

Journal of Applicable Chemistry

2014, 3 (2): 764-768 (International Peer Reviewed Journal)

A Physico-Chemical Analysis and Management of Ground Water Bodies from 20 Locations of Jodhpur District

Deepshikha Sharma

Associate Professor, Department of Chemistry & Environment Engineering, Jodhpur Institute of Engineering & Technology, Jodhpur, INDIA

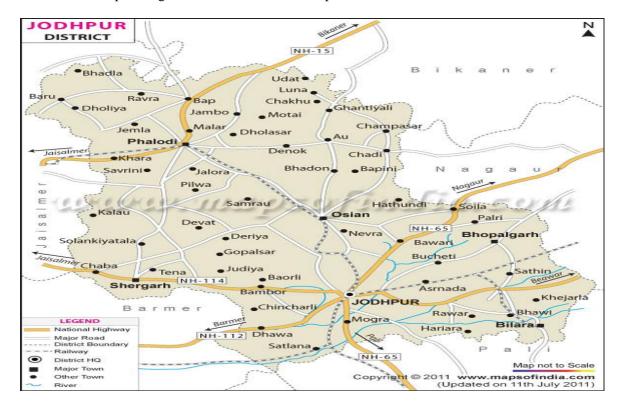
Email: d18shikha@rediffmail.com,deepshikha.sharma@jietjodhpur.com

Accepted on 2nd February 2014

ABSTRACT

About 80% of the world population (5.6 billion in 2011) lives in areas with threats to water security. The water security is a shared threat to human and nature. Human water management strategies can affect detrimentally to wildlife. The Sun-City Jodhpur is growing at a rapid rate and various surface and ground water resources to augment requirement of water are insufficient. In the present study water samples of ground water bodies from 20 locations of Jodhpur city and Jodhpur district are collected and analyzed using Indian Standards to find out their suitability for domestic use. During physico-chemical analysis nitrate and fluoride contents are found above permissible limit in many samples.

Keywords: Water Security, Jodhpur city and District, Physico-Chemical analysis, Nitrate, Fluoride, Ground Water Bodies.


INTRODUCTION

About 80% of the world population (5.6 billion in 2011) lives in areas with threats to water security. The water security is a shared threat to human and nature. Human water management strategies can affect detrimentally to wildlife. The Sun-City Jodhpur was founded by Rav Jodha and it is the second largest city of Rajasthan. The city is growing at a rapid rate and various surface and ground water resources to augment requirement of water are insufficient.

Increasing water scarcity: Water will turn out to be the world's most precious resource soon. Half of the world's population will face acute water shortage by 2030. While the world's population tripled in the 20th century, the use of renewable water resources has grown six-fold. Within the next fifty years, the world population will increase by another 40 to 50 %. This population growth - coupled with industrialization and urbanization - will result in an increasing demand for water and will have serious consequences on the environment. The need of proper management and conservation of water resources is essential to avoid future water problems. Due to increasing population, industrialization and human activities deterioration in water quality is observing now a days. The lakes, wells and bewares in city which were constructed for meeting the drinking water supply are being used as dumping places for waste and waste water. The old civic discipline to avoid the contamination has now disappeared.

MATERIALS AND METHODS

Standard methods of collection, preservation and analysis are adopted. Grab sampling method was used for collection of 20 samples of ground water bodies of Jodhpur District.

The collected water samples were analyzed using standard methods [1-6]. The methods used are presented in table 1. The collected sample places and sample numbers are given in table 2.

S.No.	Parameter	Method Used
1.	рН	pH meter
2.	Turbidity	Water Analysis Kit
3.	Total dissolved solids(TDS)	Total dissolved solids dried at 180 degree
4.	Chlorides(Cl)	Argentrometric Method
5.	Ca Hardness(CaH)	EDTA Titration Method
6.	Mg Hardness(MgH)	EDTA Titration Method
7.	Total Hardness(TH)	EDTA Titration Method
8.	Fluoride(F)	SPANDS Method
9.	Alkalinity	Titration Method

Table 1: Methods used for	or the analysis of	different parameters
---------------------------	--------------------	----------------------

Table 2: Coding of Samples

S.No.	Sample Code	Location	City		
1	S-1	Dobi ka Gorba	Bala		

2 S-2		Jaynio ka Bas	Bala			
3	S-3	Hardev Ram Potli ka Bas	Matwalon ki Dhani			
4	S-4	Darey ke Pas	Bhavi			
5	S-5	HP Bus Stand	Bhavi			
6	S-6	Char Gharo ka Bas	Bhavi			
7	<i>S</i> -7	Sr.Sec.School	Bhavi			
8	S-8	Jata Bas ke Ander	Bhavi			
9	S-9	<i>TW-2</i>	Borunda			
10	S-10	Mandir ke Pas	Bhopal Garh			
11	S-11	Poata	North-East Jodhpur			
12	S-12	Lakshmi Nagar	North-East Jodhpur			
13	S-13	Infront Incometax Office	North-East Jodhpur			
14	S-14	Devi Singh ki Haveli	North-East Jodhpur			
15	S-15	Lal Maidan Girls School	North-East Jodhpur			
16	S-16	Gandhi Maidan	West-South Jodhpur			
17	S-17	Patel Nagar	East-South Jodhpur			
18	S-18	PHED Area	East-South Jodhpur			
19	S-19	Railway Hospital	East-South Jodhpur			
20	S-20	Shanischer ji ka Than	North-West Jodhpur			

The pH, turbidity, total dissolved solids, alkalinity, nitrate ,total hardness, chloride, fluoride contents in the samples determined are given in table 3.

