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ABSTRACT 
Recurrent- (Rec_) NNs contain partial or full backward connections between layers of feed-forward (FF-) 
NNs. Here, in addition to the present input, past values of inputs/outputs/intermediate states influence the 

final output.  Hopfield NN, proposed in 1982 by John Hopfield, has cyclic architecture and employs 

Hebbian learning.  It brought back life to NN methodologies which were dormant since 1969.  Partial 
recurrent NNs,  for instance,  Elman with feedback from hidden to input layer and Jordon from output to 

input layer  won laurels to I/O transformation of  dynamic systems. NNs with feedback connections have 

intrinsic dynamic memory that reflects the current output as well as the previous inputs in the transformed 
space, while feed-forward-NNs (MLP, RBF)  do not have previous  associated “memory”.  Rec_NNs 

models temporal as well as long term behavior in a dynamic system.  The typical training algorithms 

employed in Rec-NNs are Back propagation through time (BPTT), Real-time recurrent learning (RTRL), 

Atiya-Parlos recurrent learning (APRL), Alopex, long short term memory (LSTM) and extended decoupled 
Kalman filter (DEKF).  Rec-NNs have been extensively used in the data analysis with time series and 

state-space models with better performance even for systems with more non-linearities.  Evolution is a 

timely modification, invention, discovery in nature. Man desires and achieves the target now and then 
within in short span through pooling up intelligence of intelligentsia, might of mighty  and deep rooted 

micro-processes of a process from the mother-nature.  Rec-NNs not only mimic the popular ARMA, 

NARMA, NARMAX, Weiner, Hammerstein and Volterra time series models, but also predict more 
complicated profiles. The impact of Rec_NN approach in medicine- / chemo- / enviro- / dieteto- /quali- 

metrics rendered modeling of partially understood dynamic systems viable for in depth 

understanding/control.  The key applications are in nuclear power plants, environmental monitoring, 

weather forecast,  greenhouse control,  food quality, multi-variate-multi-response calibration, 
chemometrics, fuel cells, fermentation, ECGs,  Schizophrenia, epilepsy, dementia,  sleep apnea, HIV, ICU, 

robots, autopilot mode of aircraft landing, fault detection, communications, linguistics, seismic signal 

processing etc.  The theoretical stability analysis proved the convergence, reliability of this class of NNs. 
The reported limitations of Elman_NN are a focus for improvements in training algorithms, hybridization 

and new intermediate means for trial solutions. The solution methods for linear projection equations and 

quadratic programming tasks are realised with this NN.   Rec NNs with IFR and IIR filter characteristics 
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and those for multiple time series made a mark in engineering tasks.  Fuzzy and SOM paradigms are 
hybridized with rec-NN resulting in Rec-Fuzzy-NN and Rec-SOM-NN.  Multiphase processes are modeled 

by hierarchical Rec-NNs.  A few advances in Rec-NN worth mentioning include multi-feed-back-layer-, 

and higher order recurrent-neuro-fuzzy-NNs. The future prospects of recurrent NNs in chemical, 
biological sciences, chemo-informatics, and genomics are multifold. 

 

Keywords:  Recurrent _neural_ networks, Elman_Jordan_Hopfield_architectures, Time series, 
NARMAX, IIR_FIR_filters, Rec_Fuzzy_NNs, Applications, Chemistry, Medicine, Engineering. 
______________________________________________________________________________ 

 

Contents:  Recurrent Neural Networks in bio-/chemical- tasks 

     

1. Introduction   
  1.1 Limitations of  (static or non-recurrent) feed-forward-NNs 

  1.2 Recurrent NNs 

   1.2.1 Partial- (Local-) Rec_NNs   
   1.2.2 Global- Rec_NNs   

  

2. Dynamic-/ Recursive-/  Recurrent-NNs 

  2.1 Biological inspiration 
  2.2 Chemical inspiration 

  2.3 Hopfield-   

   2.4 Elman-    
  2.5 Jordan-    

  2.6 Elman +  Jordan   

     

3. Training algorithms for Rec-NNs 
  3.1 Back propagation through time (BPTT) 

  3.2 Truncated BPTT 

  3.3 Real-time recurrent learning (RTRL) 
  3.4 Alopex  

  3.5 Atiya-Parlos Recurrent learning  (APRL) 

  3.6 Long short term memory (LSTM)   
  3.7 Decoupled EKF 

  3.8 DEKF + LSTM                  

  3.9 Evolutionary Learning 

     

4. Evolution of Rec.NN 
  4.1 Rec-(multiplicative-neuron)-SLP-NN 

  4.2 Sub-connection neural network    
  4.3 Dynamically constructed feedback fuzzy neural controller:   

  4.4 Decomposed neuro-fuzzy ARX model 

  4.5 Reservoir computing paradigm in Rec-NN:   
  4.6 Convex-hull.RecNN 

  4.7 Max-Net.Rec-NN 

  4.8 Hodkin-Huxley neuron-Rec.NN: 

  4.9 Multiple class random - 
  4.10 Block feed-back- 

  4.11 Pipeline - 

  4.12 Multi-feed-back-layer- 



R. Sambasiva Rao et al                        Journal of Applicable Chemistry, 2014, 3 (4): 1337-1422 

 

1339 

www. joac.info 

 

  4.13 LiuWang- 

  4.14 Echo state network 
  4.15 Rec-NNs with autonomous learning 

     

  4.16 Hybrid Rec-NNs      

     
8     NN with self-feedback  + GRec_NN   

     Rec-FAS-ARTMAP 

     Rec-Fuzzy-NN 
     SOM +  Rec-NN 

     Prob-NN + Elman 

     RBF+ Elman 
     NARMAX  + Elman 

     Discrete_PSO_Wang  + Elman  

     Quantum-NN + Elman NN 

     
  4.17 Second order RecNN 

  4.18 Higher order Rec-neuro fuzzy NN 

  4.19 Hierarchical Rec-NN 
  4.20 Recursive_NN for extraction of rules from trained NNs 

    

5 Emulation of standard mathematical techniques by Rec.NNs 
  5.1 Universal function approximators 

  5.2 optimization task 

  5.3 Inverted Pendulum 

  5.4 State estimation 

  5.5 Filters  

     Infinite input Response (IIR) filter 

     

  5.6 Emulation of time series models with Rec-NNs 

     NARMA 

     Non-linear Dynamic process 

     Pipelined-second-order-Volterra-series 

     Wiener Model  

     Hammerstein model 

     Volterra model 

     

  5.7 Emulation of  Mathematical programming 

     Quadratic Programming 

 Linear projection equation  

     

6 Applications_RecNNs 

  6.1 Bibliometrics    

  6.2 Nuclear power plant  

  6.3 Satellite-Altitude sensor  

  6.4 Environmental Sciences  

  6.5 Pollution monitoring   

  6.6 Chemometrics 

    o Foodomics 



R. Sambasiva Rao et al                        Journal of Applicable Chemistry, 2014, 3 (4): 1337-1422 

 

1340 

www. joac.info 

 

    o Calibration Multi_component 
multi_channel_response data 

    o Multivariate-multi response calibration 

    o Chemical industry 

    o Fuel cells  

     

  6.7 Qualimetrics  

  6.8 Material science   

  6.9 Bio-signaling network 

  6.10 Medical Sciences - State-of-art-of-health_ care 

 

      Diabetes Mellitus 

     HIV 

     Ophthalmology 

     Brain and CNS 

     Spinal cord injury  

     Intensive care unit (ICU) 

     

  6.11 Robots 

  6.12 Finite automata  

  6.13 Engineering 

     Fault detection 

  6.14 Aircraft in autopilot mode 

  6.15 Electrical power  

  6.16 Mobile communications systems   

  6.17  Pattern recognition 

     Speech recognition 

     Linguistics 

     Commerce  

7. Theoretical results 

     

8. Future scope  

9. Appendices    

  A1.a Life cycle of NNs  

  A1.b Neurons (Processing Elements)  

  A1.c  Layered NNs  

  A1.d Non-layered architectures  

    

  A2.a New generation Neurons (NGN) (or Processing elements)  

Knowledge Intelligence Natural (e‘) Discovery (KIND) 

  A2.b  Hybrid neurons  

     

  A3.a  Recurrent neurons (Rec_PEs)  

  A3.b Roadmap of  Recurrent NNs  

  A3.c:   Recurrent Multilayer Perceptron 

(Rec_MLP) 

 

  A3.d: Time series-Rec_NNs    



R. Sambasiva Rao et al                        Journal of Applicable Chemistry, 2014, 3 (4): 1337-1422 

 

1341 

www. joac.info 

 

     

  A4 State_Of_the_Knowledge_of_the- (SOK-) 
Time_Series_Models (TSM) 

 

INTRODUCTION 

 
The experimental, theoretical and simulation science progressed with steadfast growth in enquiring 

microscopic processes from macroscopic observations and vice versa with the then state-of-art-
instruments/knowledge/intuitive power.  The approximate solution of exact equation and exact solution of 

approximate equation have been the brain behind the progress of computational tactics of quantum 

chemistry/physics.   The truncation of Taylor‘s infinite series to finite order, integration within finite limits 

of infinite boundaries, termination of infinite algebraic series to finite number of terms based numerical 
accuracy, tolerance in geometric comparison of diverse patterns/ similar patterns with distinct distortion 

are all valid computational modules even today under the cover of CPU time, cost/ benefit ratio, 

information_extracted/ information_unconvered etc. The current methods for these pursuits in nature are a 
consequence of evolution for at least 13.7 billions of years since the origin of this universe.  But, 

viable/non-viable computational algorithms are not even few centuries of age [1-4 and references therein].  

This provoked the enquiry of what are biological/ mathematical/computational procedures evolving with 
time. The utopian (now impossible with man-made technology) methods in twenty second century will a 

capsule of best of best of the changing paradigms. In continuation of our studies in Chemometrics, neural 

networks and swarm intelligence [1-20], the current state of recurrent neural networks and their 

applications reported in literature are reviewed [21-427].  Auto resonance theory (ART), the brain child of 
Grossberg, along with  its software products are versatile in real time utility in defense and industry in 

addition to extensive intricate research output in high end applications almost in all disciplines.  Grossberg 

put forwarded non-linear_difference_differential_equations in prediction and learning theories during 
nineteen sixties [1, 21-24].   In nineteen eighties, Cohen and Grossberg proposed a NN functioning as a 

stable associative memory.   In 1984, Hopfield introduced a continuous time network (now popular after 

his name) has multi-facet applications in pattern classification, image processing and associative 
memories.  It is a special case of Cohonen-Grossberg NN.      

 

1.1 Limitations of (static or non-recurrent) feed-forward-NNs 

Training connection weights of neurons in feed-forward-single/multi- layer perceptron NNs with back 
propagation of errors algorithm is essentially a steepest descent procedure popular in optimization for non-

pathological functions. In these NNs, the data flow is only in the forward direction from input to output 

through hidden layers.  The neuron- and/ or layer wise connections are thus distinct from those of recurrent 
NNs (vide infra).  ARTx series is a realization of classification procedure of auto resonance theory of 

Grossberg.  The three unsupervised modules (ART1, ART2 and fuzzy-ART) have a unique advantage of 

no need of a priori specification of number of clusters and accepts binary, analogue and floating point 

input data.  Self-organizing scheme of Kohonen is noteworthy in its neighborhood structure and a 
rectangular basis function.  It is a sought after method for visual display of multi-dimensional data in two- 

or three-dimensions. The life cycle of NNs during approximately last three-quarters-of-a-century period is 

briefed in Appendix A1. 

 

1.2 Recurrent NNs 

 
In recurrent neural networks, the output depends not only on the current input to the network, but also 

previous inputs, outputs, or intermediate states (outputs neurons of hidden layer) of the network. A 

recurrent neural network (Rec-NN) is a class of NNs with feedback connections existing between any 

two/more or all layers (KB.1).  MLP-NNs with tapped delay, recurrent, recirculation connections, and 

http://en.wikipedia.org/wiki/Neural_network
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recurrent neurons form Rec-NNs.  Rec-NNs with time varying systems are sometimes referred as dynamic 
recurrent networks. 
 

Input: The input to Rec-NNs can be a single/multiple time 

series, data of explanatory variable(s) with a functional 
relationship with response or vector of values exhibiting 

associative memory. The neural MOORE machine is a popular 

and general Rec-NN.  Elman-Rec-NN is a widely used 
MOORE machine.  A Rec-NN is represented as a sextuple.  

The output of static neural network is calculated directly from 

the input through feed forward connections. They do not have 

feedback connections either between neurons or layers. But, 
the architecture of Rec_NN contains at least one cycle. In 

addition, some times, the connections between processing 

units form a directed cycle/graph. This results in temporary 
memory and models dynamic spacio-temporal trends. 

 

1.2.1 Partial- (Local-) Rec_NNs   

The simplest Rec-NNs were extension of SLPs/MLPs with at 
least one recurrent connection of a neuron (KB. 2). In a locally 

recurrent NN with layered architecture, the feedback 

connections are to the proceeding layer only.  The examples include the feedback of the hidden layer to the 
input (Elman-NN) or output to the hidden layer.    However, the layer wise recurrent connection did 

miracles in I/O transformation. Hopfield-NNs is an example of partially (layer wise) recurrent NNs 

containing one cycle. A locally-Rec-NN with two hidden layers approximates state-space trajectory 
simulated by any Lipshitz continuous function with arbitrary accuracy.  In locally recurrent NNs, poles can 

easily be detected and training is faster 

compared to globally-recurrent-NNs.  

 
Applications_ Local Rec_NNs: They 

found importance in studying chaos in 

attractors of Chua‘s circuit, modeling 
continuous polymerization and neutralization processes/ signal processing, control of non-linear systems, 

prediction of speech utterances and fault diagnosis in sugar 

evaporator/three tank laboratory system. 
 

1.2.2 Global- Rec_NNs   

The feedback connections are previous time step (weighted) 

outputs.  If more than one previous time is necessary, outputs 
for nlags are considered [280]. In the memory neuron network, 

each feed forward neuron is associated with a memory neuron.  

The single scalar output of it summarizes the history of past 
activation of that unit. The direct feedback of the output layer 

to the input layer constitutes the globally recurrent NN class 

viz. Jordan-NN.   

 
Fully connected Rec_NN:  In a fully-connected Rec-NN, each unit of the NN is connected to every other 

unit. 

 

 

 

KB.1( Knowledge base): Recurrent NNs  

   
If SLP-NN  & 

Reverse connections from HL  IL 
 

Then Elman-NN  

   
If SLP-NN  & 

Reverse connections from OL  IL 
 

Then Jordon-NN  
   
If SLP-NN  & 

Reverse connections from OL  IL &  
HL  IL & 
 self feedback connection 

 

Then Fully Rec-NN   
   
If FF-NN  & 

Number of hidden layers = 1& 
TFHL = SG & 

 

 No reverse connections  
Then SLP-NN 

 
 

Rec_NN(X,U,Y,f,h,x0) as a  sextuple 

X : States of space  f : Next-state function 
U : Input  h : Output function 

Y : Output  x0 : Initial state of the Rec_NN 

KB. 2: Local and global RecNNs 
 If forward connections  &  

feedback connections 

 Then RecNN 

   

 If Output of OL is fed back  

to input of IL 

 Then Globally recurrent 

 

 If Each neuron in a layer has one or  

more lagged loops around itself 

 Then Locally recurrent 
 

http://en.wikipedia.org/wiki/Directed_cycle


R. Sambasiva Rao et al                        Journal of Applicable Chemistry, 2014, 3 (4): 1337-1422 

 

1343 

www. joac.info 

 

2. Dynamic-/ Recursive-/ Recurrent-NNs 
 

2.1 Biological inspiration: In cellular systems, there are nets of biological neurons connected in a recurrent 
fashion, which are responsible for oscillating behavior.  The parallel neuron pathways of nerves systems, 

from multiple sensory neurons to the multiple motor nerves [235] play a key role.  The pathways compete 

with each other where in mutual inhibition affect the process.  The learning process can be considered as 
the adjustment of the competitive excitation/inhibition among the parallel paths.  

Generally, the inhibition strength is increased for a wrong output. During firing 

activity of biological neurons, persistent oscillations arise due to combination of 

dynamics between cellular and synaptic micro-processes.  The periodic 
oscillations are observed in heartbeat, respiration, mastication, locomotion and 

memorization/retrieval.  In the cerebral cortex of mammals and brains of insects, 

oscillations originate from stimuli.  The time delays during integration in 
communication are common.  In nonlinear continuous-time RecNNs, output 

varies with time as a function of its current state and also on the values at 

previous (lag) time steps. Nonlinear differential equations map the cell signaling 
processes and thus DOEs are applicable models.  The solutions of non-linear DOEs are easily mapable into 

Rec_NNs. Thus, recurrent NNs are good mathematical models for dynamic systems and bio-modeling of 

cell processes.   

 
2.2 Chemical inspiration: Reverse connections are common in equilibrium chemistry/ chemical kinetics 

from simple to complicated reactions.  The biochemistry, geo- /environment- /processes also involve 

cyclic path ways with even acyclic components.  
      Appendix 3 describes various types of recurrent neurons and their interconnections widely employed in 

mathematical NN procedures. 

  

2.3 Hopfield NN 
 

Biological inspiration:  In biological systems, associative rather than content-addressable style of memory 

exists. The output of biological cells is a result of a series of spikes of potentials and the frequency vs. total 
action potential looks like a sigmoid wave. 

John Hopfield in 1982 published a short, but clearly presented communication dealing with a fully 
connected SLP in the forward and reverse directions.  This paper gave rebirth to the field of NNs which 

were dormant from 1969 onwards with the criticism of Minsky and Peppert against perceptron which fails 

separation of clusters with non-linear boundaries (XOR). Hopfield_NN is a typical instance of both locally 
and globally recurrent NN [228].  Based on the nature of noise, Hopfield NNs are categorized as 

deterministic and stochastic ones.  Data type classifies them into discrete (binary/bipolar) and continuous 

varieties.   Hybrid Hopfield NNs imbibed the other paradigms.  

 

Architec.Hopfield-NN 
The input, Hopfield and output neurons are fully connected in the forward direction. In addition, there are 

reverse (recurrent) connections from output to input through Hopfield and also from output directly to 
input neurons. But, there is no self-feed-back connection for any neuron.  This architecture forms a cyclic 

structure unlike in Elman or Jordon NNs.  Further, the weights in the forward and reverse directions are 

symmetric.  The transfer function for Hopfield neurons is non-linear basis function which has an inverse.  
Hebbian learning is used to train Ws. The sought after transfer function, sigmoid is used in Hopfield layer. 

The convergence of dynamics of Hopfield NN is guaranteed. Sometimes, Rec-NNs behave chaotically 

[235].   

 

FF_NNs with Backward 

connections 

  

BAM Boltzman 

machine 

Hopfield  

Elman Jordan 

BSB ARTx 

http://en.wikipedia.org/wiki/John_Hopfield
http://en.wikipedia.org/wiki/Hebbian_learning
http://en.wikipedia.org/wiki/Chaos_theory
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Applications.Hopfield 

 

Hopfield-NN is used for robust content-addressable memory, storing 
examples (memory), analog to digital conversion, telecommunication 

in military/civil domains, pattern recognition and  optimization tasks.  

This NN stores/recalls information, performs error correction and 

searches for nearest correct values.  Typical applications of Hopfield 
NN are torque  minimization of redundant manipulators, constrained 

and unconstrained optimization , shortest path for internetwork 

routing,  support vector machine training, graph coloring, image 
processing and control systems design.  Hardware implementation of 

Hopfield NN is another unique feature. 

Cervical cells classification:   

In this decade, growth of biological knowledge of cancer in animal surgery/experiments and monitoring 

human patients through clinical and surgical protocols is exponential.  Around 500 genes were implicated 
and list is now longer.  At the moment there are around hundred US_FDA approved drugs. But, there is no 

remarkable decrease in death rate even in countries with latest therapies/diagnosis/ monitoring/surgical 

expertise available. This demands more peer studies of genes and a new angle why naked mole rat is 
resistant to cancer [429], while 90% mice die of carcinoma.  The classification of cervical cells (Table 1) 

with five features shows the potentiality of Hopfield NN.  
 

Associative memories: Hopfield NN functions as an associative memory also.  For, example abbreviation 
and acronym pairs can be stored.  Later, one can retrieve acronym for an abbreviation or vice versa. 
 The advantages and limitations of Hopfield 

NNs are briefed in chart 1. 

 

Theoritical analysis_Hopfield 
 Hu [314] derived sufficient conditions for 

uniform boundedness of high-order-Hopfield-

NNs with time varying delays using Lyapunov 
functional.   Xu [201] analysed linear stability of 

a six-neuron binary associative memory- (BAM-

) NN with discrete delays. It exhibited Hopf 

bifurcation.  Takagi-Sugeno (T-S) Fuzzy model 
consists of a set of linear sub model [292].  Lie 

studied mean squares exponential stability of stochastic – Fuzzy – Hopfield NN with discrete and 

distributed time varying delays.  Wang [346] reported a robust decentralized controller which a shows 
global asymptotic stability in probability of the uncertain stochastic environment.   
 

Recent advances in Hopfield NN   

 

Quaternionic neuron_Hopfield NN 

Hopfield-Rec-NN with quaternion neuron was proposed recently.  The TF is step function and is same for 

each component in quaternion function. 

 

Chaotic Hopfield NN 

Zheng [311] reported the study of 3-neuron chaotic Hopfield NN with Lyapunov exponents spectrum, 

bifurcation diagram, power spectrum and topological Horseshoe theory.  This NN exhibits novel double 
scroll chaotic attractors.  Wang investigated delayed_ higher_order_Hopfield_NN with unbounded TFs.  

Table 1: Classification of cervical  

               cells with Hopfield NN 

Class % of correct 

 classification 

0 1 Tr Te 

Normal Severe 100 97 

Normal  Mild 68 66 

Moderate Severe 70 67 

Chart 1: Hopfield-NN 

 It has convergent activation dynamics 

 Hopfield-NN >>  MLP in learning 

 

 If      prototypes are not available,   
Then classical Hopfield NN is not suitable    

 Storage capacity of Hopfield NN is 0.15*n  
          (n : number of neurons) 

  If  elements stored >  limit 
 Then retrieval/recall becomes problematic   

 Remedy :  Brouwer method     

 Converges to local minima 
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The sufficient conditions for the existence of periodic solution are derived.  Qiu [325] found conditions for 
periodic solution of  higher_order_Hopfield_NN using Lyapunov method and linear matrix inequality 

techniques.  Kaslik reported the theoretical analysis of discrete-time-delayed-Hopfiled NN of p-neurons 

with ring structures.  The existence of Fold/Cusp, Neimerk-Sacker and Flip bifurcation is proved.  Further, 
a theoretical proof is given for the occurrence of Marotto's chaotic behavior.  Liu [199] reported sufficient 

conditions ensuring equilibrium number, local stable number, global stability and complete stability of 

Hopfield NNs with multilevel activation functions.  Hopfield NNs are extended [197] in developing 

dynamic resource allocation algorithms with advantages like distribution of resources and different 
connections over same resources.  It is applied in scheduling and optimization tasks. 

