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_____________________________________________________________________________ 

ABSTRACT 
CSS (charged system search or Charge_Syst_Serch) algorithm is another nature inspired multi-agent 

optimisation tool of this decade.  It is applicable to variable selection in structure X (: activity, toxicity, 

property etc.) relationships (SXR), estimation of equilibrium constants of multiple chemical equilibria and 
rate constants of parallel/ consecutive kinetics profiles. The extensive application in engineering and 

advances in the algorithm brought CSS to the forefront of bandwagon of physics based swarm approaches 

viz. gravitational, big-bang_big-crunch, intelligent_water-drop etc.  The Charge_Syst_Serch algorithm 

consists of calculation of the resultant force affecting each of a set of charged particles based on Coulomb 
and Gauss electrostatic interaction. Here, the magnitude of charge of a charged particle (CP) depends on 

fitness value of object function.  Newton’s law of mechanics directs the movement of CPs to refined 

positions in the search space. The iterative improvements of approximate (random) solutions converge to 
true optimum.  CSS algorithm converged to Pareto optimal solution of non-convex functions and it finds 

application in parametric models.  Incorporation of magnetic forces, chaos and correction for fence 

crossing during refinement improved efficacy of CSS.  The binary hybridization of CSS with another E-

man module viz. ant colony optimisation (ACO), particle swarm optimization (PSO), Big-Bang_Big-
crunch (BB_BC) is the development with a right perspective of deriving synergistic benefits of both worlds. 

This combination at the same time diminishes the short comings of individual component algorithms.  The 

concept of fields of forces, again from Physics, mimicking ACO, PSO and CSS is another landmark to 
probe deep into core mathematics for future prospects. These multi-agent search/optimization tools 

designed for multi objective multi-dimensional-non-linear-convex functions with constraints/ 

discontinuities are implementable on parallel software and hardware architectures. 

 

Keywords:  Charged System, Multi-object-functions, E-man, Nature mimicking, SXR, Chemical 
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INTRODUCTION 

 
The wisdom/knowledge in swarm behavior or flocks of birds, parliament of owls, herds of land animals, 
fish schools and various social insects (bees, wasps, ants, termites, mosquitoes, fireflies, glowworms etc.) 

paved way for nature inspired algorithms over half a century.   In this decade, the inspiration of physical 

forces in nature resulted in a new era of mathematical optimization/variable search methods [1-5]. The 
(subset of finite) nature, scientific laws of physics and E-man are described in the table 1.   

Table 1. Nature’s process to nature-inspired algorithms through laws of physics 

 Response Physics E-man 

Nature [Charge, 
mechanics] 

 Laws of 
 Coulomb  
 Gauss 
 Newton 

 Charge_Syst_Search 

 [Magnetism]  Biot–Savart law 

 

 Mag_Charge_Syst_Search 

 [Gravity]  Newton‟s gravitation  [Grav.binary, Grav.Float] 
 

 [river course]  Fluid dynamics  [Intelligent_water_drop] 

 [Origin of 

universe] 

 Big-Bang_Big- Crunch    [Big-Bang_Big-Crunch]   

 [Sound]  Audible Sound  [Cuckoo] 

Man made [Rhythm]  Music  [Harmony search] 

    

a. Forces in nature 

 The study of properties, transformation of matter and energy are the focus of the scientific and non 
scientific pursuit from early history of man; the hamosapeon.   The particles occupying space at different 

instants of time exert forces of widely varying magnitude.  This results in motion of particles, aggregation, 

disassociation etc. The space−time mathematical model is a four dimensional physical concept 
comprehending space and time in a single construct. Newtonian gravitational/electric/magnetic 

interactions produce typical fields in physics.  From classical physics, force between two particles --- 

charges, magnetic monopoles, or masses--- are inversely proportional to the square of the distance of 
separation between them and directly proportional to the product of their numerical magnitudes. It is 

popular as an inverse square law (Eqn.  A01).   The direction of force is along the line joining the particles.  

The magnitude of the field for particle i is obtained by considering magnitude of second particle to be 

unity (magnitudej=1)   

b. Translation of charges interaction into laws of physics 

 The attractive force pools all agents (charges here) in a small area of the search space, while repelling 

force disperses them far away from each other. The net force is a product of a function of the magnitude of 
the charges (Appendix 01).  The force between two charges bearing a of unit of charge at one meter 

distance is 9.0e9 N m
2
/c

2
, while that between unit two masses separated by one meter is 6.67e-11 N 

m
2
/Kg

2
.  These numerical values are electrostatic (kel) and gravitational (G) constants respectively.  

Coulomb‟s law of electrostatic attraction between two charges, its limitations/failures, Gauss‟s law  and 

integrated form of these two laws accounting for the attraction force/direction inside/ on /outside/ the 

charged sphere are incorporated in  Appendix-2 along with m(atlab)-functions for calculation and 

numerical illustration. 

c. Mathematical optimisation 

In yester years, mostly a single object function is used in minimization/maximization employing a range of 

gradient to direct non-gradient (including simplex) methods.  The functions considered are nonlinear and 
mostly quadratic and rarely curved functions.  But, in the last two decades, multiple- object 

functions/convergence criteria/Pareto optimality of multimodal nonlinear profiles with several global/local 

optima has become routine in chemical sciences and engineering. The optimization task becomes more 

challenging if the function is not known/ has breaks/ indefinite, infinity or NAN (not a number) at some 
points in the search space.  Nature inspired algorithms are now a new class of the tools and their 
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combination with classical mathematical tools are better than either of the categories.   The complexity 
now is in terms of accuracy and reliability rather than the CPU time and memory requirements.  Of course, 

they also play a pertinent role in the case of repeatable multiple optimization tasks in routine 

industrial/manufacturing.   Unfortunately, there is no algorithm to achieve the best solution for all 
optimization problems like no drug is panacea for all the diseases.  In fact, a set of algorithms output a 

better solution for select tasks compared to others.  The initial/approximate search point plays a dominant 

role in the convergence and escaping from local optima in the case of conventional direct search methods 

and Cheng et.al. [5] reported   limitations of heuristic global optimization algorithms.  A brief sketch of 
mathematical optimization and CSS are represented in pseudo code form in Chart 1. 

 Chart 1: Bird‟s eye view of Optimization   algorithm  

 Chart 1 (a): Mathematical optimization 

 Input 

 Data 

 Object function (objFn) 

 Convergence limits 
 Stopping rules 
 Search space identification 

 

 Initialisation 

o Parameters of optimization method 

o Approximate solution(s) 

Iterate   until convergence | stopping criteria 

 
 
 

 

Cal objFn 
Operate Opt_method 
Refine X 
X_app  X_refined 

EndIterate 

Output 
 

  

 

Chart 1 (b): CSS search 

algorithm 

Chart 1(c): 

Mag_charge_syst search 

 

Initialisation Initialisation 

Iterate  until convergence |  
             stopping criteria 

Iterate  until convergence |  
             stopping criteria 

 For each CP  For each CP 

  Cal  objFnValue, q 
of CP 

  Cal  objFnValue, q of 
CP 

  Cal Coulomb 
electrostatic force 

  Cal Coulomb 
electrostatic force 

     Cal magnetic force 

  Update position and 

velocity 

  Update position and 

velocity 

     Boundary 

exceedance of X 
 endFor  endFor 

endIterate endIterate 

Output Output 
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2. (Artificial) Charge system search algorithm (Charge_Syst_Serch_Alg) 
In 2010, Kaveh and Talatahari [6] proposed a nature inspired charged system search algorithm for single 

object function minimization tasks.  It is a population based stochastic meta-heuristic procedure with 

multiple-agents.  Each agent is a charged particle (CP) based on the fitness value of object function and its 
distance from the others and this standard algorithm is the basis of an extensive study [7-28]. 

