

Journal of Applicable Chemistry

2014, 3 (4): 1732-1743 (International Peer Reviewed Journal)

A Generalized Molecular Velocity of the Real Gas

Bahjat R. J. Muhyedeen

Department of Chemistry, College of Science, Baghdad University, Baghdad, IRAQ

Email: bahjatrj@mass-energy-e-mbc.com

Accepted on 17th July 2014

ABSTRACT

A generalized equation for the molecular velocity of the real gases has been derived from the momentum of a molecule and the thermodynamic parameters viz. temperature, pressure and volume, and number of the moles, which are used to estimate the reaction rate constant in the gas and solution phase in any reaction. The derived generalized molecular velocity is a function of pressure, temperature, volume, number of moles and molecular weight rather than a function of the temperature and molecular weight only. The generalized molecular velocities of sixteen materials were calculated at different T, P, concentration (n/V). The calculated rate constant for a few bimolecular reactions using the generalized molecular velocity GMV is better fitting experiment than that using kinetic theory velocity KTV.

Keywords: Real gas, molecular velocity, generalized molecular velocity, kinetic theory.

INTRODUCTION

The impact driven by the momentum $(\mathbf{p} = \mathbf{m}\mathbf{v})$ of a molecule of real gas in the reactor is a function of the velocity of the molecule, which is affected by the thermodynamic parameters such as temperature *T*, pressure *P*, volume *V*, and number of the moles *n* of the real gas in the reactor, in addition to other physical properties of the used material. From kinetic theory point of view, this impact is usually expressed in terms of kinetic energy $E_k = \frac{1}{2}mv^2$, which articulates the fact that a moving object can do work on anything it hits. The kinetic energy represents the energy of motion which is called the translational kinetic energy of the non-interacting molecule to its translational energy E_t (or U_t) of the perfect gas as $E_t = \frac{3}{2}RT$, *R* being the gas constant, to attain the velocity *v* of the molecule. The probability of a velocity v_i (in one direction, *i*) is proportional to $e^{-\frac{mv_i^2}{2kT}}$, *k* being Boltzmann constant, while the probability of a speed $v = \sqrt{v_x^2 + v_y^2 + v_z^2}$, f(v), is proportional to $v^2 e^{-\frac{mv^2}{2kT}}$ (following Maxwell distribution) as shown in literature[1-3].

The probability that a molecule has a speed between v and v + dv is represented by f(v)dv, so that its expected value would be:

Substituting the Maxwell distribution, $f(v) = 4\pi \left[\frac{M}{2\pi RT}\right]^{3/2} v^2 e^{-\frac{mv^2}{2kT}}$, into Equation (1) we get,

Using the values of the finite integral $(\int_0^\infty x^3 e^{-ax^2} dx = 1/2a^2)$ we obtain the mean speed \overline{v} in terms of temperature and the mass m(kg) or the molecular weight M(kg/mol) of the molecule as seen below:

$$\overline{v} = 4\pi \left(\frac{M}{2\pi RT}\right)^{3/2} x \frac{1}{2} \left(\frac{2RT}{M}\right)^2 (m/s) = \left(\frac{8RT}{\pi M}\right)^{1/2} = \left(\frac{8kT}{\pi\mu}\right)^{1/2} (m/s) \text{ at SATP}$$
(3)

i.e. at standard ambient temperature (298.15 K). Equivalently:

Where B=79.45. The details of the derivation of these equations are available in Literature. It is very clear that the kinetic theory KT describes the mean speed \overline{v} of the molecule as temperature-dependent only; while it neglects the pressure, volume and number moles of the real gas in the reactor. Equation (4) does not satisfy the real behavior of the molecule in real industrial environments due to the collision events.

The collision theory, which proposed by Max Trautz and William Lewis in the early 1900's, describes the reaction rate K as a function of the collision number Z (a.k.a. collision frequency, the average number of collisions/(s.m³)) and the fraction of the molecules ($\Delta n/n$) having the sufficient energy (activation energy, ΔE) to react. The formula for the total collisions frequency Z_{AB} of one molecule of substance A with molecules of substance B is given by[4]:

$$Z_{AB} = \pi \left(\frac{d_A + d_B}{2}\right)^2 N_A N_B \left(\frac{8kT}{\pi\mu}\right)^{1/2} \dots$$
(5)

