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ABSTRACT 
Vector quantization (VQ) determines representative set of vectors, each of them called a quantizer/code 

vector/template/centroid for unsupervised multi-dimensional data sets (i.e. without teaching signal or 
response).  The limitation is that it does not have the concept of neighborhood and topology.  The 

geometric proximity of pre-synaptic biological neurons in the brain was the source of inspiration for 

Kohonen-self-organizing-map (Kohonen-SOM) with a grid of 1D-, 2D- or 3D- frame of a vector-, matrix- 

and tensor- of equi-distant neurons which are not connected to each other.  The shapes of the 
neighborhood structures which are in wide use are diamond, square and hexagonal.  Winner takes all 

(WTA) and winner takes most (WTM) mechanisms are used to determine winning neurons or quantizers. It 

belongs to a class of unsupervised-NN model for numeric data employing competitive learning with 
neighborhood lateral interaction. The end result is arriving at a topological structure hidden in the data 

set.  In the visual display of Kohonen map, clusters of different classes are clearly distinguished and two 

patterns close in input space are nearer in output space.  SOM is equivalent as a special case to the 

popular multi-dimensional-scaling (MDS) and regularized mixture models.  U-, U*-, P-, U*F procedures 
are used in the display of average distances of winning neurons from neighbors.  ViSOM, generative 

topographic mapping, consensus tree etc., are recent visualization methods.  The noteworthy advances in 

architectures are evident in tree-, evolving-tree, self-evolving-tree-, hierarchical-, hybrid-hierarchical-, 
grey-, spherical-, geo-, parallel-, kernel-, granular-, greedy-granular-, median- and self-organizing-

relationship- SOMs. The scope of chemical science in this century is broad encompassing not only bio-, 

environmental-, geo-, marine-, drug-/ material-, clinical-, dietary- pharmaceutical- tasks but also atomic 
to macro-molecular systems at very-high-/very-low temperatures/pressures/sizes. The future thrust area of 

fundamental prime research is around chemical transformations to the present day universe since the 

formation of hydrogen, helium and lighter chemical-elements with the knowledge of particle physics mind 

blowing research. The references are sorted journal wise for ease of down loading from print/ online-or-
offline electronic resources. 
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INTRODUCTION 

 
Nature comprises of life, matter, energy and hidden nature-of-nature.  The origin of universe dates back to 
13.7 billion years.  The ants have been there on earth since hundred million years.  Human being on earth 

is 200,000 years young.   Science, even if counted from Aristotle started two thousand years ago. The 

experimental and theoretical foundations started just before two to three centuries. Biologists precisely 
describe life with three primary characteristics viz. digestion, locomotion and reproduction. Modern 

chemistry, quantum physics, theoretical biology, brain chemistry etc. did not even complete hundred years 

of practice.  Information science, hardware and software systems, artificial intelligence have their origin 

around nineteen fifties.  The man (Homo-sapeon) amazed at nature, then appreciated, admired and even 
worshipped. Slowly he grew to understand and mimic it. The efforts are directed towards even to control 

surrounding nature for what he thought to be beneficial to the then existing/future mankind or animal 

kingdom.  A tiny attempt is in the direction of artificial life to simulate/emulate part of nature and with a 
far off goal of creating life in Toto to achieve eradication of dreaded diseases, enhancing the human life 

span to 150 years, clean environment maintaining eco-balance and diversity at the same time. Around 

1890s, William James [1], a renowned psychologist mentioned in his two volumes set entitled „Principles 
of Psychology‟ that discrimination and association are two indispensable components for orderly progress 

of scientific psychology. The analogy is that one of the two legs of a walking man is always behind the 

other criticized as a pessimists‟ dogma, while one leg is ahead of the other is an optimist‟s hope. The fact 

is both are true, with the exceptional rarity being that both are at the same dot spot. Apart from biological 
neural nets, central themes of psychiatry, the role of brain in voluntary and involuntary functions of a 

living species are amazing.  The core activity in mathematical neural network (MaNN) research is around 

improving the function of (artificial) mathematical neuron (or processing unit) and architecture.  The latter 
comprises of direction of connection between neurons, transfer functions (TFs) and accumulation 

operators.  The training algorithms and basis/object functions that are available in mathematical sciences 

are borrowed here.  In a few instances they are modified to suit the context.  

 
Biological neuron: Biological neuron is the basic unit of brain and nervous system.  Neuroscience probes 

into functioning of sense organs, memory/thought/consciousness, voluntary and an involuntary activity as 

a result of the electrical spikes generated and transmitted in neurons.  The cumulative effect of confluence 
of input signals and their synaptic strength, activation function to fire output for a bundle (10,000) of 

neurons produce miraculous outcomes.   

 
Neuron model or artificial neuron: McCulloch and Pitts (MP) proposed [2] a simple model of neuron in 

1949 with fixed weights between neurons and binary inputs.  It explained Boolean 'not' gate and MP-NN 

mimicked 'AND', 'OR' binary truth table.  The enhanced power of artificial neuron (now popular as 

processing unit in computational intelligence) to transform input into output is through a variety of transfer 
functions (TFs) viz. sigmoid, atanh, radial basis function (RBF), wavelet, ridgelet,  support vectors (SVs), 

complex/Geometric/algebraic equations, fuzzy formula.  Some of the neurons derive their name from TFs 

employed as activation functions.  Different confluence operators gave birth to sigma, pi, mu and fuzzy 
neurons. McCulloch and Pitts, Rossenblaut, Hodgkin-Huxlay neurons are named after the scientists.  All 

these neurons come under the category of static type.  The feedback with and without time delay and 

distribution brought revolution in NN research to model dynamic and time series data.  IIR, FIR, 
NARMAX, recurrent, higher order tensors are like encapsulated modules bringing down the physical size 

of neural networks.  Quantum neuron is a hope of the future quantum computer.  Tensor notation for 

connection and pictorial representation is used to introduce artificial neurons, the heart of NNs.  An 

integrated circuit like neuron from software and hardware perspective is awaited for computational 
intelligence/bio-mimicking devices with the ultimate target of a human brain followed by super/hyper 

gadget.  
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Biological neural network (NN.Biol): The evolution of architecture of biological neural networks 
underwent phenomenal changes from species to species over long time/generations.  In human brain itself, 

there are more than 10
11 

neurons and as many as 10
4 
connections exist with different synoptic strengths for 

each neuron.  In the artificial NN front, the architecture did not even cross a primary stage from this 
perspective.  Yet, the astounding results excelling in accuracy for real time dynamic multiple processes 

over the two century old mathematical models are the impetus for open minded research.  The fixed 

architecture with input and output layers was proposed by McCulloch and Pitts [2].  The fixed weight 

stigma was surmounted by Rosenblatt by training weights with input patterns.  The failure of simple 
architecture to explain non-linearly separable tasks (XOR) was a death blow to progress of NNs for over 

25 years.  The hidden layer with non-linear TF was a breakthrough and successfully modeled XOR.  The 

back-propagation (BP) algorithm in training weights connecting neurons (Ws) confirmed a berth for NN 
research.  During the dark period of former NN paradigm, independent schools of thought due to 

Grossberg [3], Hopfield [4] and Anderson [5] worked with alternate architectures, firing criteria and 

weight up-gradation schemes. The progress in feed forward layered fixed architectures was in invoking 
different TFs, number of layers and accumulation operators.  Two hidden layers in MLP could model 

difficult non-linear transformation. In addition to layer wise connections, backward connections are 

involved in recurrent NN architecture.  Elman and Jordan NNs belong to partial recurrence connections.  

Hopfield NN has acyclic and cyclic architectures.  Fully recurrent with self feedback are the order of day, 
of course, with difficulties at training phase.  Recirculation architectures are a special type in this category. 

 

Mathematical-/Artificial- neural network (NN.Math, NN.Artfis): For clustering/classification tasks with 
unsupervised data containing only explanatory variables (X) without response (y),  Grossberg proposed 

ART type architecture with feedback from category to feature layer.  Kohonen architecture has a grid of 

2D- or 3D- set of neurons connected from input layer using WTA heuristic. Neocognitron, LVQ and 

ARTMAP are supervised NNs corresponding to the unsupervised counterparts SOM and ART.  The 
progress in ARTMAP and SOM type NNs is both extensive and intensive during the last two decades.  

Time delay NN architecture includes delay period, distribution and transmission of the delayed output of 

the hidden layer.  Growing architectures both in layered and unlayered type received attention to arrive at 
optimum architecture depending upon the nature of task. Combination of two NNs or more than two gave 

birth to sequential and hierarchical structures.   

 
In yester years, the change in architecture is mostly manual as per the choice of user.  The software 

TRAJAN has a provision to change number of layers/neurons in them/TFs in feed forward (FF-) NNs 

based on built-in heuristics in its intelligent problem solver (IPS) mode.  Professional II, in one of its 

forms, completely automates the architecture and training process. Predict from Neural ware is a healthy 
combination of NNs and statistics in right proportion for twenty first century tasks just like a multi-drug 

therapy and intervention procedures for multiple organ treatment. MATLAB in its tool box is a white box 

approach with open source code.  In recent times, genetic algorithm (GA) and evolutionary programming 
(EP) are used in automating architecture as well as training of Ws.  

 

1.1 Vector Quantization: In 1980s, an unsupervised vector quantization method to represent (m-D) real 
data by a finite number of vectors called quantizes (Fig. 1) was proposed which is also referred as hard-VQ 

(or hard-c-means) in fuzzy literature. It divides unsupervised data patterns into true (natural) groups.  VQ 

is applicable when no teaching signal (y) is available. The objective is to determine a small but 

representative set of vectors (coordinates of centers).  It is applicable for conceptualization, creating new 
categories/concepts, compression, dimension reduction and clustering from examples (of images/speech or 

signals from instruments [6, 7].The synonyms of quantizer are centroid, code vector or template.  The 

number of quantizers is always less than the number of samples. The quantizers (vectors) are determined 
by minimizing the difference between expected Euclidean distance between all data vectors and their 

corresponding quantizers, or minimum loss of information in the model.  This method projects R
d 

data 

space into a subspace exploiting the internal structure of input space.  However, the number of quantizers 
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and criteria for quality of clustering are user chosen quantities.  The noise in data which perturbs VQ 
method, is taken care of in channel optimized VQ. 

 

 

x < (-n) is approximated as (–n-1) Eg. Values less than -2 are represented by -3 

 

 

 

 

 

Red star (*): code vector representing points falling in region covered 

 full blue lines ( ___ ); codebook is set of all code vectors 
 

Fig. 1 Vector quantization (VQ)  

 

Recent advances.VQ: VQ is similar to clustering methods like k-means or LBG algorithm. Recently, 

fuzzy-VQ, annealed-VQ and information-VQ are proposed. The objective is to arrive at minimum 

quantization error [8, 9], but not to achieve good 
generalization error. The optimization criterion for annealed 

VQ is equal to maximum likelihood employed for mixture of 

Gaussians. In the information theoretical approach of VQ, 
neighborhood learning is not a matter of concern. 

 

Hybrid VQ-SVM: A hybrid VQ-SVM frame work was proposed to incorporate prior domain knowledge in 

NN.  It is a hierarchical semi-parametric machine learning method applied to imbalanced datasets. 
 

Elastic nets: Here topology is introduced by adding penalty term to annealed VQ error.  This method is 

less suitable for visualization of high dimensional space [10].  

 

2 Self Organizing Map (SOM): In feed forward NNs (MLP, RBF, Fuzzy-NN), the input is transformed 

into output by supervised learning.  Willshaw and Van der Malsburg proposed in 1976 a self organizing 

unsupervised model based on geometric proximity of pre-synaptic neurons, which are coded as correlation 
in electrical activity. In this NN, threshold learning is used.  The limitation is that dimension of output is 

equal to input resulting large number of connections.  

  
Kohonen SOM:  Kohonen [11-13] proposed and improvised [14-16] self-organizing map 

(SOM.Kohonen). The non-parametric unsupervised NN-SOM is a non-statistical data driven exploratory 

clustering method.  The modifications, advances of SOM are mind blowing and applications over the years 
are extensive [17-263].  Even a bibliographic citation is beyond the scope of this review.      In its naive 

form, it is also called Crisp-SOM to distinguish it from fuzzy-SOM reported by Kaburlasos [193]. It finds 

VQ   

  No neighborhood and no topology 

 SOM 

 Local minima 
 Neural Gas-NN 
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out rapidly the features and trends of clusters. To start with, the objective of SOM was to model the human 
brain, but, till to date, it is not successful in its entirety.  However, it is one of the best data mining tools 

and excelled many statistical and mathematical procedures. The primary target is to approximate high 

dimensional data to a low dimensional one. Crisp-SOM computes n-D reference vectors using convex 
combination in n-dimensional Euclidian space (R

n
).  Thus it captures locally the first order statistics in the 

training data. SOMs function better than classical clustering and principal axes (PCA, correspondence) 

techniques. 

Kohonen SOM is a variant of VQ with additional lateral interactions i.e. neighborhood effect. Here, 
topological property is the main perspective and generalized distortion is minimized.  SOM organizes itself 

to learn on its own and categorizes inputs into groups of similar patterns.  SOM itself is the end product in 

unsupervised classification task and is used for prediction.  NL-projection presents the m-D data in human 
perceivable (2D or 3D) form based on the similarities among the inputs [57]. 

 

2.1 Biological inspiration.SOM.Kohonen : The inputs of different sensory (visual, tactile, acoustic) organs 
are mapped on to corresponding areas of cerebral cortex [195] in an ordered manner.  The cerebral cortex 

envelops the brain and obscures other parts.  A biological neuron might have finite resource necessary to 

maintain the incoming synapses.  This might keep an upper limit on the total summed size of the incoming 

synapses. The artificial counterparts of somatotropic and visual maps belonging to cortical area are either 
erroneous or defective.  Kohonen [194] reported a remedy for this task.  

 

2.2 Architecture.Kohonen-SOM: The neurons in the co coordinating/ competing/ clustering/classification 
layer are in a fixed frame of 1D-, 2D- or 3D- structure containing a vector, matrix or tensors of neurons. 

The neurons are equidistant, but not interconnected with each other (Fig. 2).   
                              2D- Input Data – Two non overlapping  linearly separable linear clusters  
     X1     1          1.1          1.2          1.3          0.1          0.2          0.3          0.4 
     X2     0          0.1          0.2          0.3            1          1.1          1.2          1.3 

Scatter diagram of data 

 
 

 

Kohonen map architecture SOM display 

 
1D- 18 neurons 
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2D- 4 x 4 neurons; gridtop 

 

 

 
3D 4 x4 x2 hexatop 

 

 

 

Fig. 2 SOM model of two non-overlapping linearly separable clusters with different architectures  

 
The input layer is fully connected in the forward direction to each of the neurons in the Kohonen layer.  

The number of neurons in the input layer is equal to the number of variables in the data matrix.  Each 

neuron in Kohonen layer has a single weight vector with dimension equal to input vector [13].   
  