 

2.4 Elman-NN 
In 1990, Elman proposed a hidden_layer-wise_recurrent-SLP, still a popular neural model for dynamic 

systems and time series data.  

 
Architec. Elman-NN: Elman NN has architecture as 

that of SLP with an additional feedback loop of 

hidden layer with a single delay.  The output of 

hidden layer is called internal state. The feedback 
layer is referred as context layer and is represented 

below the input layer with a connection to the input of 

the hidden layer (Fig. 1).  The weights of recurrent 
connections from hidden layer to the context layer are 

fixed at 1.0. These fixed back connections result in 

the context units always maintaining a copy of the 

previous values of the hidden units or in other words 
have a memory unlike FF_NNs.   It is a partially 

recurrent architecture retaining layered configuration. 

It is also referred as locally recurrent, but globally 
feed forward NN. Yet, the capacity to retain the 

history of past information is limited. It is trained 

with BP algorithm. Hyperbolic, tangent, sigmoid and 
log sigmoid are used as transfer functions in the 

hidden and output layers in later versions of Elman 

model. But, generally purelin TF is preferred in the 

output layer.    
 

2D- contours are more informative than 3D-

surfaces except visual appreciation. Figurative 
representation of NNs also does not give more 

information than mathematical/object orientation 

notation.  Keeping this view, we reported Matlab m-files for Elman, Jordan, RBF, MLP and SLP 
architectures   

 

Functioning of Elman-NN   

To start with, the context units are set to zero.  The input is propagated like in a standard feed-forward 
fashion followed by application of a learning rule.  Thus, the net effect is activation of external inputs only 

at the time is equal to zero. The output of hidden units is fed back at every subsequent time steps (t+1, t+2 

etc.) to the context layer.   The information in the context units is thus a combination of the previous raw 
input data as well as that coming out of hidden units.  Now, both context units and external input units 

activate the neurons of hidden layer. The output of hidden units is then fed forward to activate the output 

units.   The hidden units then activate the output units as well as context units at the t+2 and so on.  This 

 

Fig. 1(a): Elman RecNN representation in MATLAB-

NN-toolbox 
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sequence of operations is repeated at all subsequent time steps.  In a nutshell, the context units provide 
information to the network recurrent in time.   

 

Refinement of weights and biases: MSE (mean square error) is the object function and the weight up 
gradation is through gradient descent with an adoptive learning rate. MATLAB NN tool-box provides a set 

of learning m-files.  At each time step, the error is back propagated to find gradients of error for each 

weight and bias.  For every each epoch, the entire input sequence is presented and the error sequence is 

generated. 
A pre-state (context) layer is a copy of activities in the state layer at the previous time step.  Leung 

and Chan [144] used dual-EKF  

(Extended Kalman filter) to 
train Elman-RecNN and to 

prune ineffective connection 

weights after the learning 
phase. Here, one KF estimates 

the state of the system. The 

weights are estimated by 

Recursive_Least Squares.  The 
error covariance matrix of the 

RLS algorithm is instrumental 

to eliminate insignificant 
weights or weak connections 

between neurons.  The 

simulation studies endorse the 

present joint-learning–pruning 
method is effective even for 

online learning. Pham and  

Karaboga [156] used GAs to 
train the Elman and Jordan 

networks.  Recently, Ohta and 

Gunjib [235] implemented 
four types of learning 

mechanisms viz. WTA, 

negative reinforcement, 

depression and potentiation 
and pre-synaptic inhibition are 

used during the training. The 

winner takes all (WTA) 
philosophy is used for the 

neurons of the state and output 

layer of Elman_RecNN.  The stability and plasticity of the proposed model is studied.  
   
Simultaneous refinement of architecture and Ws of Elman_RecNN: 

Subrahmanya and shin [83] proposed a combination of PSO and covariance matrices adaptation based evolutionary 

strategy to simultaneously refine the architecture and Ws of 

Elman type RecNNS (Chart 2).  Ge et al. [102] proposed 

dissimilation-PSO to simultaneously evolve 
architecture, train weights, initial inputs of the context 

units and self-feedback coefficient of Elman-RecNN. It 

is applied to speed identification and a controller of 
Ultrasonic Motors. 

Elman, Jordan and their hybrid Rec_NN 

 

architecture 

Layer Yes 

confluence [dot product] 
 

Neuron connections 

Within a layer NO 

BeyondSuccessiveLayers NO 

selfFeedBack NO 

Forward Yes 

Forward.Full Yes 
 

Feed_Foward 

#Layer Name #neurons TF 

1 IL dimx  =1 Identity 

2 HL dimH 60 Kernel 

3 OL dimy 1 PureLin 

 Np =999 
 

Feed_forward 

Layeri Layerj W 

1 2 WIH 

2 3 WHO 

 
 

Recurrent 

 Connections. Feed_back. 

recurrent 

From To 

Elman Out_HL,  
 

Context Layer 
( CL) 

Jordan 
 

Out_OL,   CL 

 

 Layeri Contex 

Layerj 

W_Rec 

 

Elman 2 2 
WRecH 

 

Jordan 
 

3 2 
WRecO 

 
 

 

 Layeri CL W_Rec 

 

Elman + 

Jordan 

2 2 
WRecH 

 

3 2 
WRecO 

 
 

Fig. 1(b): Output of Object oriented m-program (Fig.1(c)) of Recurrent NN 

architectures 

Chart 2: simultaneous optimization of NN 

architecture and Weights 
DPSO  
Discrete PSO 

Refinement of structure of a 
Rec_NN 

IPSO  
Improved PSO 

Parameter refinement of each of 
Structures present in the DPSO 
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Applications.Elman  
Elman_RecNN performs modeling of dynamic systems and sequence-prediction. This is beyond the scope 

of standard feed-forward-MLP-NNs.  The utility of this NN is wide spread in science, engineering, 

medicine and commerce. The typical applications include monitoring influencing environmental variables 
[106],   

% 

% oo_ElmJorHyb.m  (R S Ra0) 14-9-10 

% 

clean 

       

% Network Name 

  NN.name ='ElmJorHyb' 

   

 %  --Architecture ---- 

  

 ElmJorHyb.connections.Forward=  '[Full,Forward]' 

   

 % confluence 

 ElmJorHyb.confluence = '[dot product]' 

  

% Defaults 

 Neuron.connections.withinLayer = 'NO' 

 Neuron.connections.BeyondSuccessiveLayers = 'No' 

 Neuron.connections.selfFeedBack = 'NO' 

  

 architecture.Layer ='Yes' 

 Elman = 0; Jordan = 0; Hybrid = 1 

  

% Layer Names  

  

 ElmJorHyb.Layer(1,:).name = 'IL' 

 ElmJorHyb.Layer(2,:).name = 'HL' 

 ElmJorHyb.Layer(3,:).name = 'OL' 

  

 % Number of patterns 

 dimx = 1; dimy = 1; dimH = 60; NP = 11; 

 ElmJorHyb.NP = NP 

 % Layer dimensions --Data structure 

    

 ElmJorHyb.Layer(1,1).neurons = dimx 

 ElmJorHyb.Layer(2,1).neurons = dimH 

 ElmJorHyb.Layer(3,1).neurons = dimy 

  

 % Layer TFs   

  

 ElmJorHyb.Layer(1,:).TF = 'Identity' 

 ElmJorHyb.Layer(2,:).TF = 'Kernel' 

 ElmJorHyb.Layer(3,:).TF = 'PureLin' 

  

 % Weight  

  

 ElmJorHyb.weights(:,1,2) =  'WIH  ' 

 ElmJorHyb.weights(:,2,3)  = 'WHO  ' 

  

 % Weight_recurrent 

  

 if Elman 

 ElmJorHyb.weights(:,2,2)  = 'WRecH' 

 ElmJorHyb.connections.Recurrent.feedBack=  '[Out_HL, Context]' 

 end 

  

 if Jordan 
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 ElmJorHyb.weights(:,3,2)  = 'WRecO' 

 ElmJorHyb.connections.Recurrent.feedBack=  '[Out_OL, Context]' 

 end 

  

 if Hybrid 

 ElmJorHyb.weights(:,2,2)  = 'WRecH' 

 ElmJorHyb.weights(:,3,2)  = 'WRecO' 

 ElmJorHyb.connections.Recurrent.feedBack=  … 

'[Out_HL, Context; Out_OL, Context]' 

 end 

 

Fig. 1(c): Matlab function for Object oriented architectures of Rec_NNs 

 

cabbage growth Chinese  fields,  sequential controller for automated manufacturing system [153], inverse 

kinematics solution of  robot manipulator with   six-degrees of freedom [135], linear_ordinary differential 
equations (ODEs) [120], cultural heritage, identification of no-cavitation and developing/  super/ jet 

cavitation   of water inside an orifice [33]. Brudzewski [162] used Elman_RecNN in recognition of gas 

pulses with a small array of semiconductor oxide sensors. The results of table 2 warrant more intensive 
investigations of systems for foolproof knowledge. A large number of applications in diverse disciplines 

are described in under the head applications of recurrent_NNs in section 6.  

 

Skin-care: Wan [66] predicted skin-care (tone, spots etc.) with Elman, cascade-forward-BP and FF- BP 
NNs.  The key features are selected from questionnaires from women in Beijang.  

 

Microarray data: The simulated non-stationary processes and the real biological microarray continuous 
time series datasets are studied and the pedagogical rule extraction method imparts explanation rule 

capability.  Ao and Palade [63] introduced an ensemble of Elman-RecNN with SVM. 

 
Chemical industry: A sub discipline of industrial chemical process includes time series (TS) of key 

production yields and process parameters which help to monitor the health of ongoing schedule and to 

raise alarming warnings in case of shortcomings/failures.  Thissen, Buydens et al. [147] modeled the data 

of simulated ARMA (4,1),  Mackey–Glass, differential pressure in a spinning process from filtration unit 
with ARMA, SVM, Elman RecNN.  A dynamic NN model for predictive control of a distillation column 

was proposed.  The output of the hidden neurons is fed back to the input through one or several time delay 

units.  A sequential orthogonal training is used where in the hidden neurons are added one by one to avoid 
over training sunspot, exchange rate, McCay-Glass datasets. 

 

Seismic signal: Tiira [161] compared SLP, MLP and Elman NNs in detecting onset of seismic signal using 
vertical channel data recorded in central Finland.  The inputs are four different STA/LTA values computed 

in seven frequency bands. The training data base was obtained from P-wave signals of 193 teleseismic 

events and the output was high at onset while a low value for noise.  The results are 25% better for 

detection and reduced false alarms to 50% compared to Murdock–Hutt detector, a popular approach in this 
discipline. The order of performance is SLP > MLP > [Elman, Jordan] NNs.  Baddari et al. [75] studied 

seismic data inversion with FF_NN, Elman using back-propagation conjugate gradient training algorithms.  

Djarfour et al. [109] reported seismic data filtering with ElmanRecNN. 
 

Lynx data: Aladag et al. [92] proposed a hybrid Elman-RecNN and ARIMA to model both linear and non-

linear components of TS data.  The accuracy of forecast of Canadian Lynx data is noteworthy. 
 

Long term prediction in TS:  Darus and Al-Khafaji [58] modeled dynamic response and one-step-ahead-

prediction of flexible plate excited by sinusoidal force using MLP_BP, Elman-RecNN and ANFIS.  

Menezes and Barreto [108]   studied chaotic laser   and a variable bit rate (VBR) video traffic time series 
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datasets with NARX-NN with excellent results compared to time delay NN or Elman-RecNN.  The task 
here is long-term (multi-step-ahead) prediction of univariate time series. 

 

Chaotic systems:  Al-Assaf et al. [141] reported NNs for identification of parameters in fractional order 
chaotic systems.  The first step is arriving at features by discrete Fourier transform (DFT), power spectral 

density (PSD) and wavelet transform. The next step that follows is training with Elman and Jordan 

RecNNs and prediction of fractional chaotic system parameters are of adequate accuracy.  The features of 

fractional order chaotic systems   extracted from PSD using Welch functions, Multi-resolution (Multi-
Resol) wavelets transform (WT) and DFT are the input to Rec-NN to predict parameters of fractional 

chaotic system.  Here, PSD is preferable to the other two transform techniques. Residual analysis using 

hybrid Elman–NARX neural network along with embedding theorem is used to analyze and predict 
chaotic time series. 

 

Datasets.simulated_and_real_life: Ardalani-Farsa 
[81] analysed sunspot, Lorenz, McCay-Glass TS 

datasets with hybrid Elman-NARX-embedding 

theorem NN.  The results with this algorithm are 

more accurate compared to those of other 
dynamic_NNs. 

 

Software failure: Ho et al. [142] trained 
software-failure data along with the 

corresponding parameters with MLP, Elman, 

Jordan NNs and parametric models.  Earlier, 

nonhomogeneous Poisson process models were 
usually employed. 

 

Detection of oil spills: Ziemke reported [168] 
the detection of oil spills in sea coasts using 

segmentation of Doppler radar images from 

backscatter signals with Elman type NNs.  
 

Industrial operation: Javed et al. [30] reported 

summation Wavelet Extreme Learning Machine 

(SW-ELM) excels Levenberg_Marquardt (LM) 
in batch training of SLP and Elman NNs for 

industrial datasets viz. pump, industrial dryer, 

turbofan etc.  Portillo et al. [91] detected 
degradation of the process with varying 

thicknesses (50 to 100 mm) of wire electrical 

discharge machining of work piece using 
Rec_NNs with model validation and test success 

exceeding 85% and 75%. The prediction of anti-

germ performance and ingredient levels 

detergents [74] are reported. 
 

Portfolio selection:  Lin et al. [124] reported 

Elman is better than vector auto regression 
(VAR) in dynamic portfolio selection. 

 

Table 2: Precarious results of comparing efficiency of Elman-

NN with other techniques 

Elman NN is 

Inferior  

Task Ref 

NARX > Elman  Dementia 36 

FF-NN (SLP, MLP)  Concrete  
(Ready mixed delivery 
system) 

129 

Sub_ connection_NN  >> 
 [Elman's, Jordan] 

Simulations  171 

MLP, >> [ elman, Jordan, 
 Gen_FF_NN] 

Fuel cells performance  --   
polybenzimidazole-
polymer electrolyte 
membrane  

95 

Elman performance  
degraded with length of task 

Maze learning 85 

GRec_NN >> [Elman, MLP,  
[SAA, linreg] 
    

Technical profiles of 
novice  
CAD trainees   

57 

RBF>> [Elman, MLP, 
Hopfiled ] 

24hour weather forecast at  
southern Saskatchewan, 
Canada 

130 

ARMA, SVM >>  Elman  Spinning process  

NARX >>Elman Learning- & 
demonstrator- robot 

73 

MLP >> [Elman,  RBF] Simulation of  evaporation 
process  
Of Various climatologic 
regimes 

50 

MLP>> [Elman, RBF] Predict sleep apnea‘s 89 

Elman  >> MLP_BP  

probabilistic 

Isolated speech 

recognition 
 

88 

 RecNNs are proven imbibing and emulating paradigm 

for dynamic systems. 

 If a method is inferior to other (proven better) methods, 

it warrants a retrospection viz. version of method,  
Training  algorithm, data structure, accuracy/precision, 
appropriateness etc. 
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Linguistic analysis: Liou [196] performed and categorization of Shakespeare‘s writings using trained 
Elman-NN.  The semantic meaning of the words is acquired through an automatic acquisition process.  

 

2.5 Jordan Neural network 

Jordan proposed a partially recurrent NN in 1986.   
 

Architec. Jordan-NN: Jordan-Rec-NN is a single hidden layer FF-NN with an additional feedback 
connection from output of output layer to the context layer shown below the input layer.  The context layer 

is directly connected to the input of the hidden layer 

with a single delay. Thus, the architecture is similar to 

the Elman network in the sense that there is feedback 
loop only from one of the layers of network.   

The context units (of Elman or Jordan) 

contained the information of the history of input and 
also the effect of transformations occurring in the hidden 

layers.  The behavior of Rec-NN model can be deemed 

to be the result of culmination of static FF-NN and that 
in a transformed input space. 

 

Applications. Jordan-NN 
      

Environment 

Carcano et al. [174] modeled daily stream flow data in two 

small catchments with irregular and torrential regimes 
with Jordan NN.  The results are used for reconstruction of drought periods, 

which focuses management and control of water resources.  Darsono and 

Labadie [181] employed Jordan_NN for control of simulated real-time control 

of combined sewer system in King County, Seattle. 
 

Software failure analysis 
The critical points of attention in software development are test-case 
development, failure detection, fixing bugs etc.   Nonhomogeneous Poisson 

process (NHPP) models are popular in tracking software failure task.   But, the non-adherence of the 

assumption of these models is the limitation to arrive at reliable output for real time test environment. Ho 
et al. [142] studied the effects of different feedback weights in Elman RecNN for software failure using 

historical data of break-downs.  The results are compared with FF-NN, Jordan recurrent model, and 

traditional parametric growth for software reliability models. 

 
Trinity-College- Printed-Catalogue- Dataset.Jordan-RecNN: The motivation for developing this model 

was for its potential use in the on-line version of a Trinity College 1872 Printed Catalogue [183], a library 

catalogue which has entries in 14 different languages spanning over 5 centuries. It was thought that neural 
networks would perform well where entries to be analysed comprised only a few words. The results of 

trigrams, morphology/suffix analysis and Jordan RecNN are compared. 

 
Linguistic analysis:  It is applied in linguistic analysis and for sequential tasks.   

 Some typical input and output variables of test cases using Jordan NN are described in Table 2b.  

 

Table 2b: Input and output variables for typical tasks using Jordan_Rec-NNs 

NN Task Input Output 

 Jordan Thermal processing of → Processing time o Temperature of the cold 

 

Method % classi 
fication 

Trigrams 92 

Jordan Rec_NN 88 

Morphology 
/suffix 

85 
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5-8-9-1 canned foods 
Forecast of one step ahead 

→ Temp (retort's and cold 

point) 

→ Current time ti, & ti−1, 
ti−2.  

point  

 Jordan 

 Elman 

 MLP 

Processes in fuel cells 

→ Conditioning temp 

→ Operating temp 

→ Current density 

o Potential,    cathode 

resistance 

o Ohmic resistance 

 Jordan 

 Elman SLP 

 MLP 

 Rec_NN 

 

Earth quakes  → Vertical channel data o Seismic signal onsets 

 

Sub-connection (Sub-connect.)  RecNN  

Shimohara [171] et al.  proposed sub-connection neural network (SCNN).  It has feedback-to-weight 
connections and used for event-driven temporal sequence processing. SC-NN performed better than Jordan 

and Elman networks for event-driven temporal sequence processes like permutation, combination and 

integration.   

2.6 Elman + Jordan NN 
A hybrid of Elman and Jordan NNs consists of a 3-

layer NN (SLP) with backward connections from the 

output of the hidden (second) as well as output of 
output layer to the context layer (Fig. 2) [343].   

   

Memristor-based Rec_NN 

The noise, leave aside its‘ characteristics, is 
associated with all (real) life processes,  for example, 

central nervous system (CNS) of biological species 

and large-scale integration (VLSI) circuits of 
industrial importance.  This is modeled in the 

framework of memristor-based Rec_NN with 

stochastic flavor.    
 

Directed acyclic graphs (DAG)-Rec-NN:  Baldi 

[229] reported recursive NNs based on underlying 

directed acyclic graph (DAG) (Fig. 3), a weight 
sharing approach. Here, a deterministic 

parameterized relation is used. The translation-

invariant and regular structure of DAG allows reusing the same network at different locations in the graph 
and protein structure is prediction. 

 

Limitations of Rec_NNs: Simple Rec_NNs fail at vanishing gradients in problems with data having short 
term lags.  Long short term memory (LSTM) (Chart 7) Rec_NN surmounts this shortcoming 

 

Relationship with other techniques: There is correspondence between neural networks and block stochastic 

models. 
 

 

Fig. 2: Hybrid_Elman_Jordan RecNN  

http://en.wikipedia.org/wiki/Long_short_term_memory


R. Sambasiva Rao et al                        Journal of Applicable Chemistry, 2014, 3 (4): 1337-1422 

 

1352 

www. joac.info 

 

3. Training algorithms for Rec-NNs 
In training Ws of Rec-NN for time series data, the 

network is unfolded into MLP, growing layer wise 
with time.  The choice of training algorithms, number 

of neurons in the hidden layers, activation functions, 

stiffness of ODEs, structure of W-matrix in Rec_NNs 
is critical as far as  solution of mathematical methods 

are concerned. Thus, leaning (or training) procedures 

are newer ones or modified methods used for 

supervised feed forward neural networks (FF-NNs).  
The data flow is in the reverse direction complicates 

the jargon. Back propagation through time (BPTT), 

maximum likelihood estimation (MLE) and real-time 
recurrent learning (RTRL), are extensively used to 

train Ws of Rec_NNs.  The common feature of these 

algorithms is the calculation of derivatives of error 
sum of squares (ESS) with respect to Ws. Atiya-Parlos 

recurrent learning (APRL), Alopex, long short term memory (LSTM) and extended decoupled Kalman 

filter (DEKF) are another set of typical methods employed for training. However, with all these 

modifications, the training of W in recurrent neural networks is generally very slow.  

  

3.1 Back propagation through time (BPTT) 

The long term dependencies i.e. modeling relationship between inputs and outputs much earlier in time are 
not possible through 

gradient descent methods. 

But, back propagation 

through time (BPTT) is 
an adopted version of 

standard BP algorithm 

(Alg. 1). In BPTT, 
computing the derivatives 

of error with respect to 

weights in a recurrent 
network is reduced to 

computing the derivatives 

in each layer of in a feed 

forward network and 
adding them in reverse 

order of forward 

propagation. The ordered 
derivatives are 

appropriately distributed 

using the chain rule from 
a given node to all nodes 

and weights that connect 

it in the forward direction. CG algorithm can be used in batch version of BPTT.  Later, efficient 

implementations of BPTT are proposed 
 

Functioning of BPTT: All the three modes training viz. epoch wise, continuous/real time and their 

combination are used in BPTT and  the topology grows by one layer at every time step. It unfolds Rec_NN 
into multi-layer FF_NN whenever sequences of patterns are learnt.   It involves two phases. The first one is 

 
Fig. 3: DAG_RecNNwith Four layers from bottom 

 to top, 10 nodes ; 1-4: input ;  6,10: sink nodes; 

(Courtesy from Ref 229) 

Alg. 1:  BPTT for training of Ws of Rec-NNs                    

  
Step : 1 Forward pass: All inputs pass through the NN in the forward direction  

The outputs of hidden layers and output layer are saved in a stack  
 

Step  : 2 Backward pass:  The errors (residuals) are computed at the output layer. 
They are back propagated through time in the layers of NNs 

 
Step  : 3 Refinement of weights:  Weights are updated with accumulated updated values.    

At each time moment, a feature error is calculated 
 It is  back propagated further through time 
 

   If Jacobean at each time step has all its Eigen values  
inside the unit circle 

 

Then Jx(T,n) decreases exponentially   

 

    With well selected truncated depth, BPTT produces accurate 

derivatives with reduced complexity and computational time 
compared to real-time recurrent learning.  