Where d_A and d_B are the diameters of the molecules A and B, while N_A and N_B are the concentrations of molecules A and B and μ is the reduced mass. The rate constant is usually expressed as $k_2=Ae^{-\Delta E/RT}$. The rate of the reaction K in terms of concentrations and rate constant could be written as follows[4]:

$$= \pi L 10^3 \left(\frac{d_A + d_B}{2}\right)^2 \left(\frac{8RT}{\pi\mu}\right)^{1/2} e^{-\Delta E_o/RT} C^n \dots$$
(6)

The parameter L is Avogadro number and C is the concentration to power n. The calculated reaction rates are usually higher than the experimental values therefore the steric factor (a.k.a. the probability factor) ρ , was introduced to decrease the rate constant k_2 values (i.e. $k_2 = \rho A e^{-\Delta E/RT}$). Where A is called a preexponential factor and it is temperature dependent while A of Arrhenius' equation is a simple preexponential factor temperature independent. In our understanding that the overestimation in the rate of the

reaction resulted from the immature of the physical picture, Z_{AB} formula and velocity factor $\left(\frac{8RT}{\pi\mu}\right)^{1/2}$ because it is temperature dependent only while all the reactions affected by the P, V, T and the concentration.

A Generalized Model for Molecular Velocity: As we see that the kinetic theory velocity KTV \overline{v} (or the mean speed) of Equation (4) is a function of temperature *T* and molecular weight *M* only and it is independent of the nature of the gas whether it is ideal or real that shows a shortcoming in rate constant. In the industrial processes the key process variables for the three chemical reactors i.e. batch reactor model (batch), continuous stirred-tank reactor model (CSTR), and plug flow reactor model (PFR) are Residence time (τ), Volume (*V*), Temperature (*T*), Pressure (*P*), Concentrations of chemical species (C₁, C₂, C₃, ... C_n), Heat transfer coefficients (h, U) and catalysts[5,6]. The industrial processes usually run at *high pressure, temperature and concentration*. Although most gases obey the ideal gas law to a good approximation when near room temperature and at a moderate pressure, but real gases do not obey the

www.joac.info

perfect gas law exactly. It is due to the fact that molecules interact with one another due to repulsive forces between them that lead to expansion and attractive forces result in to compression. In previous article we explained the reason behind these forces¹. Deviations from the ideal gas law are particularly important at high pressures and low temperatures, especially when a gas is on the point of condensing to liquid. At higher pressures one might need a better description. Several equations of state with two or three parameters were developed for this purpose such as[1-5]:Berthelot, Dieterici, Redlich–Kwong, Soave Modification[7] of the Redlich–Kwong, Gibbons–Laughton Modification of the Redlich–Kwong-Soave, Clausius, Peng–Robinson[8],Peng-Robinson-Stryjek-Vera equations of state (PRSV1)[9] and PRSV2[10], Elliott-Suresh-Donohue[11],Wohl, Beattie–Bridgman, Benedict–Webb–Rubin (PWR), Virial[12] and others. All these equations of state do not relate the molecular velocity of the real gases to the thermodynamic parameters.

In this paper we would like to determine the generalized velocity of molecule v of real gas in the reactor with help from the momentum (p = mv) concept and the thermodynamic parameters T, P and concentration which is a function of number of moles and volume, i.e., g(n, V) that affects the number of the collisions Z and, finally, the rate of the reaction of the industrial processes. Therefore, we need to describe the momentum (p = mv) of a molecule with a proper function in terms of energy unit first, and then secondly we need to adopt a suitable formula which describes the thermodynamic parameters that affect the momentum.

In previous articles [13-15] we showed that the kinetic energy notion is a virtual concept because the term $E_k = \frac{1}{2}mv^2$ of macro systems is a simple mathematical function to describe the momentum of the mass in a unit of energy. It may be written as a modest multiplication of momentum p times the velocity v as follows: $E = \frac{1}{2}mv^2$ should be rewritten as $E = \frac{1}{2}mv_1v_2$ or $E = \frac{1}{2}pv_2^{[14]}$. The first velocity v_1 represents the velocity of the moving mass, which gives the momentum $p = mv_1$; and the second velocity v_2 should be considered as *unit conversion factor* from momentum units to energy units. This means that the essential issue in this term E = p ($\frac{1}{2}v_2$) is the momentum p while the other two factors, i.e., $\frac{1}{2}$ and v_2 , are insignificant as they do not have any physical meaning. The factor ($\frac{1}{2}$) is constant and v_2 is *unit conversion factor* to express the momentum value in joule units. Although several derivations in the literature prove the existence of these two factors which come from the average velocity (for example, $E = Force x \ distance = mad = ma\bar{v}t = m\frac{v}{t}\frac{v}{2}t = \frac{1}{2}mv^2$), nevertheless they do not have any physical connotation from energy point of view. Consequently, we relate the momentum of the molecule to the thermodynamic parameters. As we stated above, the momentum p = mv of a molecule in gaseous state could be expressed in unit of joule, as $E_k = mvv$, which is directly proportional to the temperature, pressure and inversely proportional with molar concentration C_M , which is a function g(n, V) = n/Vof