2.3 Neighborhood architecture in SOM : The influence of neighboring neurons on the winning one during 

competition is the heart of SOM philosophy.  Different types of topologies viz. diamond, square, 

hexagonal and/or alternating among them are in vogue for neighborhood structure (Fig 3). SOM ensures 
realistic VQs only if topology of output grid and topology of input data are same.  

 
 

 
Topology : square; size =2 x 2 

 

 

 
Topology : square; size =4 x 5 
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Topology : hexagonal; size =3 x 3 

 

 
Topology : hexagonal; size =6 x 6 

 
 

 
Topology : Random; size =4 x 5 

 

 

 
Topology : Random; size =4 x 5 

 

 
cylinder  

Toroid 
Fig 3: Topologies prevalent in SOM-NN 

 

SOM on planar triangle surface: A new SOM on planar triangle surface was recently proposed.  It is 

derived from conformal SOM.  The mapping of the model (curved seamless) surface and the sphere 
surface is one-to-one.   

 

Border effect in Kohonen-SOM: The grid points at the boundary have less number of neighbors compared 
to the units inside the map.  This inherent less neighborhood of neurons results in less number of chances 

for up gradation.  It is referred as border effect [190] as it occurs along the border line of SOM map.   

 

Border effect                                                      

  The net result is the W vectors of these units collapse to the center of the input space 

 Remedy:   Mathematical solution – Heuristic weighting rule Local linear smoothing 

 global search for the best unit consumes a large CPU time  

 Uniform hierarchical structure of hyperbolic grid 

 accelerates the processing of the time consuming step 
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2.4 Data structure.SOM: The input data for today‟s SOM ranges from real values (binary/ floating point), 
images (pixels, voxels), non-numeric data (categorical, symbolic) and conceptual/ contextual sentences 

(abstracts, text of technical notes).  

 
2.5 Input.SOM: At the first level, the input is 1D- to m-D matrix of real values with NP patterns/ 

responses/ feature values. It does not require a priori knowledge of distribution of data, a great relief to 

overcome the strict non-adherence of data sets to the stipulations of statistics.  In Neural ware professional 

II software package, the dimensionality (1-D, 2-D, 3-D), shape (square, diamond, hexagonal, triangular), 
number of neurons in each dimension are all user chosen (Fig. 3) and fixed for a configuration. 

 

 

Fig. 3 : GUI frame of input for SOM in professional II neural network package 

 

2.6 Winner takes all (WTA) :  

The Euclidian distance of the Ws of PE in Kohonen 

layer to the incoming input is calculated.  The PE with 
minimum distance is called a winning neuron and the 

mechanism winner takes all (WTA) (Alg. 1).  WTA is as 

close as possible to the input (tensor) value and in an 
idealistic situation represents the output value itself.  

Each one of the neurons represents a cluster widely 

separated.  In other cases, more than one neuron is 
necessary for each cluster. The winning neuron may be 

considered as a quantizer. 

 

WTA                                                      

 Adaptive learning restricted to winner takes all    

 Under utilization or dead nodes hurdle   

 Some neurons will never become winners  

     due to random initialization   

Alg. 1: WTA                
Step  : -1 Input X  
Step  : 0 Initialisation of W 
    
Step  : 1 Cal Euclidian distance for all PEs (D) 
Step  : 2 Find the minimum of D 

Step  : 3 Winning neuron  PE with minimum D 
    
Step  : 4 output  of WTA                 1.0 

output of all other neurons  0.0   
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 Remedy:  

 Winner takes most (WTM) 

 neural gas   

 fuzzy competitive learning 

 

2.7 Winner takes most (WTM): Recently, more than one neuron is used.  The concept of next best is like 

in simplex optimization and the output is positive.  At convergence, topological ordering in input space i.e. 

neurons adjacent to lattice have similar synaptic weights.  
 

WTM                                                     

 Result is independent of initialization of locations of prototypes 

 Side effect  

 Remedy : Rival penalized competitive learning 

 

2.8  Output.SOM:  The outcome is a topographic mapping of multi-dimensional data  

into a low (1D-,2D-,3D-) space.  For instance, uni dimensional topology (1D) topology is similar to a bar.  

The information of a cluster is stored in Kohonen SOM as a group of nodes with short distances for 

patterns in a cluster and long distances for patterns in different clusters.  
 

2.9 Functioning of SOM: It is an unsupervised NN, mostly practiced as 2-D visualization tool showing the 

clusters.  A multi-dimensional exploratory variable (feature) data is transformed in SOM into 2-D or 3-D-
space with graph invariant properties. SOM implements VQ with a fixed size of the grid and a predefined 

neighborhood structure around winning neuron.  It employs internode's distances in a fixed output lattice. 

Topology preservation is the correspondence between positioning of patterns in m-D input and 2-D cluster 
space.  It creates classes based on their distances on a plane and thus similar data elements are placed close 

together.  Groups of neurons with short distance represent clusters.  Noticeably, SOM deals with 

topological relationships (e.g., adjacency) among output nodes without employing any explicit model of 

internodes (lateral) connectivity. 1D- SOM is a simple as possible (SAP) to start with and 2D-SOM is in 
routine use.  But, 3-D SOM finds a significant improvement.  SOM maps input such that similar signals 

excite neurons that are close together.  Neurons along with its neighbors compete to reproduce the input 

pattern.  The process is repeated several times for all patterns to arrive at a stable system.   It divides the 
input space into discernable categories and dynamically adjusts the size with respect to the distance to the 

origin [196]. 

 
2.10 Learning & training of SOM : In SOM Hebbian learning with and without forgetting schedules is 

used in training WIH (SOM) [195].  After each iteration of learning, all the Ws converging on to a neuron 

are divided by the sum of the incoming Ws (or square root of the sum of the squared Ws). W spreads over 

the structure of the data.  It decreases with neighborhood size. W adaptation will have smaller field of 
influence with increase of iterations.    

 
Hebbian learning in SOM                                                     

 Strengthens the association between the input (stream line) and winning neurons 

 Leads to unconstrained weight growth 

 Remedy : W normalization  
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In SOM, the training is competitive, cooperative and adaptive. 

The quality of classification of Kohonen SOM is measured by 

distortion. During training not only the winning neuron but also 

a few neighborhood neurons learn.  The neurons other than the 

winning are dictated by the topology and predefined radius.  The 

learning rate decreases within the cardinality distance of a 

neighbor neuron from the winning neuron.  The change of Ws is 

in tune with preserving the topological distance (information) of the input data (Alg. 2).  

 

If number of non-winning PEs < average frequency of neurons 
Then  Alter distances [ increase in non-winning PEs] 
  

If average frequency of number of non-winning PEs > average frequency 
Then Alter distances [ decrease in non-winning PEs] 

 

 

Alg. 2b: Conscience mechanism to find the winning set of neurons 
Input : select average frequency   

If number of non-winning PEs < average frequency of neurons 
Then  Alter distances [ increase in non-winning PEs] 
  
If average frequency of number of non-winning PEs > average frequency 
Then Alter distances [ decrease in non-winning PEs] 

 

 

Adjusted distance   formula 

 It results in uniform data representation in SOM layer 

 

 

 

2.11 Visual display of SOM results : There is more familiarity right from childhood to 

see/observe/analyze/inspect/generate 2-D color/grey scale visual world in geographic/population/political 
maps. Thus, the first and foremost simple desire of an end user of a soft or hard unsupervised modeling is 

to visualize the data clusters.  Definitely, not the clustering of nodes (neurons), weight profiles or even 

how well the method modeled the data. The later, no doubt, are more important for the data analyst, neuro-
compuational scientist, software personnel and researchers.  

Alg. 2: Training algorithm of SOM                  

Learning rate (user chosen) 

Initialization of W (code book vectors) 

Repeat until maximum iterations or SOM is 

stabilized 

select input vector  randomly 

WTA 

up gradation  of   W 

winner unit 

neighboring neuron  

Reduce learning rate 

End repeat 
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Dataset. Market_basket_data-SOM:  The dataset of super market contains 199 products groups [Fig.4] with 

193 639 transactions.  The SOM with 

60 x 40 nodes is used for the data 

matrix of 199 x 1999 with the entries 

of relative frequencies.  The training 

algorithm is expectation 

maximization (EM) using a value of 

1 to 3 for acceleration.  Here, the 

number of nodes (2400) is much 

higher than the number of points 

(199) clustered and thus it is an 

instance of emergent-SOM. 

SOM models are popular even among non-

mathematical application practitioners due to the 

multi-color/grey/marker visual display of hidden 

correlated relationships in data of feature/multi-

response spaces [205].  Code book vectors and 

distribution of data samples are two basic approaches 

in developing visuals of the results of SOM. The 

visual output of SOM with rectangular or orthogonal 

grids has exemplary legibility. The grid of SOM is 

non-linear and can be considered as a compromise 

between a high dimensional set of clusters and the 

2D-plane [Fig.5] generated by any set of principal axes [202].      

For each node, the visualization framework [196] allows the display of graphical attributes like 

3D-graph type, colour, size, texture or text labels.  For visualization of SOM output, it is desirable that all 

neurons receive equal geometric treatment. Some of the post-processing techniques in visual display of 

 

Fig. 4 SOM trained with EM for market basket data [courtesy of Ref 10]   

Height:  visualization of  marginal probabilities of the nodes;  Markers: winning 
nodes  

 

(a) SOM display for XOR 

 

(b) Dual gradient display 

 

(c) 8-clusters with k-means 

 

(d) 4-clusters with k-means 

Fig. 5: Display of artificial data sets for XOR and multiple-

clusters [courtesy of Ref 202] 
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SOM output are Cluster Connections, P-matrix or U-matrix and their modifications. They incorporate the 
distance information in the visual display by using coloring schemes.   

Tree representation of SOM results: The root is placed at the threshold representing a single cluster 

containing the entire SOM [192].  The process of SOM gives a series of nested clusters which can be 
represented in a tree format.  The leaves are attached at the 

lowest threshold, where each neuron forms a cluster of its 

own.  The tips show the individual elements found in the 

corresponding cluster.  Branch length is calculated as the 
difference between the thresholds corresponding to the ends 

of the branch.  The lower threshold marks the point where the corresponding cluster is split.  Thus, the sum 

of all branch lengths on the path from the loop to the last node is the same for each path.  It is equal to the 
difference between maximal and minimal threshold values.  A branch with black shade represents that no 

majority is found.  Phylogentic trees can also be depicted in a similar manner.  The corners of phylogentic 

trees are squared while those of SOM are round. The display of protein sequences is compared.  When 
phylogentic tree is placed orthogonal to the SOM surface, the visual understanding is superior [206].   

 

Unified distance matrix (U-matrix): The individual neurons of the SOM are represented with the cells on a 

colored/grey/black/white with shading based on the 
average distance from this neuron to its neighbors.  

The black color reflects largest while white with 

zero distances (Fig. 6).  The difference between 
zero and maximum distance is represented by a 

continuous fading black and white or the spectrum 

of visual colors. 

 

 

 
 

 

Samsonova [206] used the largest distance between any two adjacent neurons.  Here, the light areas 
contain similar neurons.  The dark areas function as boarders between the clusters.  The grey areas are 

interpreted in two ways.  The first one is that the distances between neurons are medium sized.  The other 

possibility is that the neurons are very similar to their neighbors on one side, while very far off on the other 
side.  This ambiguity is cleared by doubling the original grid density.  The advantage is increased visual 

clarity where in half the cells represent neurons and the remaining their distances from the neighboring 

ones. 

 The local cluster boundaries are visually presented in U-matrix method.  It is now a popular visualization 
technique to pin point clusters in the output of SOM. The local cluster boundaries are visually presented 

[205] from pair wise distances of neighboring prototype vectors.  It is called unified distance matrix or U-

matrix.  
U*-matrix (Ultsch 2003B): It is applicable to large sized SOMs.  The U-matrix value is multiplied by a 

scaling factor induced by the local density of the data points around the corresponding prototype vector.  

phylogenic tree + SOM                                                       

  It is manual and requires aggregation 

 Remedy :  Tree representation 

Unified distance matrix (U-matrix)                                                     

 Not suitable for large space SOMs 

 Remedy : Gradient filed technique 

 Dots tend to obscure the shading in large SOM maps 

  Indistinguishability of neurons from their borders. 
 Remedy: Somsonova et al [206]  

   

Fig. 6  Visualisation of SOM with U-matrix (a)shading as per average distance of neuron to its 

neighbors (b) Grid distance in (a) is doubled and  dot is a mark (c) distances between the 
neighboring neurons indicated by shading borders [courtesy of Ref 206] 
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The elements of U-matrix are positive sum of the distances of each node to its direct neighbors.  If the data 
density is low the distances to the neighboring areas is high and vice versa.   

SOM visualization-Cluster detection (discovery): A 

variant of U-matrix method is U*F approach. The 
cluster borders are generally depicted as black.  The 

cluster areas are shaded based on a convention, for 

example, the average distance between the nodes in the 

cluster rather than the distance between the 
neighboring nodes. 

P-matrix method:   It displays the number of samples that are within a sphere with a certain radius around 

prototype vectors.  The radius is a quantile of pair wise distances of the data. 
Gradient filed technique: Polzlbauer [205] proposed gradient field technique.  It smoothens over a broader 

neighborhood.  This method applied is altogether a different style of representation. 

Display methods disregarding topology of SOM: Prototype method belongs to this category and identifies 
homogeneous regions.  Kaski and Kohonen [16] reported display based on gradients. 

Hit histograms: A plot of names and categories mapped on to a unit shows the distribution of data.  

Smoothed histograms show the connections of map nodes that are close in feature space.  Here, each data 

sample is mapped to a number of map units. 
Another extension of SOM display is DIPOLSOM.  It computes a distance preserving projection. The 

nodes are moved in an additional projection layer by employing a heuristic online adaptation rule.  Map 

lattice is used as a platform in which the different shades of colors or markers of different size depict the 
quantitative information.  The advances in displays in geography paved way to the improvements in SOM 

visualization.  The projections of the single dimension of the code vectors are called component planes.  

The plot of component planes in all dimensions reveals all information about the prototype vectors.  But, it 

is not easy to infer the cluster structure from these maps. 
Adaptive Coordinates [105, 185, 235, 239] and Double SOM [100] allow visualizing the original structure 

of the data in a low-dimensional output space.  They use a heuristic updating rule to move and group the 

output nodes in a continuous output space. 

 Post-processing techniques are not used 

 Do not preserve intra-cluster and inter-cluster distances  

 distances between codebook vectors are not directly represented in the map 

 (shift to visualization) U-matrix: The clusters are visualized and it shows the relative distances 

between maps nodes on the whole map.  The distance between W vectors of map units and their 

neighbors is calculated. The two individual patterns neighboring classes are close in the input 

space. 