 Chart  1(d): Terminology of CSS and mathematical optimization 

Domain 

Nature Charged System Search  Optimization 

Moieties nsol Number of solutions (agents) 

Charges charged particles Approximate (possible) solutions 

Amount  
of charge 

Charge Fitness (quality), objective function value 

Sequence of   

processes 

Movement of charges based  

on force of attraction 

Gradient/ direct search 

 

Chart 1(e):  Types of constants, initial/intermediate variables and system software for CSS  

Mathematical constants  FP eps   

Optimisation User chosen  integer iter_max   

   FP accuracy_ 
expected 

Max(dist.CPs)  

 Intermediate  integer iter   

 calculations  FP fiti   

       

CSS constants  FP Cof_vel Radius of 

influence   

coe_acc   

   integer t   

   FP Xmin(i) 
Xmax(i) 

  

 initiation   FP q0i X0i,d Vel0i 

 Intermediate   tensors  Xiter,  dist_sep 
 

  

  integer integer Prob_CP_movement 

 

  

   scalar scalar fitbest and fitworst 

 

 CMCR 

Matlab 
functions 

Rand 

 FP : Floating point 

 

Assumptions_ Charge_Syst_Search (CSS) 

 

 Each CP is a sphere of radius „rad‟ with uniform volume charge density.   It exerts an attractive electrical 

force on other charges (agents) [20]. The laws of motion of Newtonian mechanics (Appendix 3) drive the 

movement of CPs to a new position in objFn search space. Each solution candidate is considered as a 
charged particle in an n-dimensional space. 

Basis: The magnitude of the electric field at a point inside/outside a charged insulating solid sphere is 

calculated by integrated form of Coulomb and Gauss laws of electrostatics (Appendix 2, fig A2). The 
electric force operated on CPs (agents) results in the acceleration of their movement to a new position in 

the multi-dimensional-object-function (m-D-obj-fn) search space (fig.1). 
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Fig. 1. Multiple (= 3) charges of different charge values 

 a.Data structure: The data structure of variables and free parameters in CSS in tensorial notation are 

given in chart 2(a).  A bird‟s eye view of   terminology of CSS with   intermediate variables and constants 
are in chart 1(d, e). 

 

Chart 2: Data structure, charge of CPs and forces in   Charge_system.alg 

(a) Tensorial representation of  variables and free parameters of  Charge_system alg. 
 

vectors Nsol  : Number of solutions 

1 2

1 2

1 2

:

arge ( ) :

( ):

T

i nsol

T

i nsol

T

i nsol

fi tness fit fit fit fit

ch q q q q q

velocity v vel vel vel vel

 

 
  

fiti : Objective function value  
or the fitness of  ith  agent  
 (e.g. ESS) 

veli : velocity  of ith CP 

qi : Charge of ith CP 

MATRIX 

1,1 1,2 1,d 1

2,1 2,2 2,d 2

i,1 i,2 i,d

nsol,1 ,2 ,d

:
i

nsol nsol nsol

x x x

x x x
position

x x x

x x x

x

x

x

x

 
 

xid : Coordinates of ith position in dth 
dimension 

   

superscript T : Transpose of vector/matrix/tensor 

   

Data structure with iterations 
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 fitness 
 charge 
   velocity 

 

Positio

n (X) 

Second  order tensor (or matrix or 2-way data)   
                 Nsol x iter 

Third order tensor (3-way data): 
nsol x ndim x iter 

 

Chart 2(b):Calculation of charge of CPs 

Algebraic equation Vector/tensor (matlab program) 

( )
( ) 1,2,...

fit i fitworst
q i i nsol

fitbest fitworst

Eqn.1 

fitworst  

fitbest 

: 

: 

Worst fitness 

value 

Best    fitness 

value 
 

function [q,fit]= om_fit2q(fit2)  

[nsol,col] = size(fit2); 

one = ones(nsol,1); 

% 

[fit.sort,Ix]= sort(fit2);  

% 

fit.Ix=Ix; 

fit.worst = fit.sort(1,1);  

fit.best = fit.sort(nsol,1); 

% 

q = (fit2 - fit.worst*one)/ .... 

    (fit.best-fit.worst); 

 

                           fitworst = 1       fitbest = 11 
ObjFnvalue   6           7            1            5            3           11 

    q        0.5        0.6           0           0.4          0.2           1 

 

Chart 2(c ): Pseudo code for calculation of force in a multi-agent system of charges 

Input Function output 

X,  xminmax, q ESForce  F 

 

[1,2,... ]

[1,2,... ]

i nsol

cal

fo

for j

r

nsol

 

1 =1, 2 =0 _ ( , )

1 =0, 2 =1 _

_ i

( ,

nfl

_ in l) f

i i if dist sep i j

i i if dis

rad

radt sep i j
 

3 2
1,

( ) ( )
F( ) ( )* * _ * 1 * 2 *

_

( , )* ( ,:) ( ,:)

nsol

i i j

q i q i
j q j dist sep i i

radius dist sep

prob i j X i X j  

0
0.2

0.4
0.6

0.8
1 0

0.5

1
0

0.2

0.4

0.6

0.8

1

z

x

y
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,   , , { , }jThus F fn q X prob ar  

 

 

b. Charge of charged particle (CP):  The quality of solution (fitness in GA, object function in 

mathematical optimization) is quantified as charge of the agent, here charged particle (CP).  The charge of 
CP is calculated (Chart 2.b) by comparing the current fitness value with worst in the cycle and normalized 

with range between worst and best fitness values.  It tantamounts to q is fitness vector scaled between zero 

and one, easing application of numerical techniques. The magnitude of the charge induces competition in 

the search process.  
c. Refinement (updating/iteration) of position and velocity of CPs: CSS is a self starting multi-agent 

parallel search algorithm.  The number of charges representing the solutions considered is nsol.  The 

pseudo code for CSS (Chart 1.b) is described along with that major breakthrough of introducing magnetic 
forces of moving charges (Chart 1.c).  

Initialization:  An array of positions of charged particles (CPs) is initialized with uniform random numbers. 

The initial velocities of the CPs are taken as zero.  
 