¹The nuclear magneton theory of Mass Quantization -unified field theory, NMT is now used to confirm Mass Quantization in a similar way as Energy Quantization. The quantized mass (the magnetons) creates the quantized energy and not vice versa. The mass in the universe is quantized and is composed of a package of elementary discrete mass particles called magnetons. The structure of the fermion particles and their antiparticles grows hierarchically from these high gravity circular closed quantized packages rings of magnetic dipoles under drastic circumstances in stars. In the outline of this theory, based on Mass Quantization Principle QMP, the NMT suggests that these circular closed quantized packages rings are arranged in a certain way to build the fermion through formation of quantized nutionic shells. Both the electron and the proton textures have three nutionic shells 1st K, 2nd L, and 3rd M while the neutron texture has four quantized nutionic shells 1st K, 2nd L, 3rd M and 4th N. In atomic and molecular media, the net charge from the permanent or the temporary nutionic field of the electron results in attractive and repulsive forces, known as **van der Waals, Keesom, Debye and London** dispersion forces[15].

number of moles *n* and volume *V* of the real gas². Hence, the momentum is a function $f(T, P, C_M)$ and other physical properties. When the pressure *P* and the temperature *T* increase at low concentration, the number of the collisions *Z* will increase but at high concentrations the collisions *Z* will decrease and affect the reaction rate. We may express these relations by the following proportionality formula:

The term mvv represents the momentum of the molecule in terms of energy unit, while the term TP/g(n, V) describes the thermodynamic parameters that affect momentum p = mv. The mass of the molecule *m* is usually represented by the molecular weight *M* of the material (kg/mol). The above proportionality can be re-written as follows:

$$(M\boldsymbol{\nu}\boldsymbol{\nu})^{x} = \kappa \left(\frac{TP}{c\left(\frac{n}{\nu}\right)}\right)^{y} \dots \dots \dots$$
(8)

Solving this equation, for the generalized velocity, can be based on the unit homogeneity, i.e., using dimensional analysis concept, which concludes that meaningful laws should be homogeneous in their units[16]. Noting that on the right-hand side the energy unit is raised to a power x, while the left side quantity raised to power y. To obtain the generalized molecular velocity GMV v in unit m/s we have to set x = 2, y = 1, and the proportionality constant κ equals to the gas constant, R=8.31441J/K.mol.

The pressure *P*, temperature *T* volume *V* and n units are in Pa, Kelvin, m^3 and moles respectively. The GMV v in the gaseous state in the reactor after rearrangement can be written as follows:

Equation (9) states that the GMV v is proportional to ¹/₄ power of temperature, pressure, volume, and inversely proportional to the square-root of molecular weight *M* and number of moles; hence, it is totally different from KTV \bar{v} of Equation (4). The GMV v at SATP, is given as follows (where n = 1, P = 101325Pa, V = 0.001m³, T = 298.15 K, *M* (kg/mol)):

Or:

$$v = B \frac{1}{\sqrt{M}} \frac{m}{\sec} \dots \dots \left(\text{where } M \text{ is } \text{in} \frac{\text{kg}}{\text{mol}} \right) \quad \text{at SATP} \dots \dots \dots \dots \tag{11}$$

Where B = 22.3842. Hence, the GMV v varies with T, P, conc. (V and n). Equation (9) has the same mathematical behavior as Equation (4), where both of them follow the same power function; i.e. $v = B * M^{-0.5}$ m/s. But the value of B of Equation (4) is temperature-dependent only, while the value of B in Equation (9) is dependent on four terms: T, P, n, V. The GMV v in Equation (9) has been applied to sixteen materials at different pressures, temperatures and number of moles to investigate the difference between GMV v values and KTV \bar{v} values. Plotting the values of GMV v versus the molecular weights gives a power curve with correlation coefficient equal to one ($R^2 = 1$). Where R^2 is the square of Pearson product-moment correlation coefficient, **PPMCC** or simply **PCC**, which is the measure of the linear correlation between the GMV v and the molecular weights.

