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ABSTRACT 
What the environment and system now are,in fact, a result  of yotta_consequences of  hexa- 

micro_processes and peta-macro_processes over, of course,finite (13.7 billion years)  time in 5% of  

universe. The known chemical, biological and meteorological micro processes and their interaction are 
non-stationary and densely networked.   Thus, even in twenty first century, the phenomenon poses a hurdle 

to model from first principles. Mathematical neural networks (Ma_NNs), data driven suite of algorithms 

are a subset of nature inspired approaches (Eman)which brought renaissance in computational 

environmental science during the last quarter century.  
 

Particulate matter (PM10, PM5 and PM2.5), also concerned with health hazards, ishard to model in air.  

The complexity arises due to variability of meteorological factors and topographic influences.   Different 
species of PM10 in Italy was modelled with Elman-NN.  RBF and SLP were successful in forecasting 

PM2.5. The performance of mechanistic models for NOx is poor, while MLP was successful.  Operational 

intricacies of surrounding industries affect SO2 emission in addition to metrological scenario.  NNs yielded 
better results compared to statistical approach.  NH3, SO2 and aerosols are modelled successfully with 

SLP.  Aerosols, containing different metal species and particles originating from road dust, 

industrial/biogenic emission, are classifiedforminor particles by ART-2a-NN.  The maximum emission of 

NH3 from manure storage is modelled with NNs and the number of inputs is less compared to Michaelis-
Menten model.  Here, mechanistic models are inadequate while MLR fails.  Electronic nose, developed for 

pollen detection uses NNs.  Compared to PCA, NNs achieved subtle distinction of major classes.  Further, 

they enabled partial resolution of even classes.   
------ 

# Part was presented at Int. Conf. on Frontiers in ChemicalResearch (2008Dec), Mangalore University, 

Mangalore. 

The ground water quality with rain-water infiltration and extraction of knowledge from use of ground 
water/land was modelled withSOM-NN.  NNs performed better than ARIMA in hydrology and management 

http://www.joac.info/
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R. Sambasiva Rao et al                           Journal of Applicable Chemistry, 2015, 4 (2): 355-449 

 

356 

www. joac.info 

 

of flood/watershed.  A complex urban and rural water resource management with 1200 subsystems and 
100,000 variables necessitated the use of NNs and fuzzy inferencesystem (FIS). The turbidity and color of 

treated drinking water was predicted with NNs.  Transportable NN model was developed for annual water 

supply.  The optimum amount of alum in drinking water treatment plants (DWTPs) in Australia is 
estimated with NNs.  Employing NNs, Chlorcast models residual chlorine in drinking water tank and 

distribution system in Sanite-Foy with success in real time.  

 

In effluent of waste water treatment plant (WWTP), MLP estimates the concentration of nitrogen as 
ammonia better than activated sludge model (ASM-1).  Recurrent NN is used in modelling and control of 

combined sewer systems (CSS) in WWTP, Washington.  The activation/deactivation of pumps in WWTP 

(which were earlier managed by human operators)are planned through NNs,.  A plant in Taiwan uses a 
multi-objective control strategy involving NN, fuzzy logic and genetic algorithm (GA).  Two single layer 

perceptron (SLP-) NNs in sequence are used in WWTP operation, one to control the plant and the other to 

monitor critical parameters.  BOD and SS in treatment plant in different locations are studied as NN time 
series models. 

 

The soil surface, a heterogeneous medium of chemicals, is the terrain platform for life of animals and 

humans. The composition and quality of soil is also at stake due to anthropogenic and non-anthropogenic 
reasons. The increase in concentrations of pollutants in sub- and deep- surface of soil is mainly due to 

drainage of domestic/ untreated industrial wastes.  The distribution over wider surface is a consequence of 

streams, floods, riverine flows etc.  The model independent paradigm, neural networks, is a versatile tools 
to predict the coming up scenario and has been used to implement control measures in keeping health of 

soil to derive quality foods, medicinal plants and edible weeds etc. 

 

Keywords: Particular matter (PMx), Water sources, Potable water, Pollution, Waste_ 

water_treatment_plant, Environmetrics, Neural networks, Persistent organic pollutants, Pristine environ 

ment, Oil spills, rain fall, floods, ground water, soil, Environmental protection agency. 

______________________________________________________________________________ 

 

 
II. Environmetrics  

Contents 

 
 

 I. Air   (1-7) 
 

1. Particulate Matter (PMx ) 

2. NOx, SOx, H2S etc 
3. PCBs 

4. Aerosols 

5. Persistent organic pollutants (POPs) 

6. Engineered nanomaterials 
7. Personalized air monitoring move 
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   II. Water   (8- 11) 

 
8. Water resources  

 8. 1      Long term forecast 

 8.2 Water resources and management: 
   Rainfall 

   Streams and storms 

   Rivers 
   Floods and droughts 

 Flood management 

   Ecological imbalance restoration 

   Ground water level 
 

 8.3  Marine environment 

      Rain over oceans 

     Ocean wave models 
 

   Sea surface wind speed 

     Salinity Oceans 
  

   Color of oceans 

  Chlorophyll-a   
   Cyclone forecast 

  

9. Quality of water 

 9.1 Drinking water through treatment   
  - Residual aluminum  

  - Residual Cl2  : 

 9.2 Domestic Water consumption 

   

10. Pollution of water bodies 

  Discharge standards 

 Ground water contamination 

 Fecal pollution of water resources 

 Marine pollution 
 Oil spill 

11  Waste water (WW) Treatment 

   
  WWTP 

  Combined sewer systems (CSS) 
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  III. Soil   (12-13) 

12 Soil pollution 

 12.1 Plant uptake of  pollutants models  
from contaminated soil 

   

 13 Treatment/disposal of solid waste 

 
 13.1 Activated sludge model 1 (ASM1 ) 

 13.2 Natural hazards/calamities/disasters 

 13.3 Land use 

 13.4 Urban heat island 
 13.5 Miscellaneous 

 

   
14. State-of-knowledge-of- health of environment and 

 its impact on health 

15. Future track (2015- ) prospects-Afterword 
   

 

 Appendices 

 Appendix-1: Environment and Science   
 Appendix -2: State-of-art-of-Modeling evolution in  

research mode 

 Appendix-3: Object functions in different tasks 
 

INTRODUCTION 

In 1970's US-EPA introduced pollution standard index (PSI), which is broadly employed as AQI (Air 

quality index), US-EPA-1999.  The governmental agencies promoting environmental health in different 

countries are in chart A1-1[44].   Another committed focus of these elite bodies is not only to pass skills 
down the ladder up to maintenance stations, but to share experience, expertise and professionalism. These 

promote innovations in the cutting edge technologies, core science and achieve best global air-water-soil 

Eco balance in the coming millennium.  The immediate fringe benefit is avoiding the ill-effects of 
pollutants on human health and on terrestrial/marine natural evolving resources.  Eco system is a broad 

term and made up of many mega processes in natural phenomena and man-made activities. The nature and 

intensity of deposition of pollutant materials on a glass is a good indicator. 

 
Environmental science is broad with prospecting technologies. It is a binary-, ternary-, quaternary- 

hybridization of several matured disciplines (Appendix 1).  Metrics, on one side, is simply a measurement. 

At highest level, it is conglomeration of mathematics, statistics, nature-inspired algorithms at the core and 
software and hardware for implementation.  Thus environmetrics is fusion of two paradigms viz. 

environmental science/technology and metrics. The mechanics is environmental processes are first 

translated into physical model followed by matching with standard mathematical tasks. Depending upon 

data structure and goal, the solution methods are selected (Appendix 2 and appendix 3).  The solution and 
multi-dimensional graphic display is through high performance computational and visualization software. 

The hardware choice is dependent on required accuracy, speed, data size and most important is 

interpolating grids.  The applications of NNs in air, water, soil pollution monitoring, abatement and 
futuristic planning schedules are reviewed [001-398].  Earlier, the chemistry/ polluting aspects of ozone 

and their impact on human health are detailed [297] and some typical applications of SOM_NN, Rec_NN, 
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RBF_NN, MLP_NN and ART_NN in environmetrics were covered [296 and references 303 to 308 
therein]. 

 

Pollution cycle in air, water and soil and their interfaces 

 

Chart 1(a)  Models-environment 

- 

 
CMAQ 
 

AIR 

 Community Multiscale Air Quality  

 Multiple pollutants at multiple scales 

 

NWP  Numerical weather prediction 

 WRF  Weather Research and Forecasting 

AERMOD  
 

 A steady-state plume air dispersion  

EPA PMF 
Positive Matrix 
Factorization 

3.0    

 Receptor model 

 Constrained weighted least squares approach 

 Ambient measurements and estimated uncertainties in 
those measurements to infer emission source 

Unmix 

6.0 
 

 

 

 Receptor model  

 Uses ambient measurements to determine the number of 
source types and their impacts at a monitoring site 

Fused 

Discrete 
Air 
Quality 
Surfaces 
 

 Space-time hierachical Bayesian model 

 Daily O3 and PM2.5 predictive surfaces.  

 

Models-Water 

WASP7 
Water Quality 
Analysis 
Simulation 
Program  

 Conventional Pollutants (Nitrogen, Phosphorus, Dissolved 
Oxygen, BOD, Sediment Oxygen Demand, Algae, 
Periphyton),  

 Organic Chemicals, Metals, Mercury, Pathogens, 

Temperature 

EPD-RIV1 
 
 
 

 Hydraulic and water quality simulations 

 .  

QUAL2K   River and stream water quality model  

 
 

AQUATOX   Predicts the fate of pollutants,  rganic chemicals, effects on 
fish, invertebrates, aquatic plants. 