Table 2: Initiation and separation distance between charges 

(a) Initiation 

  
function [x0cpLU,x0cp01]= om_initcpx(Xminmax,nsol) 

% xi,min : minimum allowed value  for ith dimension 

% xi,max : maximum allowed values for ith dimension 

% 

 [ndim,col] = size(Xminmax); 

uniform01 = 0 

if  uniform01 

    for j = 1:ndim 

        Xminmax(j,2)=1; 

        Xminmax(j,1)= 0; 

    end 

end 

  Xminmax   

x0cp01 = rand(nsol,ndim); 

randx = x0cp01;  

for i = 1:nsol 

    for j = 1:ndim 

        x0cpLU(i,j)= Xminmax(j,1) + randx(i,j) * (Xminmax(j,2)-

Xminmax(j,1)); 

    end 

end 

 

clean, Xminmax = [ 0 1; 0 100;0 1000] 

nsol =6; 
[x0cpLU,x0cp01]=  om_initcpx(Xminmax,nsol); 
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    0.4387   44.5586  655.0980 

    0.3816   64.6313  162.6117 

    0.7655   70.9365  118.9977 

    0.7952   75.4687  498.3641 

    0.1869   27.6025  959.7440 

    0.4898   67.9703  340.3857 

    dim1     dim2     dim3 

(b) Distance of seperation 
function [vel0]= initcpvel(nsol,ndim) 

         vel0 = zeros(nsol,ndim); 

 

( ,:) ( ,:)
_ ( , )

( ,:) ( ,:)

2

X i X j
dist sep i j

X i X j
Xbest eps

 

Eqn.2 

 

dist_sep 
 (i, j)   

: separation distance between two 
charged particles   

Xi and 
Xj 

: positions of the i th and jth CPs 

Xbest : position of the best current CP 

eps : small positive number (1e-16) to 
avoid singularity 

.  
: Euclediannorm  X = [ 0. 0. ; 4. 3.; 8. 0.]; 

y = [11, 9, 1]'; 

[dist_Eucl,dist_sep] =om_distSep(X,y) 

  

  

function [dist_Eucl,dist_sep] =om_distSep(X,objFnValue) 

%  

%   om_distSep.m    12/6/13 

% 

function [dist_Eucl,dist_sep] 

=om_distSep(X,objFnValue) 

% 

[nsol,ndim] = size(X) ; 

dist_sep    = zeros(nsol,nsol); 

dist_Eucl   = zeros(nsol,nsol); 

objFnValueXAsc = sortz([objFnValue,X],1,1) 

Xbest          = objFnValueXAsc(nsol,2:ndim+1) 

  

for  i = 1:nsol 

%%% 

    for j = 1:nsol 

    %%% 

        if i ~= j 

        %% 

           Xi = X(i,:); Xj = X(j,:); 

           dist_Eucl(i,j) = norm (Xi - Xj) ; 

           A = dist_Eucl(i,j); 

           B = norm((Xi + Xj)/2-Xbest);  

           dist_sep(i,j) = A/(B +eps); 

           % 

        end %%if  

    end %%%j 

end %%%i 

 

    [ y     X] 

     11    0     0 

     9     4     3 

     1     8     0 

dist_Eucl = 

 

     0     5     8 

     5     0     5 

     8     5     0  

 

dist_sep = 

 

    0    2.0000  

2.0000 

2.0000      0    

0.8085 

2.0000   0.8085    

0 
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(c ) m-function for calculation of radius of influence                  

 

Xminmax = 
 
    [ 0     1      
     0    10 
     0   100] 

 
 

function [rad_Infl] =radinfl(Xminmax) 
% 
[ndim,col] = size(Xminmax); 
    for j = 1:ndim 
         rad_Infl(j,1)= 0.10* ... 
            max (Xminmax(j,2),Xminmax(j,1)); 

    end 
 
 

 

 rad_Infl = 
 
    0.1000 
    1.0000 
   10.0000 

rad_infl     

 It induces competition in the algorithm  

  Better fitness (great qi) can create a stronger attracting force, so the tendency to move toward a good CP becomes 

more than toward a bad particle 

 

 

 Iteration: The magnitude of the charge (Eqn. 1) for each CP (agent), and the distance of separation 

between all pairs (Eqn. 2) are calculated (Table 2). Radius of influence (rad_infl) is set to unity or 

calculated by Eqn.3.   

_ infl   0.10 *max ( ,max) ( ,min) 1,2,...,rad x i x i i nsol                                       Eqn.3 

i) Force between charges: Thus, Force is calculated for each CP (Chart 2c) taking into consideration of 

effect of all other charges (Fig 2) using superimposition principle.  
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 2: Forces between multiple charges through superimposition principle 
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 ii)  Movement of position of CPs (solution):  The new/refined/iterated position of each CP depends upon 
its velocity (Eqn. 4) in the previous iteration (Chart 3).  The values of objFn, charges of refined CPs and 

current velocities are calculated.  The q vector and their corresponding position matrix (Xiter) are sorted in 

ascending order. 
 

Chart 3. Movement of agent with iteration 

2

(j, iter 1) ( , )

( )
*

( )

( , ) *

X X j iter

F j
t

q j

vel j iter t

 

Eqn.4 

 

qj : Equal to mass of 
the jth CP   

t : time step  
set to unity  (t_ 
1) 

 

 

 

 

 

 

 

 

  

iii) Terminating criteria for iterative refinement: The iterative cycle is terminated after a fixed number of 

iterations (iter_max), say 1,000, even if the convergence is not reached. Further, the refinement is 
discontinued, when there is no improvement in fitness function after some fixed number of consecutive 

iterations, minimum objective function error (difference between the values of the best objective function 

and global optimum) is less than a priori anticipated threshold value or difference between the objective 
values of the best and the worst CPs is less than a specified accuracy (Chart 4). 

 

 

  

 

Chart 4 :  Stopping criteria for iterative algorithms 
 

 

(a) Iteration termination 
 

   

Stop =  .T.    
     

If Iteration_current  < Max_it 
 

.or.  

 it_without_Improvement <  Max_it_ 
 withoutImprovement  
 

.or.  

Then Stop _iter= .F.    
Else Stop_iter = .T.    
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(b) convergence 
 

   

If fn(obj _fn_value-refined  
–        
     obj _fn_value-

approximate)  

< tol .or.  

     
 ABS ( best_obj _fn_value  

–  
Glob_opt _value_of_ obj 
_fn ) 
   

< threshold .or.  

 Max_ distance between 

CPs 

< 3 * radius_of 

sphere 

.or.  

     
Heuristics specific to CSS  

 ABS(obj_fn_value_ best 

CP –   
         
obj_fn_value_worstCP)   

< 

accuracy_expected 

 

.or. 

 

     
 maximum distance 

between CPs   

< 3 * pre-defined-

value 

  

     
Then  converge =.T.    
Else converge =.F.    

 

(c ) Iteration process 
discontinuation 

   If converged or 
stop 

 Then continue_iter =  
.No. 

 Else continue_iter = 
.Yes. 

 endif 

 

 

 

 

APPLICATIONS 
 

A literature search of application of nature_mimicking_meta_heuristic_algorithms in chemistry and 
chemical engineering/technology grew exponentially in the last two decades.  GA, EA, PSO, ACO 

algorithms found a niche in analytical chemistry, chemometrics, SXR, nano chemistry and nano medicine.  