² This is a general rule for the calculation of kinetic energy from any moving mass in macro system. In quantum mechanics, regarding the $E = mc^2$ (re-written as $E = mc_1c_2$, or $E = pc_2$), where the correct visualization and understanding to this equation is supposed be realized in the same way that explained for the kinetic energy above, *in which c₂ is a unit conversion factor, but not c²as Einstein perceived*. This means that the energy equation supposed be interpreted as *p* times *c* and not *m* times *c*². The principle of conversion of a mass to energy or vice versa is untenable. This new understanding leads to the *mass-energy conformity principle;* which is part of the novel nuclear theory presented in my paper[15].

RESULTS AND DISCUSSION

First Trial: Tested at several volumes and pressures. We have calculated the GMV v for 16 materials at five volumes starting with pilot reactor (V_1 =0.001, V_2 =1, V_3 =10, V_4 =100 and V_5 =1000 m³; each volume is represented by a corresponding line i.e. L₁ and so on), at two pressures (P_1 =1 atm, P_2 =10 atm), two temperatures (T_1 =298.15 °K, T_2 =373.15 °K) and 1 mol. The results are compared with results from Equation (4) as seen in the first column in table 1. Figures 1-4 show that only the curve of the GMV v of L₂ (Line No.2, at V₂=1 m³, v=126M^{-0.5}) comes closer to the KTV \bar{v} of L₆ (Line No.6, which follow eq. 4, v=86M^{-0.5}). The GMV v is also calculated at one pressure (P_1 =5 atm), two temperatures (T_1 =298.15 °K, T_2 =373.15 °K) and n = 5 mol as seen in table 2. Only L₂ (at V₂=1 m³) $v = 84.2M^{-0.5}$ comes closer to L₆ $v = 88.98M^{-0.5}$.

Materials	Eq.4	Eq.9; P ₁ =1 atm, P ₂ =10 atm, T ₁ =298.15 °K T ₂ =373.15 °K, n=1 mol, V				
	_	$V_5 = 0.001, 1$,10,100,1000 1	n ³		
	L ₆ ,T ₁ /	L_1, V_1	V_2	V ₃	V_4	V ₅
	T_2	$T_1:P_1/P_2$	$T_1:P_1/P_2$	$T_1:P_1/P_2$	$T_1:P_1/P_2$	$T_1:P_1/P_2$
		$T_2:P_1/P_2$	$T_2:P_1/P_2$	$T_2:P_1/P_2$	$T_2:P_1/P_2$	$T_2:P_1/P_2$
	2502	499/887	2804/4986	4986/8866	8866/15766	15766/28036
H_2	2891	536/953	3014/5360	5360/9531	9531/16948	16948/30139
	1776	354/629	1990/3538	3538/6292	6292/11188	11188/19896
He	2052	380/676	2139/3804	3804/6764	6764/12028	12028/21389
	887	177/314	994/1767	1767/3143	3143/5589	5589/9938
CH_4	1025	190/338	1068/1900	900/3378	3378/6008	6008/10684
	837	167/297	938/1668	1668/2966	2966/5274	5274/9378
H_2O	967	179/319	1008/1793	1793/3188	3188/5669	5669/10082
	671	134/238	752/1337	1337/2378	2378/4230	4229/7521
CO	776	144/256	809/1438	1438/2557	2557/4547	4547/8085
	671	134/238	752/1337	1337/2378	2379/4230	4229/7521
N_2	776	144/256	808/1438	1438/2557	2557/4546	4546/8085
	649	129/230	727/1292	1292/2298	2298/4086	4086/7267
NO	749	139/247	781/1389	1389/2470	2470/4393	4393/7812
	648	129/230	726/1291	1291/2296	2296/4082	4082/7259
C_2H_6	749	139/247	780/1388	1388/2468	2468/4388	4388/7804
	628	125/223	704/1251	1251/2225	2225/3957	3957/7037
O_2	726	135/239	756/1345	1345/2392	2392/4254	4254/7565
	536	107/190	600/1067	1067/1897	1897/3374	3374/6000
CO_2	619	115/204	645/1147	1147/2040	2040/3627	3627/6450
	535	107/190	600/1066	1066/1896	1896/3371	3371/5994
C_3H_8	618	115/204	644/1146	1146/2038	2038/3624	3624/6444
	524	104/186	587/1044	1044/1856	1856/3300	3300/5869
NO_2	605	112/200	631/1122	1122/1995	1995/3548	3548/6309
	466	93/165	522/928	929/1651	1651/2936	2936/5221
C_4H_{10} -n	539	100/177	561/998	998/1775	1775/3156	3156/5613
	422	84/150	473/840	840/1495	1495/2658	2658/4727
Cl_2	488	90/161	508/902	904/1607	1607/2858	2858/5082
	378	75/134	424/754	754/1340	1341/2384	2384/4240
C ₅ H ₁₁ OH	437	81/144	456/810	810/1441	1441/2563	2563/4558
	366	73/130	410/730	730/1298	1298/2307	2307/4103
C ₆ H ₅ OH	423	78/139	441/784	784/1395	1395/2480	2480/4411
Ratio v/\bar{v}						
$@T_1:R_{P1}/R_{P2}$		0.28/0.50	1.59/2.82	2.82/5.01	5.01/8.91	8.91/15.84
$@T_2:R_{P1}/R_{P2}$		0.27/0.47	1.50/2.66	2.66/4.74	4.74/8.43	8.43/14.98