 BPTT can be viewed as unfolding a recurrent network from a time 

evolving architecture into its multilayer counterpart, there by 
translating time into space [260]   

- BPTT algorithm is computationally very intensive 

Remedy : Truncated BPTT 
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unfolding the NN in time and in the second phase the error is back-propagated through the unfolded 
network.  BPTT integrates backwards in time after the network takes a single step forward.  The effects of 

the number of forward and backward integration steps in training are discussed in literature.  The relevant 

history of input data and network state is saved only for a fixed number of time steps, defined as the 
truncation depth.  

 

Vanishing gradients: The portion of wC is insignificant for lower values of time resulting gradient values 

very low.  This behavior is called the problem of vanishing gradients or forgetting behavior circumvented 
in modified BPTT (Chart 3).    

   

3.2 Truncated BPTT  
Instead of continuously updating Ws, it is performed 

at every preset number of steps. For this task, the 

input data as well as the state of NNs are saved.  The 
information older than truncation depth (depth_trunc) 

is overwritten, as it is does not have added value in 

training. Truncated-BPTT algorithm (Alg. 2) still 

follows the true gradient closely with a reduced computation time.  
 

BPTT for NARX-NN 
The modified BPTT is employed to train NARX-NN. The entire network is unfolded at the recurrent 
connections, which appear as jump-ahead connections. They provide a shorter path for back propagating 

the error through the network.  After an 

epoch (presenting all data) of training, 

the error is back propagated through the 
unfolded network path. In the output 

units of the recurrent network, the local 

error is computed.  It is added to the 
back-propagated value from the 

subsequent input unit. The advantages of modified BPTT are in Chart 3. 

 

3.3 Real-time recurrent learning (RTRL) 
RTRL refines Ws of Rec-NNs in real time and thus 

the title goes for this training algorithm. RTRL is a 

gradient based algorithm wherein Ws of Rec_NN 
are refined by minimizing MSE between desired 

output and observed output at the current time step (Chart 4). Unlike BPTT, this algorithm is local in time 

but not local in space. It is more of theoretical interest. 
 

Alg.2: Truncated-BPTT 

o The local gradient for jth neuron is calculated 

o Back propagation is done upto  n-h+1     

o Upgrade W 
 
If      h is chosen to equal h0 

            Then BPTT (h; h0) algorithm  

          reduces to batch wise BPTT 

Chart 3: BPTT.Mod 

 Mod.BPTT diminishes the problem of the vanishing gradients  

 NARX-NN learns long-term dependencies in the data.  
[Reason: This is due to the fact that the error in the present time step 
 is reduced while taking into account the errors made in the future steps] 

 

Alg. 3:  ALOPEX   

o    Output of ith neuron at iteration (iter)  

o    Update wij      

o    Calculate  probability pij(n)  

Chart 4: Limitations and remedial measures in RTRL 

 The gradient information obtained from RTRL is employed in  

gradient descent (GD), conjugate GD (CGD) EKF to update Ws 

- RTRL is computationally expensive with the time complexity 
O(N4)  ;  [ N :  number of neurons] 

- A loose coupling of RTRL with GA did not improve performance 
o Remedy: hybrid RTRL-GA  or Restricted RTRL-GA 

 High computational cost at each iteration  

-    Fails for systems with ten step time lags 
         Remedy: LSTM  
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Stability-RTRL: The weights of 
Rec_NN are refined by gradient of 

instantaneous error [231]. The 

structural/asymptotic/exponential/absolu
te stability of Rec_NNs under variation 

of parameters was studied. For the 

hyperbolic equilibrium points 

linearization methods are employed.  In 
the case of non-hyperbolic equilibrium 

points, Lyapunov linear matrix 

inequations solved the task. 
 

Advances in RTRL: The improvements 

of RTRL include sub-grouping strategy, 
constrained RTRL and conjugate 

gradient (CG) method.   The 

relationship between learning rate and 

the slope of TF for a class of Rec_NNs 
trained by RTRL are derived. It reduces 

the degrees of freedom and thus it is of 

lower computational complexity. A similar relationship for FF-NNs trained by BP reported. 
 Blanco et al. [222] proposed a modified version of RTRL with the time complexity O(N

4
L

2
)].  An 

autonomous learning algorithm for fully connected Rec_NNs trained with RTRL was proposed later.  This 

version does not require the dynamics of the system, but tracks the dynamic behavior starting with initial 

conditions at zero time.  This algorithm was successfully implemented for single_input_single_output- 
(SISO) second order/linear processes, time-varying/non-linear data, multi_input_ multi _output- (MIMO) 

time series predictions. Further, this algorithm is successful even in presence of uncertainties. A 

hybridization of RTRL with APRL increases robustness (Chart 5).  
 

3.4 Alopex    

The biological inspiration   of Alopex is from human vision. This 
algorithm is a stochastic parallel process in arriving at the global 

minimum of an error surface.  This is a self-starting algorithm 

exhibiting global generalization.  It transmits global cost function to 

all the neurons synchronously.  This correlation between the global 
error change and weight change is calculated using a probability 

index to march forward in the right direction. The individual 

weights are refined (Alg.3).  It is applied for control of autonomous 
underwater vehicles with Rec_NN architecture (2-10-1). 

Alopex outperformed four-layered FF-NN (2-20-10-1). The 

positive features are described in chart 6. It is similar to SAA in an 
implicit manner. Unlike in BP and other algorithms, Alopex 

calculates output error after synchronous change of all weights  

 

3.5 Atiya-Parlos Recurrent learning (APRL) 

It is a new online continuous time learning algorithm [232] which proceeds in non-gradient search 

directions.  It minimizes standard quadratic error.  The results of APRL with RTRL for Mackey-Glass data 

are compared.  In this instance, the combination of APRL with RTRL was proposed to exploit the speed 
and robustness of the components. Atiya and Parlos considered discrete NNs and used search directions 

instead of gradient to minimize the standard error.  APRL strategy was extended to continuous time NNs.   

 Prevention of error signals from decaying  

                                               quickly as they flow back in time  

 CECs keep track of error as it flows back in time 
                                                thus, errors elsewhere vanish exponentially 

- learning long-term dependencies 
o Remedy:  
o Architecture: segmented-memory recurrent  

               neural network (SMRec_NN)    
o  Tr : extended RTRL 

- CPU_time increases with network size 

- If  extended RTRL impractical 
o Remedy : extended BPTT + 

                                                                 layer-local unsupervised  
                                                                 pre-training procedure 

 improved learning in SMRec_NN 

- Traditional RL fails in cases where long term memory of  
old sensory inputs is required for immediate prediction. 
              Remedy: RL with LSTM  

 

Chart 5: Hybrid RTRL 

 

 APRL 

 Efficient alternative to RTRL 

 Good generalization 

 

 RTRL 
 Less sensitive to transients 

 

 [APRL + RTRL] Loose coupling 

 Increased  Robustness 

 



R. Sambasiva Rao et al                        Journal of Applicable Chemistry, 2014, 3 (4): 1337-1422 

 

1355 

www. joac.info 

 

In this approach the states are considered as control variables and weights are upgraded to achieve the 
convergence. 

 

APRL as special case:   APRL is a truncated one step 
backward propagation of instantaneous error which is 

combined with a momentum term. Also, RTRL and BPTT 

can be derived from a constrained optimization task where in 

the quadratic error with constraints reflecting the dynamics of 
NN is the object function. Mackey-Glass data is analysed 

using the inputs [y(k), y(k-6), y(k-12), y(k-18)] to predict 

y(k+84) using APRL training of Rec-NN. 
 

3.6 Long short term memory (LSTM)   

LSTM is an Rec_NN surmounting limitations of vanishing 
gradients. Thus, it models use long delays and a mixture of 

low and high frequency component signals.  However, 

LSTM-Rec_NN learns the trends after training for more than a thousand discrete time steps.  It is used as a 

powerful function approximator in reinforcement learning in 
partially observable environment.  In a standard LSTM, each unit 

has its own ActFn instruction. LSTM uses constanterror carousel 

(CEC), a memory cell containing self-connected linear unit 
enforcing a constant error flow [225].  An input gate learns to 

protect CECs from irrelevant input and an output gate learns to turn 

off cell block (generating irrelevant output).  A forget gate allows 

CECs to reset themselves to zero when necessary. Thus, by 
monitoring the process on long time in CECs, LSTM is able to 

bridge time lags (>1000 discrete time steps) between relevant 

events.  A meta-learner using LSTM is a fast leaning procedure for 
non-trivial classes of functions.  LSTM is combined with DEKF in 

training Rec_NNs.  Second_ order_ Rec-NNs trained by 

LSTM_general are better than single layer NNs as the dimension of 
the dynamic NN is reduced.   But, the neurons have identical set of 

operating instructions for both activation and learning for generalized_LSTM_Rec NN.    The advantages 

of LSTM and the benefit of hybridization are in Chart 7.  

 

Peephole connections  

Perez-Ortiz et al. [225] proposed new set of weighted connection links with each CEC to the corresponding 

gates (Alg. 4).  The combination of LSTM with peephole connections is an efficient fusion of modified 
BPTT and a customized version of RTRL.   LSTM-gen if used to LSTM architecture with peephole 

connections the result is an advantage of an additional source of BP error. 

 

Rec-NN.Hou 

Hou et al. [257] used this NN for hierarchical control task of a large scale 

inter connected dynamic systems.  

 
Architec: It consists of local optimization sub networks and co-ordination 

sub network.  This hierarchical NN uses goal-co-ordination approaches. The 

constraints in the dynamic equations are treated in a nesting manner.  It 
found that the present NN solves three interconnected sub systems 

efficiently. Interestingly, it is a globally stable NN.   

 

Chart 6: alopex 

 Escapes from local minima very fast  

 Learns by relating patterns of  

recent history with weight change trends 

 It decreases the network error  

without explicit computation 

 Does not make any assumption  

regarding architecture, Objfn or TF 

 Amenable for parallel implementation 

 in hardware  

 Rejects noise 

Chart 7: LSTM and its hybrid 
 
FF-NNs 

- Traditional NNs have a problem 
of gradients 
 Remedy: LSTM 

LSTM 

  No vanishing gradients hurdle 

- No direct connections between 

CEC to gates 
Remedy: Peephole connections 

LSTM + peephole 

 Fusion technology 

 

Alg. 4:   Recurrent Network  

  

For memory block = 1 to n 

 activation of input gate 

 activation of forget gate 

 activation of output gate 

end  

Gradient of y(t) wrt each weight 
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3.7 Decoupled Extended Kalman Filter (DEKF) 
Extended Kalman Filter maximizes the posterior probability of variables rather than minimizing the 

training error.  A non-linear autoregressive model of 

time series with noise both in the process and 
response was adopted.  For estimation of Ws and 

hidden states EKF algorithm was used.  There are no 

external inputs and recurrent connection and pruning 

was not taken in to account.   The basis of 
decoupled_EKF is that learning is treated as a 

filtering problem.  The optimum weights are 

estimated in a recursive manner.   Decoupled EKF is 
tested on simulated (SISO) and experimental datasets 

(sun spot activity, exchange rate prediction and 

Mackey-Glass series).  It uses joint learning and 
pruning procedure for online-Rec-NNs.  A global EKF to estimate W and hidden state of Rec_NN to 

maximize the posterior probability rather than minimizing training error are used. Chart 8 points out 

positive features and limitations. 

 

3.8 DEKF + LSTM 

On line learning and context sensitive language learning are affected with a combination of DEKF and 

LSTM [225] procedures.  

 

3.9 Evolutionary Learning:  Baldwinian learning 

cannot be better than Lemarckian in evolving NNs.  

This is true especially when a large number of 
weights are involved. The limitation of cellular GAs 

is a large CPU time in training Rec_NNs.    But, an 

addition of a local learning mechanism to cellar GAs 
result in a hybrid optimization algorithm. GA is used 

to train Elman and Jordan RecNNs [156] and 

nonlinear_dynamic_ system_identification. 
Differential evolution (DE)  PSO and hybrid of DE 

and PSO are also used [244,251].  Cooperative co-

evolution training of Rec_NN is described in Alg. 5. 

 

4. Evolution of Rec.NN 

 

Chart 8: DEKF   

 Apt for online/  batch training  

 Tractability of  computationally hard problem  

 Not local in time or space 

 Fewer training steps 

 Generalization > gradient descent 

 

- Slower in training time series data 

- Considers only local inter dependencies 

Alg. 5: Cooperative coevolution.Tr.RecNN    14/131 
choose encoding scheme 

Neuron or Synapse level 

Decompose the problem into k subcomponents 

Initialize  

cooperatively evaluate each sub-population 

While  until termination 

 for each Subpopulation 

  for nGenerations 

   Select and create new offspring 

   Cooperatively evaluate new offspring 

   Update sub-population 

  end for 
 end for 

end while 
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Evolution in nature (Fig. 4) is to combat the odds for 
sustenance of a species for searching food/mate, 

protecting eggs/off-spring from becoming a prey, suitable habitat, and defense against predators all 

through the life span. In man_made_computational paradigm (Fig. 4), evolutionary progress is primarily 
need based to tackle unsolved riddles, circumventing the limitations of the existing methods, avoiding 

failure conditions, extending scope of applications to more complicated datasets/tasks,   enhancing positive 

features, realizing intuition and reaping the synergism in functioning and robustness.  The universal 

approximation properties of fuzzy system, NNs and NARMAX were proved. Time series modeling was 
practiced in wide range applications in the last half a century. Linear, non-linear models with parameters, 

soft techniques, SVM, NNs, evolutionary computation and recently even nature inspired methods like 

honeybee mating, ant colony optimization (ACO), particle swarm optimization (PSO).  Global approach 
considers the entire system at once, while multiple model paradigms tackle through portioning means.  

Still one riddle that remains is within how many iterations, for what  range of initial values, which training 

algorithms, fuzzy systems reaches optimum configuration achieving the universal approximation axiom. 
Tsoi and Back [163] reviewed a unified approach of architectures of discrete time Rec_NNs.   

 

4.1 Rec-(multiplicative-neuron)-SLP-NN:  It has only one neuron in hidden layer (HL). Auto-regression 

(AR) as well as moving average (MA) terms is included in the model. The error (yobs-ynn) is fed back and 
PSO is used for training Ws of NN (Fig. 5). 

 

 

 
 

L(t) : Backshift operator  

err(t) : Error for time t  
(yobs –ynn) 

TF(.) or 
ActFn(.) 

: Sigmoid(.) 

X(t) : Observation  

 Algorithm of  Rec- 

(multiplicative-neuron)-SLP-NN              
   
For  i=1:NP 
 Cal activation value of neuron 

 Cal output of Rec-Mul-Nue.SLP 

 Err(i) = yobs-ynn 

End for 

 

MSE : mean square error 

MAPE : mean absolute percentage error 
 

 

arima : Autoregressive Integrated 
Moving Average 

Wmes : Winter's Multiplicative 
Exponential Smoothing 

 

  

Test 

Data 

SARIMA WMES MLPANN RBF-

ANN 

E-ANN MNMANN MS-

ANN 

L&NL- 

ANN 

RMNMANN 

MSE 92.6387  50.4980  13.9891  106.4797  13.4821  40.2006  9.1010  12.7263  8.6289 

MAPE 0.2336  0.2204  0.0995  0.3248  0.0990  0.1822  0.0887  0.0944  0.0761 

Tr : 124 ; Test : 10 points    

 

Fig. 5: Algorithm and pollution monitoring analysis with Rec-(multiplicative-neuron)-SLP-NN 
 

Fig. 4: Evolving modeling, brain and the Universe  
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Dataset [CO2,SO2]. Rec-(multiplicative-neuron)-SLP-NN: The contents CO2 and SO2 were monitored monthly 

during the period March 1995 and April 2006in Ankara, capital of Turkey.  The profile of   XO2 with time exhibits a 

trend and also 12-month seasonal component.  The results are compared with SARIMA, WMES, MLP-NN, 

RBF-NN, E-ANN, MNM-ANN, MSANN, and L&NL-NNs (Fig. 5).  
 

4.2 Sub_connection neural network:   It has feedback-to-weight connections.  The learning algorithms 

viz. permutation, combination, and integration are event-driven temporal sequence processes. The results 

of simulations reveal sub_connection neural network (SCNN) performs better than Elman and Jordan 
RecNNs. 

 

4.3 Dynamically constructed feedback fuzzy neural controller:  This NN has a rule-layer and input- 
/output- layers.  BP algorithm is used in training Ws.  The rules are aggregated as and when developed.  

The pruning procedure of rules and input variables involves detecting irrelevant ones.  The deletion is in 

adherence with optimum accuracy.  The advantages of the proposed model are briefed in Chart 9.   
 

Chart 9: Dynamically constructed feedback fuzzy neural controller Tr_alg: Mod-BP) 

 Small sized rule base    

 SISO NN-architecture for   neuro-fuzzy FIS  

 NN model similar to Lin- ARX  

  Decomposition of multivariable control rules into 
three sets of one dimensional rules for each input 

 Direct relationship between a fuzzy control and a 
conventional control 

 Easy connection between fuzzy parameters and 
operation of controller 

 

 Input/out  fuzzy sets  

 Number of fuzzy rules 

 Inference methods  

 De-fuzzification methods 

 Created from scratch 

 Simplified  
evolution of  rule 

base 

 No need to specify 
o Initial network 

o Architecture 
o Initial membership  
o Functions  
o Initial weights 

 

 
 

Fuzzy set models 

o ANFIS 

o Sugeno-type fuzzy 

o Differentiable t–norm 

o Differentiable mfs 

 

A multi-dimensional fuzzy-relation rule system can be decomposed into SIMO type systems.  The output 
of these A1_to_C1 rule base is inaccurate set of Am_to_Cn

 
(A: antecedent, C: consequent) rules.  In spite of 

the fact there is decrease of accuracy, A1_to_C1  fuzzy rule system has advantages. This is applied to I/O 

modeling of non-linear system dynamics.  
 

4.4 Decomposed neuro-fuzzy ARX model: It is proposed for a priori unknown dynamic systems with 

finite input–output.   The structure is decomposed into linear AR models (ARX).  The rule bases consist of 

simple rules with a single antecedent and consequent clauses. 
  

4.5 Reservoir computing paradigm in Rec-NN:  A large but fixed recurrent part of NN is used as a 

reservoir of dynamic features.  The training is only on the output layer to extract desired information.  Just 

like regularization techniques, it increases generalization.   The pruning of some of connections of the 
reservoir to the output layer is beneficial.   

 

4.6 Convex-hull.RecNN:  The numbers of neurons in the first and second layers are equal to the number 
of data points.  In first layer, there is no self-feedback connection.  In the second layer there is self-

excitation connection for every neuron like in Max-net.  The ith neuron of the first layer is connected to the 

ith neuron of second layer in forward and reverse directions.    There are four subnets which are 

structurally identical but with different activation functions.  The ith neuron in the second layer of every 
network is connected to the ith neuron in the third layer.  Each neuron in the third layer is connected to 
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every other neuron and the weights are set to zero. Thus every neuron in the third layer has four 
connections.   

 

Data processing in convex-hull: In the first layer angles are calculated.  Similarly, four subnets in the 
second layer compute minimum angle.   In each iteration, the angles with respect to another neuron are 

calculated in the first layer.  They are passed to second layer.  In the second layer, the winner (cliff neuron) 

is selected and marked as hull-neuron.  The weights from the mother to child neurons are set to one.  At 

the end of training the third layer outputs the exact connect hull.  
 

Datasets. RecNN-convex-hull: This NN model is tested on several sets of points in 2-dimensional space.   

 
4.7 Max-Net.Rec-NN: Max-Net is a recurrent-NN with N number of neurons.  It is sometimes referred as 

a single layer NN.   

 
Arch. Max-Net: Each neuron is connected to every other both in forward as well as in reverse directions.  

Further, there is a self-feed-back connection to every neuron (Chart 10).  

  

Data flow in Arch. Max-Net: During, the iterations (self-organization) of NN, each neuron receive 
inhibitory input from other nodes through inter-layer (lateral) connections.  The outputs of the neurons are 

updated in parallel.  The neuron with maximum value subsequently becomes a winner neuron. The 

activations of all other neurons are set to zero.    

   

4.8 Hodkin-Huxley neuron-Rec.NN: Rec-NN with stochastic spiking neurons and trained based on 

reinforcement learning of temporal effect.  It is shown that NN with Hodkin-Huxley neurons with dynamic 

synaptic kinetics can learn appropriate timing of each neuronal firing.  The information in NNs is coded by 
characteristics of timing of each neuron firing, order of firing and relative phase difference of firing. 

   

4.9 Multiple-class-random-NN: It consists of N neurons and 
receives exogenous and endogenous signals.  The excitatory or 

inhibitory signals are fixed by the neurons to others in the 

network.  In the model, the excitatory signals increase the 
potential of the neuron by one while the inhibitory signal 

decreases it by one.  The existence of a solution for the non-

linear signal flow equations for NNs modeling excitatory signals 

is proved. This architecture successfully models images and their 
texture. 

 

4.10 Block_feed back. NN: It exhibits flexibility in the specification of network architecture.  It is a 
discrete time dynamic NN with feedback paths between layers.    

   

Chart 10: Features of Arch. Max 

 NP do not  influence # iterations to 

select the winner neuron 

   Every computation in a neuron is 
local 

   Computation not controlled by a 
central processor   

 

Chart 11: Block F.B.NN  

 It is a general model to describe different architectures. 
 Each block consists of multilayer perception satisfying the 

trainability condition. 

 Four different connection of the block result in a train of NNs, 
satisfying the trainability condition. 

 Back propagation training results in universal approximation and 
Bayesian classification properties for block feedback NNs. 

 These properties are extendable to dynamic system.  Hopfield NN is 
applicable only to systems at equilibrium state. These nets are also 
called non-fix point NNs, different from fix point NNs. 

 The NNs with delays are called here dynamic rather than recurrent; 
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Architecture: The blocks are 
connected by different types of 

connections viz., cascade, sum, split and feedback (Chart 11).  In each connection, one or more number of 

blocks is embedded.  Each block consists of connection layer represented by weight matrix and functional 
array, consisting of transfer function etc. BP_NN is a specific instance of this family.  It surmounts the 

limitations of fixed architecture.  Within this frame work, a large number of different architectures are 

possible and can be trained. A multi-feed-back layer network is depicted in Fig.6. 

 

Architecture 
Layers 

Fig. 6: Multifeedback-Layer Rec_NN (courtesy of Ref : 254) 

 

4.11 Pipelined_Rec_NN:   
It is a complex modular NN consisting of a number of small scale Rec_NNs (Fig.7).  It represents non-

linear Wiener-Hammerstein cascaded systems.   

 

Architecture. Pipelined _Rec 
_NN: A pipe-lined_Rec_NN 

consists of 'm-number of 

Rec_NNs as modules.  Each 
module has 'N' neurons.  The 

(NPx1) dimensional external 

input is delayed by 'delay' 

times steps before imputing to 
the module 'm'.  All the 

modules operate with the same 

'W' matrix.  The overall output 
of the signal of Pipe_Rec_NN 

is Yout (n) = y1,1 (n).  