 

 

Kaski et al. [55] reported that a projection method 

necessarily makes a tradeoff between trustworthiness and 

continuity.  The trustworthiness guarantees that at least a 
portion of the similarities will be perceived correctly 

[55]. Other measures are topology preservation [110, 

112], and rank order.  SOM and CCA methods have a 

high trustworthiness, while Isomap and Local Linear Embedding are inferior in this respect. The 
performance measure was defined for SOM with rectangular lattices and extension is proposed to other 

general lattices.  

Calibration: Calibration is mapping of data on a trained SOM 
[206], where in each pattern is assigned to the node that is most 

similar to it.  The result is that some nodes may get many data 

elements, while others none at all.  The nodes with no data are 

U*F method 

 The maps are poorly readable  

 Reason :  Shading bordered clusters                                 
                                areas in multiple colors 

 Remedy : A larger size of the SOM display  

If Visualized proximities hold in original space 
Then Trustworthy 

 
If All  proximities of   original data are Visualized 
Then Continuous 

Calibration 

 The tight and loose clusters are clear 
from the shades  
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crossed out and are not used in cluster analysis.  Here, the clusters are shaded according to the average 
distance between the data elements rather than nodes with in the corresponding cluster.  Here, also white 

color indicates identical elements, while the black represents the largest distance between two elements in 

the data set.  A cluster with single element is called singleton and is represented by the number encircled 
for singletons. The color is obviously white due to the fact the distance of any point to itself is zero.  

Geometric topographic mapping [GTM]: It is proposed as an alternative to SOM, where in the output 

space is continuous.  GTM models the probability distribution in feature space.  The magnification factors 

[171] describe local stretching of the map as ellipsoids in a discrete number of lattice space centers. 
Kigiwig method: Here, there is a progressive darkening of the edges indicating the stronger differences 

between the concerned cells [202].  The joining of centroids of the non-empty cells is called the minimum 

spanning tree. It is also drawn on the output map.  The distances between the clusters are reflected in the 
visual display.  The  correct number of units and the stability of neighborhood relation with bootstrap 

procedure is used.  

Toroidal: The area associated with each neuron varies significantly (larger around the outer circle and 
compressed near the inner circle) on the surface of a torous. Thus, it fails to offer any intuitive readable 

visible map.   

Spherical SOM: It is visually more effective than toroidal one.  

Generative topographic mapping: Samsonova [193] proposed GTM and is an extension of Kohonen SOM 
based on mixture models.  It is based on constrained mixture Gaussians which assumes (a priori) 

parametric (Gaussian) pdf.  GTM defines logarithm of 

likelihood as an object function.  The centers in the data 
space are non-linear functions of the position of the 

nodes on the topological maps.  The parameters are set of 

weights.  GTM with hard wired structure is better if topology preservation is prime criteria.  The nonlinear 

function mapping of the positions of neurons in the data space is user chosen.  The parameters are 
optimized by maximum likelihood method like EM which guarantees convergence to a local minimum.  It 

automatically trains many SOMs, generated by different random seed numbers.  A tree representation 

allows calculating confidence of clusters based on consensus tree building methods [167].  
Consensus tree: It represents an average of a set of trees with frequencies of occurrence of its branches 

compared to the set of all trees representing reliable clusters as sub-trees. 

 

Consensus tree                                                             

 It provides a cluster hierarchy 

 The map reveals spatial ordering of clusters 

 Enables one to view the clusters from different perspectives  

 

Visualization induced-SOM (Vi-SOM):   
Yin [107] proposed Visualization 

induced-SOM which is an extension of 

SOM.  It keeps the position of proto-
vectors approximately equidistant.  The 

advantage is that it captures the 

characteristics of the data set, but avoids 

post processing. ViSOM constrains the 
lateral contraction force between neurons in the SOM. It allows preserving the inter-point distances on the 

input data on the map, along with the topology 

Generative topographic mapping                                                    

 Overcomes limitations of Kohonen SOM 

 Allows non-linear transformation  

Visualization induced-SOM                                                      

  Preserves the inter-neuron distances in the map   

  Fixed grid structure of neurons    

 Uniform distribution of the codebook vectors in the input space 

 Requires a large number of codebooks to get an adequate 

quantization error  

 Heavy computational load 

 Remedy : Local linear projection procedures 
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Curvilinear component analysis 
(CCA): CCA [111] performs 

vector quantisation of the data 

in input space using SOM. It 
makes a nonlinear projection of 

the quantizing vectors.  The cost 

function is minimization of 

inter-point distances. The 
projection module is similar to multidimensional scaling (MDS) or Sammon‟s mapping (NLM) [127]. Lee 

proposed enhanced version of CCA incorporating curvilinear distances instead of Euclidean distances in 

the input space [232]. 
   

Dittenbach [105,185,  205, 235] attempted to bring out cluster structures as a part of the topology of SOM.  

These efforts resulted in many flexible topologies. 
Tree view SOM : Freeman and Yin [225] proposed tree-view SOM in this decade surpassing the visual 

earlier display procedures for large (text) databases.  . A set of independently spanned, growing 1D-SOMs 

are automatically organized in a dynamic hierarchy during training to categorize and organize documents.  

The depth and coverage of root-SOM/subsequent levels are fully adaptive and dynamic. The limitations of 
earlier popular procedures are surmounted in this new display algorithm. The other hierarchical structures 

or more simply tree-view structures are Tewey decimal classification (TDC), file explorer, web-portals or 

web-directories.  
 

 

 

Fig. 7(a) Exert of a 2D (6 x 6) -SOM display of 

classification of documents ;  Number of documents 

clustered around each node are in parentheses 

 

Curvilinear component analysis                                                      

 Computational complexity of CCA is O(N), while MDS and NLM are O(N2) 

 Cost function of CCA allows unfolding even strong nonlinear or closed 

structures.  

 Output is a continuous space that is able to take the shape of the data manifold 

 Topology is not a fixed grid  
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Fig. 7 (b) Exert of SOM created taxonomy display of  documents ;    Number of documents clustered around 
each node [courtesy of Ref 225] 

 

Architecture.Tree view SOM: Tree view SOM consists of a set of growing and independently generated 

1D-SOMs.  They are organized in hierarchical manner.  The training is similar to SOM.  The input 
document vector is mapped to 1D-topology of neurons.  The number of unique terms in the collection 

plays a role in the dimension of W. The output of a tree-view SOM is a list of topics in a hierarchical 

structure.  They are presented similar to the most of computer like file management systems in an intuitive 

way.  The topics which are judged to be similar are located closely at each level in the hierarchy.   
Dataset.books.Tree view SOM: The dataset containing 333 documents (8Mb) deals with technical 

programming books including web client-side.  The output generated by 2D-SOM (6 x 6) topology divides 

the books. The number of documents is given at the top in parentheses.  
Dataset.accounting.Tree-view-SOM: The first dataset contains 618 documents (20Mb) pertaining to 

accounting, computing, sociology, business and engineering.  It is successfully analyzed with tree-view-

SOM.  In this dataset [Fig. 7] the vocabulary is diverse for each topic resulting in a sparse matrix 
representation for document versus words. Further, the topics are overlapping and implicit structure of 

documents is hierarchical. It is not possible to cluster them with yesteryears‟ algorithms. The second data 

set is about technical programming books including web client-side (JavaScript and Dynamic html), web 

server-side (ASP, .NET and CGI) and programming languages (C
++

, C] and Java). The description is from 
a paragraph about the essence of the book to complete details. These datasets have many overlapping 

topics leading to sparse vocabulary.  The hierarchical and partitioning algorithms do not function 

efficiently. 

1
. . . * .arg min i

i A

Bal fac w Bal fac vig par
N

 

 

Limitations of typical cluster display-methods 
 hierarchical clustering algorithms  

 manual decision where to  cut dendrogram 

 k-means 

 a priori knowledge of number of clusters   

 GCS 

 pre-processing to visualize the tree  

 Coloring schemes   
 Complicated grid neighborhood relations   

 SOM 
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If size of the map is small  
Then dis-similar objects (i.e. objects belonging  

to different classes) are forced together 
 

If size of the map is large  

Then groups are separated on the map by empty node 
 

If size of the map is too large 
Then objects of the groups are divided over different nodes 

 

  
 

 

Treeview-SOM     

                                               

 Documents belonging to multiple clusters can easily be identified 

 The cluster growth process is automated i.e. no decision is needed on where  

to cut the dendrogram 

 Efficient initialization of W of child maps with inherited values from parent nodes 

 Display layout is user friendly like in most file managers/web directories 

 More effective in information retrieval and visualization compared to Kohonen SOM 

 Organizes documents in 1D-space, providing clearer and insightful taxonomies 

 Relationships are retained efficiently 

 Retains nonlinear trends and preserves topology 

 No post processing or further identification of clusters for visual display  

 Improved navigation and visualization 

 

 

 

3. Applications of SOM : The fields of applications are all in science, engineering, commerce, social 
sciences, industrial activities and progress is both need  based and advances in tools of 

mathematical/computer science.  

  3.1 Cortical development model: SOM is instrumental for a model of   cortical development.  Choe [47]   
showed the importance of lateral connections in contour integration and segmentation. Sirosh [172] 

reported simultaneous development of receptive field properties and lateral interactions in a realistic model 

of primary visual cortex.   
3.2 Visual exploratory data analysis (VEDA): SOM is a method of choice for visualisation of multi-

dimensional unsupervised data in 2D- and 3D- dimensions. In the application domain, the popularity grew 

as it does not require much pre-processing, transformation or projection into other spaces. It is a competing 

approach for PCA and other unsupervised techniques. Mostly, SOM is applied in off line learning. It is 
used as a front-end module in counter-propagation NNs.  The centers in RBF are also calculated with 

SOM.   

3.3 Chemical Science:  SOM is applied to divide aqueous solubility of 1293 Compounds [146]  into 
training and testing datasets, classification of photochemical reactions/physicochemical properties of the 

bonds [155],  proteins [152] , Petroleum distillate (MPD) products [24], discrimination of toxic-nontoxic 

compounds [151],  aromaticity [49], green chemistry [17], and solid state NMR for 72 siloxane-based 
phosphine hybrid polymers [148].  

Food science: In Classification of dry-cured hams NIR [186], Classification of available food base/diet of 

52 small perch and 38 ruffe specimens   [72], adulteration of extra virgin olive oil (EVOO) [142],  3-way 
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data analysis of 50 PAHs from crude/fuel oils   spilled under controlled experimental conditions over a 
period of four months [26], strawberry aroma [143] using HS-SPME-GC-MS data. heavy oil intelligent 

processing [74] and  knowledge extraction from plant input-output data [136] SOM was employed. 

Process chemistry: In process engineering [28] of nonlinear processes [135], online automated monitoring 
tool in the plant‟s distributed control system [131], process route selection early in development of  amino 

acid sequences of 41 proteins in Industrial operation [89], Chemical composition assessment of produced 

water in oil wells [93], multi-model fusion strategy in brewing industry with NIR/MIR instrumental data 

[261], discrimination of sandal wood oil grown in different conditions and extraction methods using  NIR 
spectra [90] the modeling is performed with Kohonen SOM.  

 

3.4  Biological processes: Mining biological data/rule extraction of protein sequences  [51], metabolic 
diversity in Type 1 diabetes [164],  metabolic profiling with NMR multiclass SOM discrimination index 

(SOMDI) from 96 samples of human saliva [59], gene-expression levels microarray experimental data 

[19], kinase inhibitors [245] based 3D-spacial descriptors, conformational analysis of lipids [76], 
molecular mechanism of hormetic effects of selective serotonin reuptake inhibitors (SSRIs) in Daphnia 

magna reproduction [78],  prediction of cellular uptake of 109 magneto fluorescent nanoparticles (NPs) in 

pancreatic cancer cells [130], inhibition of β-amyloid aggregation by 62 N-phenylanthranilic acids [79], 

screening of  82 5-aryl-2-thio-1,3,4-oxadiazole derivatives  for anti-mycobacterial activities against 
Mycobacterium tuberculosis H37Rv using electronic-topological descriptors [54], quality control index of 

continuous pharmaceutical process using online HPLC [25], pharmaceuticals [56], relationship between 

chemotypes and screened agents from  NCI antitumor drug screening data [160],  Clustering Biological 
data [83], contamination of the breast milk with PAH [262], phylogenetic diversity of gene sequences 

[220] and changes in gene expression from microarrays comprising of  18,000 human gene/EST sequences 

[58] employed SOM in the modeling study. SOTA is applied to study familial binding profiles (Sandelin 

2007). FBPs are used to classify a novel motif and to restrict motif finders for finding a specific class of 
motifs.  SOM-biological regulatory element (SOM-BREO) [192] (BP-SOM) characterizes a complete set 

of motifs and simultaneously separates weak motif signals.   

Bioinformatics: In bioinformatics, the identification of short DNA sequence motifs is a critical issue at the 
moment.  Statistical unsupervised learning methods were in practice in the discovery of motifs.  The 

scaling of difficulties for large genomic data bases have to be addressed from a different frame like 

artificial intelligence-2 (AI2).  Mahony et al. [192] proposed Kohonen SOM, viewing the motif 
identification as a clustering task.  The sequence databases are considered as a set of short overlapping 

substrings.  Based on the similarity of the sequences clusters are developed which can be put into different 

bins. 

3.5  Environmental science: The unsupervised self organizing technique, SOM played a key role in 
clustering 25 micro watersheds in  Rajasthan into homogeneous groups [159], Surface water quality 

assessment [60] and  to reduce irrelevant information in Water quality assessment  by Hasse diagram [31], 

cloud classification [237], and crop evapotranspiration [76]. 
Waste management:  Waste water treatment plant processes are dynamic and involve temporal variability 

of inflow and concentrations of components like Municipal activated-Sludge [265].  Each of the micro-

processes are complex and many a time poorly (particularly) known viz. interaction among different unit 
processes –hydro dynamic phenomenon, adoptive responses of living micro organisms.  Further, the cause 

and effect relationship between the process variables is strongly non-linear.  Added to it, limitations exist 

in measurement of dynamic operation (performance) of waste water treatment plant (WTP) by direct 

means.  Evolutionary self organizing   model for dynamic behavior of WTP [Hong 2003]  not only 
predicted the process behavior accurately but paved way to probe into the dynamic behavior of partially 

known WTP. 

3.6 Structure X Relationships (SXR): The QSAR studies of inhibitory activity of 117 Aurora-A kinase 
inhibitors [53], dihydrofolate reductase (DHFR) inhibition compounds [77, 150, 154],  QSBioactR in 404 

Acetylcholinesterase [52], acute toxicity for over 300 benzo-triazoles ((B)TAZs [158], structure –
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biodegradability relationships in PCBs [169] and prediction of  decaying concentration profiles of BPA, 
(p-boronophenylalanine) in blood during BNCT therapy [33] involved SOM in the process of modeling 

3.7 Medical diagnosis: SOM found a niche in adolescent idiopathic scoliosis detection among 1,776  

surgically treated patients [263], classification of abnormal brain image [246], C93 identification in blader 
cancer patients [81], classification of perfusion abnormalities using computed tomography perfusion (CTP) 

maps analysis [243], molecular subtyping of cancer [82], classification of 186 chemicals and 117 drugs 

causing rhadomyolysis [264] and in lower body coordination with different types of foot orthoses [98]. 