Materials	Eq.4	Eq.9; P=5 atm, T ₁ =298.15 °K, T ₂ =373.15 °K, n=5 mol						
	_	V_1 - V_5 =0.001,1,10,100,1000 m ³						
	$L_6, T_1/T_2$	$L_1, T_1/T_2$	$L_2, T_1/T_2$ $L_3, T_1/T_2$		$L_4, T_1/T_2$	$L_5, T_1/T_2$		
		\mathbf{V}_1	V_2	V_3	V_4	V_5		
	2502/200	400/507			00/7/0270			
	2502/289	499/527	2004/2016	100 (15051	8867/9378			
H ₂	l		2804/2966	4986/52/4		15/68/166/7		
	1776/205	354/374			6293/6656			
He	2		1990/2105	3539/3743		11190/11836		
CH ₄	887/1025	177/187	994/1051	1768/1869	3143/3324	5589/5912		
H ₂ O	837/967	167/176	938/992	1668/1764	2966/3137	5274/5579		
СО	671/776	134/141	752/796	1338/1415	2379/2516	4230/4474		
N ₂	671/776	134/141	752/796	1338/1415	2379/2516	4230/4474		
NO	649/749	129/137	727/769	1292/1367	2298/2431	4087/4323		
C ₂ H ₆	648/749	129/137	726/768	1291/1366	2296/2428	4083/4318		
O ₂	628/726	125/132	704/744	1251/1324	2226/2354	3958/4186		
CO ₂	536/619	107/113	600/635	1067/1129	1898/2007	3375/3569		
C ₃ H ₈	535/618	107/113	600/634	1066/1128	1896/2005	3371/3566		
NO ₂	524/605	104/110	587/621	1044/1104	1856/1963	3301/3491		
C ₄ H ₁₀ -n	466/539	93/98	522/552	929/982	1651/1747	2936/3106		
Cl ₂	422/488	84/89	473/500	841/889	1495/1581	2659/2812		
C ₅ H ₁₁ OH	378/437	75/80	424/448	754/798	1341/1418	2384/2522		
C ₆ H ₅ OH	366/423	73/77	410/434	730/772	1298/1373	2308/2441		
Ratio v/\bar{v}		0.28/0.27	1.58/1.50	2.82/2.66	5.01/4.74	8.91/8.42		

Tabel 2: The GMV v and KTV \bar{v} values at P=5 atm, T=298.15&373.15 °K, n=5, V₁-V₅

Second Trial: Tested at several pressures at 10 m³. The GMV v is also calculated at V=10m³, pressures (*P*=10, 20, 40, 60, 80, 100 atm; each pressure is represented by a corresponding line i.e. L₁ and so on), two temperatures (*T*₁=523.15 °K, *T*₂=773.15 °K) and *n* = 50 mol as seen in table 3. Figures 5,6 show the effect of these thermodynamic parameters on the GMV v which follow the general power formula $v = B * M^{-0.5}$ m/s; where *B* value increases with *T* and *P* and decreases with concentration (*n*/*V*). At L₁ (P₁=2, T₁ and T₂) the B value (B=109) of GMV v converges with the B value (B=105) of KTV \overline{v} .