 
Learning alg. Pipelined _Rec _NN: The learning algorithm for such large NN is very complex. The 

learning algorithms used are back propagation through time, recurrent back propagation and extended 

recursive L.S etc. The pipelined Rec-NN was trained with RTRL for joint processing adaptive non-linear 

to emphasize that output evolves in time as a result of time varying 
input 

Fig. 7: Pipelined recurrent neural network.   (Courtesy of Ref: 210)   
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equalizer for communication systems.  It eliminates non-linear distortion in chaotic communication 
systems.  It is better than Rec_NN.   

 

4.12 Multi-feed-back-layer-NN: It consists of three feedback layers wherein both local and global 
recurrences are implemented.  BPTT algorithm for both online and off-line training and Levenberg and 

Marquardt (LM) with trust region approach is used to optimize the Ws of NN.  The prediction of chaotic 

time series and identification of non-linear dynamic system with the current Rec-NN is superior to the 

earlier models.  
 

Architecture. Multi-feed-back-layer-NN: It has a SLP forward architecture.  The recurrent connections are 

layer wise from output to output, output to hidden and hidden to hidden layers.  The data flow in the 
feedback layer is as follows.  The weighted output from a layer passes through an intermediate (context 

memory) layer with equal number of neurons.  The weighted data passes through a transfer function (TF) 

and the weighted output from the memory layer is passed through the destination layer.  If the destination 
layer is same as the layer from which the feedback is generated, it is referred as layer wise self-feedback 

connection.  On the other hand, if the destination layer is any other layer (other than itself), then the 

feedback is called global layer wise.  In a general feedback of a neuron, the output of the neuron is 

weighted and is passed as input to a memory neuron.  This net signal after operated by a TF, the output of 
memory neuron is generated.  It is weighted and connected to the input.  

 

Datasets. Multi-feed-back-layer-NN: It is applied to identification of multi_input_multi_output (MIMO) 
system, non-linear plant and prediction of NARMA processes.  

 

Datasets.Mackey-Glass.Multi-feed-back-layer-NN : It  is superior to MLP (4-16-1) NN with tanh and 

linear TFs in hidden and output layers.  The initializations of Ws were done by Nguyn-Widrow method 
and refinement by LM with trust region approach.  

 

4.13 Liu-Wang-Rec-NN:  It is proposed for a solution of a quadratic mathematical task. The solution is 
optimum for convex object functions with equality (linear) constraints.  A quadratic function in two 

variables with linear equality and inequality constraints is also solved.  The non-linear (sixth order 

polynomial and exponential) function with constraints also converges to the optimum with 3 iterations.   
 

Architecture.Liu-Wang-Rec-NN: It is a one layer Rec-NN with discontinuous hard-limiting TF. 

  

Dataset. Titanimum. Liu-Wang-Rec-NN: The titanium data was analysed earlier with SVR using Gaussian 
function as kernel.  Liu-Wang-Rec-NN successfully trained the dataset. 

 

4.14 Echo state network: The echo state network (Echo_State_NN) is a recurrent neural network with a 
sparsely connected random hidden layer. The weights of output neurons are the only part of the network 

that can change and be trained. Echo_State_NNs are good to (re)produce temporal patterns.   

 
4.15 Rec-NNs with autonomous learning: It is a fully connected recurrent NN [231] and dynamic with 

continuous inputs.  The number of neurons is equal to the sum of number of inputs and outputs. Each 

neuron can be an input/output/eventually both at the same time.  All neurons take part in the calculation of 

I/O mapping.  Sufficient conditions have been obtained to ensure the asymptotic stability.  The comparison 
of RTRL with constant learning rate parameters and other similar ones clearly showed the efficacy of the 

current algorithm. They reach optimal values with respect to minimization of MSE. This NN can be 

considered as a low pass filter with adoptive cut frequency. 
 

http://en.wikipedia.org/wiki/Echo_state_network
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Datasets. Rec-NNs with autonomous learning: A second order system varying with time, non-linear 
discrete time series, MIMO system, evolution of chaotic intensity pulsations of far IR-NH3 laser and the 

heat process datasets are tested with this NN.   

 

4.16 Hybrid Rec-NNs 

Reliable and possibly robust 

one-step and multi-step- 

ahead forecast is the need of 

the hour.  The hierarchical 

hybrid algorithms meet the 

requirement with, of course, 

limitations of hardware, 

software expertise, benefit_ 
to_cost_ratio analysis for a 

task.  Binary and ternary 

hybrid rec-NNs (Table 3) 

are developed by 
combining with fuzzy 

information system fuzzy 

information system (FIS), 

self-organizing map (SOM), wavelet etc. which have unique advantages.  
M3-forecast-competition contains 756 data sets in demographic, finance, industry, macro- and micro-fields. 

 

 NN with self feedback  + Generalized_Rec_NN 
Amiri [326] proposed a hybrid NN with self-feedback and Generalized_Rec_NN as components to model recall of 

associative digital patterns.  The analog, digital patterns and grey scale pictorials are stored in stable fixed (SF) points 

of SF-NN.  Generalized Rec_NN is used during retrieving process.  This model is robust to high noise and does not 

have spurious attractors.  It is better than recurrent associative memory models. 

 

 Rec-FAS-ARTMAP 

 

 Architecture:  A recurrent structure is proposed in 
Fas_ARTMAP.  Feedback (recurrent) connection of output 

module to input through a context filter module is a new 

addition.  The affective input of ART-x module is input.Artx 

= [B, C]. B includes features of the pattern, C is contextual 
(relationship among patterns in sequence) information. 

Partial- or full- information is used.  It is used for pattern 

recognition tasks with sequence importance (KB.3). 
  

 Rec-Fuzzy-NN 
Rec-Fuzzy-NN is used for a long term prediction of non-linear processes like neutralization of acids.  The 

knowledge of the process and input/output data are made use in dividing process/operation into several 
fuzzy regions and also to initialize W matrix of the fuzzy layer.  With the input/output data and 

membership functions (mfs) of fuzzy operating regions, local linear models are trained.  The object 

function is the minimization of the long term prediction errors.  The local linear models are then passed 
through the defuzzification step using center of gravity (COG) procedure resulting in a global model.    

 

Architec.Rec-Fuzzy-NN: It consists of five layers.  The process variables are the input layer.  In fact, this 
layer acts as a transmitting pipeline to the fuzzy rule development system (layers 2 to 4).  

 

Table 3: Binary and ternary hybrid Fuzzy Rec.NN   [254] Rec-NN/44 

Hybrid 

NNs 

System  

($$$_NN) 
Function 

Paradigm 

1 2 3 

Binary 

Rec-neuroFuzzy  Long-term non-lin  
processes 

FIS Rec_NN  

Rec-Dynamic_ 

Fuzzy Rule 

  Dynamic fuzzy  

rules 

Rec_NN  

Rec-Dyn-FLS  Non-singleton  
generalizations   

Dynamic fuzzy  
logic system 

Rec_NN  

Rec-TSK    Takagi–Sugeno 
–Kang (TSK) 

Rec_NN   

Rec-FIS Additive delay &  BP    FIS Rec_NN  

Ternary 

Rec-SO-FI  SOM FIS  Rec_NN 

Rec-TSK- 
wavelet 

 TSK Wavelet Rec_NN 

KB. 3: Order of presentation of patterns 

If No sequence dependency or contextual  
information is absent 

Then Patterns can be presented in any order 
 

If There is sequence dependency 
Then Different orders of presentations 

 produces different results 
Remedy :  Recurrent connections 
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Layer 1 – Input:   In the input layer, the accumulation operator, transfer function and the synaptic strength 
(w) of each neuron is unity.  Thus, whatever is inputted is truly transmitted without any change i.e. 

copying operation. 

 
Layer 2 – Fuzzification:  In the fuzzification layer, the number of neurons for each input variable is equal 

to the number of fuzzy regions contemplated into which the crisp (floating point) domain (range) is to be 

divided.  Thus each neuron corresponds to particular fuzzy set.  The output gives the membership function 

here, sigmoid, its compliment and radial basis function. 
 

Layer 3- If-part: The inputs to the third layer are the fuzzy sets which correspond to the combination of 

operating regions of different variables in the process.  The output is a combination of these fuzzy regions.  
Fuzzy intersection is used along with the available knowledge. 

 

Layer 4 (Consequent/Then part): A neuron in the fourth layer represents particular operating region.  The 
weights in this layer are the local model parameters. The consequent part(s) is tested here using the 

inference algorithms.   

 

Layer 5 (Defuzzification):  The input to defuzzification layer is in the fuzzy form of the action/consequent.  
It is converted into the crisp form by the defuzzification procedures like COG. The number of IFs or the 

neurons in the rule layer corresponds to the number of fuzzy rules generated in the fuzzy-NN. In fact, the 

number of neurons in the consequent layer should also be equal to those in the rule layer.  But, some rules 
may have the same consequent and hence the number of neurons in the THEN-layer is less.   But, one can 

count the number of connections to all the neurons in the consequent layer which can of course equals to 

the number of rules. 

 

 SOM + Rec-NN 
A temporal-Kohonen-map-NN is generated by recurrent connections implemented in static Kohonen-

SOM.    Now, the response not only depends on current output but also on the activations of neural map in 
the preceding stage. 

 

 Prob-NN + Elman 
Ganchev et al. [247] hybridized 

probabilistic and Elman NNs (Chart 

12).  First, it is trained like Prob-NN, 

followed by differential evolution in 
optimization of W(eights). The text independent speaker identification is modeled with this hybrid 

Rec_NN. 

 

 RBF+ Elman 
Hsu [28] proposed an Elman-based self-organizing RBF_NN.   A chaotic TS and an inverted pendulum 

data are analyzed. 
 

Arch. Elman + RBF: The initial architecture is without hidden neurons.  Mahalanobis distance based 

online learning involves structure and parameter up gradation. 

 

 NARMAX  + Elman 

Chart 12: Architecture. Prob-NN + Elman: 

pro-NN IL  pattern Lsummation (or classification) L                  output L  

pro-NN +  

Rec Layer 

IL  pattern Lsummation (or classification) L 
  Rec L  

 output L  
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Ardalani-Farsa et al. [81] trained Elman RecNN with embedded phase space points. The residual of 
predicted time series exhibits chaotic trend. Now, 

these residuals of TS are   reconstructed 

according to embedding theorem. Another Elman 
is trained to predict time ahead values of the 

residual time series. This residual analysis is 

repeated in iterative mode. At this stage, 

NARX_NN is trained and used to model the 
relationship between predicted value and 

residuals and original time series. This method is 

applied to Mackey–Glass, Lorenz equations and 
Sunspot time series (Fig. 8) to evaluate the 

validity of the proposed technique. The hybrid 

Elman emulating NARMAX is successful in 
predicting chaotic time series more accurately 

when compared to other prediction approaches. 

 

 Discrete_PSO_Wang  + Elman  
Architecture: The structure with low architectural 

complexity is achieved with PSO. The parameters of each structure are minimized with IPSO, which 

employs a new velocity upgrade procedures [43].  A gene evidence for mutation strategy is to diversify the 
swarm and improve convergence.   

 

Data: The results of simulated Mackey–Glass/ CATS   time series data and real-life task of thermal system 

in a 600-MW power plant show better prediction accuracy, generalization and yet have less messy 
architectures. 

The applications of hybrid Elman_NN in diverse disciplines are described in Table 4.  
 

Table 4: Applications of binary hybrid Elman_RecNN 

Model Function Task Ref 

Elman + 

Wavelet   
 

balanced and unbalanced short circuit 

faults transmission line fault location 
model which 

for selecting distinctive features about the 

faulty signals to determine the fault location 
occurred on transmission line rapidly and 
correctly   

99 

 real-time pattern classification Intrusion detection system secure model 
anomaly detection and misuse detection 
Data: intrusion detection sponsored by U.S. 
Defense Advanced Research Projects Agency 
(DARPA) 

 
Elman NN RBF Restoring the memory of past events. 

94 

    
Discrete wavelet 
transform + 
Elman 

Doppler signals were decomposed into 
time–frequency representations 

Diagnosis: ophthalmic arterial (OA) and 
internal carotid arterial (ICA) diseases  with 
Doppler signals 

126 

     
Wavelet multi-
resolution 

Load series are decomposed to different 
sub-series, showing different frequency 
characteristics of the load 

Short-term electrical load prediction 1-day-
ahead 47 

Elman Optimally designed 
Tr:  static BP 

  
  

    
Two small Elman-
NNs 

Intra-cellular variables Fed-batch recombinant fermentation       
143 

Auto associative-
NN 

Filter the noise   
  

FF-NN Feed forward network as the controller   
    

 
 Fig. 8: Sun spot data modeling with hybrid Elman NN  
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Wavelet Local time–frequency transformation 
Noise removal high quality 

Overlapping voltammogram 
128 

    
Elman Non-lin multivariate calibration    

prediction 
 

 

    
Wavelet  To process the measurement data by 

extracting the approximation 

coefficients of sensor measurement 
data.  

Fault detection and diagnosis in of air handing 
unit 

84 

Elman To identify sensor faults   
  

    
Discrete_PSO Structure of a RecNN Simultaneous structure and parameter learning   43 
Elman Parameter learning     

  

    
Wavelet transform adaptive forward linear prediction;  Denoising  in fiber optic gyroscope 44 
Elman    
    
PSO  
 

evolution of network structure, weights, 
initial inputs of the context units 

control for Ultrasonic Motors (USM) 
 

116 

Modified 
Elman_NN 

feedback coefficient   
 29 

    
NARX+ 
Elman 
MOGA—Pareto-
opt 

functionality & quality in wiping blade  

 

    
Elman + wavelet 
decomposition 

monitoring environmental variables treatment of underlying temporal structure at 
low frequencies 

106 

 

 Quantum-NN + Elman NN 

 Li et al [32] proposed hybrid Elman-RecNN with quantum neurons (Chart 13, Appendix A2.a).  The 

principles of quantum physics are used to account for interactions of qubit and classical neurons.  

The context (i.e. feedback from hidden) layer weight matrix is extended into hidden layer weight 

matrix. During up gradation these weights, more information of input profiles 

are used. The (sub) optimum architecture is arrived at by GA.  This hybrid 

system has high accuracy. 

 
Dataset.electricity_load. Quantum-NN + Elman NN: With quantized input of  
hourly historical load, hourly predicted target temperature and time index, highly 

accurate forecasting of short-term electricity load  became possible.  

 

4.17 Second order Rec_NN  
Architecture: A two inputs and one linear output system [222] with two hidden recurrent neurons is 

developed. Here, the chromosome has 10 genes (weights and inputs).   

 
Fitness Fn: The reciprocal of the average error in the 

training set is the fitness function and the best individual in 

the population has minimum error.  The stopping criteria 
are the completion of maximum number of generations or 

all the examples are recognized.  Stochastic sampling with 

replacement is employed to create intermediate population. The results with 2, 3 and 4 recurrent 
neurons tabulated (Table 5) show the efficiency of the method over RTRL. 

Chart 13:[Quantum +  
                  Elman ]NN    

Layer Neurons 

Input Quantized 
 input   

Quantum   
map  

m1 qubit   

hidden  m2 classic 

output m-D real 

Table 5: comparison of GA and RTRL in training 

Lrn alg. 
# neurons 

2 3 4 

RTRL 0.0000179 0.00002094 0.0000202 

GA 0.0000076 0.00000123 0.000001072 
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4.18 Higher order Rec-neuro fuzzy NN 
Theocharis [238] proposed a high-order Rec-Fuzzy-NN, an online algorithm. Mamdani's method is used 

for fuzzy-inference.  The current value of the internal variables is obtained from a number of past values of 

the fixed rules.  Hence, multi-step-ahead-prediction of the internal variables is obtained at the consequent 
part.  It is based on recurrent SOM fuzzy inference system NN (Rec-SOM-Fuzzy-NN).  An internal 

feedback loop is introduced by circulating the firing strengths of the rules. The underlying topology is a 

hyper-graph.  In other words, it allows weighted hyperedges connecting more than two neurons. The 

number of neurons it connects represents the degree of hyperedge. The largest hyper edge degree in the 
topology is called the order of a High-Order-Rec_NN.  

 

Architec.High-order-Rec-Fuzzy-NN : There is a feed-back loop to the antecedent (IF part) layer.  It allows 
firing of rules to be dynamically determined based on their past values.  The feedback path consists of both 

context nodes and associated feedback nodes.  The unique advantage of this NN is that it has both spatial 

and temporal processing capabilities.  The feed-back connections from context layer nodes memorize the 
history of firing the rules.  FIR-synaptic filters are introduced in the context nodes.  The advantage is 

enhanced by temporal processing capabilities due to high order feedback loop leading to a higher order NN 

with increased temporal ability.  The dynamic rules are decomposed into external and internal rules.  The 

external rules represent the output of the model.  Internal rules refer to the evolution of internal variables 
and inter connections of the NN at different time periods. A set of dynamic fuzzy-rules for the consequent 

part of the rule adds a new capacity of multiple-steps-ahead predictions of internal variables.  This is a new 

feature not available in many fuzzy information systems (FISs) and fuzzy-NNs.   
 

Datasets.speech recognition.High-order-Rec-Fuzzy-NN: It is applied to speech recognition task with 

different types of noise structures.  Due to adaptive noise cancellation, higher levels of speech 

enhancement are achieved. The modeling of 1500 training samples for the utterance of digits '1' to '6' by an 
English male with this hybrid NN exhibited superior performance due to multi-stage inter connections and 

the enhanced internal dynamics.   

 
Datasets.industrial process.High-order-Rec-Fuzzy-NN: The output of an industrial plant is a function of 

three preceding outputs and two past inputs.  Earlier the system was studied with Rec-NN, memory-NN, 

Rec-SOM-fuzzy-NN.  Theocharis [238] reported High-order-Rec-Fuzzy-NN with 2 fuzzy rules excels 
earlier reports and IIR-MLP and DC-NN.  The system identification represented by the difference equation 

is superior with the High-order-Rec-Fuzzy-NN compared with IIR-MLP or Dynamic-NN. 

 

4.19 Hierarchical Rec-NN 

Here Rec-NNs are sparsely connected together through bottlenecks with the idea to isolate different 

hierarchical functions to different parts of the composite network. 

 

4.20 Recursive_NN for extraction of rules from trained NNs 
The rule extraction procedure depends on dividing the continuous state space of Rec-NNs with sigmoidal 
discriminant function into discrete partition.  Setiono [270] recently proposed a recursive NN to extract 

rules form a trained MLP-NN for a classification task.  The values of inputs (antecedents) are discrete or 

continuous numerical values.  In the first step, the trained NN is pruned to remove irrelevant /redundant 

neurons and connections between layers.  The decision tree from C4.5 algorithm is used to generate rules 
with discrete antecedents.  The final rule set from the current Rec-NN algorithm (Alg. 5) is hierarchical.  

The rules at the deepest level only have antecedents consisting of linear combinations of continuous 

variables.  It enhances the understandability of the rule compared to simple If-Then-else structure.  It is 
believed that this approach renders black-box-NNs into a white-box one through greyer stage. 
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Alg 5: Algorithm of RecursiveRuleExt R                                            
[Rules] = RecursiveRuleExt R (Dataset,D1,C1) 
 
Dataset1: Data set with NP patterns and (D+C) features Rules : If-Then rules 
C1   :  Continuous features D 1: Discrete features 

Step   -2 Train Dataset with NN 
Step   -1 Prune the features in trained NN  
  0 D, C: are the pruned features. S : Data samples correctly classified by the pruned NN 

Recursive Rule extraction of a trained NN 
Step : 1 If  D = null 

   
Then  Generate hyper plane to split the samples (S) according to values of  continuous features (C )  

Stop 

   
Else Use only the discrete features (D) 

Generate set of classification rules 

Step: 2 

For Each rule Ri generated 
 If Support(Ri) >  1  & error(Ri) >  2   

 Then SRi : Set of data samples satisfying Rule (Ri) 
DRi : Set discrete features which do not appear in the IF part  
         of the rule (Ri) 

     If DRi = 0 
     Then Generate a hyper plane to split the samples based on values of continuous 

features  
Stop 

      else [Rules] = RecursiveRuleExt(Dataset,D1,C1) 
   End for   

 

 Dataset.Credit card: The German credit card (Card3) dataset 

containing 51 variables is trained with SLP-NN. After pruning 
the network architecture is 7-1-2 and the rules are generated 

with Re-RX. Card 2 dataset was trained with Prob.NN and the 

pruned NN has the architecture 6-2-2 (Table 6). 
 

Dataset. credit holder: The datasets, Bene-1 and Bene-2 are 

from  major financial institutions in Belgium, the Netherlands 

and Luxembourg. The credibility of customers in repaying 
loans was judged based on the pending installments for more 

than ninety days. The data was analysed and the rules are 

extracted. 
 

5. Emulation of standard mathematical techniques by 

Rec.NNs  

Emulation of earlier standard techniques by a latest paradigm 
is a testimony of its imbibing character (Fig. 9) and becomes 

sought after for its additional features. 

 

 
 

 

 

RecNN 
$$$ 

 

Emulation 

Modeling beyond standard 
techniques 

 

RecNN Emulating 
  

 

Quadratic programming 

  
 

 

 
 

(a)Accuracy of NNs 

Data set NN 
% Accuracy 

Tr Te 

Card3 SLP 87.26 88.95 

Card2 PNN 89.38 86.05 

Table 6: Credit card data analysis 

 

(b) Hierarchical Rules generated by 

Re-Rx for Bene data 

 
If purpose =  cash loan & 

marital status = not married  & 
known-client = no 

 If   Owner-of-real-estate = yes 

  If  Term-of-loan < 27 months   
  Then Customer = good-payer 
  Else  Customer = Defaulter 
 Else Customer = Defaulter 

end   
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RecNN Emulating 
$$$_TimeSeries 

 

NARMA 

NARMAX 
 

RecNN Emulating 
$$$_models 

 

William Zipser 

Hammerstein 
 

RecNN Emulating 
$$$_Filters 

 

Adaptive-IIR 

FIR 

Fig. 9: RecNN emulation of standard mathematical/statistical procedures 

 

5.1 Universal function approximators:  Recurrent multilayer perception [219] can also be considered as 
universal function approximator, although explicit proof is not available.   

   

5.2 Optimization task:  Rec-NNs are used in solving optimization task.  A primal-dual-NN based on linear 
variational inequalities to solve LP/QP tasks on line is developed.  In order to realize the algorithm on 

application-specific-integrated-circuit , MATLAB Simulink modeling module is used.  The results 

substantiate theoretical results. 

 
5.3 Inverted Pendulum: The pole is kept up in the conventional solution of an inverted pendulum [202].  

Rec_NN is used in solving the swinging of the pole of the inverted pendulum and stabilizing the pole, 

locally at the upper equilibrium point. The transition between equilibrium points can be realized by static 
and dynamic neural controllers parameterized by FF_NN or Rec_NNs.  This approach is unique in 

considering output feedback and the controller is static in FF_NN while dynamic in Rec_NN. 

 

5.4 State estimation:  
Hung [351] investigated the applicability of Rec-NN with time varying delay in state estimation.  A delay partition 

approach is proposed and gain matrix estimator is obtained by solving linear matrix inequality.  This model is better 

compared to earlier procedures. 