HBF, HBMA, gravity, charge_syst_search, BBBC etc. reported in recent times have successfully solved 

non-linear programming (NLP) with better prospects in engineering.  But, the publications in chemical 
sciences are scanty at the movement.  A white box domain independent matlab programs comprising 

classical and E-man tools will open new vistas in pharmaceutical, environmental, drug discovery, nano 

sciences and proteomics.   Kaveh and Laknejadi [8] extended CSS to multi objective optimization   (MOO) 
tasks using clustering and particle regeneration procedures. CSS_MO successfully arrived at solutions for 

multi-modal object functions. 

Chemical equilibria and kinetics: The interaction of a metal ion with polyprotic ligands in solution phase 
is in the realm of chemical equilibria including proton-ligand/metal-ligand/protonated-metal-ligand 

complexes. The overall formation constants (chemical parameters) of the equilibria (Chart 5) are 

determined with experimental data using glass-electrode / ion-selective-electrode/ spectrophotometric/ 

NMR/ ESR (instrumental) probes. 
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Chart 5. Overall formation constants of protonated metal complexes 

( ) ( ) ( )

( ) ( ) ( )

( ), ( ), ( ) ( ) ( ) ( )

( ) ( ) ( )

* *

m j l j h j

m j l j h j

m j l j h j H m j l j h j

m j M l j L h j H M L H

M L H

FM FL FH

 

( ), ( ), ( )m j l j h j H  
: Stoichiometric 

coefficients 

FM , FL, FH 

: Equilibrium (unbounded 
or free) concentrations 
of metal, ligand and 

hydrogen ions 

( ), ( ), ( )m j l j h j H  

: Overall(cumulative) 
formation constant of 
complex 

( ) ( ) ( )m j l j h jM L H  

 

The parameters, conventionally, calculated or estimated by non-linear least squares using first and second 

derivatives (gradient [g], Hessian[H]) by analytical/numerical methods over last half a century. The 

feasibility study with nature-inspired E-man modules viz., CSS, honey-bee-mating/honey-bee-foraging 
algorithms showed promising results [29] and details will be published. 

The time dependent formation of a chemical compound/complex is the core of chemical kinetics while that 

at molecular level is in the realm of chemical dynamics.  The applications in organic synthesis, analytical 
estimations of industrial/pharmaceutical/clinical moieties require a fast progress and near completion of 

reaction.  The research/pedagogical pursuits were initially confined to integrated form of rate equations 

wherein first and second order rate constants (k1, k2) were calculated by graphical/linear least squares fit.  
The non-linear equations (without integration) are exponential in chemical parameters (k) and 

concentrations of reactants.   The unconstrained non-linear least squares (using Gauss Newton, Newton 

Raphson or Marquardt algorithms) had been in extensive use in chemical/biological/pharmaceutical 

sciences. This task in mathematical frame consists of a set of non-linear equations with complex multi-
dimensional profiles, constraints on rate constants and concentrations. In our laboratory, work is progress 

in application of ant-colony-optimisation, PSO, BBBC, gravitational and charge system search algorithms 

in estimation and interpretation of rate constants. 
Engineering : For the first time, CSS algorithm was applied to estimate economic power dispatch with 

prohibited operating zones and power generation limit.  Kaveh and Talatahari [7, 14] obtained a viable 

result in optimum design of geodesic domes and the output of CSS was compared with those of PSO, 

ACO, HS, BBBC and hybridization of PSO with ACO. 
Mathematical functions : Charge_Syst_Serch is now a tool of choice for non-smooth or non-convex 

functions [19].    This algorithm was used in parameter identification of nonlinear- (NL-) differential 

equations (DEs) and Pareto optimal solution in economic power dispatch. A few typical systems optimized 
with Charge_Syst_Serch follow and three dimensional surfaces and 2D-contours are generated with m-

files reported from this laboratory [29].    

Function.polynomial:  Aluffi-Pentiny function is a second order polynomial in two variables and Fig.3a 
depicts 2D-contour and 3D-surface. 

Function.multiModal:   Becker and Lago is a multimodal quadratic response function with only positive 

response values (Fig. 3b). But, the ranges of x ([-10 to 10]) in both dimensions (variables) cover negative 

to positive values. 
Function.uniModal:  Fig. 3c is a popular uni-modal single object function.  It is an exponential of algebraic 

quadratic function in two (variable) dimensions. 

Function.expoential: widened lamp, twisted-break and pot with a hole are exponential function in two 
dimensions, but posing varying difficulty in finding optima.  The contours are described in Fig. 3d to Fig 

3.f. 
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(a) Aluffi-Pentiny function 

 

ll = -2.; ul = 2; inc =  .04; 

f1 =  0.25*x1.^4 -0.5* x1.^2 + x1/10 +0.5* x2.^2; 

  

 

 

  

 

(b) Becker and Lago function 

dim

1

fn = (-1) * ; 1 2*

powern

i

k

i

i ia x b k or  

 

 
ll = -10.; ul =10; inc =  .1; 
f11=  [abs(x1)-5].^2  +[abs(x2)-5].^2 ; 
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 (c ) Exponential function 
 

d m

1

2
i

efn = (-1) * 1 2xp *
n

k

i

i i ra x k o  

 
 
ll = -1.; ul =1; inc =  .01; 
f12=  -exp (-0.5*x1.^2  -0.5*x2.^2) ; 
 
  

 

 

(d) Widened Lamp 
 
a=20; ll = -a; ul =a; inc =  .5; 
 

a1 =   1 ;a2 =  1; 
f12=   a1*exp (x1) +a2*exp ( x2) ; 
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(e) Twisted function with a break  
 
a=20; ll = -a; ul =a; inc =  .5; 
a1 =  -1 ;a2 =  1; 
f12=   a1*exp (x1) +a2*exp ( x2) ; 
 

 
  
 
 

 

 

(f) Pot with a hole 
 
a= 5;ll = -a; ul =a; inc =  .1; 
fn=  -0.1*exp (-x1.^2  - x2.^2) ; 
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(g) Structure of function (Fn) base (Fnbase) in matlab 

...AU Au AU Au >mm>>>>>mmm>>>>mm>>>mm>> 

           

        fnName: 'Aluffi-Pentiny' 

                ref: '11.' 

             number: 11 

             rangeX: [2x2 double] 

               incX: [2x1 double] 

          min_globX: [1x1 struct] 

    min_globFnValue: 99 

           min_locX: [1x1 struct] 

     min_locFnValue: [3x1 double] 

             inform: [1x1 struct] 

        methodsUsed: ' ' 

                 fn: 'objFnValue = 

0.25*x1.^4 -0.5* x1.^2 + x1/10 +0.5* 

x2.^2' 

 

 
RangeX: [-2.0 to 2.0  with inc  of  0.04]  

Aluffi Fn '0.25*x1.^4 -0.5* x1.^2 + x1/10 +0.5* x2.^2' is 

Unconstrained multi modal Fn. 