S. No	Sample No.	рН	Turbidity	TDS (ppm)	ALK(M) (ppm)	<i>NO</i> 3 (<i>ppm</i>)	TH (ppm)	Cl (ppm)	F (ppm)	Total of All Parameters
Desirable Limit		6.5	-	500	200	45	300	250	1.0	1302.5
Permissible Limit		8.5	-	2000	600	45	600	1000	1.5	4255.0
1	S-1	7.6	Trace	700	500	107	250	300	3.8	1868.4
2	S-2	7.4	Trace	690	480	107	350	250	4.2	1888.6
3	S-3	7.6	Trace	3170	1530	102	220	1400	18.8	6448.4
4	S-4	7.6	Trace	3170	1560	105	600	1300	18.0	6760.6
5	S-5	7.8	Trace	1950	810	73	180	670	8.4	3699.2
6	S-6	7.7	Trace	3115	660	285	400	1320	3.9	5791.6
7	S-7	7.5	Trace	2725	830	33	340	1250	6.5	5192.0

Table 3. Physico- Chemical Parameters of samples

8	S-8	8.0	Trace	690	490	105	360	160	3.8	1816.8
9	S-9	7.1	Trace	1350	460	50	490	590	1.7	2948.8
10	S-10	7.2	Trace	2550	450	30	400	1280	2.2	4719.4
11	S-11	7.2	Trace	1770	720	352	380	600	3.5	3832.7
12	S-12	7.3	Trace	1650	500	450	520	440	2.5	3569.8
13	S-13	7.1	Trace	2040	560	60	510	510	2.5	3689.6
14	S-14	7.6	Trace	2006	600	225	280	500	3.0	3621.6
15	S-15	7.4	Trace	2178	400	175	570	680	2.6	4013.0
16	S-16	7.1	Trace	1880	470	390	370	300	5.5	3422.6
17	S-17	7.1	Trace	1430	560	80	380	280	1.6	2738.7
18	S-18	7.9	Trace	1870	850	200	440	460	3.2	3831.1
19	S-19	7.2	Trace	3650	850	400	600	1240	1.0	6748.2
20	S-20	7.8	Trace	1141	250	380	550	320	1.1	2649.9

RESULTS AND DISCUSSION

On the basis of total value of all parameters, samples are categorized into two categories-

1.Contaminated Samples(1302.5-4255.0)- S-1,S-2,S-5,S-8,S-9,S-11,S-12,S-13,S-14,S-15,S-16,S-17,S-18 and S-20.

2. Highly Contaminated (above 4255.0)-S-3,S-4,S-6,S-7,S-10 and S-19.

Determination of TDS is associated with the general acceptance of water by population as its presence in excessive quantities reduces the palatability and imparts bad taste to water. Wide range of TDS values obtained from 690ppm-3650ppm.Nine samples contain TDS values above permissible limit. Nitrate content of the samples varies from 30ppm-450ppm.Except S-7 and S-10 all contain nitrate value above permissible limit. Nitrate has been associated with the blue baby disease in infants or infantile methaemoglobiaemia, which is caused due to bacterial reduction of nitrate into nitrite on stomach. Fluoride content is found to be surprisingly high in all cases, especially in S-3 and S-4 very high. Fluoride content in higher quantities is very dangerous and causes fluorosis decease and ultimately leads to death. Fluoride is released into the ground water through weathering of primary silicate and associated accessory minerals. The chloride contents are found to be spread over a wide range of 160ppm to 1400ppm.Except S-4 and S-19 all samples have total hardness value below permissible limit. Alkalinity level in two samples S-3 and S-4 is very high. S-4 water sample is found highest contaminated where as S-8 is least contaminated.

APPLICATIONS

The results of water quality parameters are useful to educate the Public to prevent the use these contaminated water.

CONCLUSIONS

Water from contaminated water bodies contains very high nitrate level. So do not give this water to infants less than 6 months of age. Avoid drinking this water on a daily basis during pregnancy. Do not attempt to remove the nitrate by boiling the water. This will only concentrate the nitrate making levels even higher. It requires chemical treatment methods to be removed. Water from these resources can be used by cottage industries and for domestic purposes after treatment by means of ultra-sound technology. Water from highly contaminated water bodies can never be used for any domestic or industrial purposes. Water from these sources should be pumped out and should be utilized by- Railways, Parks and Public parks, Development of sewage farms, which require water in large quantity should be encouraged to use this water. In order to make the process of pumping out of water economically viable method water from these sources should be drained out to some convenient depression and develop in the form of natural lake. Water from these sources can be used for pressure washing purpose after removing insoluble impurities by physical methods. The appropriate technology for recycling this water should be developed.

ACKNOWLEDGEMENT

Authors wish to acknowledge the inspiration given by Dr.KesariLal Menaria, (Rtd). In charge Engg. Chemistry Department, M.B.M. Engineering College, Jodhpur and Director, Jodhpur institution of Engineering and Technology, Jodhpur (J.I.E.T.).

REFERENCES

- [1] Standard methods for the examination of water and waste water, American Public Association, NW, DC 20036, **1994**.
- [2] IS 10500, Drinking Water Specification, **2004**.
- [3] World Health Organization Hardness in Drinking-Water, 2003.
- [4] National Institute of Public Health; Health Significance of Drinking Water Calcium and Magnesium; Frantisek Kozisek, M.D.; **2003**.
- [5] World Health Organization Hardness in Drinking-Water, **2003**.
- [6] Paliwal B.S., Baghela A., rban Ground Water-Meeting the Challenge, Selected papers from the 32nd International Geological Congress (IGC), Florence, Italy, August **2004**.