Models-Waste water 

WATER9 
 
 

 Wastewater treatment model 

 Analytical expressions for estimating air emissions of 

individual waste constituents in wastewater collection, 
storage, treatment, and disposal facilities 

 

 

 
 

 

http://www.epa.gov/heasd/research/pmf.html
http://www.epa.gov/heasd/research/pmf.html
http://www.epa.gov/heasd/research/pmf.html
http://www.epa.gov/heasd/research/unmix.html
http://www.epa.gov/heasd/research/unmix.html
http://www.epa.gov/esd/land-sci/lcb/lcb_fdaqs_archive.html
http://www.epa.gov/esd/land-sci/lcb/lcb_fdaqs_archive.html
http://www.epa.gov/esd/land-sci/lcb/lcb_fdaqs_archive.html
http://www.epa.gov/esd/land-sci/lcb/lcb_fdaqs_archive.html
http://www.epa.gov/esd/land-sci/lcb/lcb_fdaqs_archive.html
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The experimental partition coefficients 
of volatile methylsiloxanes (VMS) are 

useful to predict distribution, transport 

and decay in environment 
[203].Volatilemethylsiloxanes (VMS, 

VOCs) found extensive industrial and 

personal care products.  During WWTP, 

they are partitioned between air and 
sludge.  A portion of sludge enters soil 

through application of biosolids[203]. 

The inter molecular forces between 
water molecules in interfaces (air-soil, 

metal surfaces, proteins, cells etc.) even 

at ambient conditions are significantly different (chart 1) from the bulk water and impart unique physico-
chemical, mechanical, bio-physical characteristics as a result of varying structure and dynamics. These 

phenomena have shape many life processes, engineering products and scientific theories.  The pursuit in 

the case of nanomaterial is at the stage of breaking the proverbial tip of the iceberg and is marching into 

vent able zoo of 2D- materials. 

I. Air (1-7) 
The large thermal power plant, ferries, cruise ships and individual commuting are major sources of air 

pollution. The objective of air monitoring remains same viz. detecting/determining and forecasting 

contaminants/their degradation products in real time as accurately as (AAA) possible in spacio-temporal 
domain in small time intervals over small grid space. This oscillating goal has a point focus of possible 

clean air in as many terrine/marine pockets as possible.  Fulfillment of all the objectives of NAAQS 

(National Ambient Air Quality Standards) compliance monitoring is a formidable reality. Yet, in near 

future many are achievable with evolution of sensor technology and information processing/ dissipation 
and inter-disciplinary tight object oriented collaboration.  Although, in principle continuous pollutant 

monitoring is accepted and is in practice in major urban centers, calibration period and equipment failure 

are major factors for missing values. 
The environmental conflicting issues are a complex interaction of local as well as global 

phenomena and their detection/resolution/remedial measures in a special dynamics are interwoven 

complicated interdependent micro-processes.  Regression, NN models or ESs are fast but fail when the 

pattern changes overtime.  Since NNs are data driven, generalization of model is valid only for the features 
embedded in the data. For example, the best predictive NN for 24-hour range, say at Santiago cannot be 

applied for 1-hour ahead prediction even at the same location.  The others instance of failure is Cohen 

model, a successful predictive NN model is transferred to another location where different environmental 
conditions or pollution sources prevail [187].The data at multiple locations with different prediction 

objectives cannot be trained with a hierarchical architecture with meta rules rather than with a single huge 

[174] network for reliable end results in modeling and prediction. 
The tools in operation on sight in environment monitoring required complex input and not only 

computational resources but expertise (EPA) – MODEL 5 (Bartzis, 1995). Montanari et al.[327]  reported 

NNs in land use conflict in the harbour area (Civitavecchia) of the Rome. From a study of 27cases, it is 

inferred that environment-led policy is a safe approach to resolve the conflict. Kalapandidas  reported a 
case based reasoning (CBR) system.  It makes use of similar previous incidence to classify the expected 

levels of maximum concentration in prediction.There is a continuous addition of new cases and thus 

functions better in long term modeling at the same site and also imbibing the changing patterns at other 
places if there is  provision.   

The pollution index is generally expressed as integers, which are easily understood by the public.  

Jiang [44]used a NN model using the air pollution index and meteorological data.  The values for PM10, 
SO2 and NOx are correlated to an extent of 0.60, 0.69 and 0.63 for the data between 17 September 2002 

Chart 1b: Interfaces  

Courtesy of Ref [203] 

Partitioning  

coefficients 

Abb. 

Air/water  KAW 

Octanol/water  KOW 

lipid/water KLW 

Octanol/air  KOA 

Soil organic 
carbon/ 

Water    

KOC 

Biological 
medium/fluid   

KBioFl 
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and 20 may 2003. Wang et al.[367] proposed a novel two stage data driven modeling strategy to 
compensate the uncertainties in emission and meteorological data (Alg. 1).  

 
Alg. 1: Multilevel hybrid algorithm for  
compensation of uncertainties in emission 
 and meteorological variables 

Phase I   Development of  NN and 

SVM forecast models    
 
Data:  Historical values of  
exogenous meteorological  

variables 
 

Phase II   Residual information in  

previous step is calculated 

  Forecasting model is 

expanded by taylor’s infinite 
series 

  The magnitude of forecast 

value is refined 

 
NNs in meta modeling of air quality prediction: Deterministic air quality models find potential application in 

prediction of spacio-temporal regime by regulatory authorities for policy development locally.  However, model 

errors perturb forecast and Wahid et al.[24] proposed meta-modelling approach with NNs (chart 2).  
 

Chart 2: Prediction of spatial pollutant distribution with NN 

Dispersion model 

Spatially-distributed 
pollutant (ozone)   

Fn( X) 

 grid coordinates, 

  topographical information,  

 solar radiation  

 pollutant's precursor 
emission ) 
 

 

Phase I 

Air Pollution Model and Chemical 
Transport Model (TAPM–CTM) --

Photochemical dispersion model 

 Input–output data correlation with 
ambient measurements  

 RBF_NN 

Phase II  

Testing 

   Ozone concentrations  

   Sydney basin, Australia 

Phase III 
Application 

Real time ozone concentrations    

 
Inference 

RBF_NN  >> TAPM–CTM model only 

1. Particulate Matter (PMx) 

Particulate matter, of different sizes, has adverse effects on human health causing lower respiratory 

problems in children and damage of upper respiratory track in aged individuals. An increase of (24 hours 

average) of 10 µg/m
3
 of PM10 increases 1% mortality per day due to all causes. The ill effects of PM2.5 

include hospitalization due to cardio respiratory disturbance and more alarmingly increase in mortality 
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[54].  In the current regulations, total quantity of PM is considered in warning pollution level.   But, in 
depth studies reveal the need to correlate the ill effects on health with specific chemical elements, the 

concentration of each of the species in metabolism/excretion/accumulation and interaction [42]. The 

sources of particle for sampling are from incinerators, smelters, power plants, motor vehicles and soil. 
Back trajectory analysis has been in vogue. Thus, the analysis of air borne particles is equally important as 

gaseous pollutants. The chemical composition and size of PM are used to detect forest fire episodes.  

Owega [43][2004] reported the need for the refinement of the TEOM and TOFMS. LAMS (Laser Ablation 

Mass Spectrometer, Alg. 2b) is a real time/on-line instrument,which measures accurately aerodynamic 
diameter and chemical complex species of a single particle.  This paves way to improve the identification 

(with certainty) of new episode occurrences. But, it requires accumulation of large number of mass spectra, 

especially during known incidences. The disadvantages are that a source emits different types of particles 
and many sources emit a common particle. The soft and data driven models for forecast of variation of PM 

are extensive. 

 

PM10:A pre-emergency day is that when 24 hour moving average of PM10 exceeds WHO prescribed limit 
(of 240 µg/m

3
) [49].The anthropogenic prime sources for this particle pollutant are combustion, industries 

and vehicular traffic. The consequence is dust from road (PM10) and black smoke of exhausts of diesel 

vehicle remains suspended for several hours in the air. The sources responsible for generation of PM10 are 

complex including meteorological factors, topographic influences of terrain, emission sources, particle 
characteristics like density, shape and hygroscopic characteristics.  PM10 consists of several species of 

different concentrations.  For instance, the particle size of suspended PM in aerosol is typical.  The 

processes are also of diverse nature and the distribution in space and time is influenced by several factors 
viz. wind speed, surface temperature/pressure, humidity, dew point temperature etc. It is difficult to predict 

PM10 compared to NO2 in urban areas [45], butimproves by including climatic (lagged PM10, weather 

classification information, opacity, and discomfort index) and Non-climatic factors (traffic levels and 
indices of heavy/low traffic conditions).  The fact is that variables with non-linear relation with response 

apparently exhibit low linear correlation [171]. Thus, inclusion of weather variables that are not linearly 

correlated sometimes drastically improves predictive capability.  

 
Correlation between factors for PM10:There is a high cross correlation among topographical, traffic, 

meteorological and air quality variables.  PCA gives linear combination of these factors, which are 

(independent) orthogonal with the advantage retaining maximum variance in the data. The advantage of 
this method is its reduction of substantial auto correlation that is present in the data. Cheng et 

al.[239]showed ensemble averaging method is better than MM5, WRF models in pollution events in 

China. The combination of ensemble with CMAQ for simulating PM10 excelled MM5–CMAQ and WRF–
CMAQ (chart 3).Antanasijević et al. [369]reported two year ahead forecast (chart 4)of PM10 with NNs 

employing data form 26 EU countries during 1999-2006.Nyhan et al.[294] applied NNs to predict minute 

ventilation and masses deposited in the lung in urban commuting cyclists. The information in table 1 

summarizes typical results. 
 
