, J. Am. Chem. Soc., 120, 31, 7869-7874, 1998.
- [5] S. Pekárek, Eur. Phys. J. D, 56, 91–98, 2010.
- [6] J. Skotnica, M. Gilbert, I. Weingart, and C. Wilhelm, Photosynthetica, 43, 3, 425-434, 2005.
- [7] J. Cerkovnik, B. Plesničar, J. Koller, and T. Tuttle, J. Org. Chem., 74, 1, 96–101, 2009.
- [8] A. L. Gomez, T. L. Lewis, S. A. Wilkinson, and S. A. Nizkorodov, Environ. Sci. Technol., 42, 10, 3582–3587, 2008.
- [9] J. C. Hansen, Y. Li and J. S. Francisco, and Z. Li, J. Phys. Chem. A, 103, 42, 8543-8546, 1999.
- [10] J.Struijs, A. V. Dijk, H. Slaper, H. J. Van Wijnen, G. J. M. Velders, G. Chaplin, and M. A. J. Huijbrets, Environ. Sci. Technol., 44, 1, 204–209, 2010.
- [11] W. S. McGivern, O. Sorkhabi, A. G. Suits, A. Derecskei-Kovacs, and S.W. North, J. Phys. Chem. A, 104, 45, **2000**.
- [12] V. L. Orkin, F. Louis, R. E. Huie, and M. J. Kurylo, J. Phys. Chem. A, 106, 43, 2002.
- [13] P. J. Crutzen and F. Arnold, Nature, 324, 651-655, **1986**.
- [14] P. Zou, W. S. McGivern, O. Sorkhabi, A. G. Suits, and S. W. North, J. Chem. Phys., 113, 17, 7149-7157, 2000.
- [15] A. Kalume, L. George, P. Z. El-Khoury, A. N. Tarnovsky, and S. A. Reid, J. Phys. Chem. A, 114, 36, 9919–9926, 2010.
- [16] I. K. Larin, T. I. Belyakova, N. A. Messineva, A. I. Spasskii, and E. M. Trofimova, Kinetics and Catalysis, 52, 4, 513–517, 2011.
- [17] B. R. J. Muhyedeen, European Journal of Scientific Research, 16, 4, 490-505, 2007
- [18] A. M. Thompson and R. W. Stewart, J. Geophys. Res., 96, 13, 89-108, 1991
- [19] D. G. Truhlar, Ann. Rev. Phys. Chem, 1, 35, 159-189, 1984.

- [20] HyperChem <sup>TM</sup> 8.0.9. for windows molecular modeling system, Hypercupe, Inc., **2011**.
- [21] S. Grimme, Journal of Chemical Physics, 124, 3, 034108 (1-16), 2006.
- [22] U. Zimmerli, M. Parrinello, and P. Koumoutsakos, Journal of Chemical Physics, 120, 6, 2693–2699, **2004**.
- [23] S. Grimme, Journal of Computational Chemistry, 25, 12, 1463–1473, 2004.
- [24] H. Dorsett, and A. White, DSTO-GD-0253, 2000.
- [25] F. Jensen, "Introduction to Computational Chemistry", 2<sup>nd</sup> Ed., John Wiley & Sons, Ltd., 2007.
- [26] J. S. Binkley, J. A. Pople, and W. J. Hehre, J. Am. Chem. Soc., 102, 3, 939-947, 1980.
- [27] M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro, and W. J. Hehre, J. Am. Chem. Soc., 104, 2797-2803, 1982.
- [28] W. J. Pietro, M. M. Francl, W. J. Hehre, D. J. Defrees, J. A. Pople, and J. S. Binkley, J. Am. Chem. Soc., 104, 5039-5048, **1982**.
- [29] M. He, Y. Sun, H. Cao, D. Han, and J. Hu, Struct Chem, DOI 10.1007/s11224-011-9866-0, 2011.
- [30] K. Brudnik, J. T. Jodkowski, D. Sarzyński, and A. Nowek, J. Mol. Model, 17, 2395– 2409, 2011.
- [31] A. Ciancetta, C. Coletti, A. Marrone, and N. Re, Theor. Chem. Acc., 129, 757–769, 2011.
- [32] M. Vahedpour, and F. Zolfaghari, Struct Chem, DOI 10.1007/s11224-011-9823-y, 2011.
- [33] A. Hamza, Á. VibÓK, G. J. Halász, and I. Mayer, Journal of Molecular Structure: Theochem, 501–502, 427–434, **2000**.
- [34] B. N. Plakhutin, and K. D. Sen, "Reviews of Modern Quantum Chemistry", 1<sup>st</sup> Ed., Word Scientific, **2002**.
- [35] K. R. Glaesemann, and M. W. Schmidt, The Journal of Physical Chemistry A, 114, 33, 8772–8777, **2010**.
- [36] I. A. Adejoro, and E. Ekeh, E-Journal of Chemistry, 7, 1, 271-274, 2010.
- [37] I. Sheikhshoaie, and S. Saeednia, The Arabian Journal for Science and Engineering, 35, 1A, 53-60, **2010**.
- [38] H. J. Singh, B. K. Mishra, and N. K. Gour, Bull. Korean Chem. Soc., 30, 12, 2973-2978, 2009.
- [39] H. Liu, J. Tao, J. Xu, Z. Chen, and X. Luo, 256, 20, 5939-5945, 2010.
- [40] G. Maroulisa, J. Chem. Phys., 111, 15, 6846-6849, 1999.
- [41] Z. F. Xu, and M. C. Lin, J. Phys. Chem. A, 114, 43, 11477-11482, 2010.
- [42] Hypercup, Inc., Hyperchem Computational Chemistry, Practical Guide, Hypercup, Inc., USA, **2002**.
- [43] A. J. Hameed, Journal of Molecular Structure: Thochem, 764, 195-199, 2006.
- [44] A. J. Hameed, Journal of Molecular Structure: Thochem, 725, 97-101, 2005.
- [45] A. A. Drea, S. N. Naman, and B. R. J. Muhyedeen, NJC, 44, 539-560, 2011.
- [46] A. A. Drea, NGC, 39, 481-498, 2009.
- [47] M. Ibrahim, H. El-Haes, A. J. Hameed, and A. F. Jalbout, J. Comput. Theor. Nanosci., 5, 11, 1-5, 2008.
- [48] R. A. Moss, M. S. Platz, and Jr. M. Jones, "Reactive Intermediate Chemistry", John Wiley & Sons, Inc., Hoboken, New Jersey, **2004**.
- [49] H. Ihee, J. Cao, and A. H. Zewail, Chem. Phys. Lett., 281, 10-19, 1997.
- [50] H. Ihee, J. Kua, W. A. Goddard, and A. H. Zewail, J. Phys. Chem. A, 105, 14, 3623-3632, 2001.

- [51] J. Fossey, D. Lefort, J. Sorba, "Free Radicals in Organic Chemistry", John Wiley & Sons, New York, 1995.
- [52] M. B. Smith, and J. March," March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure", 6<sup>th</sup> Edition, John Wiley & Sons, Inc, **2007**.
- [53] D. Y. Hwang, and A. M. Mebel, J. Chem. Phys., 109, 24,10847-10851, 1998.
- [54] Z. Li, J. Phys. Chem. A, 103, 9, 1206-1213, 1999.
- [55] À. González-Lafont, J. M. Lluch, A. Varela-Álvarez, and J. A. Sordo, J. Phys. Chem. B, , 112, 2, 328–335, 2008.
- [56] D. C. Young, "Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems", New York, John Wiley & Sons, Inc, **2001**.