 

5.5 Filters 

 Infinite input Response (IIR) 

filter 
It is another type of dynamics where in the 

input at a point of time continues to 

influence the response of the system add 

infinite in time.  The only way to remove 
the barrier of influence is resetting. 

 

IIR-Rec-NN: In IIR-Rec-NN (Fig. 10), the 
Ws are refined with infinite impulse 

response (IIR) filter [238]. The architecture 

is 2-7-1.  Here WIH and WHO are 
optimized with MA and AR of order [1, 1] 

and [1,2].  The diagonal-Rec-NN is a Rec-

NN with the hidden layer containing self-recurrent neurons.  The dynamic-Rec-NN model used is 2-10-1. 

 

Cascade-Rec-NN [280]   

The cascade structure of the network has non-linear neurons with IIR filter in the first HL and linear 

neurons with FIR filter in the second HL.  The neurons at the output layer receive excitations from both 
neurons of the previous layer and external input layer 

 

 

 

 
Fig. 10: FF-NN with IIR and FIR neurons  
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5.6 Emulation of time series models with Rec-NNs 
The state_of_the_knowledge (SOK-) _of_the- time_series_models (TSM) is briefed in appendix A4. Rec-

NNs not only mimic the popular MA, AR, ARMA, NARMA, NARMAX, Weiner , Hammerstein and 

Volterra time series models, but more complicated profiles can also be modeled for the m-step-ahead 
prediction.  In general, they function as polynomial/non-linear adaptive filters. In fact, there is no transfer 

function of a non-linear filter in the frequency domain.  That is the reason why in the design of a non-

linear filter, it is the transformed into a constrained optimization in Fock space. 

   Two popular ways of inclusion of recurrence in FF-NN are inclusion of feedback from the output 
of hidden layer (HL) and/or output of output layer (OL) in addition to self-feed-back.  For temporally (i.e. 

with respect to time) or spatially varying data, delays of any order (1 to ndelays) will result in dynamic 

NNs.   
The simulated and real time series data sets analyzed in literature is very large and a bird's eye 

view even in a sub-discipline is a herculean task.  The simplest example to cite for an amateur is inverted 

pendulum [202] and the other is XOR gate for a two-class problem [233].  The intense research with Rec-
NNs showed their supremacy in QSAR with molecular descriptors, non-linear filtering, modeling 

stochastic processes, solution of second order differential equations, constrained quadratic equation and 

storage/retrieval of corrupted/similar signals [225], system identification of a high order linear/nonlinear 

systems and segmentation of DNA [52].  Further, Stock price index, GNP, market index, German DAX 30 
index, exchange rate, distribution and consumption of electric power, weather forecasting, ozone/nitrate 

now-cast, IR-laser and EEG are noteworthy applications.  Bench mark items include sunspot data, gas-

flow, Lorenz attractor, and Mackey and Glass data generated through differential equation, chaotic series 
by delay DE, second order DE in m-dimensions.  The time of observation scale is in hours, days, trimesters 

and years. The details of a few typical case studies in different disciplines follow. 

 

 NARMA 
NARMAX-Rec-neurons in a standard NN emulated NARMA analysis.  The input and output to the system 

are delayed response. When NARX-NN is unfolded in time, the output delays will appear as jump-ahead 
connections in the unfolded NN.  Interestingly, these jump-ahead connections provide a shorter path to 

propagate the information of gradient.  It is less sensitive to long term effects as sensitivity of NN reduces 

for long term dependencies.  Weiner system can also be represented by NARMA model. 
 

Datasets.NARMA.Time series.Multi-feed-back-layer-NN: A non-linear ARMA process represented by the 

difference equation is modeled by dynamic non-linear non-singleton FLS, rec-fuzzy-NN and Multi-feed-

back-layer-NN.  With noise of varying magnitude (0.3 to 0.7), Multi-feed-back-layer-NN has lower MSE, 
SD and training is completed with very small number of epochs.    

 

 Non-linear Dynamic process 
Any stochastic process generated by a finite order non-linear model can be optimally estimated by a 

suitable back-feed NN. From the universal approximation property of MLP-NNs, F and mu can be 
approximated by a three layer FF-NN.  It is also possible to build a network approximating  Q(X) = HX.  

If the time dependency is also considered, addition of feedback connections results in a Rec_NN accepting 

the input values (u(t)) and computing  that at (t+1). 

Chart 14: Performance of 

 Pipelined-second-order-Volterra-Rec-NN 

 

 Parallel execution in a pipe lined fashion   

 Improvement in computational 

efficiency  

 Recursive second order Volterra expansion  
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 Volterra model 

Yang [362] implemented Volterra second order model 

of dynamic (FIR, IIR) system in SLP NN.  The cross 

product terms are added to enlarge the non-linear binary 

interactions between the variables.  This NN employed 
PSO-algorithm in training Ws.  The superior 

performance of this hybrid model is evident in discrete 

bilinear and non-linear time varying dynamic simulated 
datasets.  The effect of Gaussian error is also investigated. NARMAX neuron with input signals viz. [u(k-

1), u(k-2)] results the general form of Volterra series. 

    

 Pipelined-second-order-Volterra-Rec-NN 
Zhao [369] proposed pipelined-second-order-Volterra-Rec-NN.   

 
Architecture.: It has a number of simple small scale second order Volterra Rec-NNs.   

 

Training Alg.:  A modified RTRL and a heuristically enhanced gradient approximation algorithm is used 
to train this NN.  The performance is briefed in chart 14.   

 

 Wiener Model 
Rec-NN emulates Wiener model. When the noise is not correlated with the input signals, an infinite length 

of the exact representation of the equation is necessary.  Assuming the mild condition that a finite-degree-

of-polynomial-steady-state-characteristic is inadequate, the output of the non-linear model can be split into 
a set of sub-models.  Wiener model consisting of a linear dynamic system followed by a zero-memory-

non-linearity represents the time series data.  

 

 Hammerstein model 

It is a parametric model wherein a linear dynamic system succeeded by a zero memory non-linearity.  The 
noise can be added to output of a SISO Hammerstein system.  Rec-NN emulates Hammerstein model.  

Both Weiner and Hammerstein models are combined resulting in complicated Block-stochastic model used 

to compensate each other. Hybrid NNs resemble Weiner and Hammerstein stochastic models. 

   

 William Zipser model 

Rec-NN emulating William Zipser model consists of a hidden layer and output layer.  The input layer has 
both feed-back signals and experimental time-delay observations.   

 

 Time_series with seasonal patterns   
Gheyas and Smith [68] reported a method wherein an ensemble of generalized regression NNs is 

combined in a Generalized_Rec_NN.  The forecasting of TS with seasonal patterns is excellent with 
ensemble Gen_Rec_NN compared to 11 algorithms including RecNN models on real data sets. 

 

5.7 Emulation of  Mathematical programming tasks 

 
Rec-NNs were also proposed for solution of convex quadratic program, linear piecewise equation, non-

linear convex-problems with linear constraints, linear projection equations etc. 

 

 
 

 Introduces Non-linearity   

 Increased efficiency 

 Performance.  

Pipelined-second-order-Volterra-Rec-NN >> 
                Pipelined-Rec-NN or Rec-NN 

  Predictions  

 Non-linear colored signals  

 Non-linear channel equalization 
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 Quadratic Programming 
Quadratic programming methods suit to model image and signal processing, regression analysis, parameter 

estimation, robot control and filter design.  Signal processing for adoptive beam form and control of 
robotic motion are real life tasks.  A primal Rec-NN with two layer structures was proposed.  The solution 

is approximate, since it has a finite penalty parameter.  Xia [227] surmounted the problem by using a 

primal dual Rec-NN.  Xia et al. [227] applied a dual NN for kinematically redundant manipulator.  Earlier, 

the quadratic programming problem was transformed into piecewise equations and solved each with Rec-
NN. The architecture consists of a single layer with a low complexity.  Liu and Wang [278] proposed 

RecNN with one-layer using a discontinuous hard-limiting activation function for quadratic programming. 

The number of neurons in the neural network is equal to the number of variables in the optimization task. 
The NN is guaranteed to optimal solution of any type of quadratic programming tasks. But, the objective 

function has to be strictly convex on a set defined by the equality constraints.  

 

 Linear projection equation  

Many constrained optimization problems can be translated into equivalent linear projection equations.  
Tank and Hopfiled were the first to propose a NN to solve a linear programming problem.  They mapped 

the problem into a closed loop circuit.  Of late, it inspired many researchers.  Xia and Wang [379] 

proposed a Rec-NN to solve linear projection equations.  This NN is globally convergent to the solution 

and is exponentially convergent if the matrix is positive definite.  The Rec-NN has two layers. This solved 
convex quadratic task, quadratic optimization problem with bound constraints and linear constrained jobs. 

The applications of linear projection equations in real life tasks include modeling of traffic network, 

competitive processes, piece-wise-linear-resistive-circuits and vibrational inequalities.  The pivoting and 
iterative methods (interior-point, projection-gradient) are popular numerical procedures. The hardware 

implementation requires summation units, integrators and waited connectors, but not analogue multipliers 

for variables or the penalty parameters.   

 

6 Applications RecNNs 
 
AI-2 methods are now an integral part of system deriving information from data as a sole procedure, 

preprocessing, post-processing and/or one of the modules of core data crunching. Statistical procedures, 

models from first principles, a priori trends/model/constraints, heuristics, E-man [5-7,9] are all in any 
combination march to arrive at a set of sub-goals, intermediate checks and the target prime goal. The 

inspiration for Rec_NNs is from neuro-/population-biology and evolutionary theory with many 

assumptions and approximations. During the last quarter century, recurrent NNs proposed for dynamic 
processes/ associative memories and variation of response/parameter in spacio-temporal regime spread its 

wings to diverse fields like system identification, signal processing, forecasting, time series analysis, non-

linear dynamics in computer science, engineering, process chemistry/technology and stock market/forex.  

The increased complications gave way for simultaneous refinement of training procedures and newer 
architectures.  The rec-NNs with varying time delays model many processes in neuro biology, population 

biology and evolutionary theory, of course, with a set of relevant observations/constraints.  The time delay 

corresponds to the finite speed of the axonal signal transmission. If the time delay is zero for the entire 
time series, the model reduces to the popular statistical procedure.  

 

6.1 Bibliometrics   
Papavlasopoulos et al. [79] used Elman-RecNN to extract scientific impact factor of journal combing 

many existing ones from a database of impact factors of cell biology journals.   

 

6.2 Nuclear power plant 
Ayaz [148] modeled nuclear power plant data at Borssele under wide range operational conditions with 

Elman, Jordan, MLP_BP NNs. With the learned NN, the reactor operation is followed by NNs. Şeker et 
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al. [149] used  Elman Rec-NN  in condition monitoring in rotating machinery  detecting anomalies  high-

temperature gas cooled reactor and  motor bearing damage from coherence function approach. 

 

6.3 Satellite-Altitude sensor: Chen and Shen [44] used Elman-RecNN for de-noising i.e., eliminating effect 
of variation of temperature of environment in Fiber optic gyroscope (FOG) with light weight and high 

reliability.   FOG is critical as an attitude sensor in satellite and automobile. 

 

6.4 Environmental Sciences 

The ecosystem dynamics is a complicated web of multitude of chemical/physical processes in multiple 

phases under a variety of surroundings.  Development of mechanistic models from first principles is 
formidable and hence, resort to black box paradigm gained importance [120]. 

. 

Upper atmospheric:  Martin et al. [131] forecasted electron concentration distributions in the 150–600 km 

altitude range above Arecibo, Puerto Rico.  The incoherent scatter radar data and geomagnetic index are 
the input to NNs viz. Elman_RecNN and SLP. The basic data are from Arecibo Observatory and National 

Space Science Data Center covering two solar cycles.  This paved way to forecast only upper atmospheric 

parameter distributions taking into consideration of daily, seasonal, and solar cycle variations. 
 

Geomagnetic storm index:  Watanabe et al. [151] developed Elman-RecNN to forecast two-hours-ahead 

geomagnetic storm index, which is in operation since April 1998. The input is velocity and density of the 

solar wind, the magnitude of the interplanetary magnetic field (IMF), and x, y, and z components of the 
IMF.  Lundstedt [166] reported the results of prediction of solar wind parameters and geomagnetic indices. 

 

Magnetic levitation control: Chen et al. [98] developed a combined two Mod-Elman-NNs to control highly 
non-linear and unstable MIMO magnetic levitation module. A discrete-type Lyapunov function is used for 

convergence analysis. 

 
Weather forecast: Maqsood and Abraham [123] introduced an accurate weather forecast model for 

Vancouver, Canada. With a yearlong daily temperature 

and wind speed data, Elman-RecNN and MLP were 

trained with Levenberg-Marquardt algorithm and one-
step-secant optimization methods. In the next phase an 

ensemble of NNs were generated with different data sets 

trained with MLP, RBF and Elman NNs. The arithmetic 
mean and weighted average of ensemble output produce 

an acceptable value.  Maqsood et al. [130] compared feed 

forward RBF/ MLP, recurrent Elman/ Hopfiled NNs for 
24hour weather forecast in southern Saskatchewan, 

Canada.  Mellit et al. (112) used artificial intelligence in control of photovoltaic systems and to forecast 

meteorological data.  A rough measure of the ionospheric energy losses or overall horizontal current 

strength is denoted by AE.  Pallocchia et al. [114] forecasted AE from 5 min to 1 h from solar wind input 
at different time scales using modified Elman RecNN.  Sfetsos and Coonick et al. [155] forecasted mean 

global solar radiation received by a horizontal surface on hourly basis with FF-RBF-, Elman_Rec-NNs and 

FIS.  NNs are found better than clearness index approach. 
 

Arch.Elman_ Pallocchia: The hidden layer has four neurons and additionally four context (recurring from 

output of hidden layer) neurons.  The image is input to this RecNN based on L1 solar wind IMF and 

experimentally measured plasma. 
 

 

 

Abbre- 

viations  
 Full form 

HE : Homogeneous  ensemble 

HEW : HE with weighted averaging    

HESimpA : HE with Simple averaging 

HEStA : HE with static 
 Weighted averaging   

JE : Jacobs‘Ensemble;  
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6.5 Pollution monitoring  
The outdoor pollution speaks of air quality, an index of health of inhabitants. Elman-RecNN forecasted 

one-, two- and three-hour ahead SO2 levels.   Melilli, a highly polluted town in Italy [107], was subjected 

to evacuation operation.  Brunelli [119] reported a pollution monitoring and management tool applicable 
for eight monitoring stations in urban area of Palermo (Italy). Here, Elman-RecNN   modeled the time 

series data consisting of daily maximum values of SO2, O3, PM10, NO2, CO concentrations during the 

period 1 January 2003 to 31 December 2004.   

 
PM10: Siwek and Osowski  [49] studied daily forecast of average PM10 in Warsaw by wavelet and NN 

ensemble modeling techniques.  The individual prediction results of SVM, MLP, RBF, ARX, Elman and 

wavelet are combined in ensemble and another NN outputs integrated final predicted PM10 concentration 
with better accuracy. 

 

Prediction of ozone: Salazar-Ruiz et al. [101] reported Elman-RecNN for one-day-head-prediction of   
maximum tropospheric ozone concentrations in the Mexicali, Calexico, California (US) with an input of 

daily means as well as a mean for the first 6 h of the day. Further, persistence, parametric approaches, 

SVM, MLP, ridge regression also were used and the recommendations of EPA-US were adapted.  

 
Heat island: The materials used in civil construction  and other activities result  in urban heat island which 

perturbs energy balance of buildings, smog, SOx, COx, NOx levels, SPM etc.  Gobakis et al. [60] made an 

intensive study of TS data of ambient temperature and global solar radiation for predictive models in 
Athens (Greece) with Elman, MLP and cascade NNs.  

 

Greenhouse control: Greenhouses 

in general and their internal 
climate are complicated systems 

and obviously classical statistical 

techniques or procedures from 
first principles fail. Fourati [25] 

reported greenhouse control using 

Elman and ART2 NNs.  The 
greenhouse data is clustered using 

ATRL.  Each cluster is the input 

to MLP and output is multiple 

neural controls. In this model, 
data is divided into several time 

periods and control measures are 

modeled with Elman.  The 
clusters of ART2 are used now in 

supervised mode to select suitable 

control (Fig.11). 
 

Prediction rain flow: Thiery et al. [110] trained Rec_NN with LM to predict rain flow in Têt catchment 

area, the main river of the Pyrénées-Orientales department (Southern France). 

 
Evaporation:  Nourani and Fard [50] studied evaporation rate of Tabriz and Urmia cities on daily basis 

from hydro-meteorological data using MLP_BP, RBF and Elman NNs. The physical models taken in to 

consideration in this study are energy balance, aerodynamic, and Penman models.  MLP_BP model is 
superior to RBF- and Elman-Rec- NNs. 

 

 
Fig. 11: System flow diagram of greenhouse control model with  multiple paradigms    
 (Courtesy of Ref 25) 
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Basin water quality:  West and Dellana [72] reported JENN and GMNN models for cumulative multi-
period forecast of basin water quality accurately.  These NNs bring down the cumulative five-period 

forecast errors to 50% and superior to exponential smoothing, ARIMA, MLP and TDNN. 

 
Water quality: Xu and Liu [45] compared MLP_BP, Elman and hybrid wavelet_Elman (Appendix A2.b ) 

in predicting water quality of ponds in Duchang county, Jiangxi province, China (Table 7). 

 

Table 7: Comparison of NNs for water quality   

Time Observed 
APE % 

MLP_BP Elman Wavelet 

7:59 0.730 17.081 13.332 9.668 
8:59 0.994 28.397 32.333 6.310 

9:59 1.125 40.715 38.601 4.679 
10:59 1.190 34.205 20.356 4.013 
Inputs : first half hour of the DO, pH, Temp, air humidity, 
             wind speed, and solar radiation 
Software : Matlab7.13 
APE: Absolute percentage error 

 

 
 

NN Archit %MAE 

MLP_BP 6-4-1 17.464 
Elman 6-4-1  8.438 
wavelet + Elman   3.822 

 
Sludge plants: Sainz et al. [140] reported a superior performance of Rec_fuzzy_ART (Rec_Fas_ART) NN 

compared to simple Rec_NN for activated sludge plant data.  This model uses contextual information from 

a real wastewater treatment plant. 
 

Prediction of fish catch: Gutiérrez-Estrada et al. [117] studied 1-month-ahead-forecast of anchovy catches 

in the north area of Chile with Elman, ARMA and their combination.  An input of six previous months 

catches, the hybrid ARIMA (2,0,0) and seasonal Computational NN explained   84 to 87% of variance.   
 

6.6 Chemometrics  

 

o Foodomics  

The effects of genetic transformations on chemical composition of foods are studied with advances in in 

transcriptomics, proteomics, and metabolomics in combination with bioinformatics and chemometrics. 
These technologies pave way to characterize genetically-modified organisms at the transcriptome, 

proteome and metabolome levels. 

 

o Calibration of Multi_component multi_channel_response data:   

Gao and Ren [77] reported simultaneous estimation of nitrophenols (p-
nitrophenol, o-nitrophenol, and 2,4-dinitrophenol)  with highly overlapping 

spectral profiles in 350-450 nm region. LS–SVM learns a high-dimensional 

feature space even with less number of training samples. The prediction errors 

are lower for wavelet-Elman and LS-SVM compared to chemometric 
techniques PLS and MLR.  Wavelet packet transform is a powerful de-noising 

method and Elman-RecNN (Table 8) has high quality calibration 

characteristics for overlapping spectra.  This enables one to perform 
calibration and prediction even in water samples without a prior separation of 

chemical species. 

 

o Multivariate-multi response calibration 

 Ren and Gao [128] put forward wavelet based Elman RecNN and applied for the simultaneous estimation 

of Ni(II), Zn(II) and Co(II) by differential pulse voltammetry. This hybrid method showed better 
performance compared to other NNs and soft-regression procedures (Fig. 12). Wavelet packet 

Table 8: Calibration  of  

substituted-phenols  

Chemometric 

Method 

SEP  
1g ml  

LS–SVM 1.32 

WPT–ERec_NN 2.39 

ERec_NN 6.71 

PLS 3.17 

MLR 0.64 x 104 
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representations of signals provided a local time–frequency description.  Thus in the wavelet domain, the 
quality of the noise removal can be improved. The performances of the Wavelet Packet Transformation 

methods were compared with seven other filtering techniques in terms of root mean square deviations 

between reconstructed and original mean voltammogram. Elman recurrent network was applied for non-
linear_ multivariate_multi_response_calibration  to improve predictive ability. NNs are superior over 

factor-based methods. 

 

 
(1): Ni(II); (2) Zn(II) ; (3) Co(II)  

 

 

 

Name $$$_Transforms 

Hankel Hankel  

Hadamard T Fast Hartley  

Hadamard Hadamard  

DCT Discrete cosine  

HFIR FIR with hamming window  

BUTTER Butterworth IIR filter  

CHEBY 2 Chebyshev type 2 
IIR filter  

CHEBY 1 Chebyshev 
Type 1 IIR filter  

BASSEL Bassel IIR filter  

 
 

Methods WPT FFT DCT HFIR 

RMS 0.012 0.016 0.021 0.066 

Methods BUTTER BASSEL CHEBY1 CHEBY2 

RMS 0.021 0.977 0.025 0.016 

 
 

Row Profile  

1 Experimental 
 voltammogram 

2 Model output 

3 Residual 
 

 

col % noise 

1 1 

2 3 

3 R10 

 
 

 
 

Chemometric 
method 

(%) Relative  
SDP   

Wavelet + 
Elman-RecNN 

9.53  

Elman-RecNN 9.82  

PLS 12.3 

PCR 17.0 

TTFA 16.7 

MLR 1.46 × 105 

Fig. 12: Elman RecNN for electrometric estimation of metal ions (Courtesy from Ref 128) 

  

o Chemical industry 
 

Bahar and Ozgen [82] predicted composition of a product in distillation column from temperature with 

modified Elman_Rec_NN. 
 

Arch.Elman_ Bahar: It has two hidden layers with 

20 and 34 neurons respectively. Hyperbolic tangent 

sigmoid transfer functions (tan-sigmoid) are used 
for the hidden layers and linear activation function 

for output layer (Chart 15).  The feedback consists 

of designed estimator system. 