 

Chart 3: performance of Ensemble_NN 
in PM10 and pollution episodes 

Location 

  Northern 
China  

  Time:  2006 

Meteorological 
models 

  MM5  

  WRF 

  Ensemble_NN 

 

Meteorological 
variable optimization 

  Temperature 

  Surface 

  Air pressure 

  Wind field 

Performance Improvement 

  Ensemble_NN >> MM5 and the WRF 

  PM10 simulation  

  Ensemble_NN–CMAQ > 7.0% MM5–CMAQ 

  Ensemble_NN–CMAQ > 17.8% WRF–CMAQ 

Chart 4: Forecast of PM10   

Input 

 Gross  domestic product 

 Gross inland energy 

consumption 

 Incineration of wood 

Data centers 

    Convention  on Long-

range Transboundary 
Air Pollution 
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 Motorization rate 

 Production of paper and 
paperboard 

 Sawn wood production 

 Production of refined 
copper, production of 
aluminum 

 Production of pig iron  

 production of crude steel 

 preprocessing  

 GA – model selection 

(CLRTAP ) 

    EMEP Program  

    Regional Air Pollution 
Information and  
Simulation (RAINS 
from Eurostat) 

 Location: 26 EU 
countries  

 Years : 1999 to 2006 

 

 

Table 1a:  Typical studies in PMx       

 PMx Objective Site Methods  Ref 

PM1
0 

Classificati
on  
20 classes;  
11,480 
particles 

Universit
y of 
California  
Riverside 
campus 

ART2a [47] 
 

PM2.

5 

Day 

average 

Elpaso 

(Texas) 
Cuydad 
Hyarez 
(Chihuah
ua  
US Mexio 
border 

 MLP  

 RBF 
 Persisten

ce 
 LS 

[174

] 
 
 

 

 

Table 1b : Index of agreement for hourly   script 

time series of PM10 at Toolo and Vallila  [45]  

Model 1996 1997 1998 1999 1996 to  

1999 

NNHoG 0.64 0.76 0.77 0.73 0.73 

NNHeG 0.73 0.80 0.79 0.76 0.77 

LIN raw 0.60 0.71 0.37 0.75 0.61 

Vanilla      

NNHeG 0.70 0.71 0.75 0.77 0.73 

LIN  0.64 0.66 0.47 0.75  
 

 
 
 

Alg. 2: Hybrid intelligent (Time-delay Added Evolutionary 

Forecasting) system for  one-day-ahead forecast of PM2.5 

and PM10  

Phase I  GA refines 

    Number of input nodes (time lags)  

    Number of neurons in hidden layer  

    Training algorithm  & parameters 

Phase II Forecast for next day  
Objfn: min (difference between forecasting and  
              experimental concentrations of past time  

series)  

    Predict next day concentration 

   Does not require exogenous information 

Data  Time series at Helsinki 

 

Table 1c: Minute ventilation levels  PM10 lung 

deposited doses 

 Sixty healthy 
volunteers 

 

 Risk factors monitored  
 Minute ventilation 
 Heart rate 
 Personal air pollution 

exposure 
 Local meteorological 

conditions  

 GPS  acquired cycling 
speed  

 Road topography 
 Obj: predicting minute 

ventilation 
 Model :  NN 

 

Table 1d:  Correlation between 

predicted vs measured minute  

ventilation levels 

 R2 

ANN 0.82 

GAM 0.74 

PLS 0.56 

Empirical 0.36 to  
0.43 

 

 

Alg. 2b: Laser ablation mass spectroscopy (LAMS) [43]  

Step  : 1 Aerosol particles are pre concentrated by a factor of ten (Virtual impact or and cyclone). 

Step  : 2 The purpose of inlet of LAMS is to remove the gas surrounding the particles and also, to generate a single 

particle beam. 
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Step  : 3 Single particles of interest to He-Ne light whose paths are separated by a known distance. 

Step  : 4 The scattered light from the particle is recorded with two photo-multipliers tubes. The time between these 
electronic pulses was converted into an aero dynamic equivalent diameter.  This time is also crucial to determine 
when to fire a big sky-Nd-YAG laser (266 nm). 

Step  : 5 It ablates the particle in the ion source chamber of a TOFMS  

Step  : 6  When a particle is ablated, the ions are accelerated with electric fields into a field free drift tube. 

Step  : 7 The ions enter a reflection, travel back through the field free drift tube and strike a micro channel plate detector.  
The signal from MCP is recorded by oscilloscope (500 MHz). 

 

 
PM5:Particles with lower diameter than PM10 are smart enough to penetrate into the respiratory track of 

humans. 
 

Particulate matter (PM2.5 and PM10):  De Mattos Neto et al. [138] report that it is the start of intelligent 

prediction model (Alg.1) taking into consideration of pseudo-random walk behavior of this time series. These 

authorsproposed a hybrid system comprising of MLP_NN and GA (Alg. 2) for one-day ahead forecast of 

particulate matter (PM2.5 and PM10).   

 
PM 2.5:The sources of PM 2.5 in urban areas are emissions from vehicle exhaust and re-suspended surface 

dust. The major components are carbon, (NH4)2SO4, nitrate etc. [54,312]   Prediction of PM 2.5 is a non-

linear (NL) problem  The short term forecasting of PM 2.5 by MLP_NN and RBF_NN [174] is better than 
MLP (table 2), although data set has high degree of noise. The incorporation of related meteorological 

variables and noise reduction improves the performance of NNs and leads to accurate prediction. However, 

different schemes to consider past values of time series needs investigation.  In 1997, SCOS97-NARSTO 

(Southern California Ozone Study-North American Research Strategy for Troposphere Ozone) field 
campaign [47] was performed wherein intensive atmospheric measurements were made during both 

summer and fall.  South California Air quality study (SCAQS) could do only a field study in the last 

decade.  It concentrated on bulk analysis techniques.  The abundant species of PM2.5 contain nitrate, 
sulphite, ammonium, organic carbon and elemental carbon [Chow 1994].  The limitation of this study was 

combinations of chemical species were not identified.   Pastor et al. [47] focused real time single particle 

mass spectrometry with ATOFMAS using ART-2a. 

 

 

Table 2a: PM2.5 modeling [174]  

Year PM2.5 SD Max 

2000 8.27 4.71 26.74 

2001 8.87 3.54 87.44 

2002 9.91 7.42 69.21 
 

 

Table 2c:  Best model for forecast of 

PM2.5 

Method RMSE R2 I#H#O# 

SLP 1.58x103  7-18-1 

RBF 1.28 
x103 

0.3712 7-20-1  Variance 

RBF 1.32 
x103 

0.4611 7-21-1  0.25 

RBF 1.23 
x103 

0.4554 7-20-1  0.50 

RBF 1.23 
x103 

0.4451 7-16-1  0.75 

RBF 1.30 
x103 

0.4380 7-10-1  1.5 

RBF 1.27 
x103 

0.4143 7-10-1  3.5 

   

Linear 
regression 

0.27 0.3983 

Persistence 0.41 0.0806 
 

 

Table 2b: Input variables used in the forecast of 

PM2.5   [174]  

Av.value units  

PM2.5 3/g m  
 

Max(PM2.5 

3/g m  
 

Temperature o F  

Humidity %  

Wind speed  m/s  

Wind 
bearing 

 Wind direction index 

Av.value :Average value during first 8hrs of the day 
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NN + Knowledge recovery system:  Chan and Jian [324] appliedNN for mass concentration of PM2.5 and 

PM1.0 on a heavy traffic area in Hangzhou city. A knowledge recovery 

unit is used for post processing optimum NN architecture, Ws etc. 
Standard NNs estimate pollutant concentrations, but the numerical 

enigmas do not provide explicit knowledge of pollution levels in terms of 

factors. This hybrid system identifies significant factors with transparency 

circumventing the limitation of black box approach of NNs. 
 

Fine and coarse particles: He et al.[73] predicted of fine and coarse 

particles at street level in summer and winter with hybridized NNs with Chaotic_PSO and LM.  The model 

is applied to forecast the trends of air pollution in similar meso-to mega-cities. 
 

Fine PM and CO at road intersection: The running engines of idle vehicles during red light signals at cross 

roads and fast speed up when green lights are on result in drastic fluctuations as well higher emission rates 
of exhaust [30].  Added to it, in areas of frequent change of wind speeds and directions, the dispersion of 

pollutants is chaotic with a consequence of inadequacy of routine deterministic cause-effect models.  
 

2. NOx, SOx, H2Setc. 
In the management of local air quality, models are vital in addition to routine monitoring schedules. Before 

the year 2001, the predictive process of photochemical pollutants (NO2, O3 etc.) was based on only human 

expertise in Athens (Greece) as was the practice in most other cities.   A fast short-term (day-to-day) 

prediction is the basic need.  When an air pollution episode is predicted, a complex prediction method in 
real time (outputting the results within few hours) has to follow for the same location that may be operated 

in a sophisticated central place. The urban air pollution in many metropolitan cities like Los Angeles, 

Mexico and Athens is high.  The forecasting of SO2, NO, NO2 (NOx) and ozone were done with NNs [85]. 

 

NOx:The source of NOx pollution is primarily from vehicle (cars, buses, trucks, off high way mobiles) 

exhausts in the form of NO.  In fact, NO2 is mainly produced from the interaction of NO with O3[58].  
Thus, the net concentration of NO2 not only depends upon the traffic, meteorological conditions, but also 

on O3 profile.  The details of mechanistic models for NOx and poor performance of statistical models are 

reviewed. The unequivocal option is NNs, since the trend is highly non-linear and complex.  Gardner [58] 

proposed acceptable predictive models for urban environment pollution with MLP-NNs.  The model for 
NOx can still be improved provided the inaccuracy in the forecast of the meteorological data is 

diminished.  Further, it is better to train meteorological data on a grid rather than at isolated points.   The 

variables used in the best model (NN) are in table 3.  Here, it is found that MLP is equivalent to MLR.  
The peaks in NO2 are much higher than predicted on 12, 13, 14, 8, 16, 17

th
 and 28

th
 of Dec 1991. NOx 

emission is of utmost concern in vehicle movements, and they can be reduced (table 3k). 