'Non-linear' ; 'algebraic';  'Polynomial--order two' 

 FnValue at globMin is   -0.352286 

Fig. 3. 2D-contours and 3D-surfaces of typical functions and structure of function base 

 

  

Hidden features of charge_syst_search 

 The features viz. self-adaptation/cooperation/competition and exploration/ exploitation are present in CSS 
algorithm [30]. Moving towards good CPs provides the self-adaptation step.  A CP with higher charge (in 

other words larger fitness value of object function) results in larger force compared to that (bad) CP with 

lower charge. It should be noted that the heuristic induces the competition step of the algorithm.   The 
magnitude of resultant attractive electrical force affecting a CP is calculated based on cooperative effort of 

CPs is a compromise between exploration and exploitation. 
Advantages and limitations of charge_syst_search 

 The improvement in core algorithm   progresses with finding limitations and fixing them at the first stage 

followed by integration and even optimizing code from scratch. Harmony search algorithm, probability 
factor, coefficient for acceleration/ velocity and effect of magnetism are introduced with basic CSS (Chart 

6) rendering it more powerful. 
 

Chart 6: Critical view of functioning of CSS 
(a)  KB for characteristics of CPs and consequences 

True    
Agents (ith jth) attract each other 

,

1 ( ) ( )

0
i j

if fit j fit i
prob

else
 

 

if qi   better than other (qj)  
 

   

Adaptation principle operates &  
improves its performance 

if CP moves towards a good agent   

   
Exploitation ability operates if a good_CP attracts a bad_CP 
   
Exploration operates if a bad_CP  attracts a good_CP 
   
strong exploration   & 

efficient exploitation 
if Charged memory tensor used 
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Chart 6(b): Advantages of CSS                      

       

 A good balance between exploration and exploitation  

  A good global and at the same time a local optimizer 
 

 

Chart 6 ( c): Limitations of CSS and remedial measures 
 

 Repulsive forces (which deteriorate convergence), ignored  
 Remedy:  Discrete  CSS 

 Moving a good CP toward a bad one may cause losing the previous good solution or at least increasing the 
computational cost to find a good solution 

Remedy:  Probability factor 

 

 CPs move in search space at each iteration.   A moving charged particle produces a magnetic field which has 
influence on other CPs, which is not considered in CSS 

 Remedy:  Mag_charged_system_search 

 Position of refined CPs may be out of range of limits of the variables in allowable search space 

 Remedy:  HS-based CP position correction   
 

 Imbalance of  exploration and exploitation     

 Remedy:  variation of coe_acc and coe_vel  

  

 

Modifications of CSS 

 a) Repulsion between CPs :  The outcome of simple laws of electrostatics is that each CP influences all 
others which tantamount to that a bad CP (with low charge value) also can affect a good one (possessing 

high magnitude of charge) and vice versa.   Thus, the probability of movement of a CP (i,j) is one (Eqn. 5).  

But, bad agents attracting good agents is undesirable, which is surmounted by restricting the probability 
(Eqn. 6) through the use of a random number. 

 b) Correction for movement of CPs : The direction of 

velocity of a CP in the preceding iteration may differ 
from that of the resultant force.   

 i)Coefficient of velocity (coe_vel or kv): A control 

parameter called velocity coefficient (coe_vel or kv) is a 

linearly decreasing function to zero as iterations proceed 
(Eqn. 7).  It controls exploration by influencing the 

previous velocity paving way to convergence.  Thus, coe 

_ vel balances righteously the exploration and the fast 
rate of convergence (Chart 7).  
  

Chart 7:  Coefficient of acceleration and velocity of CPs in iteration process 

 

1
_ 0.5*

_ max

iter
coe vel

iter
    Eqn. 7 

 

If acc_coe is large 
Then Fast convergence but coarse 

solution 
  

If acc_coe is small 
Then slow convergence & high CPU time 

  
If acc_coe  = 1  

Then quality of solution is accepted in 
toto 

1
_ 0.5*

_ max

iter
coe acc

iter
          Eqn. 8 

, 1 0i jprob q  

 

Eqn. 5 

,

( )
1

( ) (i)

( ) (i)

0

i j

fit i fitbest
if rand

fit j fit

prob fit j fit

else

   

Eqn. 6 
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% 
 function [ vel_coe,acc_coe ]= coe_velacc(iter,iterMax) 
vel_coe = 0.5 * (1-iter)/iterMax 
acc_coe = 0.5 * (1+iter)/iterMax 

 

2

(j, iter 1) ( , )

( )
( ,1)* _ * *

( )

( ,2) * _ * ( , ) *

X X j iter

F j
rand j acc coef t

q j

rand j vel coef vel j iter t

 

Eqn. 9 

 

{ }  ,  jvel fn X t  

qj : Equal to mass of the 
jth CP   

t : time step  
set to unity  (t_ 1) 

 

 

 ii) Coefficient of acceleration (coe_acc or ka):  Excessive search in the early iterations is indispensable to 
improve the exploration ability.  But, it should decrease gradually for a thorough search in the 

neighborhood of accurate solutions.  Coefficient of acceleration (Eqn. 8) is a control parameter for the 

exploitation operated on the resultant force on a CP. This is an incremental function increasing to unity 
with number of iterations. The result is improvement of the performance. The chart 7 describes the 

formulae and knowledge bits in calculation of coe_acc and coe_vel during iteration and new position of 

CPs. 
c. Charged memory tensor (ChMem): It is like a backup memory storing local best positions of the 

agents and corresponding objFn values till completion of that iteration. The CPs in ChMem influence 

(attract/repel) other CPs and determines the extent and direction of the movement of CPs.  It increases the 

exploitation facet of the algorithm and results in powerful search strategy.   It is two dimensional matrix 
with (nsol/4) rows or increasing linearly with iterations.  The refined CPs are in the current iteration 

replace worst ones in the ChMem. In the process of storing good CPs in ChMem and updating in each 

iteration is a competitive step (Chart 8) amongst prospective CPs.  A balance between exploration and 
exploitation further increased by choosing two more agents from ChMem along with those in the current 

iterations.   

Chart 8.    Benefits and shortcomings of Charged memory                    

+  Improves performance    
+  Guides   CPs in the direction of  global optima   

 

 Increase the computational cost   

 Remedy:  Constant number of the worst particles   
 

Recent advances in charge_syst_search research 

a. Discretised CSS:  In chemical sciences, discrete search space search is in the wavelength selection, 
multivariate calibration, choice of molecular descriptor in SXR etc.  Kaveh and Talatahari [10] reported 

discretised CSS to optimize truss structures in civil engineering. The floating point value of X is rounded 

to nearest integer.  In the standard CSS, only attractive forces were taken into account. But, here the 
repulsive forces are also considered improving efficacy of algorithm.   Further, fence crossing i.e. fly off 

from the boundary of the search spaces is taken care of.  If a CP escapes from the allowable search space 

or swerves off the predefined bounds, its refined position is corrected or brought back within the boundary 

using the harmony search, another nature inspired technique.  Kaveh and Talatahari [11] employed fly-to-
boundary approach to avoid the solution crossing the fence of feasible regions in the hybrid PSO-CSS 

algorithm.   