Chart 15: Architecture of Elman_Bahar 

Arch.Elman_ Bahar #neurons TF 

HL1 20 

tan ( )
x x

x x

e e
sig x

e e
 

HL2 34 

OL  ( )purelin x x  
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o Fuel cells  
Lobato et al. [89] used inverse NN to estimate initial conditions of characteristics of a fuel cell. The 

purpose of this study is to predict tortuosity value and voltage of cell versus density. Some of the factors 
influencing gas diffusion layer are mean pore size, air permeability, teflon content, porosity and 

hydrophobia level.  Lobato et al. [95] modeled the influence of the conditioning/ operating temperature 

and current density on potential and cathode/ ohmic resistance in polybenzimidazole-polymer electrolyte 

membrane fuel cells in the working temperature range of 100 to 175
o
C.  MLP is found to be better than 

Jordan/ Elman RecNNs.  Steiner et al. [67] proposed failure diagnosis and durability of polymer electrolyte 

fuel cells.  It is related to flooding and drying out phases of water management.  Proton Exchange 

Membrane Fuel Cell systems are now alternative viable current energy converters like internal combustion 
engines. They are used in stationary and transport applications in spite of insufficient reliability and 

durability.  The limitations can be surmounted by intelligent corrective measures. The fault diagnosis in 

fuel cell is related to many parameters which is almost impossible to monitor with respect to geometry of 
stacks in fuel cell. The flooding diagnosis procedure was introduced based on the analysis of a residual 

(difference between experimental and estimated) pressure drop. The results under different experimental 

conditions including non-flooding and deliberately induced flooding situations endorse the success of the 

model. Solid Oxide Fuel Cell integrated into Micro Gas Turbine (MGT) is a non-linear multivariable 
strong coupling system.  Wu et al. [62] proposed an architecture containing Elman as well as Jordan type 

recurrent connections and PSO is used for training Ws.  The simulation results in MATLAB are 

successful. 
 

6.7 Qualimetrics 

A sub discipline of process chemistry in industrial sector includes time series of key production yields and 

process parameters to monitor the health of ongoing schedule and to raise alarming warnings in case of 
distractions.   

 

Quality control of manufacturing process:   Pacella and Semeraro [121] reported Elman-RecNN performs 
better than control charts for serially- (auto-) correlated TS data of manufacturing processes. This model 

does not require developing TS models separately. 

 
Batch fermentation reactor:  Patnaik [143] made a comprehensive study of β-galactosidase production by a 

recombinant Escherichia coli strain in a fed-batch fermentation reactor. The bioreactor is modeled as a 

hybrid system with two small Elman NNs for intra-cellar factors, an auto-associative NN to filter the noise 

and FF-NN for controlling.  The process data covering a 12 h fermentation period was simulated by a 6-
12-4 Elman NN with two extra- and two intracellular variables as outputs. Three types of inflow failure 

conditions were considered.  The results are superior to MLP trained by BP.  

 

6.8 Material science   

 

Non-asbestos organic based friction materials: Xiao and 

Zhu [80] arrived at optimum non-asbestos organic based 
friction materials (Chart 16) by experimental design 

(Exp.Des), response surface methodology (RSM) and 

Elman-RecNN.  Fractional factorial design (2
k
) design 

(Fr.Fact.Des.) was used to study the effect of ingredients on 

friction characteristics.  The dynamometer data at values of 

influencing factors arrived from Exp.Des was modeled with 
Elman-RecNN.  The prediction of optimum friction was 

made and it led to optimum feature values.  This approach 

is a trust worthy tool in manufacturing industry.  

 

Chart 16: Optimum  non-asbestos organic based 
friction materials 

Friction characteristics  Ingredients  

o 1st fading rate  
 Synthetic 

graphite 

o 2nd fading rate   
 Potassium 

titanate 

o Speed 

sensitivity 

 Mineral fiber  

 Calcium silicate  

 Phenolic resin 

(2k) design of experiment RSM with Elman RecNN 
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Rubber compounds: Karaagaç et al. [93] predicted optimum cure time of rubber compounds, the 
performance of methods being in the order NNs [(MLP), Elman   (GRec_NN)] >> Equivalent cure 

concept. 

 
Fermentation process: Niu et al. [61] proposed an ensemble of NNs to model the product concentration of 

fermentation of Nosiheptide.  A separate Elman-NN learns Ws for each pair of training data subjected to 

bagging (resampling) procedure. The outputs of ensemble of these NNs were combined by weighted 

average method using PLSR.  The end results show better accuracy and generalization ability compared to 
a single Elman NN for the entire training set. 

 

6.9 Bio-signaling network   
The biological signaling network is translated into ordinary differential equations 

(ODEs) and the solution is realized through a Rec_NN. An input neuron in NN 

corresponds to a unique biological signaling molecule.  The trained weights are 
rate constants of biochemical processes. This NN behaves like functional block, 

or in order words, structural motif permits analysis of temporal behavior of the 

biological network. 

 

6.10 Medical Sciences - State-of-art-of-health_care 

 

The biochemical reactions, non-bonded interactions, H-bonding, charge transmission, cumulation / 
triggering of impulses are known [388] to a large extent.  But, they cannot be modeled from first principles 

to visualize even at organ level leave alone in the single molecule in a single cell context.  System biology, 

a conglomeration of biology_principles, biometrics, chemo-informatics and nature inspired approaches of 

white to black through grey box models is a viable probe.  The compartmental bio-chemical models of 
system biology consists of hierarchical optimally organized (with generation, consumption) of ions, 

molecules, proteins, genes, chromosomes, hormones, cells etc. undergoing millions of chemical /physical 

(energy) transactions/transformations.  The progressive march towards probing/understanding/visualizing/ 
emulating/ repairing odds of the processes in nature in twenty first century is at a cross roads of matured 

state-of-disciplines.  Further, fine-tuning of micro energy level and ignored/ unveiled patches of past to 

complete the picture is awaited for future breakthroughs. Neural networks in general, Rec.NNs in 
particular along with experimental/ theoretical sparkling results made a mark in modeling, predicting, 

enhancing desired life characteristics and reducing /minimizing undesired wayward outcomes like 

HIV/cancer/ genetic defect and mental disorders.  

 
Cosmotics- Skin care:  Elman NN finds use in probing into women skin care with attributes viz. tone, 

spots, and hydration based on responses to questionnaires [66].   

 

 Diabetes Mellitus 

RecNNs are employed in tracing nonlinear trend of blood glucose metabolism in Type 1 Diabetes Mellitus 

(T1_DM) patients and insulin dynamics. 

 

 HIV 

HIV infection is a retrovirus kidnapping CD4+T, a fundamental part of immune system and has been 

intensively studied over last three decades [430-432].  The world health organization (WHO)  that around 

noted 3 millions of people were with HIV all over globe  at the end of  year 2007 and 2 million died of 
AIDS in that year itself.    The surrogate markers used in HIV treatment are CD4+ T-cell counts and 

plasma HIV-RNA levels (i.e. viral load). The number of infected cells is an unknown parameter in clinical 

practice.  The measurements through bio-medical and clinical data are expensive, time consuming and 
complicated. NN models are reported for HIV infection monitoring. A black box model with concentration 

-omics [Gen_omics  
metabol_omics 

metabon_omics 
prote_omics 
transcript_omics] 

http://en.wikipedia.org/wiki/Metabolomics
http://en.wikipedia.org/wiki/Metabonomics
http://en.wikipedia.org/wiki/Proteomics
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of infected (T*)/ non-infected (T) cells as well as the viral load in the blood count was proposed. The 
recurrent higher order NN models trained with EKF are used to simulate state estimation tasks in HIV.  

The results of these state estimation by NN models provide ways and means to probe into immune markers 

of high relevance to clinicians. 
 

 Cardiology 

Ubeyli [97] classified ECG signals into normal/congestive heart failure/ ventricular tachyarrhythmia/ atrial 

fibrillation beats using Elman-RecNN trained with LM and Eigen vector analysis. 
 

 Ophthalmology  

Güler and Übeyli [126] reported that Elman-RecNN trained with LM algorithm along with wavelet 

transform successfully diagnose arterial disorders. The long term Doppler signals from ophthalmic/internal 
carotid arteries of healthy subjects and patients are decomposed into time–frequency domain with 

discrete_wavelt_transform in the preprocessing step. 

 

 Brain and CNS 

On the physiological front, brain-/CNS aberrations, old-age challenges (dementia), psychological disorders 

(autism) etc. are related directly or indirectly with neocortex.  The cross-disciplinary experts center their 

focus on blue print of microcircuits of neurons in neocortex from physiology, computer modeling, surgery, 
electronics, and mathematical emulation stand points of view. The staunch hope is to correct microcircuit 

deviations through surgical intervention for a better health in totality. Neural network (whatever it is!) is a 

building block of micro as well as mega interplay of life with common-sense/intelligence, 

known/unknown, pain/melancholy, pleasure/happiness, concern/indifference, comfort/discomfort, 
ambition/contentment, excitation/calmness etc. 

 

Behavior of brain: Four Rec-NNs viz. regular, random, small-world and scale-free are used to study the 
architecture of the network.  Random network is robust when the noise is high while small world NN has 

high performance in decision making for low noise.  Random and scale free networks are robust to 

distributed/clustered damage. 

 

Compression of EEG signals:  Sriraam [96]   studied context-based near-lossless compression of EEG 

signals using LMS adaptive FIR filter, auto regression (AR) and NNs viz. SLP, MLP, Elman and 

Gen_Rec_NN.   SLP is best when using near lossless compression procedure without considering errors in 
the model. 

 

Chemical diffusion in cortical brain:  Gross and Hanna [87] proposed NN models to enquire into 

chemical diffusion spatiotemporally in cortical brain. The local function of chemical in the brain 

of a freely behaving animal using chemical sensor arrays throws light on neurochemical and 

pharmacological mechanisms responsible for the diseases of the brain (Chart 17).   
 

Chart 17: Tools for chemical transformations 

 Imaging systems 

 Provides spatiotemporal chemical 
information 

 Patient to remain in still posture during 
recording  

 Implantable chemical sensors 

 Provide higher resolution than imaging 

system 
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Neurologically healthy volunteers:  Vuckovic and 
Sepulveda [59] calculated absolute values of Gabor 

coefficients by independent component analysis, 

followed by determination of classes with Elman-
RecNN.  This two-modality-four-class brain-

computer-interface classifier is tested with ten 

right-handed neurologically healthy volunteers with 

an accuracy of 60-70%. 
 

Epileptic patients:  Güler et al. [134] reported 

Elman RecNN with Lyapunov exponents is 

superior to FF-NN to classify epileptic patients 
during seizures and seizure-free period from EEG signals.  The NN is trained with LM and this method is 

trust worthy for early detection of the electroencephalographic changes by the analysis of long-term EEG 

signals.  Jansen and Desai [169] analysed digitized data of EEG with MLP and Elman-RecNN.   Pravin 
Kumar et al. [86] reported wavelet entropy features with Elman Rec and RBF NNs detecting normal vs. 

epileptic seizures (99.75%) and interictal focal seizures (94.5%). 

 

Schizophrenia: Schizophrenia, a psychological aberration prevalent in almost 1% of people [136] arises 
due to disturbances in synaptic connections in cortico-cortical neuronal circuits. The auditory 

hallucinations frequently occur in most of patients suffering from Schizophrenia.  It is a consequence of a 

deterioration of the neural structures responsible for speech processing.  The basic accepted reason is 
developmental disturbances of synaptogenesis and/or synaptic pruning during adolescence. 

 

Sleep apnea: Maali and Al-Jumaily [46] modeled to predict sleep apnea of five subjects‘ episodes by MLP, 
RBF and Elman NNs.  Area under the curve statistic showed higher performance of MLP. 

 

Dementia: Mahmoud et al. [36] studied long term prediction patterns of patients inhabited in intelligent 

environment.  Occupancy sensors monitored movement patterns of aged people.  The data is converted 
into temporal sequences of activities and modeled with NARX and Elman RecNNs.  The simulated and 

real life data indicate NARX is better than Elman-RecNN for prediction of behavior over long term. 

 
Cognitive dis-inhibition: Stein and Ludik [154] proposed Elman NN to model cognitive dis- inhibition in 

obsessive-compulsive disorder (OCD) arising due to serotonin/dopamine dysfunction.  It is an awesome 

coherence of psychobiology of OCD and neurotransmitter activity. 
 

 Spinal cord injury  

Maksimovic and Popovic et al. [159] studied classification of functional movements in 16 spinal cord 

injury patients and seven healthy control subjects with MLP_BP, RBF, Elman-RecNN, SOM and LVQ. 
 

 Intensive care unit (ICU) 

 

Intracranial pressure: A model for patient care in intensive care unit (ICU) is complicated and non-linear in 
many measureable and/or predictable/ unpredictable physiological processes.  Shieh et al. [137] used 

Rec_NN for intracranial pressure in neurosurgical intensive care unit using end-tidal of carbon dioxide 

(EtCO2), heart rate (HR), mean arterial pressure (MAP) and regional cerebral oxygenation (rSO2).  It is 
also used in solving a chaotic time series simulated from Mackey–Glass differential-delay equation. 

 

f-MRI: Hsu [198] reported a dynamic Rec-Fuzzy-NN with a structure (architectrue) learning method.  The 

node construction and node-pruning phases dynamically result in optimum NN structure.  It is applied in a 

 Freely behaving animals 

- Proximity to the sensor to the animal 

 NNs 

 3D chemical information 

 Learning ion diffusion in a model of 

              cortical brain 

 Non-noisy/ noisy conditions 

 Functional imaging techniques 

 CT, fMRI, PET/SPECT MRS 
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second order chaotic non-linear system. The data of resting – state in human brain are modeled with 
AR(1)-CSI (cubic spline Interpolation).  It is better than simple AR(1) and   ARIMA (4,4) models [285].  It 

is to be noted estimating the true model of the data in fMRI is difficult. 

 

6.11 Robots 

Al-Araji  [41] minimized tracking error in presence of an external disturbance of a nonholonomic mobile 

robot with hybrid system of NNs. Modified_ElmanNN models kinematics /dynamics and identifies the 

posture.  The reference torques controlling steady-state outputs are results of FF-NN.  Mbede et al. [133] 
integrated modified Elman-RecNN and robust controller to account for uncertainties in robot systems in 

changing and dynamic unstructured environments. Köker [40] employed GA for training Ws of Elman 

RecNN with error in end-effector position as fitness function for a six-joint Stanford robotic manipulator. 
A learning_ robot learns by NARX and Elman NN, while a   demonstrator robot executes the action.  Here 

NARX is superior to Elman RecNN.  Köker [127] reported an intelligent predictive controller for a six-

degree-of-freedom robot.  

 

Multi-fingered robotic hand: A Rec. NN is reported based on cone function and another NN using gradient 

of merit function derived from Fischer-Burmeister_natural residual function.  They are successfully 

applied to simulation of a second order cone problems (which are linear or nonlinear convex) and grasping 
force optimization in multi-fingered robotic hand.  This research concerned with NNs was purely 

physiological and was targeted to monitor mental health, diagnosis and treatment of brain deceases. 

 

6.12 Finite automata 

Sperduti [165] reported that Elman-RecNN simulates any finite state automata as well as multi-stack 

Turing machine and any frontier-to-root tree automation.  But, rec-cascade correlation does not simulate 

any finite automata. 
 

Transform invariant representation of objects:  Rec_NN using association [213] acquires the capability 

of transforming invariant representation of objects.  It is shown that the network stores the object 
representation from any one of the views and also can retrieve it correctly.  Further, the effect of distortion 

of retrieval and dilation of connectivity on the efficiency of Rec_NN is studied. 

 

6.13 Engineering 

Due to the lack of a complete access to the system states in different engineering applications, it is required 

to estimate these quantities. Therefore, during the past four decades, state estimation of dynamical systems 

has been an active topic of research in different areas such as: fault detection, monitoring, process control 
and biomedical systems. Automatic control techniques usually assume complete accessibility for the 

system states, which is not always possible (cost, technological constraints, etc.). Several approaches 

consider a nonlinear transformation or a linearization technique.  In real applications, there are external 
disturbances and parameter uncertainties and they are often ignored.  Although, robust techniques 

(observers) have good performance even in the presence of uncertainties, their design is complex. 

 

 Fault detection 

 

Automatic fault rectification: It requires a complete data regarding states of systems under normal and 

malfunctioning scenarios. Since, in biomedical, electrical/mechanical systems, the mapping of all states is 
impossible/ impracticable due to cost/time, linearization (under simplifying assumptions) or non-linear 

transformation was in practice.  Genetic algorithms for parameter optimization and Takagi-Sugano fuzzy 

models in the design gained momentum.  Rec-NNs are coveted in dealing with NL-systems in 

discrete/continuous time in presence of uncertainties of measured signals, external process disturbances 
even in absence of knowledge of model dynamics. 
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Air handing unit: Fan et al. [84] employed multiphase strategy for sensor fault detection, diagnosis in air 
handing unit with NNs and wavelet strategies.   

 

Phase 1: The fault detection model consists of two MLP_BP-NNs which are trained with normal operating 
data of system. The sensitivity analysis is performed for first MLP and it drives the second FF-NN in the 

same control loop 

 

Phase 2: wavelet analysis outputs approximation coefficients sensors of the measurements.  The faults in 
the sensor are identified by Elman RecNN.  The results show successful detection, diagnosis of fixed 

biases and drifting fault of sensors in system of air handing unit. Cluster information from fuzzy c-means 

enhances the reliability. 
 

Motor winding: Asfani et al. [55] reported fault detection in induction motor winding.  The occurrences 

arise by transient phenomena at the starting and ending point‘s short circuit and the current signal is 
wavelet transformed. The input to NNs is wavelet transformed energy level of high frequency signal.  

Elman-Rec_NN is better than MLP and RBF NNs which have only feed forward connections. 

 

Transmission lines:  Deihimi and Solat [31] compared echo state networks for distance protection 
compensated by thyristor-controlled series capacitor with Elman/ time-delay/RBF NNs and NARX 

models.   A big_bang–big_crunch algorithm was used for optimization of design parameters of echo state 

networks.  The system is tested with 7680 test cases with varying fault inception-angle, fault resistance, 
load angle, fault location and compensation degree on a 400 km, 500 kV line.   

 

Machines failure: Liu et al. [122] employed similarity based method and Elman-RecNN to predict long 

term probabilities of failure of machines in manufacturing site. Elman model is inferior for this task.  
 

Under water vehicle control: Under water vehicle control is complicated requiring self-tuning regulator 

(STR) and model reference adaptive control.  This needs continuous identification of the system.  FF-NN 
and Rec-NNs were implemented in underwater-vehicle for control.  

 

6.14 Aircraft in autopilot mode 
The performance of automatic landing system (ALS) is 

crucial in flight landing and increased safety of aircraft 

landing.   In autopilot mode of aircraft, GPS and INS are 

integrated (KB. 4).  It gives navigation even in absence of 
GPS.  Elman-/Jordan- NNs are trained with GA, PSO and 

EA algorithms. Juang [272] proposed Rec-NN with GA in 

ALS to improve safety.  RTRL is used in training Rec-NN 
and five crossover methods (Adewuya, arithmetical, 

average and convex_blend) of GAs to get optimal control 

parameters.  The performance is better than conventional 
controllers. 

 

Tunnel operations: Guo et al. [26] predicted tunneling induced ground deformation with a combination of 

wavelet, Elman-RecNN and WIPS models.  The ground deformation is decomposed into trend and wave 
components with wavelet transform.  Elman with PSO identifies deformations and prediction with WIPS 

follows.  This hybrid model is viable compared to translation of complicated set of rock-soil processes into 

mathematical parlance. Their unique accurate solution has a practical utility in subway tunneling 
operations. 

 

 

KB. 4: Aircraft in autopilot mode 

If  GPS +KF 
Then  Robust solution 
 - Prior knowledge of error  

          model of INS needed 

       Remedy : GPS + NN 
 - Non-convergence and inaccuracy 
            Remedy : Elman, Jordan RecNNs 
 

 BP Training 
 - Convergence and inaccuracy 

                        Remedy: EA 
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6.15 Electrical power 

 

Electric load prediction: Benaouda   et al. [125] studied 1-hour-ahead electricity load in New South Wales 

(Australia) with hybrid paradigms.  The signal is subjected to multiple resolution decomposition using the 
non-decimated or redundant Haar_trous wavelet transform, which considers asymmetry in TS. The results 

of Elman-RecNN are compared with AR, multi-scale AR, MLP and GenRec_NN. 

  

Power transmission: The decision of digital distance relay is very important for making the protection 
scheme in the transmission system more reliable. As the current signal is taken from the output of the 

current transformer, the distortion introduced by the saturation in it affects the performance of the distance 

relay. In this context proper nonlinear modeling of current transformer is necessary and a suitable 
compensation should be carried out to nullify the distortion introduced by it.  Temurtas et al. [138] 

reported FF_NN, Elman_Rec_Nn to detect  every (5th, 7th, 11th, 13
th
)  harmonic in active filter.  A 

distorted wave from power line is analysed by Fourier transform. The fundamental wave  is removed 
through a low pass and then harmonic recognition follows. 

 

Electric bus vehicle: Hybrid electric buses technology is environmental friendly in emission of lower 

amount of CO2 and at the same time has lower fuel 
consumption. Wang et al. [51] investigated a two 

phase optimization of a suboptimal energy 

management strategy to control a series–parallel 
hybrid electric bus vehicle in real-time (chart 18).  

The first phase consists of reaching an optimal 

energy_ management_ strategy with iterative 

dynamic programming for bi-objective cost 
function. It is followed by Elman-RecNN to arrive at 

a sub-optimal phase implemented in vehicle control unit of the hybrid bus for a real ride on the high way. 

Extensive studies are performed on a hardware-in-the-loop simulation system constructed on PT-
LABCAR. Here, a virtual system of vehicle, driver and driving environment is considered for forward-

facing HEVs.   

 
Automobile wiper: Zolfagharian et al. [29] made use of NARX-Elman-NN in minimizing unwanted noise 

and vibration of automobile wiper blade employing experimental data during its operation.  A bi-level 

adaptive-FIS with multi objective-GA deals with conflictive interests in this complicated functional 

module.  Zolfagharian et al. [42] introduced a multi-objective control strategy for automobile wiper blade 
to function within its sweep workspace for a small amount of time with noise and vibration optimum. The 

first step is collecting noise and vibrations when the wiper is on. In the next step, NARMAX and Elman-

RecNN developed black box system identification models. The third phase consists of closed loop iterative 
controller with Pareto_ multi_objective_GA for the wiper system. 

 

6.16 Mobile communications systems  
Rec_NNs are used in mobile communication systems extensively.  Adaptive equalization is an important 

activity in mobile communication.  MLP was used as an alternative to its linear transversal equalizers 

where the transmission channel is time dispersive and non-time varying.  MLP was found superior to LTE 

as the latter is limited by the optimal linear Weiner solution in adoptive filtering involving equalization of 
time varying fading channels.  FF_NNs had overwhelming success compared to conventional techniques 

Volterra series, RBF and Rec_NNs etc. in use for equalization tasks.  Gao et al. [152] put forward multi-

step ahead prediction of the occurrence of long term deep fading in the mobile communications systems.  
The modified Elman NN using temporal difference is employed. 

 

Chart 18: Object functions in electric bus energy 

management  

 

 ObjFns:  

 Min( fuel consumption) 

 Zero battery state-of-charge change 

 Avoiding frequent clutch operation 
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Rec-NN for SDMA: It has 2*n external inputs and Kv outputs.  Rec-NN is trained with sequences 
transmitted by desired users (k0) and the purpose is to separate multiple end users [218].  The output 

enables to place the beam of antenna in the direction of desired users while the nulls are focused in the 

direction of interfering users.  RTRL-online algorithm in training has an additional application in tracking 
the movement of the mobile user. A simulated system with six receiving antennas and six users is 

implemented using two structures.  Each structure requires 1125 multiplications, 585 additions and 3 

sigmoid functions,but demodulates three users only.  The performance is superior to CDMA under high 

values of signal to interference ratio. 
 