 

 

Method Function  

NN Estimates air 
pollution levels from 
pollution factors 

Knowledge  
discovery 

Extracts explicit 
knowledge from    
optimized  NN  
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Table 3f: NO2 pollution levels in Athens  

(Air quality operation center) [187] 

  mg/m3 

Level 1  low 0–200 

Level 2  medium  200–350  

Level 3  high  350–500  

Level 4  alarm Over 500 
 

 

Table 3g: Prediction accuracies at differen 

t levels by NEMO [187] 

 1 2 3 4 Unable % prediction 
 accuracy 

Number  
of Cases 

Level 1  134  5     96.4 139 

Level 2  38  22  2  3  33.8 64 

Level 3   12  9  8  33.34 29 

Level 4     4 4  50 8 

       240 
 

 

 

Table 3h: Input variables for prediction accuracies of NO2 pollution at different levels by NEMO[187] 
 

Table 3a : Comparison of NN with MLR 

[58]  

 NN MLR 

Err 0.91 0.90 

RMSE 7.3 7.4 

 
 

Table 3b: comparison of NN and linear regression with 

same input variables[58] 

Model 

number 

RMSE 2r (NN) MLP LR 

1 18.2 19.3 0.47 

2 78.6 97.0 0.54 

3 17.9 18.7 0.4 

4 77.5 95.7 0.55 

5 7.3 7.40 0.91 

6 33.8 34.3 0.92 

7 17.1 17.7 0.5 

8 80.2 89.5 0.62 

 

Table 3c: Performance  of NNs in comparison  

with LR   for   NO2 in Bilbao (Spain) [170] 

Location Forecast 
NO2 

MLP1 MLP2 LR Persistence 

Elorrieta  t+1  0.0008 0.0003 0.06 0.06 

 t+4 0.08 0.125 0.34 0.43 

Mazarredo  t+1 0.0005 0.0005 0.07 0.06 

 t+4 0.0005 0.005 0.15 0.25 

Txurdinaga t+1 0.0001 0.0002 0.05 0.06 

 t+4 0.002 0.007 0.573 0.30 

Deusto t+1 0.0002 0.0002 0.06 0.07 

 t+4 0.0004 0.0005 0.17 0.26 

 

 

Table 3d:  Different categories  of variables   

for O3 and NO2 in Bilbao (Spain)[170] 

Meteorological Units  Abbreviation 

Wind speed m/s Vx 

Wind direction N_ Vy 

Temperature  _C TEM 

Relative humidity % HUM 

Pressure kPa PRE 

Radiation cal cm_2 h_1  RAD 

Thermal gradient  _C GRAD 

Air pollution   

Ozone mg/m3 O3 

Nitrogen dioxide mg/m3  NO2 

Traffic   

Number of vehicles  NV 

Occupation percentage % OP 

Velocity  km h_1 100_1 KH 

 

 

Table 3e: Predictive models of NOx with different inputs[58]             

MLPx O# I#         

NO2 sin(h) cos(h) LOW BASE VIS DRY NO2 VP WS  

NOx sin(h) cos(h) LOW BASE VIS DRY NOx VP WS s 

NO2 --- --- LOW BASE VIS DRY NO2 VP WS Q 

NOx --- ---- LOW BASE VIS DRY NOx VP WS Q 

NO2 sin(h) cos(h) LOW BASE VIS DRY NO2(t) VP WS NO2(t1) 

NOx sin(h) cos(h) LOW BASE VIS DRY NOx(t) VP WS NOx(t1) 

NO2 sin(h) cos(h) LOW BASE VIS DRY NO2(t) VP WS NO2(t24) 

NOx sin(h) cos(h) LOW BASE VIS DRY NOx(t) VP WS NOx(t24) 
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  1 Date 

  2 Code of measurement station 

  3 to 5 NO hourly concentration at 8 a.m. (measurement at 8, 9, 10 a.m) 

  6 NO maximum hourly concentration after 10 a.m. 

  7 Hour that the NO maximum hourly concentration occurred 

  8 to 10 NO2 hourly concentration at 8 a.m. (measurement at 8, 9, 10 a.m) 

11 NO2 maximum hourly concentration after 10 a.m. 

12 Hour that the NO2 maximum hourly concentration occurred  

13 The wind before 10 a.m.   Factor deduced from 

14 NMS wind forecast after 10 a.m.   forecast 

15 The wind after 10 a.m.    measurement 

16 Precipitation level from the observatory  measurement 

17 NMS rain forecast  forecast 

18 Temperature inversion  measurement 

19 Solar radiation at 10 a.m.    measurement 

20 NMS forecast of solar radiation after 10 a.m.    forecast 

21 Solar radiation at 1 p.m. 

22 Maximum temperature of the day in degrees Celsius  

23 to 27 NMS forecast for next day’s  
winds, precipitation, inversion, solar radiation, maximum temperature 

 

 
Table 3i Inputs to NN model of NO2 at the University of East Anglia[45] 

 

Temporal variables  (t+24) 
 Weekday  
 Sine of year day  
 Cosine of year day  

 Hour 
 

 

 Concentration  variables (t) 

Variable Units 

 NOx  mg/m3  

 NO2  mg/m3  

 O3  mg/m3  
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 Meteorological variables (t+24)  

Variable Units Variable Units 
 Pressure  kPa  Sine of direction of flow  

 Temperature  K  Cosine of direction of flow   
 Humidity  %  Windspeed  m/s 
 State of ground   Sunshine  h 
 Cloudiness  0–8  Albedo   
 Dewpoint  K  Solar elevation  rad 
 Wetbulb  K  Solar radiation  W/m2 
 Rain  mm  Moisture parameters   
 Visibility    Monin–Obukhov length  m 

 Weather    Temperature scale  K 
 Weather of previous hour    Friction velocity  m/s 
 Weather of previous 3 h    Turb. heat flux  W 
 Amount of clouds    Net radiation  W/m2 
 Type of clouds    Latent heat flux  W 
 Height of low clouds  m  Mixing height  m 
 Type of middle clouds    Convective velocity scale  m/s 
 Type of high clouds    Gradient of the potential temperature  K/m 

 

 

Table 3j: Index of agreement for hourly time series of NO2 at Toolo and Vallila [45] 

 

Model 1996 1997 1998 1999 1996-1999 
NNHoG 0.85 0.86 0.87 0.89 0.87 
NNHeG 0.89 0.90 0.90 0.91 0.90 

NN2HeG 0.89 0.91 0.91 0.91 0.91 
NN3HeG 0.89 0.91 0.92 0.92 0.91 
LIN raw 0.78 0.83 0.84 0.81 0.82 
DET raw   0.77 0.75 0.76 
      
NNHeG 0.87 0.86 0.88 0.87 0.87 
LIN raw 0.83 0.80 0.81 0.04 0.80 
DET raw   0.70 0.68 0.69 

 

 

Ho  Homosedastic He Heterosedastic 

G  Gaussian 2 or 3 Two or three 
component 
 mixtures of hetero 
sedastic noise 

 
 

Table 3k: Reduction of NOx emission  

 Exhaust gas recirculation alternate fuels  

 Turbo charging,  

 Different mode of combustion. 

 

SOx:The level of SO2[51] has been continuously decreasing in most of the western industrialized countries, 

while there is a noticeable increase in the developing nations and Eastern Europe[52].  Local pollution 

levels of SO2 are however, a consequence of typical variation of meteorological/topographical conditions 
and operational details of surrounding industries.  The sources of this [51] classic air pollutant are 

combustion of fossil fuels, power generation industry, traffic and heating.  The ill effects of SO2 include 

chronic bronchitis  and low birth rates. The maximum SO2 at noon is due to indiscernible cumulative 
effect of all sources and meteorological conditions.  Perez [51] opines that the pollutant concentration of 

the previous day(s) is crucial for SO2, NO and NO2.  Hence, it cannot be pinpointed to a single source to 

take up preventive measure during working days.   Thus, modeling SO2 is multifaceted and there appears 

to be no single simple modelling approach [182] for prediction of trend of SO2 at a specific location.  
Several statistical methods have been tried, but neuro-fuzzy-NN, Wavelet analyzers are found to be 

promising techniques (table 4).  
 

Table 4a:  Ranking of models based on classical statistics and advanced performance measures[182] 

 RMSE  MAE  r   FA%  SI%  Auc  SP%  SR%   Bias  d 

High WAG  ANN  ANN  ANN ANN ANN  ANN ANN  MNN  ANN 

 MNN  WAG  WAG   MNN WAG WAG  WAG  MNN   PER  WAG 

 - GAM GAM   NFU  GAM  GAM  GAM  NFU  LPH  MNN  

 - LPH MNN  - MNN MNN  MNN -  - GAM 
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 - MNN NFU  - NFU  LIN  NFU -  - - 

 - PER -  - - -  - -  - - 

Medium NFU  - -  WAG  - PER  - WAG  ANN ANN 

 GAM - -  GAM  -   - GAM  WAG - 

 
 

Table 4b: Validity of NN models for  different time intervals [85] 

SO2  (RMSE) Period (years) TSP(RMSE) 

Tr Te Tr Te 
Tr Te 

From To From To 

18 18 1996 1997 1997 1998 20 19 

19 19 1996 1998 1998 1999 21 20 

20 19 1996 1999 1999 2000 21 19 

19 17 1996 2000 2000 2001 20 18 

        

Samples of 
SO2 

Tr : 601 Te : 151      

 
 

Table 4c: Prediction performance  of NN models for different time intervals[85] 

SO2  NP : 151  Period (years) TSP  NP : 151 

RMSE (ug/m3 IA Success FP From To RMSE (ug/m3) IA Success FP 

38 0.47 113 38 1997 1998 52 0.69 105 46 

26 0.53 125 26 1998 1999 53 0.58 103 48 

21 0.71 132 19 1999 2000 39 0.53 112 39 

19 0.82 136 15 2000 2001 30 0.78 121 30 

 

 

Table 4d: Comparison of NNs with  
persistence model in prediction of SO2[51] 

    

#hour  

ahead prediction 

SLP Lin NN Persistence 

4 0.34 0.39 0.65 

12 0.41 0.42 0.57 

16 0.89 0.88 1.69 

24 0.45 0.45 0.57 

 

Table 4e: Comparision of  NN with nonlinear regression for SO2 in different  locations[186] 

Location Model 
RMS corr 

Tr Pred Tr Pred 

Industrial NN 0.10 0.59 0.89 0.68 

 NLR 0.40 0.62 0.64 0.57 

Commercial NN 0.10 0.53 0.80 0.72 

 NLR 0.25 0.47 0.59 0.52 

Residential NN 0.10 0.46 0.95 0.63 

 NLR 0.34 0.35 0.61 0.48 

 

4-a -a7 -a10

t+1 1 t 2 t 3 5 t +1 6 8 t+1 9 tY  = a *Y  + a *(W +k*a )  + a *(T +a ) +  a  * (R +a )  +e
 

 

Y : Log of SO2    
W: Wind speed  R : Relative humidity 
T: Temperature  E: White noise 
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zt : z at tth time instant  zt+1: z at t+1th time instant   
a Regression 

coefficients 
   

 
 

 

Adaptive neuro-fuzzy system (Table 4) is used to estimate and predict the air pollution levels in 
Zonguldak on daily basis.  The impact of meteorological factors on the levels of SO2, TSP is studied.  The 

performance is greater than 70%.   