SOM is used in cortical motor map training [176] and in recognizing psychographic and cognitive factors 
on organ donation in Egypt [86].  The target plan of UK‟s National Health Service (NHS) is to sequence 

the genomes of up to 100,000 patients in the anonymized mode not to reveal the identity of individuals. It 

probes into DNA information to unlock the stumble blocks hurdling today‟s promotion of better/ sure-
drugs. The outcome of this shrewd venture is a centralized database of whole genome sequencing for high 

quality diagnostic tools making for probable access to genomic tests.  This mega projects to a tune of 100 

million UKP trusts to provide high quality prospective health care in the next decade.   
3.8 Training of FFNN:  Nasr and Chtourou [39] proposed the learning of weights of NN with a hybrid 

algorithm.  The first phase is a structure learning process by the addition of hidden neurons followed by 

optimization of the network parameters.  The weights between input and hidden neurons are refined by 

SOM with a fuzzy neighborhood.  Gradient method is used for optimizing weights of connections from 
hidden to output neurons.  This hybrid learning scheme is superior to yesteryears‟ procedures for a 

simulated test set. 

 
3.9 Classification/Discrimination/clustering 

Feature selection methods: SOM for structured (numerical/attribute) data excelled many classical 

clustering procedures.  The extension to graph structured information is of recent interest and it is extended 

for cyclic and directed graphs.  The clusters are formed in the state space of SOM to represent the strengths 
of activation of neighboring vertices.  In the previous ventures the state-space of the surrounding vertices 

is used to represent the strengths of activations. Conan-Guez [203] used dis-similarity-Kohonen-SOM to 

protein clustering, string clustering, and spectrometric data [203]. SOM is used for feature selection in the 
prediction of properties (including density, viscosity, methanol content, and water concentration) of 

biodiesel fuel [32], classification of  Felder-Silverman learning styles, automatic determination of  the 

number of clusters  and detecting clusters of complex shapes [247], discrete data clustering [38], automatic 
classification method [255], automatic-cluster detection [115], noise removal in  clustering  [69] and Web 

2.0 tool for creating intelligent adaptive tutoring systems for mobile learning environments [88]. Using 

self-organizing-incremental-NNs, adjusted-SO-inc-NN classifier is proposed.  It automatically learns the 

number of prototypes required to determine the decision boundary.  It learns new information without 
destroying old learned information, robust to noisy data and fast. 

Fault detection:  The fault detection in induction-machine-stator-winding, determination of  centers of  

fuzzy cluster   [36],  extracting fuzzy rules from Kohonen Self-Organizing Map for transformer failure 
diagnosis  [141], random early detection (RED) at a router output link during congestion [75], sensor fault 

detection/isolation [16] in desalination plant operation with reverse osmosis (RO) [1]  had a new phase 

with SOM compared to PCA and Eigen vector analysis.  
Internet and Web:  SOM is extensively applied in analysis of web usage data [203] and in web document 

mining. 

Dynamic systems: The variants of dissimilarity SOM is applied for time-series data and in internal 

parameter changes in a stationary, non-linear SISO dynamic system [22].  Three recursive SOMs (viz. 
SOMSD, MSOM, Recur-SOM) perform modeling data with general structures like sequences and trees. 

The efficiency of the model is based on unit's memory depth, differentiation among trees, statistics of 

label's distribution and spacio-temporal information encoded in the map.  The datasets used are binary 
syntactic tree, ternary linguistic proposition and 5-ary graphical data.   
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3.10 Electrical engineering: One-day-ahead forecast of Spanish electricity market load   using weather 
data [73] and electricity demand assessment by predicting the daily peak load for the next month [40] 

applied SOM network. 

Communication system: In communication systems, equalizers are used in high speed modems while echo-
cancelar for long distance telephone (Widrow 1990).  An equalization task involves the recovery of 

information at the receiver.  During transmission from source, the signal is subjected to noise, inter-system 

interference, co-channel/adjacent channel interference, non-linear distortion and fading and many of them 

are varying with time.  Barreto [198] used SOM for nonlinear channel equalization and inverse mapping 
identification. Kohonen SOM played a significant role in “intelligent computation” and “adaptation” 

capability for wireless sensor networks [254]. 

3.11 Travelling Sales problem (TSP):   It searches for the shortest closed tour [57] with the constraint to 
visit each city only once.  It is a NP-hard complete (1) task.  Hopfield used NNs for the first time to solve 

TSP using the minimization of energy function.  At the point of convergence the local minimum 

corresponds to good solution.  Bai [57] used twelve test problems for TSP with different SOM procedures, 
although many others solved TSP using SOMs. He used an efficient initialization method. 

TSP with Hopfield NN 

 It does not ensure feasibility of the tour.  In other words, the paths at the minima of the energy function 

do not result in feasible path ways to traverse for the travelling salesman. 

 

3.12 Commerce:  The forecast of financial failure scenario [24] and forecasting horizon of a financial 

failure model [70] are investigated with SOM.  CRI scheme of Zedah is mapped on to generate SOM fuzzy 

NN to synthesize gen-SOM-fuzzy-NN-CRI (S) NN.  It is applied for classification and prediction of 
failures of banks.  It results in positive as well as negative rules and consistently performs better than COX 

model.  MLP of course has superior performance but the architecture is a black box.  Modified cerebellar 

model articulation controller (MCMAC) (ref in abstract) is also better than gen.SOM fuzzy NN CRI.  

3.13 Economics:  SOM successfully evaluated poverty, welfare and development indicators [245] in social 
development scenario. 

SOM was applied to image data compression [124], perpetual pattern recognition [213], curved trajectory 

prediction [138] and forecasting [231].  Further, Kalman filtering [175], adaptive filting [198], structured 
data unsupervised processing [230] and PCA [217] were implemented using SOM. 

 

4. Advantages and limitations of Kohonen-SOM : In the original SOM, the dimensionality (1-D, 2-D, 3-

D), shape (square, diamond, hexagonal, triangular), number of neurons in each dimension are all user 

chosen and fixed for a 

configuration and thus one can 
concentrate on problem on hand. 

However, this fixed structure of 

SOM limits the adaptability in 
complex tasks.   Automatic 

selection procedures prevalent in 

MLP, RBF etc also apply and 
results n popular intelligent 

software.  In fact, a set of heuristics 

implemented in traditional 

programming languages does the 
job. Several researchers contributed 

to the development of self-

Advantages.SOM 

 No need of a priori knowledge of distribution of input data 

 Training preserves the topology of input space   

 Reduction of dimension of input space  

 For each neuron a potential function is used 

 SOM is superior to PCA, PLSA, MDS  and  orthogonalizing approaches 

 SOM performs better than classical SCL 

 Preferable to VQs even where topological preservation is not of interest 

 Batch procedures are faster especially in high dimensional space 
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creating/self-growing/self-pruning/self-adaptive software and self-reconfigurable hardware NNs.  In the 
context of SOM, growing neural gas and growing cell structures are noteworthy categories.  Further, 

Kohonen-SOM and crisp clustering algorithms cannot cope up with ambiguity in applications.  Tsao [252] 

reported that lack of sound optimization and convergence criteria add to the limitations. 
 

Limitations-remedial measures.SOM(classical) 
Architecture 

 User chosen 1D-, 2D- or 3-D fixed structure of Kohonen layer 

 User chosen neighborhood  (shape and size) structure   

o Remedy: Growing cell structures-SOM, Tree-view-SOM 

 suboptimal as data topology depends on the task 

Object Function 

 No object, cost, or energy function [175] 

  Remedy: Neural gas-NN 

Learning 

 Topological mismatches are more in batch mode compared to the online SOM 

 WTA is most time consuming step    
 Remedy:   H2 SOM 

 selection of learning rate and decreasing function 

 Remedy: RPSOM  (rival penalized SOM) 

Input 

 It does not deal with symbolic data 

 Remedy: Symbolic SOM 

 Toplogy of input data is not known in advance 

 Remedy: Greedy-Granular-SOM  

 SOM does not reflect the input space (as  it is uniformly distributed in the output space)  

 Hierarchical relationship cannot be detected in a single SOM 

 Remedy: Hierarchical-SOM  

 Noisy data/outliers affect output accuracy   

Oder of Presentation of input patterns to  SOM 

 Order of presentation and   initialization process results in different clusters 

 Remedy: ensemble of SOM-NNs with varying random seeds 

 Lengthy procedure 

 Not automated easily 

 intractable by manual analysis for large dataset 

 Linear TF in SOM produces multitude of simultaneous responses to a mixture of superimposed stimuli 

 Termination is not based on optimizing any model of the process or its data 

 Remedy: Greedy-Granular-SOM  

 Output 

 Several interpretations of SOM output  

 Remedy:  increasing stability of neighborhood structure   

 prunes number of possible interpretations by  

 CPU time 

 Large CPU time for global search   

 Remedy: Uniform hierarchical structure of hyperbolic grid 

                   Growing hierarchical SOM 

 Crisp-SOM captures local-first order statistics in data 
 Remedy: Greedy-Granular-SOM 

 It is a heuristic approach  
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SOM is equivalent to: SOM is equivalent to regularized mixture models with additional regularization.  

SOM learning is equivalent to EM. If   inf, then EM is called Batch-map algorithm [Kohonen 1998, 
Cheng 1997].  Here, there is no neighborhood averaging in E-step.  

 SOM is similar to MDS, popular in statistics.  A batch 

SOM algorithm, on the other hand, is similar to the Forgy 

BVQ algorithm. SOM based adaptive filter can be viewed as 
a network of local experts. The competitive nature on SOM 

based filters can be reduced to modular networks.  SOM is comparable to elastic net approach.  It is a 

special class of NNs based on denominated competitive NNs.  Each neuron competes with others to get 
activated.  At any given moment the outcome is that only one output neuron is activated. SOM is proven to 

be approximation of gradient of distortion measure.  Kohonen map is proven that it converges some times 

on equilibrium points. 

  
SOM reduces to:  SOM without lateral interaction reduces to standard VQ.  With no neighborhood (i.e. 

number of neighbors = 0), SOM becomes SCL (simple competitive learning) algorithm, in its classical 

stochastic form. That is why, SCL is also called 0-neighbor Kohonen algorithm.  Two SOMs are linked via 

the method of winning neuron.  The winner is selected and centers ( 1 2i iws and ws ) of first and second 

space are upgraded.  The winner is redefined in order to surmount the failure condition. 

4. Advances in SOM research : The new research pursuits since by Kohonen proposed SOM two decades 

ago were in the multiple directions; extending to all types of data (numeric, symbolic, abstracts, technical-

notes etc), novel structures in architecture, learning algorithms, neighborhood patterns, decreasing CPU 
time, preservation of topology in the raw datasets on a strict measure, increasing in visualisation of output 

for knowledge extraction etc. The recent efforts are around growing structures, increasing function of a 

neuron, hybridisation with other tools, and trying to reach ultimate self-adaptive, self-corrective, self-
repairing, self evolving SOMs for multivariate multidimensional data.  A synopsis of major improvements 

in learning, architectural breakthroughs, impact of fuzzy theory and extension to mega databases follow. 

Training : The error minimization is the top priority of hitherto available statistical/mathematical 

procedures. A concept named 'enhancement learning‟ based on information-theoretic approach is used to 
train SOM model.  The information from several network configurations is combined through extraction of 

features common to all configurations and also specific to some configurations.  The relative information 

results in attention to a more valid network.  The results of this method on IRIS-flowers and cancer 
datasets showed reliable determination of number of clusters.  Rousset [201] reported an increase in 

reliability of SOM with Homeo-static synaptic scaling [195]. It leads to proper organized SOM map 

(compared to standard W normalization), better representation of input probability distribution (in 
comparison with normalization of weights) and drives the network to a state of increasing information 

transfer.  Seo [183] employed deterministic annealing in SOM modeling.  Furao [191] used incremental 

learning in SOM. 

Neighborhood structure 

 

 Robust-MAP: The Robust-map (Alg. 3) is a selected structure which 

minimizes the distance D-of the different solutions of SOM [201].  In other 
words, it is one closest to the aggregation of individual measures and 

corresponds to the most common interpretation of data structure. Robust-

map sheds light on the classification as well as the neighborhood structure 
between classes.  It is applied to classification of daily electrical consumption profiles and financial 

classification. Its ability to adjust to the data structure indicates the relevance of chosen NN model.  

If 

 
Then Learning dynamics cannot be described by a  

gradient descent distortion measure  

Alg. 3: R-MAP-SOM                                                     
Divide input into several groups 
For each group 
Train with SOM 

End group  
RobustMap   map (MinDist)  

Robust-MAP-SOM  

 Neighborhood structure is most robust 

   compared to any randomly selected map 

 Preserves the global topology 

NP
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Distance, similarity, dissimilarity measures: 
For a long time, the popular index of similarity 

metric is Euclidian distance. The disadvantage 

is that clusters resulted tend to be isotropic 
form.  Further they cannot account for local 

distractions or correlation of data.  Recently, a 

local PCA-SOM which implicitly uses Mahalanobis distance and reconstruction error is proposed.  It uses 

a covariance metrics which contains local data distribution and does not require knowledge of number of 
principal components. A general metric is also used with an advantage of Ellipsoidal clusters.  This is 

tested with Gaussian clusters of spirals, checkerboard, UCI classification and image compression datasets. 

Architecture  
 NN for a neuron in SOM architecture:  In a conventional SOM, the neurons are arranged in 1D-, 2D- or 

3D-grid. In modular-SOM-NN-of-NNs, there is a NN instead of a neuron in the SOM topology. In general, 

any trainable NN can be used.  The system learns a set (group) of functional relationships (or systems in 
parallel).  The output generates a feature map of these input-output relationships.  This NN has a function 

space rather than vector space. The real time meteorological dynamics map and simulated cubic functions 

are tested with success.  A SOM on planar triangle surface and another rectangular SOM architecture are 

proposed with a prospective outcome. 
Symbolic SOM:  In contrast to numerical values, attributes, multi-labels and text belonging to symbolic 

data [96, 250] also prevail in real time applications.  SOM was modified to suit to model categorical 

(qualitative) data.  Here, instead of distance measure among feature variables, a probabilistic framework 
without any assumption of distribution of data is employed. Each unit in SOM is upgraded based on 

approximation of a discrete distribution. This SOM is trained with a learning rule based on stochastic 

approximation theory.  The applications include inducing descriptive decision making knowledge from 

classification data, large vocabulary continuous speech recognition systems (LVCSR), Speech recognition 
from non-fluent and fluent utterance records [64] and Polish language processing [242].  Symbolic data 

analysis provides suitable tools for managing aggregated data described by partitioning interval data [244]. 