6.17 Pattern recognition 

Pattern recognition is the most subtle, complicated task even with today‘s information technology.  Typical 
studies in this decade include identification of digit '8' and characters ('T' and 'C'),  prediction of 

subsequent symbol in a continuum of stream of inputs,  sequence [235], circle generation of color textures, 

analysis of fuzzy grammar, embedded Ruban grammars and rule extraction. In the dissolution of drugs 
(pharmaceutical preparation) and classification of cervical cells (biochemical/histo-chemical studies), the 

outcome of Rec_NNs is noteworthy 

 

Prediction of a sequence of ordered points:  A series of 12 ordered points giving the shape '8' is trained by 
Rec-NN. The prediction of the next point is not possible with a static NN because pointed co-ordinates 

(0,0)  have two successive points 5 and 11.  Rec-NN decides the successor based on its predecessors.  For 

example if the predecessor are 3 and 9, then the successors are 5 and 11.   
 

Archtec.Rec-NN: The architecture consists of two input neurons for which the two point co-ordinates are 

the input.  The two co-ordinates of the predictive point are in the two output neurons.  There are two 

hidden layers with four neurons. 
 

Eigen values:   A continuous Rec-NN is used [200] to compute largest and smallest Eigen values of a 

symmetric positive pair (A, B).  But oscillatory dynamics of NNs [203] is considered less important as far 
as information processing is concerned 

 

 Speech recognition 

Rec_NNs have been successful in speech recognition from utterances by male/female speakers, data in 
under-water-vehicle and mobile communications.  The speaker independent and dependent speech 

recognition are two tasks solved by statistical as well as NN-methods.  MLP-NN was used as a 

normalization module with consistent reduction of 'word-error-rate'.  The sequential nature of the acoustic 
feature vectors requires the changes with time sequence and hence dynamic techniques need to be adopted.   

Speaker independent system was trained using 2140 utterances from 50 male and 50 female speakers from 

APASCI, Italian speech data base recorded in a quiet room.  For test data, four speakers are considered.  

The utterances of each one lasts for 12 seconds on average corresponding to 19 volts.  In the adaptation 
and test phases, the speaker makes 50 and 30 utterances on different days in an office environment.  The 

results are with a great success in reducing WER from 35.6% to 15.4% in case of speaker dependent 

speech recognition system. .  Amrouche et al. [90] probed into efficacy of MLP, Elman, HMM models in 
pattern recognition of  Arabic digits under different noise scenarios viz. SNR variation, multi-speakers, 

babble background, car production hall (factory), military vehicle (leopard tank) and fighter jet cockpit 

(buccaneer). These noise patterns are procured from NOISEX-92 database.  DeLiang et al. [167] modeled 
speech data analysis with Elman RecNN. 

 

 Linguistics 

Recognition of hand writing, grammatical inference and speech recognition have long term dependency 
i.e. the output depends on inputs occurred long ago.  In short time scales, the sequences are characterized 

by the dynamics.  Regular language inference requires the state information to be stored over indefinite 
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period of time and no feature extraction is necessary for learning. Syntactic and grammatical structures are 
relevant for long term time scales.  The grammatical inference belongs to long term sequence while speech 

recognition involves short term phonetic features as well.  

 
Prediction of next-symbol data:  Čerňanský et al. [118] mapped the prediction of next-symbol data sets 

containing recursive linguistic structures into Elman-RecNN.  The increasing of even small depths of 

recursions mimics human performances at least partially. At the start of training, clusters of activations of 

RecNN are like Markov chains and the small random weights resemble Variable Memory Length Markov 
Models. As the training proceeds, the state-space of NN is reorganized depending upon categories of 

words and grammatical substrings. After optimum training, the prediction is according to rules of grammar 

also rather than simple individual words.  Cartling et al. [103] elucidated implicit acquisition of grammar 
(context free) by Elman-Rec and MLP- NNs.    PCA of hidden layer activities showed that there is well 

organized internal representation of grammatical elements. Omlin [205] trained Rec-NNs which predicted 

the next symbol using the truncation of backward recurrence.  The hidden unit activations represented past 
histories and clusters of their activations represent the states of the generating automation.  The complete 

deterministic finite state automata are extracted from Rec-NNs. The capacity of Rec-NNs in representing 

symbolic knowledge is tested with grammatical inference systems.  In fact, language processing is a good 

test bed for Rec-NNs.   A discrete second order Rec-NN is trained to recognize strings of a regular 
language from a set of positive and negative examples.  The Rec-NN has N-recurrent hidden neurons.  The 

complexity of NN grows as O(n
2 

), if the number of input is small compared to the number of hidden 

neurons.  The values of hidden neuron collectively are referred as a state vector, S in the finite N 
dimensional space [0,1]

n
.  Each input string is encoded into the input neuron one character per discrete 

time step.  

 

Grammatical inference: Chandra et al. [343] proposed co-operative co-evolution of Rec-NN for 
grammatical inference tasks.  It employs evolutionary algorithms to solve a high dimensional search 

problem by decomposing it into low dimensional subcomponents.  The prospects of evolving both Ws and 

the network topology await attention.  The use of different coding schemes during training results in 
optimal systems [222].  Rec_NNs model crisp grammatical inference systems from positive and negative 

examples. Rec_NN is trained with real coded GA for inference of fuzzy grammar.  

 

 Commerce  

Xue and Keet  [111] proposed a hybrid system of Elman RecNN and rough sets to predict five-category 

risk grades in financial data of 896 firms.  This model excels logistic model. 

 
Forex data: Bildirici et al. [78] tested, TAR-VEC-RBF, TAR-VEC-Rec-Elman with datasets of monthly 

returns of TL/$ real exchange rate and ISE100 Istanbul Stock Exchange Index.  The order of efficiency is 

TAR-VEC-Rec-Elman >TAR-VEC-RBF > TAR-VEC-MLP.  For long run prediction RBF is the best. 

 
Financial forecast: Huang et al. [132] reported SVM and its hybrids outperformed LDA, QDA, Elman-

RecNN in predicting direction of movement financial sector. 

Tourism development: Cho [146] reported Elman-RecNN excelled exponential smoothing, univariate 
ARIMA in prediction of travel demand (i.e. the number of arrivals) of Hong Kong from different 

countries. 

 

7. Theoretical results 

 
Time delays due to integration and communications are ubiquitous 

in biological neural nets.  In fact, this is a source of instability with a 
lot of beneficial outcome. In the mathematical front, the stability analysis of RecNNs  (in general any NN)  

Abbreviations  Definition 

LMI : Linear matrix inequality  

TS : Time series 

Globexp : Global exponential  
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is necessary from theoretical stand point and activity goes on searching for existence and uniqueness of 
equilibrium points and varieties of stability viz. global, asymptotic, robust etc. at these points.  In the case 

of globally recurrent mathematical NNs (MaNN), the stability is hard to be proved. For, Recurrent_NNs 

oscillatory dynamics is difficult due to the fact the mathematical tools for the analysis of periodic orbits in 
high dimensional spaces are not available. However, locally Rec_NNs permit easy checking of the stability 

by the examination of poles of their internal filters. Hence, the viable approach is parameter studies of 

discrete neuro dynamics. Li at al. [418] proposed criteria on stable/semi-stable/ positive_semi-

global_stable/unstable continuous attractors with infinite neurons in higher-order Rec_NNs using 
linearization technique. The simulation results under Log-normal distribution supported the developed 

theoretical propositions. The necessary and sufficient conditions for the existence of a stationary solution 

for the multiple class Rec_NNs are derived. Zhang et al. [286] conducted stability analysis for a class of 
discrete-time-stochastic-delayed-NN with parameter uncertainties. The distribution probability of time 

delay is translated into parameter matrices of the transformed NN model.  The stochastic disturbances are 

described in terms of Brownian motion. Time varying delay is characterized with Bernoulli stochastic 
variable. The Rec-spiking NN [304] based on LSM leads to convergence of Ws using spike time 

dependent plasticity. The general practices of the protocol of stability analysis are described in Alg.6.  

 

Alg. 6:   Stability analysis protocol 

Step : 1 Translate equilibrium of NN to a zero solution 
Step : 2 Stability analysis of it around zero 
    

   If Equilibrium exists 
   Then Stability of NN = stability of zero solution of transferred system 
    Real life tasks : Dynamic behavior of NN =  

     fn(External stimulae, parameters, external stimulae) 
     
     Translation cancels all external stimulate 
        Consequence: conditions stability are independent of external stimulae 
     It is over conservation 

 
Now, probing into stability of Rec_NN with delays is current focus and typical directions of research 

during last two decades are documented in Table 9.  
 

Table 9: Current trends in stability analysis of Rec_NNs 

$$$- Task  
Rec_NN-

characteristics 
Ref 

Converge to 
equilibrium points 

Mimicking human‘s memory 
patterns  

Memristor-based  
 

Lyapunov 
Differential inclusions 
theory 

411 

Global exponential   Robustness analysis   I#:time delays  random 

disturbances   

411 

Global exponential      Delayed RecNN 
Chaotic   

Decoupling technique 
LMI 

382 

Global exponential  Mixed discrete and distributed 

delays 
Existence and uniqueness of 
the equilibrium point under 
mild conditions, 
 assuming neither 
differentiability nor strict 
monotonicity for the ActFn. 

  240 

Globally 
asymptotically stable 
in mean square 

Stochastic discrete-RecNN  Lyapunov–krasovskii 
function linear matrix 
inequality (LMI) 

406 

Global exponential  in   continuous RecNN   349 
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Table 9: Current trends in stability analysis of Rec_NNs 

$$$- Task  
Rec_NN-

characteristics 
Ref 

Lagrange sense    multiple time delays   

Global robust 
exponential  

equilibrium solution to 
delayed reaction–diffusion 

RecNNs with Dirichlet 
boundary conditions on time 
scales 

 Topological degree 
theory m-matrix  

lyapunov    inequality 
skills 

332 

Asymptotic    Lyapunov 305 

Exponential     Stochastic memristor-based- 
RecNN 
 

Time-varying delays 220 

Global exponential Synchronization Memristor-based RecNN based Fuzzy theory  
Lyapunov   
time-varying delays 

389 

 Any neural state is globally 
convergent to the feasible 
region in finite time and stays 
there thereafter. 
 
If objective function and 
constraint functions are 

pseudo convex  
Then any neural state is 
globally convergent to the 
unique optimal solution,  
If constrained invex 
optimization problems & 
 penalty parameter is 
sufficiently large 

Then any state of the proposed 
neural network is globally 
convergent to the optimal 
solution 

One-layer rnn  426 

Global asymptotic  Stochastic-RecNN  
Multiple discrete time-varying 

delays and distributed delays 

 Lyapunov–krasovskii     
LMI 

283 

Ensure existence, 
uniqueness,  
global exponential  
global convergence  

 ActFn - discontinuous   Image-matrix, 
lyapunov-like approach,  
Des  with discontinuous 
right-hand side as 
introduced by filippov. 

300 

Multi  Coexistence of stable and 
unstable equilibrium points 

  299 

Global exponential  dissipativity Memristor-based- RecNN 
Time-varying delays 

Lyapunov image-matrix   
Lasalle invariant 

principle 

384 

Solubility and  Deterministic RecNN   
 noisy TS  

  347 

Global exponential  
 in Lagrange sense 

Continuous RecNNs with 
multiple time delays.  

  ActFns     bounded and unbounded    265 

Sure exponential , 
mean 

convergence dynamics of 
reaction–diffusion   RecNNs 
with continuously distributed 
delays and stochastic 
influence 

 Lyapunov  
m-matrix nonnegative 
semi-martingale 
convergence t  

195 

   Lyapunov stability 358 

Exponential  Hybrid stochastic RecNN  Razumikhin-type 262 
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Table 9: Current trends in stability analysis of Rec_NNs 

$$$- Task  
Rec_NN-

characteristics 
Ref 

exponentially 
convergent rate 

theorem 

Imageth moment 

exponential  

stochastic RecNN  

Time-varying delays 

 Method of variation 

parameter and inequality 
techniques 

245 

Hopf bifurcation 
analysis 

Distributed delays  
Strong kernel  

  327 

Global exponential    Design with piecewise 
constant argument of 
generalized type   

 Lyapunov   324 

Convergence analysis Discrete time RecNN 
 multivalued neurons (mvn), 
complex-valued weights   
activation function defined as 

a function of the argument of 
a weighted su. 

  298 

Exponential  Both time-varying delays   
 general ActFns 

Not considered boundedness   
monotony on these ActFns   
Differentiability on the time-varying 
delays 

Lyapunov functional 
free-weighting matrix 

268 

Global    Lyapunov   328 

Global convergence    291 

Multi-   n-d_ complex-valued RecNN 
ActFn :  real-imaginary- . 

  

 and convergence modified Hopfield model    261 

 analysis Discrete-time RecNN 

time-varying delay 

 Linear matrix 

inequalities (LMIs) 

295 

   Augmented Lyapunov–Krasovskii 
functional  & derivative 

Time-varying delay 206 

Global exponential  Discrete-time-RecNN  

Impulses 

  309 

 analysis discrete-time RecNN  
With time-varying delays 

 DiscreteJensen 
inequality and the sector 
bound conditions, 
(LMIs) 

296 

Attraction  domain  RecNN 
 time-varying delays 

 Lyapunov–krasovskii 
functional  
 lyapunov–razumikhin 
functional method  
Invariant set principle 

266 

Imageth moment 
exponential  

Stochastic RecNN 
Unbounded distributed delays 

  322 

The imageth moment 
exponential  and 
imageth moment 
global asymptotic  

Stochastic functional 
differential equations with 
infinite delay. 

 Razumikhin method and 
lyapunov functions 

 

Attraction and 
exponential  of the 
almost periodic 
solution 

To design globally stable 
almost periodic oscillatory nns 

 Lyapunov 302 

Global asymptotic  Stochastic RecNN  

Time varying delays 

 Lyapunov  

LMI 

277 

 
 

Optimization task 
Globally convergent  
Exact optimal solution 

Lyapunov, One layer-RecNN 404 



R. Sambasiva Rao et al                        Journal of Applicable Chemistry, 2014, 3 (4): 1337-1422 

 

1388 

www. joac.info 

 

Table 9: Current trends in stability analysis of Rec_NNs 

$$$- Task  
Rec_NN-

characteristics 
Ref 

   Time-varying delay   interval LMI      386 

 Mixed RecNN Lyapunov  
. 

LMI discrete and 
distributed delays 

402 

Global exponential Robustness     Stochastic-RecNN  385 

Exponential delayed  RecNN   Lyapunov–krasvoskii 
functional delay 
partitioning method 

412 

 Static RecNN Lyapunov– 
Double/triple integral 

LMI   380 

Global exponential Delayed RecNN 
Parameter uncertainty in 
connection weight matrices 

  238 

Exponential 
convergence 

    memristor-based RecNN   Theory of ODEs with 
discontinuous right-hand 
sides   

356 

Global exponential 

periodicity 

   Memristor-based RecNN   Lyapunov functional 409 

Global exponential   
  

 Mixed delays 416 

 Time-varying delay-

dependent  

Lyapunov LMI inequalities  419 

 dynamica l Multiple equilibrium points in 
RecNN 
Time-varying delays 
ActFn discontinuous   

  364 

Global exponential  Robustness     
Parameter uncertainty in 
connection weight matrix. 

  398 

Exponential  Time-varying delays Memristor-based RecNN  365 

 analysis stochastic-RecNN Mixed delays   
Markovian  

 392 

Xxx    415 

Bifurcation analysis Three-node RecNN  
Four discrete time delays 

 Lyapunov–krasovskii 
functional + 
 (LMI)  
Integral inequality 
approach (iia) 

397 

Robust  Time-varying delay-

dependent conditions 

  396 

Global robust 
exponential  
stochastic  

Discrete-time uncertain-
RecNN 
uncertain parameters  
markovian jumping  
Time-varying delays 

LMIs  335 

Training Nonmonotone BFGS 
  self-scaling BFGS +  
[adaptive nonmonotone 
technique   + approximations 
of  Lipschitz constant]   

>> bfgs  348 

Exponential  Imageth moment  Stochastic delayed RecNN  417 

 analysis exponential  Stochastic RecNN  
Unbounded time-varying 
delays 
 

pth moment Lyapunov function  
semi-martingale convergence  

M-matrix technique 353 
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Table 9: Current trends in stability analysis of Rec_NNs 

$$$- Task  
Rec_NN-

characteristics 
Ref 

Globally exponential  
of  

RecNNs 
critical conditions 

 Matrix measure theory 363 

Global exponential  Time-varying delays 

Differential equations with 
discontinuous right-hand side 
as introduced by Filippov  

Memristor-based  361 

Global-  Optimization   
Convergent to an exact 
optimal solution 

Lyapunov    425 

Global exponential  Impulsive delayed dynamical 
systems generic criteria 

Extended 
halanay differential inequality 

 342 

Global exponential 
periodicity  
Global exponential  

Various ActFns and time-
varying delays 
ActFns  

Monotone nondecreasing  
Globally lipschitz continuous  
Monotone nondecreasing   
Semi-lipschitz continuous  
Mixed monotone functions,  
 lipschitz continuous function 

  243 

Global asymptotic  Time-invariant delay  
Delay-dependent stability 
criteria  
Static-RecNN 

Lyapunov–krasovskii functional  297 

Asymptotic   RecNN P-critical conditions, i.e., a 
discriminant matrix image is 

nonnegative definite, where image 
is a matrix related with the network 
and p is an arbitrary nonnegative 
definite matrix. 

 317 

Existence, uniqueness  Time delay in the leakage 
term under impulsive 

perturbations 

Do not require 
Boundedness, differentiability  

monotonicity of   ActFn  
 checked with linear matrix 
inequality (LMI) toolbox in matlab 

 323 

Global exponential   Discrete-time-RecNN   344 

 

8. Future scope 

 
The neocortical microcircuits in human brain computes and the throughput excels all known technologies 

of today. A promising look at probing into operational principles (mode of computation, parallelism, fool 
proof results in spite of mistakes through ensembling, plasticity, repetition, integration, differencing etc. 

…) with available scientific technology opens flood gates for new neuromorphic products. The outcome of 

proof-of-principle studies is promising future expected tools will   be far superior to the silicon based 
devices of the day. 

The realization of partial rat brain on a computer, experimental evidence of boson (fundamental of 

universe/ ultimate particle of the universe), cancer-proof- naked mole rat, robotic surgery, soccer game 
playing robots  are only testimony of  scientific pursuits results valid at six-sigma-level repeatability. The 

warning ‗available (human) intelligent tools are able to do the job of plucking low-hanging fruits‘ waves 

away the pride that the best of the best is grabbed. It reorients the target towards knowing the truth value/ 

falsehood of known_unknowns, known_knowns, unknown_unknowns and unknown_known in lifeless to 
life, elementary particle to mega_structures through large (bio) molecules, effects of very high to ultra-low 

values of temperature, pressure, gravity, volume and electric/magnetic fields. 
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The current Rec-NNs are not guaranteed for the optimal solutions to NP-hard combinatorial 
optimization problems. Further, there is difficulty in solving non-convex optimization tasks. The future 

investigations will be around in depth analysis of the dynamics of Rec_NNs for solving non-convex and 

discrete optimization tasks. On the pragmatic front, thrust area is design of recurrent_NNs for real-time 
dynamic large data sets. Hardware implementation of these NNs will open new vistas in the 

instrumentation applicable in field studies.  

 In future ventures also, the cyclic verdict ‗ten years ago, this task was intractable, but now it is too 

tiny to pay attention‘ is a gold standard for researching discovery of knowledge. A lightning hope is the 
thousand fold increase of computing power and smart algorithms by 2020. It promotes realization of a new 

computing paradigm to augment experimental observations, making predictions of unknown 

physics/biology in an attempt to be nearer to true nature of real nature.   
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 Appendix A1.a: Life cycle of NNs 

 

 

Artificial Neural Network 

1943 -- Seeds 

MC neuron TF : Linear 
 W : Fixed 
No hidden neurons 

  

Perceprtron TF : Linear 
 W : Adaptable 
 

  

1969  
Death blow 

 
 

 

Dark period 

 (1970 to 1985) 
ADALINE 

MEDALINE 

 

Grossberg-NN 

 

Hopfield 

 

Brain state in a box 
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  1986 

 Rebirth 

SLP TF :Non-linear 

 W : Adaptable  
 One HL 

MLP TF :Non-linear 
 W : Adaptable  
 More than one 

  

 

 

 

 

 

 
 

 

Innovations 
Elman 

Jordan 

 

SOM 

 

ART, ARTMAP 

 

RecNN 

 TF :Non-linear 

 W : Adaptable  

 HL: [0 to m] 

Cohen-Grossberg 

 

Next_generation_NNs 

 

Evolving 
 

 

 
Hybrid NNs 

Hierarchical NNs 

Rule extraction 

Adaptive NNs 

NNs_of_NNs 
 

Chart A1.1: Life cycle of NN research (1943-2014- …) 

Appendix A1.b: Neurons (Processing Elements) 

 

 Biological neuron  

 

Biological neuron is a unit consisting of cell body, dendrite and axon. Dendrite is a structure receiving 
information from other neurons/bundle of neurons and cell body provides energy. The neural impulse is 

transmitted through axon. The human brain consists of about 10
11

 neurons and approximately every neuron 

is connected to 10000 other neurons and neural nets. In essence, it is multi-cellar, biochemical system with 
non-linear dynamic processes with ion-channels at molecular level. 

The system consists of several branches like a tree or nervous system.  The ion channels, several in 

number in each segment of branch control information processing and also responsible its‘ for passage.  
The genes in neurons produce messenger RNA which plays a role in production of thousands of proteins. 

They in turn involve in millions of chemical/biochemical energy transfer interactions. The distributions of 

these proteins all over neuron (in a need based manner) dictate how memory and information processes 

take place.  The synapses are critical in their function; some transmit signal, others transform in a non-
linear manner. The glial cells have a role, but partially understood.  The number of neurons, their 

interconnections is a macroscopic view.   But, the concentration changes of ions, blood flow, 

medicines/neurotoxins/drugs in healthy and those suffering from disorders, biophysics of protein/ion 
interactions all have their share in total functional aspect of brain. The artificial MC_neuron proposed for a 

utopian goal of artificial brain celebrated its platinum jubilee.  The mathematical transformation and 
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solving differential equations in billions to trillions is one way of mimicking the bio-transformations. The 
efforts brought renaissance in interdisciplinary knowledge, but still focus remains to be nearer to the 

realization artificial human brain with today‘s all evolved technology.  
 