 

Table 4f: Variation of RMSE for SO2 with input in ANFIS [85] 

Input set Training 
error 
(RMSE) 

Average test 
error (RMSE) 

AP  
 

 
Atmospheric pressure 

AP, RH, WS, SR, P, 
T, SO2,j_1 or TSPj_1 

18  18 RH  Relative humidity 

WS, RH, T, (SO2j_1 
or (TSPj_1 

19  21 WS  Wind speed 

AP, RH, WS, SR, P, T  25  32 SR  Solar radiation 

AP, RH, WS, SR, P  30  38 P  Precipitation 

   T Temperature 

   (SO2j1  
(TSPj1  

Previous day’s SO2   
concentration  

(TSPj1  Previous day’s s TSP 
concentration 

 

 

Table 4g: Forecast of Pollutants with Elman NN in Italy [37]   

Station Units 

RMSE 

Belgio Boccadifalco Castelnuovo 
Di 

Blasi 

Giulio 

Cesare 
Indipendenza Torrelunga 

Unita` 

d’Italia 

SO2    3g m  
3.13  0.58 3.5 4.14 2.61 2.4  2.31 3.12 

CO    3mg m  
0.65  0.13 0.29 0.39 0.36 0.29 0.29 0.50 

NO2    
 

3g m  
32.09  7.02 5.23 6.37 4.89 4.5 5.23 8.46 

O3    3g m  
--- --- 4.99 4.44 ---- --- ---  

PM10   3g m  
6.47 -- 6.43 5.33 7.44  4.53 ----  

 
Volcanic air pollution 

The continual eruption of Mount Kilauea/ Hawaiian Islandsoutbursts SO2 and sulphates.Their interaction 

with oxygen and water vapor forms Vog, a source of air pollution in this area.Perez [33] found NN and 
frequency model capture central tendency, but poor in predicting extreme events(chart 5). 

 

 
 
 
 
 
 
 

 

 

Chart 5: Vog models in Hawaii  

 Location:  west,  south 

and southeast coasts of Hawaii 

Models 

 Regression 

 NN 

 Frequency  

 

SO2 Freq >NN 

SO4
-- NN >Freq 

  Models capture general tendency 

- Poor to predict extreme events 

- Irregular outliers 

 



R. Sambasiva Rao et al                           Journal of Applicable Chemistry, 2015, 4 (2): 355-449 

 

371 

www. joac.info 

 

H2S:The biogas is produced from anaerobic digestion of municipal sewage sludge, organic wastes from 
industries, households and farms.  The major application of biogas is in heat and power generators apart 

from the routine use as a cooking fuel. The presence of H2S, NH3 and X2 (halogens) in the biogas and non-

methane organic compounds reduce the lifetime of fuel cells to a greater extent[175](table 5). Further, the 
information on the toxicity is inadequate. Thus, the detection, reduction and complete avoiding of the trace 

quantities are essential in producing biogas of requisite quality and here, NNs played a role.   

The mechanistic models for the emission of NH3 from manure storage using volume and surface 

area as inputs are proposed.  However, extension of the model to the field study is much more complex 
and the results are not astounding.  A model including the inputs from atmospheric transfer and soil 

processes,did not succeed. It is reconciled due to unaccounted variation of manure patches, droplets and 

pH, which are not easily predictable in the process.  Thus, mechanistic models are not adaptable for 
emission of NH3 in the field studies in real time.  The emission of NH3 from manure was modeled with 

MLR and it was observed that the regression is time dependent.  To circumvent the limitation, MLR model 

for different time periods (0 to 6, 7 to 12, 13 to 24 hrs and 1 to 6 days) was proposed consisting of linear 
profiles.The emission of NH3is fitted with two parameters.  The accumulated ammonia emission value for   

227 data sets is fitted with Michaelis-Menten equation with a overall R
2
 value of 0.94.  However, Emax 

and kn = a/b depend upon experimental conditions.  This restricts the use of linear and non-linear 

regressions.  Thus, data driven models are preferable and NN is a prospecting tool.  
 
 

Table 5: NN modeling of  H2S 

 

(a) Input for predicting H2S t+1 [175] 
 

 Sulfate loading rate 

 H2S in biogas ppm NH3 in biogas 
ppm 

 Total sulfides in reactor 

 Biogas-productivity 

 pH  

 Organic loading rate 
 

 
 

(b) : Architecture of NN for the prediction of H2S[175] 

Architecture   I#-5-1 I#-7-1      

   

Transfer functions  Tansig  Purelin 

   

Number of training data 100  131 

Number of validated data 35  27 

 

O# Hydrogen sulfide in biogas [ppm] 

t+1 

O# Ammonia in biogas [ppm] t+1 

 

( c): Training strategy  of 

 NN for the prediction of H2S[175] 

Train function  Traing dm  
 

Learning rate 0.001   

Train epochs 5000   

Performance goal 0.02   

Minimum performance 
gradient 

-81*10   

Momentum constant 0.9   

Maximum performance inc 1.04   

Alg. batch gradient descent with  
momentum algorithm 

 
 

NH3: NN requires less number of input variables compared to Michaelis-Menten model to calculate Km 

and Emax.  The quality can definitely be improved with more data points and advances in NN(table 6).  The 
amount of nitrogen available in the long term and NH3 emitted during manure application on the fields was 

modeled by NNs, which predicts a part of effect of NH3 on environment[52]. 
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Table 6(a): Input for   predicting NH3 t+1[175]  

 Units 

Nitrogen loading rate -3 -1G N m  d  

Ammonia in reactor -1mg N-NH3 l  

Ammonium in reactor mg N-NH4 
 

Total inorganic nitrogen in 
reactor  

mg N-NH4 
 

Biogas-productivity m3 Biogas m-3 d-1 

pH  

Organic loading rate 
 

kg CODm-3 d-1 

 

 
 

Table 6(b) Input (X) in NH3 models  [52]  

Dry matter (% total matter)  Minimum temperature 
(oC) 
1st day & 2nd day 
 

pH-value  Maximum temperature 
(oC) 
1st day & 2nd day 

 

Ammonium concentration (kg 
Nm-3)  

Precipitation (mm) 
1st day & 2nd day 
 

Ammonium applied (g Nm-2)  Wind speed (m s-1) 
1st day & 2nd day 

 

Vegetation type 1=bare soil 
2=grass 
          3=shoots land 4=residue 

Irradiation, daily sum 
(Whm-2) 
1st day & 2nd day 

 

Table 6( c) : Input to NN model of NH3 emission[52]  

    Minimum temperature 
oC pH-value  

    Maximum temperature  
oC Ammonium 

 concentration  
kg N m-3 

    Irradiation,  

    daily sum  

Whm-2 Ammonium  
applied 

g N m-2 

    Windspeed m s-1 Dry matter  % total 
matter 

    Vegetation type  1=bare soil  
 2=grassland 
 3=shoots  
 4=residue 

Precipitation  mm 

 

 

Ćirović et al.[214] used NNs for routing light delivery vehicleswith data driven NN approach (chart 6d). 
 

 

Chart 6d: Route design of environmentally 

friendly and un-friendly vehicles with NNs 

Phase I  NN model for route 
calculation for EFV and 
EUFV 

 Performance test 

Phase II Modified Clark–Wright 
algorithm 

Testing model Centre of Belgrade 

Model input Monitoring data at 40 
automatic measuring stations 
for  the air quality (SEA, 
2012) 

 

Chart 7: Tropospheric ozone models for Tabriz 

Input 

  Temperature,  

  Solar radiation 

  Dew point 
temperature 

    wind speed 

Models 

  MLR 

  NNs 

  Gene expression 
programming 

AR type 

 chaos theory 

  ARIMA 

Data 

August 2010 to March 
2011 
Hourly data 
 

 

Inference 
MLR,NN, GEP < AR  
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Input Model 

 Logistics 

operating costs  

 Environmental 
parameters 
(exhaust 
emissions  and 
noise)  

 

 NN 

 Trn : 
SAA 

 

 Environment 
noise 

 Logistics 
operating 
costs 

 
 

 
 

Chart 8: PCB-11 in consumer goods  

PCB-11 levels : 

0.27 to 86 ppb  
 

Location: 

  26 countries  
  five continents 
 

Materials  
 Magazines  
 Advertisements  
 Maps  

 Postcards  
 Brochures  
 Napkins  
 Garments 

 

Ozone:The models viz.LDF (linear discriminant function), QDF (quadratic discriminant function), MLR, 
MLR-BP_NN, RBF_NN are compared to forecast possible shifts in the prediction of ozone in Houston 

from a 12 year ( 1990 to 2002) period from daily air quality data collected by Texas commission on 

environmental quality.  This is an extensive comparative study while the earlier studies used 

ARIMA.Khatibi   et al. [284]reported Tropospheric ozone(chart 7) models for Tabriz with auto regressive, 
regressive and NN type models.  