Materials	Eq.4	Eq.9; V=10m ³ , T ₁ =523.15 °K, T ₂ =773.15 °K, n=50 mol, P in (atm)					
	T_1/T_2	P ₁ =10	P ₂ =20	P ₃ =40	P ₄ =60	P ₅ =80	P ₆ =100
		T_{1}/T_{2}	T_1/T_2	T_{1}/T_{2}	T_{1}/T_{2}	T_{1}/T_{2}	T_{1}/T_{2}
H ₂	2344/2849	3838/4231	4564/5032	5427/5984	6006/6622	6454/7116	6824/7525
He	1663/2022	2724/3003	3239/3571	3852/4247	4263/4700	4580/5050	4843/5340
CH ₄	831/1010	1360/1500	1618/1784	1924/2121	2129/2348	2288/2523	2419/2667
H ₂ O	784 /953	1284/1415	1527/1683	1815/2002	2009/2215	2159/2380	2283/2517
CO	629/764	1030/1135	1224/1350	1456/1605	1611/1777	1731/1909	1831/2019
N ₂	629/764	1029/1135	1224/1350	1456/1605	1611/1777	1731/1909	1831/2018
NO	608/739	995/1097	1183/1304	1407/1551	1557/1716	1673/1844	1769/1950
C ₂ H ₆	607/738	994/1096	1182/1303	1405/1549	1555/1715	1671/1843	1767/1948
O ₂	588/715	963/1062	1145/1263	1362/1502	1508/1662	1620/1786	1713/1889
CO ₂	502/610	821/906	977/1077	1162/1281	1285/1417	1381/1523	1461/1610
C ₃ H ₈	501/609	821/905	976/1076	1160/1279	1284/1416	1380/1522	1459/1609
NO ₂	491/596	803/886	955/1053	1136/1253	1257/1386	1351/1490	1429/1575
C ₄ H ₁₀ -n	437/531	715/788	850/937	1011/1114	1119/1233	1202/1325	1271/1401
Cl ₂	395/480	647/713	770/849	915/1009	1013/1117	1088/1200	1151/1269
C ₅ H ₁₁ OH	354/431	580/640	690/761	821/905	908/1001	976/1076	1032/1138
C ₆ H ₅ OH	343/417	562/619	668/737	794/876	879/969	945/1041	999/1101
Ratio v/\bar{v}		1.64/1.48	1.95/1.77	2.32/2.10	2.56/2.32	2.75/2.50	2.91/2.64

Table 3: The GMV v and KTV \bar{v} values at P=10-100 atm, T=523.15&773.15, n=50, V=10m³

Third Trial: Tested at several pressures at3 x10⁵ m³. The GMV v is also calculated at V=300000m³, pressures (*P*=10, 15, 20, 25, 30, 35 atm), one temperatures (*T*₁=523.15 °K) and n=5000 mol (c=0.017 mol/m³). The calculated values of the GMV v followed the general power formula $v = B * M^{-0.5}$ m/s; where B = (717, 794, 853, 902, 944, 980) while the *B* value of KTV \overline{v} was equal to 105. We may conclude the *B* values of GMV v become higher than KTV \overline{v} values by a factor 7-9, in comparison with *B*=105, for concentration of 0.017 mol/m³ at 523.15 °K as seen in figure 7.

The Ratio of GMV v / KTV $\overline{\mathbf{v}}$: We estimated the **ratio** of $\sum [GMV v]$ from Equation (9)/ KTV v from Equation (4)] for N materials (N=16), as seen in table1, which is given by the following formula:

 $\mathbf{Ratio} = \sum \frac{GMV \ v \ \text{from Eq.9}}{KTV \ v \ \text{from Eq.4}} / \mathbf{N} \qquad (12)$

Ratio-1 = 0.25x - 0.55, $R^2 = 1...$ at 298.15°K and 1 atm. for V₁-V₅, for N=16, (L₁in Fig.6).

Ratio-2 = 0.25x - 0.30, R² = 1... at 298.15°K and 10 atm. for V₁-V₅, for N=16, (L₂in Fig.6).

Ratio-3 = 0.25x - 0.58, R² = 1...at 373.15°K and 1 atm. for V₁-V₅, for N=16, (L₃in Fig.6).

Ratio-4 = 0.25x - 0.33, R² = 1...at 373.15°K and 10 atm. for V₁-V₅, for N=16, (L₄in Fig.6).

Plotting the average molecular velocities ratio of GMV v / KTV \overline{v} i.e. (v_{E9}/v_{E4}) versus the volumes (V₁-V₅, for 16 materials) gives a straight line with correlation coefficient equal to one (R²=1). Figure-8 shows that the behavior of the molecular velocities ratio follows the pressure effect (P₁=1 atm, P₂=10 atm) rather than temperature effect (T₁=298.15 °K, T₂=373.15 °K). Line No.1, L₁ (P₁=1 atm, T₁=298.15 °K) and Line

www.joac.info

No.3, L_3 (P₁=1 atm, T₂=373.15 °K) have close intercepts which are higher than the intercepts of L_2 (P₂=10 atm, T₁=298.15 °K and L_4 (P₂=10 atm, T₂=373.15 °K).