b. Adaptive charged system search:  Talatahari et al [19] applied adaptive CSS to identify non-
smooth/non-convex regions in parametric models. Niknam et.al [32] enhanced the functioning of standard 

CSS by considering the optimal solutions found by each particle in the previous iterations. The best Pareto 

optimal set of a multiple objective (MO) minimization of a mixed integer nonlinear problem in planning 
the location and operation of Fuel Cell Power Plants (FCPPs) is determined.  The Multiple Objectives in 

this task are minimization of total cost, emissions of FCPPs and voltage deviation.  
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c. Enhanced CSS (ECSS):  Niknam et al. [31-34] introduced a novel mutation strategy enhanced CSS 
which increases the population diversity as well as altering convergence criteria. The method is applied to 

small- and large-scale reserve constrained dynamic optimal power flow with 30 and 118 buses test 

systems.  
d. Chaotic charge_ syst_search algorithm:  Talatahari et al. [20] substituted random search by chaos in 

extended-CSS. The application of chaos at several stages of CSS for constrained mechanical design    and 

simulation endorses efficiency of the chaotic_CSS.  

e. Breakthrough strategies in CSS: In the basic CSS, the movement of CPs to the refined position are 
determined after the completion of calculation of forces. It is followed by updating of ChMem matrix. This 

procedure is referred as a discrete time step here, while in optimisation procedures the concept is popular 

as iteration.  It is important to note that the modifications of time-space for multi-agent algorithms are done 
when the iteration is complete. However, at this point the new iteration is not started yet.  

 i) Continuum time model: In the enhanced CSS, the time is considered as continuous and is on as 
soon as initial CPs or approximate solutions are created.  The updating processes are also performed 
on a continuous time basis, which means the current position of the agent now affects the movement 
of other CPs.  This is in contrast to standard CSS where the effect is not felt until the iteration is 
complete and new positions already calculated are not made use.  
ii) Magnetic charged system search (Mag_charge_syst): In this year, Kaveh et.al. [27] proposed magnetic 

charged system search by incorporating magnetic forces  using Biot-Savart law in addition to electrical 

forces in CSS.   The only difference is an additional term in calculation of force (Chart 1c).  If a CP 

traverses/moves in space, a magnetic field is created. This magnetic field exerts magnetic forces on all 
other CPs. The outcome of Mag_charge_syst is noteworthy and its comparison with other nature mimics 

and software will be separately detailed [29b]. 

f. Hybrid charge_syst_search (Hybrid_CSS): Recently, CSS algorithm is hybridized with harmony 
search [31], PSO [11, 15, 24] and BB_BC [18] with remarkable results.  This wave of binary and ternary 

hybrid systems and incorporating new features from diverse paradigms continues and a breakthrough of 

hyper-intelligent self adaptive fault tolerant problem solver is awaited.  An important observation is that 
both components are from nature inspired (NI) natural intelligence (NI) category. 

 i) CSS + PSO: Kaveh and Talatahari [24] brought out the best of both worlds viz., CSS and PSO.  The 

charged memory consists of the fitness values in the frame work of electrostatic laws of Coulomb and 

Gauss.  The PSO philosophy brings out the advantage of search using local and global best positions.  The 
same school [15] incorporated CSS in PSO in a novel strategy of selecting best global particle from a set 

of Pareto optimal solutions. It is applied for MOO where in diversity of search as well as convergence of 

the solution improved.   
 ii) CSS + BB_BC: Kaveh and Zolghadr [18] proposed a binary hybrid E-man combining BB_BC with 

CSS.  The unique feature is its‟ local trap (minimum) recognition ability.  It is efficient for solutions of 

non-convex functions with multiple local optima.  
iii) Harmony search + CSS:  Kaveh and Hosseini [31] hybridized CSS with harmony search (Harm_Serch) 

which improves the exploitation property of CSS. Here, new goal functions are proposed for continuous 

optimization and the success of the method is tested with benchmark functions. 
Fields of forces (FOF) 

Talatahari, profounder of CSS [6] put forward a new version CSS algorithm based on Generalized-fields-
of-forces [17].  This concept unifies different meta-heuristic algorithms viz. ACO, PSO and CSS under the 

same roof.  In the continuous- space-time mode of refinement of solutions, all updating processes are 

performed after creating just one solution (here CP). The mimicking characteristic is akin to Levenberg-
Marquardt (LM) algorithm in gradient based optimization and continuous regression (CR) in soft 

regression.  LM algorithm emulates steepest descent, first derivative (gradient) and second derivative 

(hessian) based methods.  CR (continuum regression) adaptively behaves like multiple linear regressions 
(MLR), principal component regression (PCR), partial least squares regression (PLSR) and modified_CR 

mimics even multi-layer-perceptron (MLP) neural network (NN). A white box approach of algorithms and 
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MATLAB functions with SAP (simple as possible) numerical examples promote their routine use in 
chemical sciences both in research and pedagogical activity. 

Future scope 

A Scopus search for Charge_Syst_Serch (CSS) algorithm (introduced in 2010) showed around fifty 
publications till date dealing with applications.  The rapid progress in modifications of the method, 

hybridization with other swarm intelligent techniques like PSO, ACO, BB_BC opened windows for rapid 

utilization in chemical and biological sciences.  The novel extension of CSS with inclusion of magnetic 

forces foresees its‟ sure to fire characteristic.  The development and application of ternary hybrid systems 
in sequential, hierarchical or fusion fashion will be the future focus. The geometry representation of 

tensorial operations in generalized Fields of forces model and deriving Charge_Syst_Serch, grav_alg etc. 

offers a deep view.   The state of art of CSS in research mode awaiting full implementation is in Chart 9 
along with typical abbreviations in Chart 10.  A parallel implementation of the set of E-man tools for a task 

on hand will be a reality with open ended academic software. The in house function base (from this 

laboratory) consisting of around one hundred standard mathematical functions with 3D-surfaces and 2D-
contours is under rigorous testing phase.  Inter- and intra- disciplinary research probes by experts with 

“outside the box” knowledge and higher order skills in diverse paradigms with  a focus of looking forward 

for something different will catalyze evolution to realize strategic out-of-the-box tools rather than 

improvising sure-to-fire time-tested-miracles (Fig. A3).   
 

Chart 9. State-of-art-of-CSS    in research mode 
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Chart 10: Abbreviation in nature inspired search / optimization algorithms 

Abbreviation                  Acronym 

ACO : Ant colony optimisation 
BB_BC : Big Bang Big crunch 
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Harmo.serch : Harmony search 
PSO : Particle swarm optimization 
HBMA : honey-bee-mating alg 
HBFA : honey-bee-foraging alg 
CSS : Charged system search  (Charge_Syst_Serch) 

Optimisation using Fn (function), g(radient) 
 and/or H(essian) 

GN :  Gauss-Newton method 
NR :  Newton-Raphson technique 
LM :  Levenberg-Marquardt algorithm 

Appendix-1: Generalized force laws 

Table A001: Newton‟s generalized inverse square law  

/ / _For point masses charges magnetic particles  Eqn. 
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Newton‟s gravitational (force of) attraction exerts between (materialistic) bodies even in empty space 

(without any material intervention) and even at very large distances (Table A001).  Coulomb‟s 
electrostatic law proposed in 1785 accounts for the force of interaction (attraction/repulsion) between 

charged particles/bodies.  For example the space around an electric charge possesses electric field. The 

mutual forces of electrically charged objects on other objects are explained by Coulomb‟s law. A moving 
charged particle exerts magnetic fields and quantified by Biot–Savart law. 