Some of the recent applications of NNs include pollution studies in  Annaba, Algeria  [63], 

volcanic smog (vog) in Hawaiian islands [35], prediction of tropospheric ozone concentrations in Dilovasi, 
Turkey  [124], particulate matter  from satellite and ground based observations [370],  forecasting 

PM10[33, 369]  in Thessaloniki and Helsinki  [372,139], metropolitan areas [198], PM2.5 [324], evolution 

of haze,  SO2, NO2  [32], classification of  SO2 pollutant concentrations in  Salamanca, Mexico  [32, 28], 

fungal spores [306] and detection of atmospheric perturbation[140],  The determination of diffusion 
coefficients of pure compounds in air [76], dew points of acidic combustion gases (SO3, SO2, NO2,HCl 

and HBr)[133], regional air  quality modeling [239] and cooperative 3D-air quality [341] are also benefited 

by data driven neural network models. 
 

3. PCBs 

PCB-11: The non-Aroclor congener (3,3′-dichlorobiphenyl) of DCP had been a byproduct inadvertently 
generated since early 1970s in the manufacture of organic pigments. The scale was in ppb (parts-per-

billion) in different printed materials, but recently found even in air, water, sediment and biota. Lohani et 

al.[255] found that the sources of high levels of PCB 11 measured in environment are plausibly due to 

pigments (chart 8). Toxic Substances Control Act (TSCA) stipulates a maximum average of 125 ppm and 
at this rate the maximum allowed is of the order 42 kg y−1.  But, the amount of outflows and sequestration 

of PCB 11 in Delaware River Basin is in the range of 30 and 280 kg y
−1

 sounding an alarming scenario.  

 
PCB Effects on health: The PCB exposure at prenatal stage was as a consequence of mother eating Lake 

Michigan sports fish contaminated with this toxic pollutant.  Around 234 children were born with low birth 

weight.  If PCB were transmitted further with breast feeding,   it has a pronounced effect on cognitive 
functioning.   

 

Breast milk toxicity:Kowalski et al.[378] studied toxicity of breast milk with PCB for new born in Brazil 

using Kohonen NNs (chart 9).  The typical factors found are industries, proximity to a polluted river,   type 
of milk (colostrum, foremilk and hindmilk) and also number of past pregnancies. 
 

4. Aerosols 

Exposure to ambient aerosols is unavoidable and the best is to reduce the exposure time. It requires not 
only accurate measurement techniques, but also robust predictive models for aerosols and its constituents. 

Motor vehicle exhaust, road dust, industrial/biogenic emission [12] and other species are the prime sources 

of the dangerous pollutant particles in the aerosols. Metals in aerosols are of varying sizes and exist as 
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different species. Thus, metal markers are good indicators to identify the major sources of primary urban 
aerosol particles [42]. The specific relationship between ambient aerosol and adverse health effects are not 

fully well understood/established, although, the effects of chemical elements have been hypothesized.  

Bulk compositions are essential to design pollution control strategies and study relationships between 
ambient aerosols and human diseases.  Aerosol time of flight MS (ATOF-MS) instrument was developed 

in 1994 which measures size and composition of individual aerosol particles in real time. Only 12 samples 

were used in multivariate calibration (MVC) model to predict bulk chemical composition.  The advantage 

was not clear because of small size of the data. The disadvantage of this method is that it doesn’t give 
quantitative estimation of species, although it outputs total   concentration. The morbidity data is correlated 

with the size and distribution of particles in the atmosphere. The increase in number of vehicles, depletion 

of petroleum resource leads to diesel engines as an alternative. The ways and means of reducing emission 
rates will continue until exhaust reduces to zero level. 

ART-2a is used to classify the minor components of the aerosol particles.  The data is from RSMS 

III, a laser ablation time-of-flight-MS, which    simultaneously detects positive/negative ions.  NNs take 
care of non-linearity introduced by measurement errors (response, concentration), experimental equations 

and assumptions on the accuracy of calculation model.    Zhao and Hopke [12]   used ART-NNs and PLSR 

to estimate bulk aerosol composition from ATOFMS data.  The predictions for 1996 were reasonably good 

based on 1995 data set.  This three layer NN model [51] can be made operational for Santiago.   After 
training the data set for other stations, the model will result as an efficient SO2 predictive tool. 

 

Aerosols_microbial: Dueker et al.[210] found Actinobacteria and Proteobacteria in bacterial aerosols at 
Newtown Creek (NTC).  It is reported as the first study of community composition and local deposition of 

bacterial aerosols in public waterway (chart 10) and Superfund site with a high dense population located in 

New York. 
 

 

Chart 9: Toxicity of breast milk due to PCBs 

Location 
 Brazil  

    South 

    Southeast 

    Northeast  

    North 

 

 Twelve  PCB    

 Analysis:  

   SPME-GC-ECD  
 

Model 

  Kohonen_NN 

 
 

Chart 10(b) Superfund site (NTC) 

Input 

  High volumes of untreated sewage input via a combined sewer 
system 

 Exposed to  

 Over 140 years of industrial waste dumping 

  Ongoing oil seepage  

  Largest underground oil spills   

 Greenpoint Oil Spill, approximately 1.7 × 106 gallons 
of underground oil) 

Bacteria in sewage    water   air  humans through inhalation 
 

 

Chart 10(a): Monitoring parameters 

  Sewage 

  Hydrocarbons  

  Heavy metals 

  Industrial waste  
 

Bacteria 

  Aerosol 

  Distributions 

  Concentrations  

  Size  

  Fallout rates   

  Community composition  
 

  Gravitational settling  

  Surface interceptioninhalation 

 

 

It is reported that   bacteria (pathogens) are viable for aerosolization from terrestrial and aquatic surfaces.  
The aerosols travel even thousands of kilometers spatially before coming back to ground. The sources of 

the bacteria (pathogens) are generally disposal of untreated sewage into local waterbodies, rivers, estuarine 
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and coastal systems.  The fresh water sewage with human pathogens remains in a dense stratified surface 
area.  The bubbles release them in to air forming aerosols.  Onshore winds transport the material along 

with water and deposits on the terrain surface. In the near-shore inhabitation places, coarse aerosols 

contain even more hazardous larger particles (PMx).        
The prediction of emission levels inLPG-Diesel Dual Fuel Engine [135,340] with ANFIS and 

emissions of a biodiesel fuel [29] of NN are successful. 
 

5. Persistent organic pollutants (POPs) 
They are semi-volatitle compounds with moderate vapor pressure. POPs discharged in the lower latitude 

tropical/subtropical countries (Australia, Botswana, China, Hong Kong, India, Japan, South Korea, etc.) 

even locally, reach polar and pristine (remained in a pure state or clean from dirt or decay by human 

activity) environmental regions through long-range atmospheric transport (LRAT or global fractionation 
and condensation) and persist long. Thus, xenobiotic persistent organic pollutants are ubiquitous in the 

environment. Hence, a less error prone data and robust knowledge is the need of the hour to estimate 

toxicological adversities upon generations of biota as well as human race.  It is interesting to compute the 
time for POPs to fall below threshold limits, if the emissions are cut off in totality [206]. As a partial 

answer, long term (exceeding a decade) continuous monitoring programs are in operation.  The different 

types of trends are in chart 11c.Advanced technologies in water wastewater treatment minimize the release 

of environmental POPs.Choi et al. [213]simulated concentrations of range of compounds in different in 
warm temperate environment using a regional contaminant fate model, CoZMo-POP and a generic bell-

shaped emission profile. The ranges of partition and degradation characteristics are same as those for POPs 

(chart 11). 
 

 
 

Chart 11(a):  Effect of POPs on regional and global 

pollution 

Sampling 

 Passive air samplers 
XAD resin 

 Location  

Karachi, coastal city 

Lahore, agricultural 

region 

Pollutant ng/PAS 

Heptachlor  10−26 

HCHs  33−65 

DDTs  63−92, 

Endosulfan  39−101 

PCBs  48−61. 

 

- High Lindane, Endosulfan 

---    Ongoing use in 

agricultural fields    

- DDTs  

---    Older dumps 

---    Secondary sources 

- Agricultural/industrial 
waste through river 

- Streams in to Arabian 
Sea  

- Weathered POPs   
regional/global 
maritime  pollution 

 

Chart 11( c) :Trends in concentration with emission 

 and reversibility 

Trend Reversibility 

    Concentrations rise and 
drop in concert with 

emissions 

Fast  

    Concentrations rise and 
drop with emissions 

    Maximum in 

concentrations 
considerably delayed  
relative to maximum in 
emissions 

Slow    

    Concentrations rise 

     But do not drop in 
response to emission 

reductions  

No   

    Concentrations rise and 
initially drop in response 
to emission reductions 

     But stabilize at a constant 
level or decline at much 
slower rates  

Partial   

 
 
 

Chart 11(d):Models for uptake of chemicals by plant 

from polluted soils 

  Root uptake,  

  Shoot uptake  

 

 

Chart 11(b):Hazardousenvironmentalhormones 

 Organochlorine pesticides (OCPs)  

 Polychlorinated biphenyls (PCBs) 
 

    Agricultureal yield enhancers 

    Herbicides, fungicides, Plasticizers, 
polystyrenes,  
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 Via  root, 

 Via soil-air   

 From deposited soil 
 

 

 

EPA-pesticide datasets 

Chlordane Pesticide Dataset (EPA): This dataset containing 2,400 enantiomer-specific measurements for 

five pairs of chlordane enantiomers were compiled by EPA from peer reviewed published results.  

Pesticide Dataset (EPA): The chemical information (structures, chemical names, identification numbers, 

pesticide class [insecticide, herbicide, and fungicide]) for 1,700 pesticides is available in a spreadsheet 
format with twenty fields. 