Bimolecular reactions rate constants: A- We calculated the total collision frequency Z_{AB} -GMV ν and Z_{AB} -KTV $\overline{\nu}$ and pre-exponential factors A-KTV and A-GMV from GMV and KTV velocities for the gas phase reaction $H_2 + I_2 \rightarrow 2HI$. The molecular collision diameter d_{12} of I_2 and H_2 value is 4.54 x 10⁻¹⁰ m, the reduced mass μ value is 3.321 x 10⁻²⁷ kg and the activation energy is 40361 cal mol⁻¹[17] applying equation (5). We also calculated the rate constants at six temperatures as seen in tables-4,5. Figure 9 showed that the calculated rate constant using GMV ν is better than that of KTV $\overline{\nu}$ using equation no. 6.

T ^O K	Z-KTV	Z-GMV	A-KTV	A-GMV	EXP(-E/RT)	RATE- KTV	RATE- GMV	EXP.
584	1.73E+29	4.16E+28	9.46E+11	2.28E+11	1.06986E-16	1.01E-04	2.44E-05	4.45E-05
589	1.76E+29	4.20E+28	9.62E+11	2.30E+11	3.60622E-16	3.47E-04	8.30E-05	1.32E-04
603	1.84E+29	4.29E+28	1.01E+12	2.35E+11	7.6355E-15	7.68E-03	1.80E-03	2.52E-03
611	1.89E+29	4.36E+28	1.04E+12	2.39E+11	4.64648E-14	4.81E-02	1.11E-02	1.41E-02
619	1.94E+29	4.41E+28	1.06E+12	2.42E+11	2.06405E-13	2.19E-01	4.99E-02	6.43E-02
636	2.05E+29	4.53E+28	1.12E+12	2.48E+11	4.26925E-12	4.79E+00	1.06E+00	1.34E+00

Table 4: The rate constants of H_2+I_2 reaction at different temperatures

Tuble 5. Dogartamine values of the face constants of 112+12 reaction								
Ln(R-KTV)	Ln(R-GMV)	Ln(R-EXP)	T(^O K)	1/T				
-9.198793	-10.622617	-10.02002137	584	0.000412				
-7.966314	-9.3985384	-8.932708635	589	0.000405				
-4.868699	-6.3233637	-5.983496377	603	0.000388				
-3.034233	-4.503187	-4.261580482	611	0.000377				
-1.51819	-2.9995925	-2.744195648	619	0.000367				
1.5659087	0.0571329	0.292669614	636	0.000348				

Table 5. Logarithmic values of the rate constants of H_2+I_2 reaction

B- We calculated the total collision frequency Z_{AB} -GMV ν and Z_{AB} -KTV $\overline{\nu}$ and pre-exponential factors A-KTV and A-GMV from GMV and KTV velocities for the gas phase reaction 2NOCl \rightarrow 2NO + Cl₂. The molecular collision diameter d₁₂ value is 2.82 x 10⁻¹⁰ m, the reduced mass μ value is 5.1036 x 10⁻²⁶ kg and the activation energy is 24387.59 cal/mol[17] applying equation (5). We also calculated the rate constants at seven temperatures as seen in tables-6,7. Figure 10 showed that the calculated rate constant using GMV ν is better than that of KTV $\overline{\nu}$ using equation no. 6.

						RATE-	RATE-	EVD
I(K)	Z-KIV	Z-GMV	A-KIV	A-GMV	EXP(-E/RI)	KIV	GMV	EXP.
298	4.85E+22	1.37E+24	6.82E+10	1.92E+10	1.3226E-18	9.02E-08	2.54E-08	1.19E-08
313	4.51E+22	1.26E+24	6.99E+10	1.94E+10	9.51109E-18	6.64E-07	1.85E-07	8.54E-08
333	4.11E+22	1.13E+24	7.21E+10	1.98E+10	1.00129E-16	7.22E-06	1.98E-06	8.99E-07
353	3.77E+22	1.02E+24	7.42E+10	2.00E+10	8.07315E-16	5.99E-05	1.62E-05	7.25E-06
373	3.47E+22	9.24E+23	7.63E+10	2.03E+10	5.20375E-15	3.97E-04	1.06E-04	4.67E-05
400	3.12E+22	8.17E+23	7.90E+10	2.07E+10	4.79143E-14	3.78E-03	9.91E-04	4.30E-04
420	2.90E+22	7.50E+23	8.09E+10	2.09E+10	2.06409E-13	1.67E-02	4.32E-03	1.85E-03