 Particle masses -Gravitation 

 

If  Fundamental natural force between masses considered 

Then  Newton‟s Law of Gravitation  
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If  Newton‟s Law of Gravitation   
Then   (Gravitational) force is always positive (attraction) 
  
 Magnetic poles - Biot–Savart law   
  

If Fundamental natural force between magnetic poles considered 

Then  Biot–Savart law       

 

 Charged particles -Coulomb’s Law 

  

If Fundamental natural force between charges considered 

Then Coulomb‟s Law     

  

If q1 * q2  > 0 
Then Two charges repel each other 
Else if      q1 * q2  < 0 

then  The charges  attract one another 

else  if ABS(q1) =0 | ABS(q2) =0 

   then Columb‟s Law is not applicable 

  endif  

 endif   

endif    

 

Appendix-2: Electrostatic laws of physics 

Consider an insulating solid sphere of radius (rad), with a uniform volume charge density. It carries a total 
positive charge q, deemed concentrated at the center of the sphere (Fig. A1). 

 
(a) Outer sphere is radius of influence 

 
(b) Point outside sphere 
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(c ) Point on the sphere 

 

 
(d) Point inside sphere 

Fig. A1. Single charged sphere 

 

Coulomb law Electric field at a point outside the sphere: Coulomb‟s law states that magnitude of the 

electric force (Coulomb force) between the two point-charges is directly proportional to the product of the 

magnitudes of charges of the two particles and inversely proportional to the square of the distance of 
separation between the particles.  The direction is along the line joining them (Fig A2).  If the second 

charge is of unit magnitude, the electric field Ei j at a point outside the sphere is given by Eqn. A02. As the 

point moves nearer to the centre, the field increases and equation tends to become singular corresponding 
to a physical impossibility. Gauss proposed a model to calculate electric field inside the changed sphere 

which is in conformity with physical phenomenon and follows Coulomb's law and Superposition Principle.  

It is applicable if the charge is continuously distributed within sphere, cylinder, or plane which have 

symmetrical geometry. 

        

, 2
*

_

i
i j e

q
E k

dist sep
 

 If  dist_sepij = 0,  equation is singular.   
 

 If dist_sepij  0,  then a physical impossibility (Eij inf) arises 
 

 Remedy : Gauss law 

 

 
Fig. 2(a) Distance between centers of spheres 
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Fig. 2 (b)Point between the centers 

 
Fig. 2 (c ) Point outside the centers 

 

 

% 

% om_Fq1q2.m        10/6/13  

% 

function [FCoulomb]= Om_coulomb(q,dist_sep,kel) 
  

[row,col]=size(dist_sep); 

  

for i = 1:row 

    FCoulomb(i,1)= 

kel*q(1,1)*q(2,1)/[dist_sep(i,1)^2]; 

end 
     
 

 

Fig A2(d):   Coulomb law 

 

% 

% om_Gauss.m        10/6/13  

% 

function [FGauss]= 

Om_Gauss(q,dist,kel,radius_sphere) 

  

[row,col]=size(dist); 

  
for i = 1:row 

    FGauss(i,1)= kel*q(1,1)*q(2,1)/radius_sphere.^3 * 

dist(i,1); 

end 

    

Fig A2(e): Gauss law  
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Fig A2(f ): Integrated Coulomb-Gauss_law Fig A2(g): Asymptotic influence with 

distance 

% 
clean 
% 
kel = 1; 

radius_sphere = 1;  dist = [0:0.2: 4]'; q = [1;1] 
% 
[Fq1q2]= Om_Fq1q2(q,dist,kel,radius_sphere); 
%  
plot(dist,Fq1q2,'bo',dist,Fq1q2) 
 

% 
% om_Fq1q2.m        10/6/13  
% 
function [Fq1q2]= 

Om_Fq1q2(q,dist,kel,radius_sphere) 
  
[row,col]=size(dist); 
  
for i = 1:row 
     % 
     if dist(i,1)<radius_sphere 
        Fq1q2(i,1)= 

kel*q(1,1)*q(2,1)/radius_sphere.^3 * dist(i,1); 
     else 
        Fq1q2(i,1)= kel*q(1,1)*q(2,1)/dist(i,1)^2; 
     end 
     % 
end  

Fig A2(h ): matlab code 

   force direction  q2 = 1 

q1 q2 F  q1 q2 E    

+5 +4 -10*ke*dist Repel   -2.5*ke*dist   

+5 -4 +10*ke*dist Attract   -2.5*ke*dist   

-5 +4 +10*ke*dist Attract   +2.5*ke*dist   

-5 +4 -10*ke*dist Repel   +2.5*ke*dist   
 

Fig A2(i): Illustration of  interaction of two charges 

 

Gauss’s law Electric field at a point inside the sphere: The magnitude of the electric field at any point 

inside a charged sphere is proportional to the separation distance between CPs. 
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, 3
* * _i

i j e

q
E k dist sep

radius
 

 If  Eij 0  as dist_sepij0, singularity difficulty of coulomb‟s law surmounted. 

 If  dist_sepij = 0, the point is on the sphere.   

 Approach of surface either from outside or inside the sphere  is feasible     

 

 Electric field at a point due to a group of objects: The magnitude of the field at a point due to a group of 

objects is obtained by using the superposition principle.    
  

Appendix-3: Newtonian mechanics 

Assumptions: A particle of definite mass is of infinitesimal size.  In other words, the mass of spherical 
body is deemed that its‟ mass is concentrated at the center.  By tracing position of the particle in space 

with progress of time, the motion profile of the particle is completely known. Of course, this is valid iff  (if 

and only if) the object is small compared to the distance of separation.  An advantage is taken in 
astronomical calculations of orbital motion of a planet around a star even though it is idealized as a 

particle. 

Similarly a charged spherical body is also considered as if the entire charge is located at the center of the 

sphere.  This facilitates the classical analysis of motion irrespective of the size and shape of the interacting 
moieties.  

Newton‟s second law: Newton‟s second law explains that the acceleration of an object of mass m is 

directly proportional to the net force acting on that object.  
Force = mass * acc(eleration) 

The displacement of a particle is its change in position as a function of time. The slope of tangent line of 

the particle position represents the velocity of this particle. The change of velocity is acceleration. If ∆t is 

very small, the displacement of any particle can be obtained approximately by Eqn. A11. 

Physical quantity Finite difference 

Calculus 

Differentiation operator 
.

0

( )lim
t

z d
z or z

t dt

 ; 

 
2 ..