 
Environmental hormones: These are natural/ xenobiotic (synthetic) chemicals (resembling endocrine 

hormones) released into environment (chart 11b).  When they reach ground or inhaled, disrupt hormonal 

activity resulting in many reproductive health hazards. The endocrine-disrupting compounds (EDCs) are 

xenobiotic chemicals interfering with theendocrine systems of mammals and lower animals. Each toxicant 
is present below a toxic level. But, one is exposed to numerous agonists and antagonists which perturb 

several steroid-dependent signaling pathways with a cumulative effect.   Vinclozolin, a fungicide,is also 

endocrine disruptors producing epigeneticchanges in the genome without altering DNA sequence.These 
endocrine disrupting chemicals act as estrogens, antiestrogens or antiandrogens and thus alter reproduction 

in a variety of organisms.  In fact, the exposures during early development of fetes have consequences on 

adult stages and the effects are transgenerationally transmitted. 

 
Solar radiation forecasting:  The insular feature is a hurdle in solar (Fig.1, chart 12) forecasting.  The one-

day-ahead-forecast (with a 1 h temporal resolution) of global horizontal irradiance (GHI) from weather 

research and forecasting (WRF) model is biased.   Lauret, et al.[134] proposed NN as a post-processing 
method in the forecast of (WRF) model for solar radiation at mesoscale numerical weather prediction 

(NWP). The data used is from ground station and bias error analysis was performed by NN, which picks 

up relevant inputs.   Here, specific model output statistics (MOS) is employed in the frame of a solar PV 

forecasting project that takes place in La Reunion Island, a French oversea territory located in the Indian 

Ocean.  

 
Fig. 1: Sun flare and internal structure 

 
Sun flare (Courtesy of NASA report) 

 

Chart 12: Facts and figure of Sun 

 G2 star 

Diameter 1,390,000 km 

Composition  70% hydrogen  

 28% helium  

Mass 1.989e30kg 

  

Temperature_ 
 Surface 

5,800 ok 
 

 

Sun_Core 

Temperature 15.6 million  ok 

Pressure   250 

billion atmospheres 

Density   >150 * 
 (water_density = 
1) 

 

http://nineplanets.org/data1.html
http://nineplanets.org/help.html#km
http://cst.lanl.gov/CST/imagemap/periodic/1.html
http://cst.lanl.gov/CST/imagemap/periodic/2.html
http://nineplanets.org/data1.html
http://nineplanets.org/help.html#expnot
http://nineplanets.org/help.html#expnot
http://nineplanets.org/data2.html
http://nineplanets.org/help.html#kelvin
http://nineplanets.org/data2.html
http://nineplanets.org/help.html#kelvin
http://nineplanets.org/help.html#atm
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6. Engineered nanomaterials 

The sparkling utility of nanomaterials from medical applications to consumer products increased their 

production on exponential scale.  The literature reports on cytotoxicity and genotoxicity of carbon-

nanotubes, nano_Ag, nano_TiO2 on human lung, dermal, and visceral cells warrant preventive care. 
 

Nanotechnology: It is a comprehensive tool making use of science, engineering, and technology at 

nanoscale (approximately 1 to 100 nano (10
-7

) meters) for applications in industry, medicine, cosmetics 
with almost unattained characteristics in the last century materialistic world. 

 

Nanomaterial contamination of natural environment: The complicated wastewater matrix promotes 
transformation of nanomaterials into different species. These various forms remain in sludge, effluent and 

further transported in landfill or incineration operations. Thus, wastewater treatment plants (WWTPs) are 

one source of nano species into natural environment including aerosols.  Some of the NP compounds are 

very reactive in natural environment and many chemical, physical and biological transformation of 
differing toxicities result.  Thus, extrapolation of laboratory data (for example pristine ENMs) to in vivo is 

erroneous and lead to mysterious conclusions. Further, their contamination in water, soil and air 

comprehensively demand a complete picture of toxicity to eco-systems.   
 

Nanomaterial exposure to humans: The humans are invariably exposed to engineering nanomaterials (chart 

13) at manufacturing units and transportation.  The inhalation through aerosols is the second route for 
human exposure.  

 

SToxR of nanomaterials: Thecytotoxicity and genotoxicity of nanoAg, nano zerovalent iron, nanoTiO2 

and nanoCeO2 (0.1 to20 mg/L) from sequencing batch reactors were studied for A549 human lung 
epithelial cells. 
 

Chart 13: Nanomaterials and environment  

Nanotechnology 

Materials of 

1-100nm size 
 Synthesis 
 Measurement  
 Property  

Abbreviation Expanded form Abbreviation 

NP NanoParticles NanoPart 

MNP MetalNanoParticles MetNanoPart 

fMNP Functionalized MNP   fMetNanoPart 

fAuNP Functionalized gold nano particles fAuNanoPart 

ENM Engineering nano materials EngNanoMat 
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   Ecological 

   Technological 

   Economic   

   Sociopolitical    

Abbreviation Expanded form 

CQC_nano Computational quantum 
chemistry  
of  nano materials 

SXR_nano SXR for nano materials 

NN_nano Neural network models 

for 
nano materials 

 

X Nano_X 

Atom  Nano_Au;  Nano_Ag 

Molecule Nano_H2O; Nano_NaCl; 

Material Nano_graphite  
Nano_fenofibrate 
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tools 
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 Experimenta
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Transport of nanomaterials in environment(Courtesy of Ref 1) 
 

 

Computational_Nano_Science 

   Critical tools  

   Simulations  

   Computations  

   Predictive modeling  

   Nano 

 Materials  

 Devices  

 Systems 

 

 

Monitoring metal ions pollutants:Wilson et al.[377] reported an automatic monitoring system for binary/ 

ternary polluting metal ions using biosorption principle and NN modeling (chart 14). 
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Chart 14: Metal ion monitoring by bio sorption and NN 

models 

Biosorption system 
 

Fixed-bed column filled 
with wine industry waste 
grape stalks 

Monitoring Instrument 
computer  

  FIP   ET based array of 
9 flow-through  ion-
selective electrodes   

 

Ion  mixtures 

 Binary 

 Cu2+/ Pb2+ 

 (Cu2+/ Zn2+)    

 

 Ternary 

 (Cu2+/  Pb2+/ 
Zn2+) 

 (Cu2+/ Zn2+/ 
Cd2+) 
 

Computations 

 Fourier Transform  

  FIA peaks     

 Model 

 NN  

Input --selected 
coefficients     

 

 

FIP : Flow-injection potentiometry  

ET : Electronic tongue detection  
 

 
 

Chart  15: Prediction of air pressure in slurry shield 

tunneling 

 ENN  

 Predictor   

 Controller  

 PSO Lrn 

Test data 

Yangtze river_bed 

metro tunnel 

project,  Wuhan, 

China. 

 
 

Chart 16: MLP_NN prediction of traffic-

generated noise levels 

Input 

  Total vehicle 

volume/hour  

  % heavy vehicles  

  Average speed of 
vehicle  

 

Expt 
Field measurements 

Y 

 Leq  

  L10 
 

Model 
 MLP_NN (BP)  
 TrnAlg: LM 
 Regression 

L10: 
Leq: 

Ten Percentile exceeded sound level 
Equivalent continuous sound level   
in dB (A) 

 

Pollution with lead (Pb) metal: Czech et al.[132] found that MLP_NN (Statistica 9.0)predicts that lead in 

animal tissues and organs correlates excellently with measured values in   locations in surroundings (100 
km

2
 around) of  a   lead–zinc ore mining and processing plant (‘Boleslaw’) at Bukowno in southern 

Poland. The goal was to monitor the transfer of lead in the soil–plant–animal system from different 

features of soil and   plants and extent of pollution. 
 

Air chamber pressure 

Zhou et al.[71] found enhanced face stability in slurry shield tunneling using Elman NN both for control 

and prediction of air chamber pressure (chart 15). 
 

Noise pollution prediction on highways: In India, the highway traffic is typical in a variety of two- wheelers 

with exponential growth in their numbers. The overall poor maintenance of heterogeneous vehicles, non-
adherence of traffic norms and high pitch continuous horn blowing for longer time intervals worsen the 

extent of noise pollution scenario. Kumar et al.[383] predicted traffic-born noise levels on highway   with 

MLP_NN (chart 16) with success.    

 
Pollen complexes: Air borne pollen causes allergy [59] in human beings. The material was collected on a 

tape and manual inspection under a microscope was earlier practice. The limitations of the method are 

requirement of skilled technicians, long time and non-feasibility of continuous monitoring. NN could 

predictArtemisia and Phleum but not Betula.  It demands an improvement in gas sensors employed and 
advances in NN methodology is required.  Pollen is distinguished from other air borne particles now with 

an electronic nose.  It consists of a gas sensor array, pyrolysis unit and NNs.  The samples used are, dust 

from windows near the traffic zone, ordinary soil and pollen/ diesel/ petrol soot.  The gases evolved, after 
heating at 250K in a specially designed furnace, are analysed by electronic nose.  PCA although divides 

the classes, it could not resolve the groups within pollen.  NN not only improved the major classes, but 

also resulted in partial resolution of groups within the classes. Kalman [59] suggests an ionization chamber 

and electro filter for sampling and heating in the experimental front. 
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Pollution at filling stations: Benzene is carcinogenic and the maximum limit stipulated by European 

community by the year 2010 is 5
3/g m . The exposure of employees involved in filling 

operations/miscellaneous tasks including cash collection is a matter of prime concern.  The amount of 
benzene in urban and rural filling stations is monitored and a separate NN is trained for each group of 

workers.  Passive sampling resulted in a maximum of 27 
3/g m integrated over two weeks for the 

employees.  The seasonal variation is significant and there is a variation of 20% between summer and 

winter.  This study suggests for the improvements of the infrastructure of the gasoline station including up 

gradation of vapor recovery systems. 
Statistical models function in cause and effect framework.  Ozone conducive meteorological 

conditions are well known now.  The photochemical smog is very high during summer.  It is due to the 

high temperature, high insulation, high stability, low mixing heights and low mid-day relative humidity.  