 

 

 

 
 

 

 

 
Fig. A1.1a: Biological neuron and human brain 

 

 

 

Fig. A1.1b: Artificial neuron  (PE) Fig. A1.2: Data flow in Neuron  (PE) 
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Fig. A1.3: Neurons not connected  

 

  
Chart A1.2: Nomenclature in FF-NNs and  RecNNs  

 

Layer 

  

Visible IL 

 OL 

  

Visible Hidden 

 

Number of neurons 

Layer  

#IL dimX 

#OL dimL 

#HL  
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Forward Hidden to 
Hidden 

 
 
 

Self 
feedback 

WIH WRH2H 

WHO Output to 
hidden 

 WRO2H 

Self feedba  

 

Appendix A1.c: Layered NNs 
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Fig. A1.4: Feed forward (FF) and inverse-FF SLPs 
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Fig. A1.5: SLP (1-1-1)–FF-NN with three neurons 

 

Appendix A1.d: Non-layered architectures 
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Fig. A1.6: Three neurons closed_loop_NN with no_self_feedback_connections  
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Fig. A1.7: Four neurons  closed-loop_NN with  no_self_feedback_connections 
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Fig. A1.8: Five & six  neurons  closed-loop_NN with  no_self_feedback_connections 

 

.Appendix A2.a: New generation Neurons (NGN) (or Processing Elements) 

Knowledge Intelligence Natural (e’) Discovery (KIND) 

 

Quantum neuron  
A quantum neuron can have the value 0, 1 or both simultaneously. Thus it imbibes binary bit with an 

additional feature. A qubit is constructed with hydrogen atom, which consists of a nucleus and one orbiting 

electron. For the purposes of quantum computing, only the orbiting electron is important. This electron can 

exist in different energy levels, or orbit(al)s. The different energy levels would be used to represent the 
binary 0 and 1. When the atom is in its lowest orbit (ground state), it represents the value 0. The next 

highest orbit would represent a value 1.  

 
NOT gate with Qubit: The electron can be moved to different orbits by subjecting the electron to a pulse of 

polarized laser light. This has the effect of adding photons into the system. So, to flip a bit from 0 to 1, 

enough light is added to move the electron one orbit up. To bring it (flip) back from 1 to 0, the same thing 
is done, since overloading the electron will cause the electron to return to its ground state. This is logically 

equivalent to a NOT gate. Similarly, AND, COPY etc. systems are constructed. Up to this point, qubit and 

binary bit function in the same way. 

 
Super position: If only half of the light necessary to move an electron is added, the electron will occupy 

both orbits simultaneously. Superposition allows two possibilities to be computed at once.  Considering a 

―qubyte‖, i.e. 8 qubits, represents simultaneously 256 distinguishable states. Then the algorithm is 
performed on these qubits. When the algorithm is complete, the superposition is collapsed. This results in 

the true answer. This is where the scaling up of qubit comes into operation. The advantage is running of 

algorithm on all possible combinations of the definite qubit states (i.e. 0 and 1) are parallel.  

For example, factoring a 250 digit number would take 
approximately 800,000 years on 1400 present day 

Von_Neumann_computers working in parallel. But, with a 

Quantum computer, just a few million steps are sufficient. The 
key element is that using the parallel properties of superposition, all possibilities can be computed 

simultaneously. 

Quantum neuron 

 Truth of Church-Turing thesis for all  
quantum computers is in some doubt 
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Multiplicative-neuron 
In this neuron, the confluence operator is a product of input element and corresponding weight. 

 

SLP-NN with a multiplicative neuron 
Yadav et al. (2007) proposed SLP with a multiplicative neuron in the hidden layer with a success for 

forecasting of TS data. Since lagged responses also play a dominant role in most of auto-correlated time 

series tasks, recurrent-(multiplicative-neuron)-SLP-NN was proposed (Rec.multi_neuron.SLP). 

 
Second-order-spiking-neuron 
It is biologically more plausible. SLP with linear TF fails to separate non-linear clusters in XOR. But, an 

artificial processing (neuron) unit with second-order-spiking characteristics solves XOR classification and 

simulated trajectory of an arm movement tasks.  Here, the inclusion of second order statistics offers 
significant advantage.   A tradeoff between out-put bias and out-put variance occurs by altering the penalty 

factor in error function.  

  

IIR_ neuron 
In this neuron model, IIR (Infinite input Response) or FIR (Finite input Response) filter is introduced 

between confluence (accumulation) operation and transfer function (TF) of the neuron.  It reproduces its 

own past inputs and activations using input u(t) and output y(t) in the time series mode or u(k) or   y(k) in 
state-space model. The neural networks with these dynamic neurons in the hidden layer appear as if they 

are of feed forward type (SLP or MLP) at a first glance. But, the functioning with dynamic characteristics 

is exactly like recurrent NNs, as there is recurrence at neuron level itself. Each neuron of two-hidden layer 
NN is an rth order IIR filter.  
 

 

 Neuron_ multiplicative 

 

 

input Confl TF out output 

 ,inp w  
Linear scalar  

 

.*prod x w  

11
* 2 * 2* *0.5*2 1 2 3

0.53 .

x

x x x x

x

 

- Number of neurons in HLs 

 Remedy:  Multiplicative-neuron-SLP 

 Only one neuron in HL 

 No a priori knowledge or determining 

      number of neurons   

  Feed-back of lagged responses not considered 

 Remedy: Rec-multiplicative-  
                 neuron)-SLP-NN 

 Accurate forecast of non-linear TS 

 

 

MLP- /SLP-NN 

 Non-linear mapping of weighted input 

 Models accurate temporal dynamics of 

chemical/biochemical networks 

 Does not require normality or linearity  assumptions  
 

 

Chart A2.1: Neurons  
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IIR-neuron 

- Non-linear approximation is 

limited 

 Remedy: RecNN with two 
hidden layers 

  
 

 
 

1 2( ) ( ) ( )
T

x k x k x k  

1( ) :statesof 1st layerx k  

2 ( ) :statesof 2 layerndx k  

  

Rec-NN/41Neural Networks 21 (2008) 59–64  

Fig A2.1: Rec_NN with IIR neurons.  

 

Appendix A2.b: Hybrid neurons 

 

Wavelet + sigmoid neuron:  The addition and multiplication of wavelet and sigmoid activation functions 

is the core of this hybrid neuron. This output is the input to hidden layer of SLP.  It results in   summation 

wavelet neural network and multiplication wavelet neural network. Here, different types of wavelet 
functions are listed for datasets with dynamic structure. The stability analysis with Lyapunov functions is 

performed and there is a guarantee of convergence of the learning process. 

 

  

 

 

 
Fig A2.2: wavelet-sigmoid neuron    

 

Neuron with two activation functions   

Extreme leaning 

machine learns 
SLF_NNs very 

efficiently. To 

circumvent the 

limitations, SW-ELM is 
proposed [30]. Instead 

of a single TF in a 

hidden neuron, 

ELM 

- Initiation of parameters 

-  Complexity of architecture 

- Activation function choice 

- Remedy: SW_ELM 
 

 

SW-ELM NN 

 Better non-line transformation 

 Deals with low and high 

frequency signals simultaneously 
 

 Small number of 

hidden neurons (i.e. 
compact structure 
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conjunction operation of two distinct activation functions (TF1, TF2) is used in each hidden neuron.  
Appendix A3.a: Recurrent neurons (Rec_PEs) 

 

 

Fig. A3.1: A neuron with self feedback  
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Fig. A3. 2: Two neurons with self-feedback connections  
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Fig. A3.3: Delays of multiple order in TS data 

 

Fig. A3.4: Roadmap of  Recurrent NNs 
   

Neuron_MC 

 

Self-feedback 

 
 

Neuron_Rec 

 

IIR 

FIR 
 

 

   
Architecture 

 

Neuron_connections 

 

Within a layer 
 

 

Layer_connections 

 

Feed-back 

 Same layer 

 Any two layers 
 

 

NNs_connections 

 

 Pipe-line  

 Blockwise 
 

   
 
 

 
 

Neuron_connections 

in NN 

 

Types of Recurrent 

architectures 
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Cyclic 

Open  

Circulation 

 

Cascade 

Recurrent 

Recirculation 

Recursive 

   
 Dynamic models  
 
 

 

Dynamic 

 

Time 

Space  

Parameters  

 

Delay_order 

 

0 

1 

2 

k 

   

 

Appendix A3.c:  Recurrent Multilayer Perceptron (Rec_MLP) 

 

Appendix A3.d: Time series-Rec_NNs   

 

 

 

 

Fig. A3.5: Recurrent neuron in time series  
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Fig. A3.6: I/O-NN model of time series and nonlinear-DEs 

 

 

 

Fig. A3.7: I/O-NN model of sequence (time series) data.  

k= sequence; t: time series  
 

 

 

 

KB. A3. 1: Time series for delay orders and activation (TF) functions 

 

 

Appendix A4: State_Of_the_Knowledge_of_the- (SOK-) 

Time_Series_Models (TSM) 

 

The response of a mega to micro-processes with the lapse of time (on different scales viz. minutes to 
years) found a niche in the annals of data as 'Time Series'.  Monitoring single/multiple response(s) for a 

sample as a function of time is called generally time series data. In pure chemistry, based on number of 

species whose concentrations change during the course of reaction (femato seconds to thousands of years), 
the discipline grew as chemical kinetics of fast reactions to radio-active decay. Here, the rate of progress of 

reaction is a non-linear function of concentrations of species and the constants of the model bear chemical 

significance reflecting how fast or how slow the reaction proceeds. Time series prediction can be a very 

useful tool in the field of process_chemometrics to forecast and to study the behaviour of 
key_process_parameters_in_time. Industrial processes, monitoring schedules where molecular level and 
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reaction type are not known, it is still considered as time series. In all other disciplines, meteorology, 
physics, statistical data analysis of TS is coveted.  

 

Objective of TS models: The primary concern is to develop relationship between the current observations 

with the previous ones in the time domain. The goal or sub-goal is to forecast value at (one-, two-, multi-

step ahead) time instants in the future. The subtle interest of governmental agencies in time series for the 

retrospective inspection and development of control/ eradication measures for environmental pollution and 
consequent ill effects on human health is a seriously persuaded task of top priority. The term 'now cast' is 

also referred to as forecast, for instance ozone or pollution level within an hour/eight-hour period. The 

variations in time or space are similar in mathematical sense.  
 

Data Structure_TS:  Input values are only lagged real values of response (chart A4.1) and do not require 

explanatory variables in like in regression analysis for cause effect models. But, the restriction is that data 

should be stationary.      
Chart A4.1: Data structure of time series 

(a) Univariate time series 

 
 
 
 

Univariate TS 

1 2

1 2

:

:

T

i np

T

i np

time t t t t

u u u u u
 

vectors Abbreviations 

 

NP  : Number of (data) points 

ti : Time at which ith response is measured   

ui :   ith response at  ti 

xi :   ith exogeneous variable at ti 

 
 If Data is vector & 

Auto-correlated 

 

Then Time series 

 

 

 

Univariate TS with eXogeneous variables  

  
 

 

Univariate TS  

   
  

eXogenerous variable 

1 2: T

i npx x x x x  
 

 

   
 

 
 

orthogonal/ correlated data 
If Data is matrix & 

correlation 

Then Orhogonalisation methods 

 

If Data is matrix & 

Correlation =0 

Then Variables are not correlated 
  

If Data is a matrix & 

Vector angles = 90 

Then Variables are independent 

 

The current response sometimes depends upon m-previous values and the data set is then auto-
correlated. When, there is no trend after finite differences of auto-correlated function (ACF), the time 

series is stationary. But, in many real life problems non-stationary time series prevail. The input values 

are auto correlated and this makes the accurate estimation of individual response coefficients 

difficult. A way out to decrease the impact of collinearity is to increase sample size. But, the 

pragmatic issues are  

Chart A4.2: Negative features of TS data 

- Lack of large training data    

- Shortage of degrees of freedom  

- Severe multi collinearity data   

- Dos not adhere to  identity (stationarity) 
assumption   

- Process is not in statistical equilibrium  
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- Local optima, 

- Over fitting 

- Dimension disasters 
 

- Multi-variate joint distribution  of  
process change with time or space  

 

Multiple TS data: As the complexity of the task grows, multiple time series arise. The consequence is TS 

data is high dimensional and is not easily reducible to two- three-dimensions.  
 

Classical TS models  
 

In time series models, time itself is considered as independent 
(pseudo_explanatory) variable unlike in regression and optimization 

procedures. The methods used to forecast non-linear real-world time 

series are broadly categorized as stochastic/ fuzzy set, NNs and nature-

inspired (Eman) modules.  
 The simplest, without a ever possible competing candidate, is 

persistent model advocating the same behavior in the next time step. It 

means that response with respect to time is constant, but the observed 
perturbation (deviation) is due the then assumed concept of normal 

errors. It gave way to zero order (polynomial) model (with parameters --mean and standard deviation-- ) to 

detect outliers of physical significance. The dependence of current observation on past data in time led to 
moving average model (MA). Classical time series analysis considers (linear) trend, seasonal variation and 

spikes as components susceptible for estimation. The modeling is performed in a sequential manner after 

removing the spikes. The sum of responses of trend-model and season-model must account for the 

observed response. In this case, the residuals between observed and calculated values are only a random 
(or white) noise. The data is made stationary by detrending, calculating first and second order differences 

and Fourier transformation.  

 
Linear-TS models 

AR, ARMA, ARIMA are the linear time-series models accounting for the effect of mean, first order 

processes with different lags, while ARMAX takes into consideration of exo-geneous variables. An expert 

system based approach consists of 43 rules, with relative weight.    A few typical rules (Alg. A4.1) attempt 
to combine or identify mixed model when both AR and MA models are plausible. 

 
Alg. A4.1: Algorithm           

                                                                                                       
Step : 1 Calculate   ACF and PACF coefficients  
Step  : 2 select error criterion 
Step : 3  If 95% of  samples fall within the error criterion  

 Then White noise & 
no analysis   

 

 

Step  : 4 Match shape of the ACF and of the PACF with set for simulated models  

exp( * )x  

Step  : 5   If Series is AR(1) type  
 Then PACF exhibits a spike    

 

Abbreviations  Full form 

MA : Moving Average 

AR  : Auto regression 

ARMA : Autoregressive    

Moving Average 

NARMA : Non-linear ARMA 

ARIMA : AR Integrated MA 

NAR 
MAX 

: Non-linear ARMA  
with eXogenous 

 input 
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   % Estimate F and y 
 

Model Coefficients 

AR(1) F1 

AR(2) [F1, F2]T 

MA(1) [y1] 

MA(2) [y1 , y2]T 

ARMA(1,1) [F1 , y1] 

 
Match the coefficients with those for experimental data 

 

Yt = c1* Yt-1 + c2* yt-2 +e 
 

1 2 1

1 2 1

1 2 1

c c

c c

c

 

 

Step  : 6 # ACF and PACF coefficients > (70% * error criterion) 
Step  : 7 Stationary condition 
Step  : 8 Find   changes of sign in the ACF and the PACF 

% Best model fitted 
     

 If PACF (> 70% above the error criterion) falls more abruptly than the ACF  

 Then model is AR(p)  
 

 

 

    

 If ACF (> 70% above the error criterion) falls more abruptly than the PACF  
 Then  model is MA(q)  

  q is the number of ACF   
 

 

ACF 

 

y = [1:20]'; omacf(y); 

ACF 

 

y = [1:40]'; 

  

function  [Lags,ACF,Bounds]= omacf(y) 

[ACF,Lags, Bounds] = autocorr(y, [], 2); 

[Lags,ACF],y', 

ACF' 

figure,subplot(211),autocorr(y, [], 2); subplot(212), parcorr(y) 

% 

% Matlab m file : autocorr.m 

 
 

ACF : Auto correlation function 

PCF : Partial correlation function 
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ARIMA 
It is used in forecasting financial market with fluctuations also. 

 

Periodic models: The periodicity is modeled with spectral analysis 
techniques like FT, peridiogram, and noise is sometimes filtered with 

Kalman filter and its advances.  

 

 Limitations of linear models: The time series data of real-world 
phenomenon like weather forecasting are rarely pure linear or 

nonlinear, but often contains both. Thus, failure of many parametric 

and non-parametric methods in vogue extensively for short and long term time series forecasting is usual 
than exception.  The approximations of ARX series of models to complicated time series data  are 

inadequate. The non-linearity and chaos further complicates the structure of profile. Recent methods viz, 

VAR, TAR, VEC and GARCH tackle complicated time series trends.  

 

Neural networks 

The application of NNs in time series (TS) analysis is multifold. In an 

elementary jargon, the residual time series after accounting for ARMA 
type models is analyzed with black box FF-NNs. This approach is a 

hybrid model retaining the transparency of the classical models, and at 

the same time developing empirical model for non-linear part. The 
implicit assumption here is the validity of algebraic additivity of lagged-

linear and non-linear components parts of time evolving phenomena.  

      In the next stage, MLP and SLP have been used with lagged inputs to forecast the future trend non-

linear time series data.  In FF-NNs, the inputs are responses with varying delays (i.e. lags: 1 to delays).  
SLP s use MC-neuron with confluence operator of summation of product of weights and input. The 

activation (or transfer) function (like sigmoid, RBF) produce non-linear mapping of weighted sum of 

inputs. In MLP-NNs with more than one HL, the output is multiplication of weighted sum of inputs.  
 

      Recurrent NNs had a niche in the complicated TS task. The general Rec-NN model for space or time 

with varying delays is noteworthy.  Each node in Rec-NN has a self-feedback loop (connecting itself), in 
addition to connections to all other nodes. In other words RNNs have closed paths in the topology in 

certain architectures. Thus Rec_NNs model spacio-temporal data as it preserves the past states, while it is 

farther than FF-NNs‘ scope.  The advances in NN and the imbibing character paved way for dedicated 

NNs implementing all types of linear and non-linear stochastic models viz. ARMA, ARIMA, ARMAX, 
NARMA, NARMAX etc.  In time series analysis, data from discrete time series, differential equation 

(Mackey-Glass/inverted pendulum), difference equations (plant operation), full second order algebraic 

equations with equal/unequal constraints are analysed by Rec_NNs with remarkable results over classical 
methods and FF-NNs. For the bench mark data sets viz. sunspot data, exchange rate as well as other real 

life tasks like sand bar in beach, two-input-two-output problem, the end results are superior.  

     Rec-NN is a single window system for [232] sequential tasks like speech recognition, adaptive control 
and generation/analysis of sequences.  Here, the current entity depends on those in the earlier ones.  In 

dynamic time series data, responses in the previous time instances have their effects in the next time step 

and in Rec_NN, the value of either output of hidden or output layer is available in processing the next 

pattern. It ranges form 1-time delay to finite (FIR) or infinite (IIR) number. The memories at all instances 
of the model of course have to be stored in a separate stack or file. The results of one-and multi-step-ahead 

prediction of TS datasets with the models TSK-FIS, AR, Rec-NN are compared.    

  

ARIMA + NN + FIS 
The exchange rate (USD to IRAN – RIALS) and gold price (gram/USD) 

forecast are successfully predicted. 

Chart A4.3: ARIMA 

 Axiom: Feature values of TS  
exhibits linear relationship with  
current and past values 

 Data contain only white noise 

 Requires a large amount of past 
data 

Abbreviations Full form 

VAR : Vector AR 

ARCH : Autoregressive  
Hetero skedasticity 

GARCH : Generalized ARCH 

TAR : Threshold  
Autoregression 

VEC : Vector Error 
 Correction  

ARIMA + NN + FIS 

 Overcomes linear limitation.  
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NARX-NN 
NARX-NN is a state space model for nonlinear dynamic 

systems. The results on chaotic-laser TS and a variable bit 

rate (VBR) video traffic TS with NARX – TS outperform 
TD_NN and Elman NNs. 

 

Butterfly effect: The perturbations of results of model due 

to initialization procedures with random numbers are called 
butterfly effect. The consequence is long term predictions 

are prone to be in error. 
 

Present status of TS 
During the last one-decade, NN-models are compared 

mostly with MLR (ARMA )and rarely with non-linear models. Instead, comparison amongst different NNs 

(Rec_NN, hybrid_Rec_NNs, MLP, RBF, Fuzzy-ARTMAP, Kohonen,spiking_NNs  etc) with advanced 
training algorithms will have a  cool welcome to uphold the superiority of data driven paradigms over 

yester years model driven techniques. The human expert/analyst does not get a priori information and thus 

a hybrid system outperforms/ superior to the component models even in prediction. Rec-NNs on the other 

hand, excelled many of the hither to available non-linear time series models.  
Still, like any other field, the choice of a method is a herculean task in TS research. It goes by 

tradition, expert advice, availability of expert system based software and cost in terms of human resource 

and time. Another hurdle is whether to use a most promising individual method or 
hybrid/hierarchical/sequential set of procedures. Recent trend is to analyze with a large number of methods of 

varying complexity, statistical measures for validation and considering best set of models and not thinking of only the 

unique best model.  Spacio temporal NNs tackle simple as well as complex responses resulted in variation of time 

and/or space. The chaotic time series is applied in forecast of weather, finance and predictions of power load, 

hydrological data and sun spot profiles using ensemble methods, multi- dimension prediction with Lyapunov 
exponents, Rec_NN, NARX, wavelet neural networks etc. One of the trend setting packages is 'PREDICT' from 

Neural Ware Corporation. A pool of forecasting methods, feature sets and meta-learning techniques for time 

series data has been identified.  At this juncture, experts intelligently use distribution/ information/ fuzzy 

characteristics/ wavelet/ ridgelet/ chaotic behavior of data/ noise and methods from classical/advanced statistics, NNs 

and nature-(including bio-) inspired procedures in prediction The prime objective of whole framework is to gain 

knowledge regarding best method for a task on hand. Instead of random combination of methods, ranking 

based approach is superior to single model selection. It is augmented by ensemble approach and Pareto optimal 

strategy for multiple_objective_goals.  

 

Future scope of TimeSeries (FST)  Knowledge Intelligence Data structure (KIDs) 
Future ventures with FFNNs, Rec.NNs using the state-of-the-art algorithms and encapsulating the modules 

in sequential and hierarchical mode will start a new era in handling TS data retaining the desired 
characteristics and eliminating limitations of the component procedures. Simulated data sets of multi-

response TS with exogenous factors planned with statistical experimental design, S/N ratio and 

information content of various complications in trend, seasonality, spikes, chaos and noise structure result 
in feasibility study of mega NN structures. The ensemble study offers robustness for perturbation. 
  

 

The usage  ‗state-of-the-art-‗ started  in eighteenth century with an understanding that the word ‗art‘ 

includes skills, methods, arts relating to the manufacturing and craftsmanship and not in the true sense of 
performing arts and fine arts. Around 1985, it is felt that it is over used to an extent that it has no punch left 

and sounds light if not like a lie as marketing strategy or appraisal of a tool. Recently, a new form ‗state-

of-the-$$$‘, ‗state-of-knowledge-of-$$$‘ instead of ‗state-of-the-art-of-$$$‘ is in vogue. Here knowledge 

again comprises of art, science, technology of (natural) universe including those of man-made ventures. 

KB. A4.1:  NARX_NN 

If NARX-NN with one hidden layer & 
Linear TF 

Then  NARX-NN reduces to Linear-ARX-NN 

  
If NARX-NN & 

 time series data 
Then NARX-NN   FF-time-delay-NN  

- The predictive accuracy is reduced. 
 Remedy: NARX-NN can be applied  

           to a long term (multi-step-ahead)  
                prediction of univariate TS.  
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