2

d dz d
z or z

dt dt dt
 

Displacement 
Velocity 
Acceleration 
Force 

 

*

F B

F B

new old

F B

new old

disp x x x

x x x
vel

t t t

vel vel vel
acc

t t t

force mass acc

 

0

0

*

lim

lim

t

t

x
vel

t

vel
acc

t

force mass acc

 

2

2

2

2
* *

dx

dt

dvel d x

dt dt

dvel d x
mass mass

dt dt

 

           new oldx x x                             … A10  

 If        t is small  

 
Then   

21
* *acc*

2
oldx x t t          … A11 
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Appendix-4: Reference database structures 
Structure Typical record 
    authorL: [11x20 char] 

    authorF: [11x10 char] 

       year: 2010 

     volume: 213 

    journal: 'Acta Mech' 

    pageBeg: 267 

    pageEnd: 289 

      title: 'A novel 

heuristic optimization 

method: charged system 

search' 

ref(1).authorL(1,:)= 'Kaveh     ' 

ref(1).authorF(1,:) = 'A.'   

ref(1).authorL(2,:)= 'Talatahari' 

ref(1).authorF(2,:) = 'K.' 

ref(1).year = 2010 

ref(1).volume = 213 

ref(1).journal= 'Acta Mech' 

ref(1).pageBeg= 267 

ref(1).pageEnd= 289  

ref(1).title= 'A novel heuristic 

optimization method: charged system 

search' 

 

Last  name of author 

First name of author 

 

 

 

 

 

Beginning page 

number 

Last page number 

 css.ref = ref 

 

 

 

Model output 

!!!!!!!!!!!!!!!!!!! 

In 2010  Talatahari et. al. proposed  CSSAlg 

  

The inspiration is from Laws of Physics by Coulomb, Gauss, Newtonian Mechanics  

?????????????????? 

 1. A.Kaveh, K.Talatahari,             ,  

   Acta Mech, 213(2010)267-289 

       A novel heuristic optimization method: charged system search 

  

2. A.Kaveh, K.Talatahari,             ,  

   Acta Mech, 213(2010)267-289 

       A novel heuristic optimization method: charged system search 

 

 
Fig.A3: A  Data to intelligence generation cycle 

          

          

          

 Data  Infor mation  Knowledge  Intelligence  Beyond 

          

          

          

 

                                            

 

 

 

 

 
 

 

 

 

Meta 

Methods 
Heuristics 



R Sambasiva Rao et al                          Journal of Applicable Chemistry, 2013, 2 (5):1007-1034  

 

1034 

www. joac.info 

 

REFERENCES 

 

[1] C. Blum, Physics of Life Reviews, 2005, 2, 353–373. 

[2] S. Chowdhury, G.S. Dulikravich, Structural and Multidisciplinary Optimization, 2010, 41(4), 541-

554. 

[3] S. Chowdhury, G.S.Dulikravich, R.J. Moral, Int. Journal of Mathematical Modelling and 

Numerical Optimisation 2009, 1 (1-2), 1-38.Y.M. Cheng, L. Li, Comput Geotech, 2007, 34(6), 

462–484. 

[4] T.P. Hong, Y.F. Tung, S.L. Wang, Y.L. Wu, M.T. Wu, Information Sci., 2012,182,3-14. 

[5] Y.Shi, H.C.Liu, L.Gao, G.H. Zhang, Infor. Sci., 2011, 181, 4460-4493. 

[6] A. Kaveh, S.Talatahari, Acta Mech, 2010, 213, 267–289.   

[7] A. Kaveh, S.Talatahari, International Journal of Space Structures, 2010, 25(4), 217-227.   

[8] A. Kaveh, S.Talatahari, Structural and Multidisciplinary Optimization, 2010, 41, 893–911. 

[9] A. Kaveh, S.Talatahari, Structural and Multidisciplinary Optimization, 2010, 1-13. 

[10] A. Kaveh, S. Talatahari, Asian Journal of Civil Engineering 2010, 11(3), 277-293.  

[11] A. Kaveh, S.Talatahari, Engineering Computations (Swansea, Wales), 2011, 28(4), 423-440.  

[12] A. Kaveh, S.Talatahari, Structural and Multidisciplinary Optimization, 2011, 43, 215–229. 

[13] A. Kaveh, S.Talatahari, Structural and Multidisciplinary Optimization, 2011, 43, 339–351. 

[14] A. Kaveh, S.Talatahari, Structural and Multidisciplinary Optimization, 2011, 43 (2), 215-229. 

[15] A. Kaveh, K. Laknejadi, Expert Systems with Applications, 2011, 38 (12), 15475-15488. 

[16] A. Kaveh, P. Zakian, J. Constructional Steel Research, 2013, 82, 111-130. 

[17] A. Kaveh, S. Talatahari, Acta Mech, 2011, 221, 99–118. 

[18] A. Kaveh,  A.Zolghadr, Computers and Structures, 2012, 102-103, 14-27. 

[19] S. Talatahari, A. Kaveh, N. Mohajer Rahbari, J. Mech. Sci. Tech., 2012, 26 (8), 2523-2534. 

[20] S. Talatahari, A. Kaveh, R. Sheikholeslami, Acta Mech, 2012, 223, 2269–2285. 

[21] A. Kaveh, S. Talatahari, Applied Soft Computing Journal, 2012, 12 (1), 382-393. 

[22] A. Kaveh, S. Talatahari, Applied Soft Computing, 2012, 12, 382–393. 

[23] A. Kaveh, S. Talatahari, B. Farahmand Azar, Iranian J.  Sci. Techn. – Trans. Civil Eng., 2012, 36 

(C1), 67-77. 

[24] A. Kaveh, S. Talatahari, Structural Engineering and Mechanics, 2012, 42 (6), 783-797. 

[25] A. Kaveh, A.F. Behnam, Scientia Iranica, 2012, 19 (3), 410-416. 

[26] A. Kaveh, A.Zolghadr, Computers and Structures, 2012, 102–103, 14–27.  

[27] A. Kaveh, Mohammad A. Motie Share, M. Moslehi, Acta Mech, 2013, 224, 85–107. 

[28] A. Kaveh, K. Laknejadi, Advances in Engineering Software, 2013, 58, 54-69. 

[29] K. RamaKrishna, Ch. V. Kameswara Rao, R. Sambasiva Rao, J. Applicable Chem., 2013, 2 (4), 

698-713. (b) Unpublished results 

[30] B. Bahmani-Firouzi, E. Farjah, A. Seifi, Energy, 2013, 52, 320-332. 

[31] A. Kaveh, O.K. Hosseini, Periodica Polytechnica: Civil Engineering, 2012, 56 (2), 197-212. 

[32] T. Niknam, F. Golestaneh, M. Shafiei, Energy, 2013, 49 (1), 252-267. 

[33] T. Niknam, M. Bornapour, A. Gheisari, B. Bahmani-Firouzi, Int. J. Hydrogen Energy, 2013, 38 

(2), 1111-1127. 

[34] T. Niknam, R. Azizipanah-Abarghooee, M.R. Narimani, Energy, 2012, 47 (1), 451-464. 

[35] A. Kaveh and O.K. Hosseini, Periodica Polytechnica: Civil Eng, 2012, 56 (2), 197-212.  

 