Kohonen-SOM is modified for non-vectorial data [193].  Yang et al [96] proposed symbolic-SOM wherein 
a cluster center is a structure and contains events and associated memberships.  The structure of this 

symbolic neuron can be refined during training phase.  The fuzzy c-means method expands the largest 

membership degree while suppressing those of others. It is used as a learning rule for these neurons.  The 
limitation of this SOM is that feature map display like conventional SOM is not possible since input data 

and neurons are a symbolic type. 

 Dataset.classification.Symb-SOM: The fat oil data set consists of eight types of oils with four 

 physico-chemical variables with 
interval values and one qualitative 

characteristic.  Three symbolic 

neurons are adequate in the cluster 
analysis. 

The other data sets analyzed with 

symb.SOM are classification of 37 cities in the world with interval temperature data over a year, simulated 
four cluster data with varying covariance and centers and a four cluster soybean data set with 47 sets 

objects and 35 qualitative features. The results for these real symbolic data sets crossed the test for 

feasibility and deserve deeper study.  

Faster versions of SOM 
 Tree-SOM:    Samsonova [206] proposed tree-SOM which divides SOM into nested clusters at different 

threshold values. The software in C
++

 is available as an open source.  A factor of 5.5 times fastness 

compared to   Kohonen-SOM was achieved by reducing a number of time intensive steps.  The typical 
ones are replacing linked lists/arrays and computing full distances only if necessary. The outcome is 

segregation of data as well as clusters in hierarchical manner. This method functions well even for data 

 More stable to the choice of  

o Sampling method 
o Learning algorithm of SOM 
 Initialization  
 Order of presentation of presentation 

 It is local (at individual level) rather than global  

Oil Gravity Freezing  

point 

io.vlaue sa.value m.f.acids 

Linseed 0.930 to 0.935 -27 to -8 170 to 204 118 to 196 L,Ln,O,P,M 
Perilla 0.930 to 0.937 -5 to -4 192 to 208 188 to 197 L,Ln,O,P,S 
Cotton-seed 0.916 to 0.918 -6 to -1 99 to 113 189 to 198  L,O,P,M,S 
…….      
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with missing values.  The datasets (abalone, protein localization sites and voting behavior of different 
countries during the yearly EuroVision Song Contests) are analysed with success. 

Novel parallel clustering algorithms based on the Kohonen‟s SOM: The heuristics proposed [95] maximize 

the speed and at the same minimizing the topological error.  In the first two algorithms each node executes 
an on-line SOM. The third algorithm executes as a quasi-batch SOM. The weights computed by the slave 

nodes are recombined by the master nodes.  Then, the next epoch of SOM continues until convergence.  It 

outperforms the currently available methods for parallelizing the SOM.  A case study from bioinformatics 

revealed meaningful clusters are arrived in massive data mining rapidly from CPU time point of view. The 
data is divided among the nodes.  

Experimental design (ED): SOMs have several adaptable/tunable parameters and the selection of 

appropriate network architectures is required in order to make accurate predictions.  The Effects of 
network size, training epochs and learning rate are optimization influencing factors [30].  Hitherto, this is 

performed manually in a custom mode varying one factor at a time.  Recently, statistical experimental 

design which brought renaissance in chemistry, pharmacy, food science entered clustering. A set of five 
variables (viz., type of SOMs, training algorithm, topology, boundary condition and weights initialization) 

at two level factorial design (FD) is used to maximize performance of classification. The samples are 

divided into 80%training and 20% testing maintaining number of samples ratio.  The procedure was 

repeated 30 times to estimate statistical error.  A noteworthy inference from ANOVA is that the effect of 
architecture (CP-, XY-fusion, supervised SOM) has profound influence on classification. 

Parallel SOM: Classical SOMs process patterns (i=1 to NP) one by one and refines the NN model. In 

parallel SOM, the whole input is processed in parallel [204] and the patterns are learnt.  Or in other words, 
values of W and neighborhood structure are refined.  The advantage in this case is a priori knowledge of 

input space can be utilized to reorganize the parts of the patterns. 

Supervised SOM: Kohonen introduced LVQ (learning 

vector quantization), a supervised version of SOM in 1987.  
During this quarter century, advances in LVQ include 

generalized-,Yizhak-, Cline-, information-theory-based-, 

generalized-relevance-, fuzzy-, ordered-weighted-LVQs and   
hybridisation with simulated annealing algorithm (SAA) and 

fuzzy system.   In the case of   supervised neural-gas newer methods viz. supervised relevance NG, 

Median-, winner-relaxing-, growing, robust-growing-NG algorithms are proposed. The details and 
applications of these supervised NNs and counter-propagation will be detailed elsewhere. 

 

Evolution + SOM 
4.1 Self evolving SOM NN :   Wu [120] proposed self_organizing-self_evoling neural network.  It is 

superior to a single SAA in optimization and CPU time.    SOSENS is population based optimization 

algorithms using multiple SAs with self evolving and self organizing capabilities.  Tabu search can be used 
instead of SA, but it is a local search method and cannot guarantee the global optimum.  The weight of a 

winner neuron representing best solution at a time is the input.  The set of candidate solutions generally 

used in GA/PSO (population based algorithms) are the weights connecting the input neuron to the neurons 
in Kohonen layer. 

 

 

 
 

 

 
 

 

Counter propagation NN 
 Train Kohonen layer 
 Pad output Kohonen layer into a hidden layer 
 Use BP to train hidden and output layer 
 categorical  layer contains predictive values 
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Architecture.self evolving NN: 2D-rectangular or hexagonal 
grid of self-evolving neurons forms SOM-layer.  Each 

neuron in the layer performs simulated annealing (SA) 

optimization (Alg.4). A 3 x 3 grid is chosen with solid 
circles as the initial position of the neuron. The solid lines 

are the 

connection between neighboring neurons.  When all the SAs 

of SOSENs evolved and reached equilibrium temperature, 
solid circles are the positions of the neurons and dotted lines 

represent the connections between neighboring neurons.  

Neuron-3 is the winner, since its position is the nearest 
candidate to the global minimum (around -0.4).  The new 

positions of other neurons are self organized around the 

winner neurons. All neurons evolve in their respective local 
optima by SA.  After self evolving, all co-ordinates are self 

organized towards the neuron with the best optimum value at 

a time. 

 
Dataset.optimization.SO-Self Evol-NN:  Sixteen test optimization functions, each with 100 variables are 

optimized with SOSENs (6 x 6).  Each target function is run 100 times with PSO, DE, SOMA (SO-

migrating algorithm) and SA. The neighborhood radius is 6 and population size is between 20 to 60.  The 
difference between best value in the current and previous iterations less than 10

-5
 is criterion for 

convergence.  

 

Dataset.TSP.SO-SelfEvol-NN:  Discrete TSP is non-
deterministic polynomial time (NP) hard task.  It is 

typical that can be extended to vehicle routing/scheduling, 

PCB design etc.  Lin-Kennigham (LK) algorithm is used 
to choose the neighborhood of the neuron in SOSEN.  

The results are tabulated.  The single SAA for TSP is 

equivalent to SOSEN-NN with only one neuron and without up gradation of winner neuron step. The 
number of cities range from 318 to 4461. 

Alg. 4: SO-Self Evol-NN                  

Initialisation 
Random Ws  
Initial temperature (T0) for SAA  (user option) 
DO until convergence 

Each neuron evolves by SAA in parallel 
Repeat until  T0Equil 

                       Find winner neuron among grid 
                       Upgrade weights 

End repeat 
Decrease temperature 

End do 
 

If SO-Self Evol-NN have one candidate & 
 There is no self organizing behavior 
Then SO-Self Evol-NN is equal to SA 

 

 

SO-Self-Evol-NN                                                      

 Chance of reaching global optimum increases 

compared SAA  
 Reason :  multiple SAs run in parallel   
                        in each epoch 

 

Canonical 

 

               Island 

 

Cellular 

 

SOTEA 
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4.2 Self organizing topology EA 
(SOTopolEA):   Self organization of local 

neuron structure and interaction epistasis is 

introduced in EA.   
Motivated by complex biological systems in 

development of structures relevant to the 

behaviour, self organization of interaction 

networks are proposed.  The fitness value 
around the neighborhood of an individual is 

called epistatitc fitness inspired by genetic 

epistatics.   Whitacre [101] introduced 
SOTopolEA (self organizing topology EA) 

in 2008 (Alg. 5) and typical network structures are in Fig.8.  
 

Growing Cell structures       
SOM (Kohonen) has a fixed number (user chosen) of neurons in 1D-, 2D- or 3D- architectures.  The 

neighborhood (diamond, hexagonal etc) shape is also user chosen.  But, incremental NNs grow as they 

learn. Fritzke [20-21, 42, 190, 219] introduced growing cell structures with varying topologies. Some of 

the recent reported categories in GCS belong to internal, external and both mechanisms show internally 
growing architectures by inserting a node within the existing topology. As a result, the shape and size of 

the structure is increased [170]. The patterns with higher pdf in the output space are represented by more 

elements in the GCS output space.  
Architecture.GCS: A simplex of k-dimensions (straight line for k =1, triangle for k = 2, tetrahedron for k = 

3, hyper tetrahedron for k > 3) space is used as the initial topological structure of GCS. 

As learning (self organization) by competitive delta rule [190] proceeds, new cells are added to take into 
account of novel/new trends. The midpoint of the edge connecting maximum resource vertex and the most 

distant node in the topological neighborhood is calculated.  The superfluous/redundant neurons are deleted. 

After each modification, the network consists of k-D simplex.  Each neuron has an n-dimensional vector 

denoting the position of the cell in the input space.  The refinement of Ws is same as that in Kohonen NN. 
 

Alg. 05: Self-organizing topology evolutionary 

algorithm  

               (SOTopolEA)   or cellular GA                  

Initialization :  population 

 individuals connected in a ring structure 

 

DO Until max.generations or convergence 

         For i=1 to M 

                Random selection of  an individual i 

                Offspring generation  through mutation 

                Application of  reproduction rule 

         End for 

 

         For i=1 to M 

Random selection of ith individual 

worst neighbor selected 

 worse of i  eliminated 

 Links of loser to winner assigned 

           End for 

End DO   
 

 Reproduction.rule.SOTEA and cellar GA              

Addition of a new (offspring) neuron to the network 

Offspring and parent are linked 

IF SOTEA 

Offspring inherits  parent links with 0.1 

probability 

Parent looses links with 0.1 probability 

EndIf 

 

IF cellular GA 

Offspring inherits  one of parent's links    

Parent looses inherited link   

EndIf 
 

Competition. rule 

Individual selected randomly from parent and offspring 

populations 

Selected individual compared with it's least epistic fit 

neighbor 

Better individual inherits all links from worse 

 
 

Hierarchical 

 

 
Small world 

Fig. 8. Interaction networks.  Number of connections/nodes (= neighborhood) 
decrease form panmietic to cellar through island models [courtesy from Ref. 

101] 
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individual 

Worse individual is removed from population  

(corresponding neuron is removed from the network) 

 

 

Typical extensions reported to Growing cell structures (GCS) are Growing neural gas (CNG), dynamic cell 
structure (DCS),   hierarchical growing SOMs (GH.SOMS), probabilistic growing cell structure [222], 

growing RBF-NNs, growing multi-dimensional SOM , tree Growing cell structures (Tree-GCS) [219], 

recursive SOM (Recurs.SOM) [207,230] and hyperbolic SOM (Hyperbolic.SOM). 

4.3 Externally cell growing structure: The visualization of high dimensional structure in incremental grid 
growing NNs is the basis for externally growing cell structure. If maximum resource/maximum error 

vertex is a boundary node, then a new cell is grown externally.  The algorithm is tested with classification 

tasks viz. two spirals, mines versus rocks, chemical sensors, brands of coffee and mixtures of organic 
compounds like toluene, octane and propanol. 

Learning of growing SOM: Generally, a pattern with missing label or feature is to be deleted from the 

dataset.  A semi-supervised learning method for growing self-organizing-map (grow-SOM), the advantage 
being that it trained with up to 60% missing class labels and 25% of feature data. The unique feature is that 

prediction accuracy is over 90% even two spirals, IRIS and breast cancer datasets.  It is compared with 

semi-supervised k-means algorithm and its variants. It affords fast visualization of classes on 2D-feature 

map. 
Dataset.classification.EGCS: The metal oxide chemical 

gas sensors are used in the analysis of sonar-mine/rock 

separation task.  Externally GCS was found better than 
supervised-GCS and   MLP (Table. 1). 

Dataset.classification.EGCS: Seven coffee brands 

available in German market are analysed with 16 sensors.  
The data consists of 16 inputs, 7 outputs and 42 samples.  

Externally GCS performs better than supervised GCS 

(table 2). 

Dataset.classification.two spiral.EGCS:  Two spirals coil three times 
around origin and one another.  Using 184 training data lying on the 

spirals, the performance follows the order 

EGCS2(85) >EGCS1 (104) >[DCS-GCS (177) = SGCS(180)] >> 
[QuickProp (7900), BP(1100)], where the number within 

parentheses  correspond to the number of epochs for training. 

 

Modified growing SOM: It is successfully applied to travelling sales 
man problem (TSP) with 442 cities.   The limitation is that a 

node is invoked even when one or two points with high error 

are in the training set. The remedy for this catastrophic 
allocation of new node is a modification of cell structure.  It 

balances stability and plasticity dynamically.  If the local 

error (for even more than two consecutive points) exceeds a 
preset threshold, the points are not considered in the model, 

but will be shown as outliers. 

 

 
  

Table 1 : Comparison of performance of   Externally  

GCS with other NNs for chemical gas sensor data 

Algorithm 
Training Test 

MSE % CR % CR 

KNN -- -- 82.7 

MLP-BP -- -- 90.4 

Supervised GCS 0.224 93.3 90.4 

Externally GCS 0.044 100.0 93.3 

                    CR : Classification rate 

Table 2: Comparison of performance of   

 Externally GCS with other NNs 

 for classification of coffee brands 

 SGCS EGCS 

CPU time   (sec) 0.31 0.25 

Training SSE 2.85 2.20 

Training CR% 100 100 

Testing  82.52 86.75 

Growing cells 17 24 

GCS                                                    

 No a priori user defined network topology 

 optimum network structure  is automatically 

generated 

 No need to define a decay schedule,  

  which is essential in neighborhood learning 

 All parameters of the model are constant  

 

 There is no decay learning schedule as in SOM   
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4.4 Evolving-Tree-SOM:   Pakkanen [196] proposed 
Evolving-Tree-SOM-NN in 2004. It is a freely growing 

network.  The shortest path between two nodes in a tree is 

used as the neighborhood function for self organization 
process. 

4.5 Growing Hierarchical SOM (Grow.Hierarch.SOM):  The limitations of SOM and growing SOM 

paved way to the development of Growing Hierarchical SOM.  There 

are two types of NNs under this category.  The first one uses growing 
grid for map growth and hierarchical SOM for hierarchical growth. It 

is used in the analysis of CIA-world FACT book, legal documents or 

news articles.  It uses label-SOM  to assign topical descriptors to each 
of the neurons and efficient W initialization method.  The other type is called Tree-growing cell structures.  