Table 6: The rate constants of 2NOCl reaction at different temperatures

Ln(R-	Ln(R-			
KTV)	GMV)	Ln(R-EXP)	T (⁰ K)	1/T
-16.22169	-17.488246	-18.24884795	298	0.003356
-14.22428	-15.503112	-16.27587647	313	0.003195
-11.83931	-13.133629	-13.92174032	333	0.003003
-9.722895	-11.031791	-11.83436181	353	0.002833
-7.831918	-9.1545919	-9.970830856	373	0.002681
-5.576941	-6.9170861	-7.75066667	400	0.0025
-4.0921	-5.4444427	-6.29013538	420	0.002381

Table 7. Logarithmic values of the rate constants of 2NOCl reaction

Other four examples were worked such $CH_3I+(CH_3)_2-N-C_6H_5 \rightarrow (CH_3)_3-N^+(C_6H_5)I^-$, $NO+O_3 \rightarrow NO_2+O_2$, $C_2H_4+Butadiene \rightarrow cyclohexene and <math>CH_3I+CS(NH_2)_2$ in solution[17]. The results of these reactions also showed that the calculated rate constants using GMV v is better than that of KTV \overline{v} using equation (6) as seen in Figures 11-14.

CONCLUSIONS

An equation for calculation of a generalized molecular velocity GMV v of the molecule in any reactor has been derived. It includes the thermodynamic parameters T, P, V and n, while the kinetic molecular velocity KTV \bar{v} includes T only. The calculated values of the GMV v in Equation (9) are different from those calculated in KTV \bar{v} of Equation (4) because Equation (9) takes the thermodynamic parameters (n, T, P)and V into consideration. The application of the GMV v in calculating of rate constants of bimolecular reactions gave mcg better fitting with experimental data than that of KTV \bar{v} ; a fact that revives the collision theory as seen in figure 15.

REFERENCES

- [1] R. A. Alberty, "Physical Chemistry" 6th Ed., John Wiley & Sons Books, **1983**, p575-585, ISBN0-471-09284-3.
- [2] P. Atkin and J. De Paulo., "Atkin's Physical Chemistry" 8th Ed., W. H. Freeman and Company Books, **2006**, p747-755, ISBN0-7167-8759-8.
- [3] R. G. Mortimer, "Physical Chemistry" 3th Ed., Academic Press Books, **2008**, p383-393, ISBN978-0-12-370617-1.
- [4] W. J. Moore, "Basic Physical Chemistry", **1986**, Prentice Hall of India, p328-p332.
- [5] K. K. Shah and G. Thodos, "Industrial and Engineering Chemistry", 1965, 57(3), 30; L.K.

www.joac.info

Athow, 1982, "Real gas considerations for determining physical and thermodynamic properties of gases involved in the prediction of the effects of internal explosions" MSc Thesis; Monterey, California: U.S. Naval Postgraduate School,

 $http://archive.org/stream / realgasconsidera00 atho/realgasconsidera00 atho_djvu.txt.$

- [6] S. M. Walas, "Reaction Kinetics for Chemical Engineers", **1959**, McGraw-Hill, NY, Chap. 11.
- [7] G. Soave, "Equilibrium Constants from a Modified Redlich–Kwong Equation of State", *Chem. Eng. Sci.*, **1972**, 27, 1197-1203.
- [8] D. Y. Peng and D. B. Robinson, "A New Two-Constant Equation of State". Ind. Eng. Chem. Fundam. 1976, 15, 59–64. doi:10.1021/i160057a011.
- [9] R. Stryjek and J. H. Vera, *Can. J. Chem. Eng.* **1986**, 64, 323–333. doi:10.1002/cjce.5450640224.
- [10] R. Stryjek and J. H. Vera, *Can. J. Chem. Eng.* **1986**, 64, 820–826. doi:10.1002/cjce.5450640516.
- [11] R. Jr. Elliott, S. J. Suresh, and M. D. Donohue, *Ind. Eng. Chem. Res.* 1990, 29 (7), 1476–1485. doi:10.1021/ie00103a057.
- [12] J.H. Dymond, and E.B. Smith, "The virial coefficients of pure gases and Mixtures", **1980**, Oxford University Press.
- [13] B. R. Muhyedeen, *European Journal of Scientific Research*, 2008, 22, 4, October.
- [14] B. R. Muhyedeen, European Journal of Scientific Research, 2009, 26, 2, Feb.
- [15] B. R. Muhyedeen, European Journal of Scientific Research, 2013, 100, 1, April.
- [16] W. R. Stahl, Bulletin of Mathematical Biophysics, **1961**, 23 (4), 355, December.
- [17] G. M. Barrow, "Physical Chemistry" 5th Ed., 1983, Tata McGraw-Hill, New Delhi, p747.