It starts with GCS structure to grow, but weights until 90% of the maximum number of nodes permitted is 

reached.  Then the neurons are deleted to improve the stability of resulting dendrogram.  The tree is 
created from the formation of sub-structure as cells are deleted from the structure.  This method is 

expensive (O(n
3
) complexity) and apply only on very small datasets.  

 

 

 

 

Fig. 9(a). Architecture of trained GHSOM   

 

Alg. 6: Grow.Hierarch.SOM                                               

Initialization 

W with random values 

The error for each neuron is set to zero 

 

Repeat until convergence 

Training with Standard SOM 

For each input vector 

Calculate quantization 

error of corresponding 

winner 

Update winner's error 

variable by adding qe to Ei  

End for  

 

Identify error neuron with highest 

ei 

Growth 

Insert a row or column between 

error unit and its most     

       dissimilar neighboring unit in 

terms of input space 

If measured qe < threshold, then 

converged 

End repeat 

 

Alg 6b: Growth in depth of Grow.Hierarch.SOM                                          

Train the data at zero level of GHSOM 
While depth < max depth level 

For i=1:no of neurons 

If QEi > 2  * QE0, then expansion = true 

End 
If expansion, add a new SOM in the next level 

Train input  
End while 

Evolving-Tree-SOM 

 Visualization remains a demanding task  

 C P U intensive for large SOM training of 

voluminous data sets 

 Remedy :  Tree structured SOM  

Growing SOM  

 It is difficult to visualize all the 
data on a single map 

 Training is very long 

Growing hierarchical SOM                                                                                                      

 Better topology with best match to data 

 clusters document items in hierarchical manner  

 Combines virtues of SOM and hyperbolic space  

 for adaptive data visualization    
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Architecture.Growing Hierarchical SOM: At layer 
zero, a single unit SOM serves as a representation of 

complete data set.  In the first layer, down in the 

hierarchy, a single unit (2 x 2) SOM represents the 
complete dataset represented at layer zero (Fig. 9 a).  It 

means details of the dataset are self organized into four 

sub regions.  In the second layer, for every unit of the 

first layer, a separate SOM with increasing size is developed.  The growth in depth is done by increasing 
the levels of hierarchy (Alg. 6).  In the case of growth of width, the number of neurons is increased 

stepwise. This help in each neuron not representing too many patterns.  In the case of growth of depth the 

philosophy is to form a new map in the subsequent layer for units representing a set of very diverse set of 
input vectors. The data flow in GHSOM is shown in Fig 9b.    

 

Yen  [114] analysed textual 
abstracts concerned with 

animals, anthrax, and 

SOMs with growing 

hierarchical SOM, after 
transforming document 

space into multi-

dimensional vector space.  
The trained NN results are projected with ranked centroid projection method whereby the input vectors are 

projected to a hierarchy of 2D-output maps. 

Dataset.zoo.Grow.Hierarch.SOM: It is a simulated zoo data 

comprising of 100 patterns of animals with 16 features.  The 
number of classes is seven.  The clusters of standard-SOM (9 x 9) 

are somewhat identifiable, they are not well separated. The output 

of first layer of Grow.Hierarch.SOM (2 x 2) results in a clearer 
distinction of clusters.  PCA and Shannon's mapping failed to 

capture present cluster structure.  

 
 

 

 

 
Dataset.clusters.Hierarch.SOM: Three Gaussian clusters (centers 

[0,0,0],[3,3,3] and [9,0,0]) each of 300 data points are simulated 

with variance one.  Hierarchical.SOM clearly distinguished the 
clusters. 

Dataset.literature.Grow.Hierarch.SOM: The published literature 

in ISI (Institutional science indicators) using the key word (SOM-
s) [114] during the period 1990 to early 2005 resulted in 1349 

documents.  After eliminating irrelevant papers 638 remained.  

The first layer map consists of 3 x 4 neurons.  The position of all 

documents on the first layer map is given in Fig. 10.   Using 
citation count, it is found that the largely cited papers by 'Tonoren 

1999' and 'Tamayo 1999' appear in Fig. 7-70--16.  A more 

detailed map (Fig. 7-71---17) shows Kohonen contributions. 

  Exponential growth of hyperbolic lattice 

 A more complex map dependent on the data 

 scaling problem due to very large number of 

nodes 

 Remedy :  Hierarchically growing 

hyperbolic SOM 

 

Fig. 9(b). Data flow in GHSOM  [courtesy from Ref. 114]   

 
Fig 10(a): SOM display of papers 

published in Journals;  circle: document 

 
Fig 10(b): Browsing a section of Fig 10(a): 

size of circle : Number of times a document 

was referred 
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Dataset.anthrox.Grow.Hierarch.SOM: Yen [114] used 987 
papers on anthrox covered by ISI web of science during the year 

1981 to end of 2001.   

A three layer Grow.Hierarch.SOM (Fig. 11) has generated with 

a threshold values of  = 0.78 and = 0.004.  The first layer 

consists of 3 x 4 neurons and the papers are distributed into 
broad topics using the number of citations.  More details are 

obtained like seminal contributions.  The display corresponding 

to one node in the second layer describes 192 documents.  This 
hierarchical view is in consistent with probing from general to 

more specific. 

4.6 Hierarchically growing hyperbolic SOM (H2 SOM) : H2 

SOM It is introduced by Ontrup [196] and is a good 
combination of several features: hierarchical data organization, 

adaptive growing to a required granularity, good scaling behavior, 

smooth trend and map based browsing. It embeds a complete 
hierarchy within a continuous browsable space.  It is an extension of 

hyperbolic SOM.  A hyperbolic lattice structure is built 

incrementally.  Another critical feature is to search only a small 
fraction of all existing nodes to identify a close-to-optimal match.  It 

is a alternative computational tool to standard SOM and hierarchical 

SOM.  It allows more flexible growing of nodes and thus is similar 

to coding tree in classification.  It does not form regular SOM layers 
as the tree search SOM. Hedge (2004) applied an information 

theoretical approach to VQ, of course with a neighborhood learning 

[197].   
Architecture.H

2 
SOM: It has the same lattice structure as that of 

Hyperblic-SOM.  The root neuron of the hierarchy is placed at the 

horizon of H
2
.  Starting with two neurons in the first sub-hierarchy, 

the neurons are placed at the vertices of three equilateral triangles 

Fig.12.  These nodes must cover the full circle in H
2
.  

Growing step in H
2
-SOM: Each node in the periphery is expanded 

with nb=3 children neurons (Fig 12a).  It is affected mathematically 
by applying Mobius transformation.  The expanded node now 

resides in the center (Alg. 7).  The neuron 7 is expanded Fig 12b.  It 

has already one parent neuron and two siblings and thus there are 
five additional neurons.  Fig 12c shows the expansion of NN for 

other neurons in the first sub-hierarchy.  

 

 

 
Fig. 10( c): Magnifying a section of Fig 

10(b):  Red circle : Kohonen seminal 
contribution [courtesy of Ref 114] 

 

 

 
Fig. 11 Research papers on anthrax  
[courtesy of Ref 114] 
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Fig. 12(a) Topology of the HH-SOM :  (a)  Eight nodes ; (b) A node expanded with 5 ( = nodes-3) children ( c) Grown 
up size of HH-SOM after iterative expansion [courtesy of Ref 196] 

 

 Fig. 12(d) shows a “wrinkled” structure resembling a saddle at every point of the surface. In nature, some 

corals require maximum contact area for their survival with the surrounding water which carries vital 
nutrients.  It is spectacular that the growth behavior in these coral is like a hyperbolic surface. The human 

cerebral cortex is of 2-4 mm thin and nature optimized it into a corrugated structure of minimum area in 

commensurate with skull.  But, its area is 2500 cm
2
 if stretched flat.  During browsing, a discrete jump 

results in loss of context in the surrounding topics. H
2
SOM is superior to  Tree-Structured SOM (TS-

SOM), the Hierarchical SOM [105], the Self-Organizing Tree Algorithm (SOTA) [43], the Adaptive 

Topological Tree Structure (ATTS) [180]   or the Evolving Tree by Pakkanen et al. [221] (2004) and  

provided a continuous smooth browsable space. A framework using the open source visualization library 
VTK1 is developed which displays a 3D scene with user interaction. 

Alg. 7: H2-SOM                                              

Input data 

za : 2D-position of neuron in the complex Poincare 

Disk 

Initialize center node with center of mass of training 

data 

Weight of the node (W) is projected into the data 

space 1 

 [It is not refined in the entire training cycle training 

cycle] 

Initialize first hierarchy neurons with small deviation 

from W of center 

 

For i=1:max_hierarchy 

Do until it = maxit 

Train neurons in first sub-hierarchy  

Upgrade wa 

Cal hyperbolic neuron distance from 

their position 

Decrease width and learning step size 

End do 

Calculate quantization error 

If error > threshold, there is a need for growth  

If growth, then expand the architecture 

If       all nodes satisfy the growth criteria 

Then fix weight vectors from previous 

hierarchy 

          Adjust Ws of the neurons at the new 

hierarchy level 

End if  

End for i 
 

 

 

Fig. 12(d) Display of local embedding of H
2
 in R

3
.  

Similar to natural coral and human cerebral cortex 
[courtesy of Ref 196] 

 

The data sets of handwritten digits and news-wise (Reuters-21578) articles are used to quantify the 

efficiency of the method and to affect the classification and visualization.  These, two data sets are of high 

dimensional ones.  This method achieves better topology preservation and lower quantization error 
compared to other similar sized SOMs.  The computational complexity is O(log N).  
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Dataset.digits.H
2
-SOM:  MNIST contains 600,000 handwritten digits (for training) written by 250 writers 

and 10,000 text samples from a  

disjoint set of 250 other writers. The original 784-dimensional datasets, resembles 28 x28 pixels of grey 

level images of the digit.  H
2
-SOM (Fig. 12c) with a branching factor of 8 and 2,3,4,5 or 6 rings with 

maximal 41, 161, 609, 2281, 

8521 neurons are trained each 

with six lakhs of steps.  The 

average of 10 runs except for 6 
rings is superior to standard 

SOMs of sizes 7 x7, 13 x 13, 25 

x 25, 48 x 48 with 49, 169, 625, 
2304 and 8521 neurons 

respectively.  The termination 

criterion is combination of 
maximum depth and quantisation error.  H

2
-SOM with 2281 neurons is 180 times faster than SOM with 

2304 neurons. 

Dataset.Reuters 21578.H
2
-SOM:  It contains neurowire articles from 198  

4 onwards.  It is a benchmark in text mining applications.  The 
training set contains 9603 items (Fig. 12d).  The text data set has 

3299 documents.  The number of distinct words is 5093 after 

preprocessing (word stemming) and deletion of stop words. H
2
-

SOM with a maximum depth of five rings is superior to standard 

SOM of 48 x 48 topology and is approximately 60 times faster.  

 

4.7 Spherical SOM [204]: Tesselation  
Each triangular phase of the polyhedron is sub divided into 

several smaller triangles by lines running parallel to the original 

edges of the triangle.  
Icosahedron is most similar to a sphere.  It is clear that variance in 

edge length is smallest after tessellation.  Most of the vertices 

have six immediate neighbors. On the other hand, the original 
twelve vertices of icoshedron have 5 immediate neighbors. The 

number of vertices (N) after tesselation are N = f
2
 *10 + 2.  Thus, 

icosahedron based geodesic domes are more suitable for spherical 

SOMs. 
The frequency (f) means the number of parts into which the 

original edges are divided.  In the case 
of polyhedra the faces are not triangles.  

For a cube and docecahedron their faces 

are to be triangulated first.  A hexagonal 
lattice has better geometric environment 

compared to a rectangular one in 2D-space.  Every grid unit has the same number of immediate neighbors.  

Further, the distances between a unit and its immediate are the same.  In the case of a sphere, this type of 
uniformity is achievable only for five platonic polyhedrons viz. tetrahedron, cube, octahedron, icosahedron 

and dodecahedron. Figure 13 depicts tessellation of a triangle and a icosahedron with 1 to 4 frequencies. In 

the case of a triangle, the number of triangles is equal to 

 
Fig.  12(c). MNIST database  (a) coarse structure (b) focus point of 7-node from 1 
o‟clock position of (a); (c) perspective view covering „1‟ 

 

 
Fig 12(d) : Reuters-21,578 collection model 
using  H2SOM [courtesy of Ref 196] 

Spherical-SOM                                                    

 It removes the border effect of 2D-SOM and thus reduces data 

distortion 

 Gives more information about high-dimensional data 

 

 Neighborhood searching with existing data structures  

  not space efficient  

  time consuming   

 Remedy :  GEO-SOM 
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square of number of frequencies. These polyhedra can be further tessellated into different frequencies of 
the geodesic domes.  Many types of spherical SOMs are developed and applied to different types of 

datasets.  The tesselaed platonic polyhedron was 

proposed as the lattice.  Sangole [68] used 3D-
immersive vertical reality environments for 

interactive data analysis.  The spherical SOM was 

used in 3D-object modelling. 
 
 

 

 

 

 
( c) (d) 

 

 
(e) 

Fig. 13(c)  Front and back views of icosahedron. The dome is cut open along the colored edges  

Fig. 13(d) Four frequency geodesic dome when cut opened  
Fig. 13(e) Data structure in two dimensions for geodesic domes based on icosahedrons [courtesy of Ref 204] 

 
         1                 4            9              16 

Fig 13(a). Tessellation; 1- to 4-frequencies in a triangle 

 
Fig 13(b). Tessellation; 1- to 4-frequencies in a 

Icosahedron  

Geo-SOM                                                   

 Reduction in overheads in spherical SOM 

 Efficient method to find immediate neighbor of a 
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4.8 GEO-SOM: Wu and Takatsuka reported GEO-
SOM [204], an improved version of spherical SOM.   

It is a spherical SOM using 2D- data structure.  The 

border effect standard 2D-SOM is over come in 
Spherical SOM.  But, existing data structures of geodesic domes are not space efficient or time consuming 

when searching neighborhood.  Wu introduced 2D-rectangular grid data structures to store the icosahedron 

based geodesic dome.  The number of 

neurons can be efficiently increased. 
Dataset.breast cancer.Geo-SOM [204]:  

The benign samples are labelled as 2 and 

cancerous ones as 4.  Geo-SOM used 8-
frequency geodesic dome (642 neurons) 

and RDSOM 28 x 23 hexagonal grids 

(644 neurons) with a initial update radius 
of 11.  After 150 epochs the sizes are 

distortion spheres are more uniform and 

smaller for Geo-SOM compared to 2D-

SOM (Fig. 14). 
 

Dataset.sevenCluster.simulation.Geo-SOM: Seven clusters each 
with 500 data points in 3D-space are simulated and analyzed with 

Geo-SOM (Fig. 15) with 9-frequency geodesic dome (812 neurons) 

and 2D-SOM 29 x 28 hexagonal grid (812 neurons).  The initial 

update radius is 14.  In the input space cluster 5 is close to 4, 3, 1 
and next level 6, 2, 7.  In 2D-SOM 5 is closer to 7, 1. 6 and 3, 2, 4 

are in the next level.  In Geo-SOM 6 and 4 are in the first level, 7 

and 1 in the second level and 3, 2 in the first level.  Distortion 
around each neuron is larger along the boundaries of clusters in both 

the methods. 
 

 

 
(a) 

 

 

 

 
(b) 

Fig. 15 visual separation of clusters in (a)Nine-frequency-Geo_SOM 

(812 neurons) (b) 29 x 28 (= 812) neuron-2D-hexagonal-SOM for a 
simulated data set [[courtesy of Ref 204]] 

 Misceleneous 

4.9 Rival-model penalized self organizing map (RPSOM)  
The rival penalized competitive learning (RPCL) and rival penalization controlled competitive learning 
(RPCCL) methods have been used in cluster analysis.  RPSOM [121] is based on these postulates and the 

algorithm is brief in Alg. 8. 
 

vertex (neuron) 

 Fast dome tessellation i.e. increasing the number of 

neurons 
 

 
(a) 

 

 
(b) 

Fig. 14 Discrimination of benign (‘2’) versus cancerous (‘4’) breast biopsy 

samples   

 (a) Display of trained ordinary-2D-SOM   (b) Projection of trained Geo-

SOM on to 2D-plane       

 

Cluster centers : 

(0, 0, 0), (10, 0, 0), 

(0, 10, 0), (0, 0, 10), 

(−10, 0, 0), (0,−10, 0), 

(0, 0,−10) 

SD = 1.0 in each dim 
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Alg. 8: RPSOM [121]                                           
Initialize W for m x n Kohonen map 
The winning frequency of each neuron set to 1 
Repeat until convergence of SOM 

For i = 1:NP 

Input x(i) pattern 
Find k-nearest neurons (k =1, 2) in the adopted neighborhood topology 
Find Best matching unit (BMU) is found 

Increment winning frequency neuron by 1 

Identify Rival neurons belonging to first k-NN and not 1-neighborhood neuron  
Update Ws of BMU and its neighbors  
Redefine Neighborhood function of BMU 
Penalize rivals in W vector  
               End for  
End repeat 

 
Datasets: RPSOM is tested with two synthetic data and IRIS.  
 

4.10 Gray-SOM: Yeh and Chang [228] proposed Gray-SOM (Alg. 9) considering the gray relation 

between the input data and each adjustable output node in the learning rule. It considers the input training 
data and all adjustable weights as n-tuple sequences, and 

not as „„n-dimensional patterns‟‟.     

Dataset.TSP.Gray-SOM: 

The distance covered in TSP task using Gray-SOM-NN is 
nearer to optimal length compared to G-SOM and SOM 

(Table 3). 

Table 3:  Comparison of performance of Gray-SOM 

                    with GSOM and SOM for TSP 

Datasets  

 

# 

cities 

Optimal 

length 

GraySOM GSOM SOM 

EIL51  51 426  436.90  437.71  443.90  
ST70  70 675  683.12  629.06  692.80  
RD100  100 7910  8119.00  8143.72  8137.90  
EIL101  101 629  653.78  658.04  688.70  
BIER127  127 11828  120790.00  121181.30  122211.70  

 

4.11 Concept- SOM: ConSOM (Alg.10) is more sensitive 
to semantics and the quality of clusters and is superior to 

SOM and 'SOM plus VSM'.  Table 4 summarizes 

documents of different categories each containing 160 
records analysed.    

 The architecture of concept-SOM is 

similar to Kohen SOM except that each 
neuron in Kohonen layer has two vectors 

corresponding to concept and feature.  

Each input sample also has tow vectors. 

Liu [224]    proposed conceptual 
(concept-)  

 

 
 

 

Alg. 9: Gray-SOM       
Initialization 
 W  
parameters 
Do until connection weight vectors converge 
For i=1:NP 

ith training pattern is inputted to the NN 
Calculate Euclidean distance between W(i) and x( 
Determine the winning neuron  
Refine W 
Determine neighboring nodes around winning neuron 
Select output nodes which are highly related to output  
Update corresponding Ws 

End for 

        Increase the threshold,  
        shrink learning rate & t size   

End do 
 

If       1i iw t w t tol  

Then  converged 

Table 4: Datasets analysed with ConSOM  

 Description of Data set  #FV #CV Source  

A Wheat, grain, ship, trade  494  723  Reuters 21578  

B Corn, wheat, grain, ship  441  652  Reuters 21578  

C Space, Auto, guns, medicine  612  716  20 newsgroups  

D Space, baseball, Christian,  
medicine, education 

568  629  20 newsgroups  

E martial, traffic, computer, 
politics 

575  791  http://news.sina.com  

F economics, culture, martial  742  915  http://news.sina.com  

#FV Feature vector dimension    

#CV Concept vector dimension    
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 SOM for clustering of text documents.  The documents are 
represented in the feature space and neurons in an extended 

concept space. The similarities are calculated in both the spaces 

and are used to update the weights.  The frequency of 
occurrence of a word plays a role.  

 This model has the benefits of the knowledge of relevance of 

concept of SOM.  A common sense data/knowledge base named 

„Hownet‟ with concepts/words relating the words with defense, 
soldiers and doctors are used. For example, the word doctor 

does not distinguish a civilian or defense professional.  But, 

soldier unambiguously means a defense personal that too 
belongs to infantry and not to navy/air force. Only the 

combination of both the words viz. doctor and defense 

correspond to a medical practitioner in the warfront (may be in 
infantry/navy/air force).  Still the ambiguity lies whether he is in 

the war field with defense-operation or in defense-hospital 

amidst civilian habitat. 

 
 4.12 Self organizing relationships (SO.Relation)-NN: Koga [199]  proposed SO.relationships-NN to 

approximate I/O relations extending the domain of 

Kohonen-SOM and learning is through a critic. 
Architecture.SOR-NN: The input consists of x and y 

vectors. The SO layer is same as that in Kohonen-

NN.  The functioning involves two stages-learning 

and testing (execution). SOR learns the data 
relationship in the first phase.A reference vector is a 

paired real values representing the weight of x to 

Kohonen neuron and Wy to the same Kohonen 
neuron and aht algorithm is in Alg.11.    

Data structure: The paired data vectors of 

explanatory variables and response are input to 2D-
SOM layer.  The evaluation value Ei is the user 

chosen or intuition based.  The learning is attractive 

or repulsive depending upon whether Ei is positive 

or negative. 
 Learning:   Self organizing relationship SOM learns from undesirable behavior leading to undesirable I/O 

relationships.  Repulsive learning is similar to reinforced learning prevalent in animal kingdom.  The 

objective is to realize an approximation of a desirable I/O relation and mainly used in on-line learning.  
Undesirable I/O relationships are obtained by trial and error.  They are actively used in repulsive learning, 

which is similar to reinforced learning.  Reinforced learning is a search based algorithm, but requires a 

large number of trials. 
Dataset.trailer_truck.SOrelationships: The trailer truck control system has three inputs and one output 

with non-linear relationship.  In the experimental system, the motion is captured with two CCD cameras in 

the form co-ordinates of three markers attached to the trailer truck.  The front wheel angle is calculated 

from two angles and the distance.  The training set consists of 6561 learning vectors and 25 x 25 Kohonen 
layer is used.  Starting with any position, the truck reaches the target with SOR-NN. 

SOM with higher order neurons: In this type of NN, higher neurons are used instead of conventional 

neurons.  The detection of chromosomes in the human cell is modelled with four third SOM. 

Clustering discrete group of data : Ghaseminezhad and Karami [38] proposed a modified SOM for 

automatic clustering of discrete groups of data. It starts with a “second winner” algorithm where 

neurons in the competitive layer find their initial location in the network space. It is followed by batch 

Alg. 10: Concept extension SOM 
 [Liu 2008]   
Input : Document  
Parse the document 
Delete stop/grammatical words 

Count the frequency of each word 
Pick up the most frequent words into a vector S 
While S is not empty 
Pop a word  
Find the word in the knowledgebase  
(HOWNET) and get sense word S(wi) 
For every sense record 
       Find all words relevant to concept 

End for 
Find the common words  (intersection)  
between   the document and sense words  
End while 
Count the word frequency 
Output : concept word vector 

Alg. 11: SOR. learning      
             
X and Wy are initialized by random numbers 
Cal similarity measure between given input vector and 
 all reference vectors in the input space  

Repeat until convergence 
For i=1:NP 
Cal best matching unit for ith learning vector 
Cal Gaussian neighborhood function 
Refine values of each reference vector 
Cal  parameters  
End for  

End repeat 

 
Cal output of network, which is the weighted average of Wyi 
and zi 
Cal Nth element of y  
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learning to train SOM.  Now, the wrong links between neurons are removed. The method is effective 

for real and synthetic datasets.    
SOM with supposed maximum information: Kamimura [249] introduced a new SOM with maximum information 

content and tested with animal data, SPECT heart diseases, voting attitude tasks. The limitations and possibilities are 

discussed 

Hybrid SOM-NNs  
Hybridisation SOM with another neural network, statistical procedure, fuzzy method, evolutionary 

algorithm continues to be an active area to enhance the beneficial features, diminish limitations and 

increasing application scope in inter-/intra- disciplinary tasks. A brief description of binary hybridisation 
of SOM with RBF, immune algorithm, statistical concepts and SCL widened the scope this novel self 

organizing (2D-, 3D-) visualization platform from high dimensional feature space. The hybrid algorithms 

are far superior to simple SOM for very large text documents in categorization.   

Fuzzy theory + SOM 

Fuzzy Kohonen Clustering Network combines fuzzy membership jargon with values for learning rates. It 

processes. It processes data sets or images with ambiguity and/or uncertainty.  

4.13 FuzzyNN + [GA, PSO] + SOM: A self-organizing-Fuzzy-NN based on GA and PSO was reported. In 
the first phase, fuzzy structure is identified using Takagi-Sugano (TS) fuzzy model tuning.  Optimal 

number of clusters is obtained from fuzzy-cluster validity index.  The second phase involves fine-tuning of 

parameter set of the fuzzy-model from first phase with GA and PSO.  Static function approximation and 
non-linear dynamic system identification data sets are trained with SOM-Fuzzy-(GA-SOM)-NN. 

4.14 Self organizing-adaptive-fuzzy-NN: Hsu [117] reported self organizing, adaptive fuzzy neural 

control for online estimation of controlled system dynamics of electro-chaotic circuit.  It consists of 

computational and supervisory controllers.  The structure and W learning phases of fuzzy NN are used in 
computation control.  

 The optimum structure learning 

includes on-line generation [223] and 
elimination of fuzzy rules (Alg. 13). 

This method automates structure and 

parameter optimisation 
simultaneously based on input and 

target values.  The first phase is SOM 

operation in arriving at network 

structure.  It is followed by a 
supervised approach and applied to a 

simulated data of function 

approximation. L2 norm with a 
desired attenuation level is the 

objective to be achieved for good 

performance.  Lyapunov function is 

the basis of W learning ensuring 
system stability.   

4.15 Granular SOM: Kaburlasos 

[193] proposed a distribution of fuzzy 
interval numbers for the data in his 

Granular SOM. Lattice theory is the 

basis for rigorous mathematical 
analysis of Granular SOM. It aims at 

fuzzy rule induction for linguistic 

classification data.  Visualization is 

not the objective here.   Fuzzy interval numbers (FINs) represent a local non-parametric PDFs and/or a 
fuzzy set.  The parametric mass functions are to introduce tunable non-linearities.  There is one-to-one 

Alg.13: Self Organizing fuzzy-NN algorithm [223]                                                            
                                                                                                     
Lo samples are randomly picked up whose coordinates are set to cluster centers 
it= 1 
 While it <maxit 

 For i= 1 : NP 
         k= Random number in the range [1:NP] 
  z= x(k) 
  Cal distance matrix 

 end 
 Winning (win) and rival (rival) neuron calculation 
 ( , ) ( , )min

k

d z cwin d z ck  

 ( , ) ( , )min
k win

d z crival d z ck  

 Up gradation of Ws 
  

 it= it+1 

   Endwhile  
 For each sample  
         find the nearest cluster center ck 
          near_cluster_center =  (k)                               

endfor 
Compute the ratios between the number of 
samples in each cluster and the number of total samples 

If        ratio of some cluster is smaller than the threshold x, 
Then delete the corresponding cluster. 
Nclust = +1 
If nclust == 2, then stop, otherwise continue 
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correspondence between FINs and PDFs. The interpretation 
of FINs is that they are the antecedents or IF part of the fuzzy 

rule.  The category (classification) label is THEN 

(consequent) part of the rule. This model seeks optimization 
looking for a different mass function in a data dimension.  

GA is used [193] to compute optimal mass functions for 

tuning a metric distance between non-parametric fuzzy inference numbers.  This algorithm uses calculated 

FINs and Minkowski metric in F
n
.  It extracts descriptive decision making knowledge from training data.  

It reads the Euclidian space R
n 

 as the Cartesian product of N totally ordered lattices R. Thus, it adheres to 

linguistic semantics.  In order words, difficult quantities (weight, speed) are involved in different 

dimensions. Gran-SOM requires batch process to refine W belonging to F
n
.   

Future venture: An incremental Gran.SOM using convex combinations of FINs is contemplated.  But, it 

may leave part of the training data outside all fuzzy 

rule interval support. It is interesting to compare the 
function and behavior of Gran-SOM with probabilistic 

mixture models. 

4.16 Greedy granular SOM: The term greedy refers 

to an increase in the number of components in the 
mixture models.  Greedy-Gran-SOM [193] calculates a 

distribution of FINs. It induces non-parametric FINs 

for PR data leading to fuzzy data clusters. 
4.17 Fuzzy ART-NN + growing cell SOM: A hybrid 

Fuzzy ART-NN with growing cell structure, resulting 

in growing-Fuzzy-Topology-ART-NN.  The growing 

cell structure results in growing NN.  In the present 
model a restriction on topology preserving is 

achieved.  The training algorithm used is called push-

pull learning method. The model is tested with 
synthetic and real time data sets.  The categorization 

of pedestrian and car is obtained real traffic roads 

(KNU and MIT-CBCL databases).  The five different 
objects in COIL-DB are successfully discriminated.  

Auto resonance theory (ART) has niche as unsupervised paradigm for binary data with distinct learning 

process. ARTMAP is ART in the supervised mode using both X (explanatory/causative) and Y 

(response/effect) datasets.  Fuzzy theory enables to deal with floating point data. The state-of-the-art-of 
this brainchild of Grossberg and Carpenter will be detailed elsewhere.  The present model is combination 

of fuzzy-ARTMAP with Kohonen-SOM enveloping growing architectural advantages. 

Mathematical space +SOM 
 4.18 Kohonen-SOM-Riemannian space: Peltonen [182] extended Kohonen-SOM to Riemannian (non- 

Euclidian) spaces (matrices) (Alg. 12). It is an FIS extension and processes linguistic fuzzy data using 

simplified 3D-vector representation of linguistic data.  
 4.19 Turing unorganized machines + 

SOM: Turing unorganized machines 

consist of self organized connections as 

opposed to self organizing neurons in 

Kohonen SOM.  Beaton et al [248] 
proposed a hybrid SOM with Turing 

unorganized machines with both self 

organizing neurons and connections 
through a connection learning rate, 

connection reorganization, and a neuron responsibility radius.  Hybrid model envisaged both self 

Greedy Granular SOM                                                     

 optimization of well defined object function 

 Guarantees full coverage training data domain 

 It retains linguistic interpretation. 

 Captures locally all order statistics in the training data 

  Handling of missing data based on the theory of 

probability 

 Does not consider alternate divergence (distance) 

function  

 Cannot cope up with linguistic data 

 

Growing-Cell-Structure-RBF  

 A categorization property of Fuzzy ART enhances the class 
dependent clustering representation of GCS   

  The proliferation of growing nodes in F2 layer is reduced . It 

is achieved by replacing each of F2 nodes with GCS 

 Push – pull training increases the discriminating power of 

clusters and partially improves, the forgetting problem 

median-SOM                                                      

 Tackles classification  where Euclidean 

distance is not available  
o  protein structure, text documents, biological 

signals 
 

Alg. 12: Kohonen-SOM-Riemannian space [193]        

    

Step  : 1 Learning of centers of fuzzy sets by crisp-SOM 

Step  : 2 Fuzzy sets with triangular mf is inserted followed by fine 
tuning 

Step  : 3 Continuous valued output   weighted average of output of  
                                                   activated rule 
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organizing neurons and connections through a connection learning rate, connection reorganization, and a 
neuron responsibility radius.  It is implemented in a 1-dimensional network (with. chain of neurons) and   

theoretical implications are demonstrated. It is superior to the classical SOM algorithm in speed until 

convergence and produces independent clusters and tangle-free networks. 

Statistics + SOM 

4.20 Dis-similarity SOM or median-SOM: Kohonen 

proposed median SOM, where the mean value of the batch 

SOM is substituted by generalized median.  Median-SOM 
uses k-means algorithm.  It is very slow compared to 

standard SOM. It's time complexity is quadratic while that 

for standard SOM is linear.  But, there is improved 
computational efficiency [203] over earlier DSOM.  

Cottrell et. al. [23, 46] derived a batch version for 

modified SOM, NG and k-means.  The proof of 
convergence is derived and batch-NG is related to an optimization by Newton method [203]. 

 

4.21 SO-mixture (density) network: Yin 

[196] formulated self organizing mixture 
NN wherein each node characterizes a 

conditional probability distribution.  The 

joint probability density of data (or NN) is 
described by a mixture distribution. The 

proposed complimentary method [202] adds 

on statistical perspective to the non-

statistical SOM.  It helps in deeper analysis 
and interpretation. It is an instance of 

hybridizing information from paradigms of 

different philosophies.  
The original Kohonen-SOM model was extended to incorporate an underlying probability distribution.  

Lopez proposed SOM based on mixture of multi-variate student-t components. The earlier popular 

Gaussian mixtures of PDFs are used.  It is robust to outliers.  
Architecture: A tree structure is proposed for SOM in 1990 [Ontrup 2006] and   adaptive feature is added 

[196].  Later, it uses an evolving strategy. The growing hierarchical hyperbolic SOM is a hybrid product of 

growing hierarchical-SOM and hyperbolic SOM with tremendous applications.  In twinned self organizing 

maps [231], two SOMs are linked via the method of winning neuron. The concept of granular approach 
resulted in granular and greedy granular SOM [193]. 

k-means + SOM: A hybrid SOM with k-means and modified leader clustering algorithms is tested on 

Reuters-21758v1.0 and 20 new screw collections.  SOM with k-means is better than stand alone SOM, or 
its modification with leader algorithm. 

Overlapping SOM:  Cleuziou [250] proposed overlapping SOM, a hybrid algorithm with overlapping-

variant-of-k_means and Heskes-variant-of-Kohonen SOM.  It is superior to conventional SOM. The 
theoretical aspects of associated energy function and complexity of the algorithm are discussed.  Ambroise 

[237]  formulated probabilistic SOM.   

Kernel SOM:  The k-means clustering algorithm kernalised and a neighborhood learning is added [197].  

The input is transformed into a feature space followed by application of non-linear kernel function.  It 
resulted in the improved classification.  Graepel et al. [240] transformed the input space into a high 

dimensional space using kernel function.  Here, the distance metric is transformed into non-linear form 

which adds flexibility in VQ to capture the data structure.  Yin [109] and Van Hulle [187] employed 
Gaussian or other kernel neurons. This approach is approximately equivalent to a mixture of 

Gaussian/kernel-distributions of the data.  Here, Kullaback-Leibler divergence between the neural model 

and the data is minimized.  Based on these results, Yin [197] established a formal link between Kernel  

Kohonen-SOM-Riemannian space                                               

 Only triangular mfs used  

 Accepts crisp but not Fuzzy inputs   

 Constant mass function used implicitly and 

thus do not have any statistical 

interpretation 

 importance of structure identification is not 

recognized 

  

If SO-mixture NN and equal variance and equal priors for all 
nodes and number of nodes is large 

Then SOM approximates to a Kernel method i.e. SOM is a special 
case of Kernel method 
 

If Kernel SOM and prototype conditional density is used as 
kernel function 

Then Kernel SOM  mixture density model 

 

If Data density is smooth and number of neurons    
Then SOM and Kernel SOM have similar performance for 

classification 
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SOMs and SO-mixture networks [109].  SOM implicitly 
approximates the kernel methods.  There is a connection 

between kernel approach and probabilistic model.  It 

shows the superiority of function of kernel SOMs over 
standard SOMs. Kernel SOMs model data density better 

 and thus improved classification.  The data points and 

neuron weights (defined in input space) are mapped to a 

feature space.  It is followed by the application of SOM in the mapped dot product space. It is termed as 
type II kernel SOM.  Kernel SOM is entropy optimized mixture density learner. The core advantage is 

improved classification. 

NNs + SOM 
4.22 RBF + GCSSOM:  Fritzke [190] put forward a supervised hybrid GCS-RBF-NN.  It is the start of a 

new paradigm crossing the boundaries of the layered structure entering into the realm of reality (brain).  

Architecture.GCS-RBF: The hidden layer of SLP consists of Kohonen topology with hyper-tetrahedron 
neighborhood structure (Fig. 7.74).  The activation function for the neurons of hidden layer is RBF. The 

output is the weighted sum of the output of neurons 

on the hidden layer (chart zzz.).  For a classification 

task, the largest activation indicates the 
classification label. The insertion of the neurons is 

based on error/signal criteria.  For example, the 

classification error at the current moment can be 
used to find the position of insertion of a new 

neuron.   SOM-RBF is another novel NN over the 

long nurtured center detection algorithms of 

clusters.  Hecht-Nielson [635] [1987] reported 
counter-propagation SOM [199], another 

supervised SOM-NN.   It approximates a desired I/O relation of a target system. 

Nature Inspired alg +SOM 
4.23 ImmuneAlg + SOM:  A tree-structured artificial-immune network along with SOM was recently 

proposed.  This hybrid SOM-immune-NN strictly generates topological structure as a tree.  This permits 

the analysis of data hierarchically.  The novel antibody interaction inspired from immune system and SOM 
maintains consistency between shape, space metric and topological metric.  It is an important concept in 

high-dimensional data analysis.  SOM-IA-NN is applied for IRIS and synthetic datasets with low VQ 

errors and promising data visualization. 

4.24 EA + SOM : A memetic-NN is used for TSP using Euclidean distance.  SOM is hybridized with EA.  
The evolutionary dynamics consists of intervening SOM execution with a mapping operator.  Fitness 

evaluation and selection operators are also used.  SOM and mapping operators have a similar structure 

based on closest point finding.  Simple moves are performed in the plane.  TSP up to 85,900 cities is 
solved.  The performance for 91 datasets is publicly available. The approach is superior to other NNs.  Yi 

proposed an extended elastic-NN to solve TSP by introducing time-dependent parameters. Here, neurons 

move quickly near to the cities during the first few epochs. 
4.25 Ensembles of SOMs: SOMs, in general, provide visual output sacrificing as little as possible 

topology of the data. But, the limitation is artifacts of single training.  The ensemble approach for SOMs 

corrects small defects arising as a result of single training.  This method retains smoother representation of 

the inner structure of the datasets.  However, it does not supersede in lowering classification/distortion of 
errors of single models.  Yet, it fabricates the model with more truthful and organized representation of the 

data and trained SOM-ensembles outperform other learning methods.  The inter relation between diversity 

and sub-local accuracy inside SOMs is possible due to transparency of these models. For visual 
summarization of the results of an ensemble of SOMs, a weighted voting super position fusion algorithm 

was recently applied.  It performs a weighted voting process between the units of SOMs in the ensemble.  

The added advantage is the preservation of topology of the map.  The results of analysis of IRIS, Echo-

If Conditional density function  
is kernel type 

 
or   

 Kernel function is of density type and 

 Both are isotropic or symmetric  

Then The two methods are equivalent  

Growing-Cell-Structure-RBF  

 Automatic determination of number of RB neurons, 
their width and center (position) in the  growth 

process itself 

 parallel processing of position of RB (hidden) 
neurons and refinement of W    

 Good generalization  

 Size (or number of neurons) is relatively small 

compared to general RBF which requires a larger 
number of neurons 
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Cardiogram and wine datasets are compared with other two algorithms viz. fusion_ED and fusion_Voronoi 
polygon similarity.  

5. Research mode SOM : SOM, proposed by Kohonen in 1990s, as an unsupervised exploratory tool for 

2D- visual display of multi-dimensional data without an apriori knowledge of data structure, probability 
distribution etc, arose interest in the development of newer procedures and extensive applications in 

diverse disciplines for numerical to symbolic data.  The exhaustive comparison of all the components for a 

task is a formidable job and availability of the algorithms in software implementable mode with a white 

box approach of code is the need of the hour for research and pedagogic purposes.  The state-of-the-art-of- 
SOM in the method-base mode is described in Chart 24. 

 

Chart 24.  State-of-art-of- Kohonen_SOM in research mode 

  

 
 SOM 

Unsupervised SOM   

Supervised SOM   

 
 Supervised SOM 

Counter propagation 

XY-fusion 

Supervised Kohonen 

LVQ 

Supervised Neural gas 

  
 

Training mode-SOM 

Sequential 

Batch 

Parallel   

 

Software packages 

Matlab 

Professional II 

Trajan 

…. 

  
 

Topology_SOM 

Square 

Hexagonal 

Boundary condition_SOM 

Normal 

Toroidal 
 

  
 

Weight initialisation 

Random 

fn(Eigen vectors) 

 

Experimental Design 

None 

Factorial 

  

 
 

Training algorithms 

Hebbian 

Conscience 

  

Method Base_ SOM 

Growing cell structures (GCS) 

None 

Externally CGS  

Evolving-Tree-SOM 

Growing Hierarchical SOM 

Hierarchically growing hyperbolic SOM (H
2 

SOM) 

Spherical SOM  

GEO-SOM  
 

Evolution + SOM 

None 

Self evolving  SOM 

SO self evolving NN 

SOM-EA 

SO-topology evolution  
 

Neurons 

None 

Higher order 

Symbolic 

MLP 

 

 

   

Hybrid_ SOM 

Mathematical space + SOM 

Euclidian  

Riemannian space 
 

Statistics + SOM    

None 

Median 

Nature inspired + 

SOM 

None 

Immune Alg  
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Mixture density 
 

EA 
 

   

Fuzzy theory + SOM 

None 

 SO-adaptive-Fuzzy 

Granular SOM 

Greedy granular SOM 

Fuzzy ART-NN + growing cell SOM 

FuzzyNN + [GA, PSO]  + SOM 
 

Ensembles 

None 

Majority volte 
 

   

Miscelleneous-SOM 

None 

Rival-model penalized self organizing map (RPSOM) 

Self organizing relationships (SO.Relation)-NN 

Gray-SOM 

Concept-SOM 

Rival-model penalized self organizing map (RPSOM) 

Self organizing relationships (SO.Relation)-NN 
 

 

Scientific 

vocabulary 

Definition 

MLP  Multi-layer perceptron 

RBF  Radial basis function 

Fuzzy-NN Fuzzy- 

NN Neural network 

VQ Vector quantisation 

SVM Support vector machines 

SOM Self organizing method 

LVQ Learning VQ 
 

Scientific 

vocabulary 

Definition 

VEDA Visual exploratory data analysis  

SXR Structure X Relationships  

X [activity property  
 Biodegradability] 

QSXR Quantitative SXR 

ARMA Autoregressive moving average 

IIR Infinite input Response 

FIR  Finite input Response 

XOR Exclusive (Boolean) OR 
 

 

6.  Future scope : The future direction in architecture should be in emulating hitherto existing best types 
and even random (heuristic) intelligent combination of them with the choice of adequate (simple to 

complex) neurons depending upon the task.  The chaotic to stable state concept can be the basis of the 

venture. The application end-user looks for tidbits in the results of problem on hand within the established 

frame, although he/she does not grasp or browse into the details.  The software designed to display the 
status of results in the expert mode/critical analysis mode along with     necessary 

conditions/limitations/remedial measures of method, data, error profiles, computational time/costs etc. In 

computational quantum chemistry, HF, post-HF, DFT etc reached a status of reliability and at least partial 
alternatives to experiments.  John Pople, Nobel laureate in chemistry and a core mathematician proposed 

smart (called Gaussian [G1, G2, G3]) frames from 1990 onwards. These Gn (including recent G4, a 

continuation of saga by Curtis et al.) tools (each being a bunch of models intelligently 
interwoven/executed) are phase wise refinement in moving up the ladder with high level models for 

accurate (electronic) energy calculations.  SOM with a niche in unsupervised paradigm, a new approach 

with sequential, parallel and hierarchical intelligent knowledge based numerical expert system front- 

/back-end and imbedded/infused heuristic modules is awaited. The combined results with other methods of 
choice viz. SVM, possibilistic procedures, information content and transformed mathematical spaces 

enhance the Xmetric-eye-vision (chemo-, software-, method-).  The simulated-data-generators from simple 

http://en.wikipedia.org/wiki/Antiparticle
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as possible (SAP) to mega size of X and response with explicit functional relations are good training tools 
as well as a roadmap for further exploration/exploitation in the future frame.  Experimental design and 

numerical expert systems of new generation to explain/control/repair/advise the way outs for stumble 

blocks real life problem solving are welcome features.  The knowledge base for extraction of 
information/knowledge of the visual display of model and/or experimental results is a board for takeoff 

into future computational paradigm complimenting and supplementing human brain rational ventures. 
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