Many of the ozone episodes occur when the listed conditions prevail 
 

Pollution due to insecticide residuals: From 1950s onwards, more than ten million tons of lindane (γ-HCH 

being active isomer) were used as insecticide. The three isomers (α-, β- and γ-) have the potential to travel 

long distances (chart 17). They are persistent in the environment and also bioaccumulate in organisms 

resulting in adverse toxic effects.  However, in 1990s, production of HCH was abandoned and in 2009 

Stockholm convention on persistent organic pollutants (POP), no exemptions we

hrnschimmel et al.[211] reported a global model for its fate and transport over 

the period 1950 to 2050.  This has a goal of noting alarming levels even in remote locations with estimated 
emissions in near future. 

 

Chart 17:Uncertainties  with  model for  concentrations of α- and β-HCH 

   Errors in expected long-term changes in climate   perturbs current forecast of  climate temperatures and precipitation  
during the 21st century  

   Emission inventory fails to identify past hotspots   Local high discrepancies between observed and model ouputs 

   Unrecognized emissions in Northern Russia  underestimation of oceanic concentrations in the Bering and Chukchi 
Seas   

   Underestimation of oceanic concentrations   uncertainity in  predictions of the sea-ice effect on atmospheric levels 

   Uncertainties of input parameters in environmental and chemical model  

 

 

7. Personalized air monitoring move 
Like personalized medicine dreamt a decade ago,personalized air monitoring systems now appear in 

advanced countries to augment better health care by reducing long exposures to high transient air pollution 
(chart 18).  The per capita increase of asthma and other bronchial diseases can be intercepted with next 

generation finer-grained PMx personal air monitoring systems.Snyder et al. [207] from EPA,US elaborated 

the state of air monitoring programs and future directions in increasing the accuracy and involvement of  

public in sharing the knowledge for a better informed society to meet challenges and comply with the 
benefits of e-governance in bringing down pollution and its ill effects.  Some of fine and coarse PM has 

wider spatial and longer temporal distribution compared to secondary pollutants viz. ozone and particulate 

sulphates.  Further, the concentrations of NO2, CO, HAPs, ultrafine(< 0.1 μm) PMs differ within tens to 
hundreds of meters along highway side if downwind blows with high rate. 

 

 

Chart 18: State-of-art-of air-monitoring systems and future gadgets  
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II. Water   (8-11 ) 

 

8. Water resources  

 
Long term (20, 50, 100 years) ahead forecasts (of even low accuracy) of climatic conditions, resources of 

river basins, population, health hazards and natural catastrophic events are of critical value to plan a 

sustained progress of society.   

 

8.1 Long term forecast 

 

Forecast of Climate by 2100: Inspite of intense research to forecast climatic conditions by 2100, the  
picture is still misty. But, at the secondary level, stream water/ atmospheric/ sea surface  temperature, rain 

fall, pollutant concentration level of ground level, global warming and its consequences are vital for 

aquatic life and human comfort/ health/ life span etc.Piotrowski et al. [96]   studied 
the impact of Levenberg_Marquardt and nature-inspired methods in training NN 

models (chart 19) to forecast temperature of Biala Tarnowska river (a natural 

stream) in southern Poland.  The prominent prediction errors are related to freezing 

and melting processes in river during winter in the mountainous catchment.  

 

Precipitation during 2070-2099 in New Zealand:   NNs are used to derive the 

changes of site of and temperature characteristics over New Zealand.   These 
models are used to obtain the changes of mean monthly precipitation from 

circulation variables projected in a transient climate change experiment performed by Hadley Centre 

Global climate model.  The results are predicted for a far off period 2070-2099.   

 

Conditional density estimation network (CondDensEstNN):  It is a probabilistic extension of MLP. 
Cannon [101]used this model to 

forecastprecipitation downscaling, extreme value 

analysis in hydrology, wind retrievals from 
satellites and air quality (Alg.3). The software is 

developed in R programming language and applied 

for suspended sediment concentrations and 

discharge data in Fraser River at Hope, British 
Columbia, Canada.   

 

Streamflow: Su et al.[346] used MLP_NN to predict streamflow in the Songhuajiang River basin, an 
agricultural land in China.  It is a noteworthy forecast study for the next forty years (chart 20). 

 

Streamflow and discharge: Araghinejad  et al. [286] applied ensemble_NN (Alg. 4) to forecast peak 
discharge of red river (Cannada) and stream flow of Zayandeh-rud (Iran) with better results compared to 

classical approaches (chart 21). 

 

River discharge:  Zeng et al.  [347] performed a long term (forty years ahead) discharge forecast of river 
(Yangtze) discharge with NNs (chart 22). The prediction is possible by global climate model extrapolation 

of climate. 
 

Chart 19: TrnAlgs of 

NN of NN models of  

stream water 

 PSO 

 Evol Strategies 

 Direct search  

 22 Metaheuristics 

 LM 

Alg. 3. CondDensEstNN (R-package) 

   Estimation of parameters of a specified PDF of 

predictors with conditional distribution 

   Flexible model for the mean, the  variance, exceedance 

probabilities, prediction intervals, etc 
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Chart 20: Forecast of  precipitation and 

streamflow  in Songhuajiang River basin during 

2011–2050  

Three scenarios 

 Climate conditions of   ECHAM5/MPI-OM  

 Ensemble mean of   CMIP5 models   

 

Inference : Precipitation and   streamflow 

 Seasonal / inter-annual tendencies differ if 

emission scenario changes 

 Inter-decadal changes are not obvious 

 

 
 

 

Chart 22: Long term  (2050) forecast of 
Yangtze river discharge 
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Chart 21:  Forecast of river stage with ensemble NNs 
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Alg. 4: Ensemble of NNs 
 Step 1: Create individual ensemble members 
Step 2: Combination of outputs of the ensemble 

members 
Method: probabilistic approach using k-
nearest neighbor  regression  

Output  
 

Chart 23: NN prediction for Habitat suitability modelling for mayflies 
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Performance 
 percent correctly  classified instances  
 kappa-statistics 

 
 

 
 

 

 

Short term forecast 

 

Prediction of mayflies (Ephemeroptera) in the next decades in Belgium: Lock and Goethals [123] predicted  

with ensemble of NN, SVM etc. that mayflies (Ephemeroptera) in Flanders (Belgium) will increase to 46% 

by 2015 and to 72% by 2027 (chart 23). 
 

Absorption in natural waters by 2022: Chen et al.[351] predicted total absorption (a(λ)) and backscattering 

(bb(λ)) coefficients of natural waters in the years 2015, 2022 (chart 24) by neural network-based semi-

analytical algorithm (NNSAA) and the initial values are based on quasi-analytical algorithm.   
 

Chart 24: Forecast of absorption coefficient of natural waters by 2022 

 NNSAA QAA 

Yellow Sea and China East Sea R2 > 0.82 
MRE = 20.6–35.5% 

R2 < 0.73 
MRE = 32.2–69.6% 

Global 1922 climatological seasonal mean 1923 July 2002 to 
September  

a  :  443 
bb:  555 

 

 Information bits 

If equatorial oceans  

 
Then a(443) value in the surface water in the equatorial  Pacific >   equatorial Atlantic in the 

upwelling region & integrate a(443)  in the Atlantic >> tropical gyre areas 
 

 

8.2 Water resources and management 
 

The water catchment information with minimum/ maximum values and uncertainties in consumption for 
various purposes along with desired quality measure indices are prime factors in water management. 

 

Precipitation: Li et al.[262] compared efficiency of four precipitation products in estimation of 

hydrological research over Yangtze River basin (chart 25). 

 

Chart 25a: High resolution multisensory precipitation products 
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 (Near) real-time     3B42 RT 

 Climate Prediction Center MORPHing t    CMORPH 

 Precipitation Estimation from Remotely 

  Sensed Information using NNs 

 PERSI_NN 
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Chart 25b: Intercomparision of four high resolution sensors 
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Daily forecast:Yu  et al.[263] proposed two hybrid algorithms combining fuzzy_NN with discrete and 

continuous wavelet transforms for long term precipitation, evaporation and river stage data (chart 26). 
 

Chart 26: Long term forecast of  river TS data 

Data 

 One station  

 Daily precipitation 

 Evaporation     

 Two stations 

 river stage 
 

 

CWT TLT Poor  
performances 

DWT SLT Effective 

Forecast-practical utility 
TLT >> SLT 

 

CWT 
Cont.WT: 

Continuous  Wavelet  
Transform 

DWT  
Discr.W: 

Discrete Wavelet  
Transform    

LT: Long term 

SLT: Seeming  

TLT: True  

TS: Time series 
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DWT-
Fuz.NN 

TLT  
 Weaken DWT 

 advantages 

River stage 
signals 

 Short term 
periodicities   

 zero value 
data 

 Significant 
 advantage 

Inference 

Prediction of  hydro-meteorological TLT signal 
 

DWT-NF >> [component; other hyrid] models  

 

 
 

 Rainfall  
Mekanik et al.[260] reported NN trained with LM algorithm predicts long-termspring rainfall with higher 

generalization ability compared to MLR and climate models of large scale (chart 27).  

 

Forecast of rainfall in Queensland, Australia:Abbot and Marohasy [61]employed inter-decadal Pacific 

Oscillation for forecast of rainfall.  This index was never used earlier in official seasonal forecasts for 

Queensland. Most of earlier studies were confined to statistical models. The results at three geographically 

different areas were compared with POAMA (Predictive Ocean Atmosphere Model for Australia)(chart 28).  

POAMA is a General Circulation Model currently in use in official seasonal rainfall forecasts. 

 
Thunderstorms and rain:Manzato[67] proposed a NN model to predict occurrence and intensity of 

thunderstorms and rain in Venezia Giulia, Italy from sound, light and meteorological data (chart 29). 

 

Chart 29: Forecast of thunderstorm and rainfall 

Location :  Plain of the Friuli Venezia Giulia,Italy 

Input 

    Sounding 

    Lightning strikes 

    Mesonet station  

    Rain 

    Wind 

Training 

    1995–2002 : April to Nov  

Test 

    [2003 to] 2004 

 

 

Chart 27: Long-term spring rainfall prediction 

 

X 

 Lagged El nino  

 Southern oscillation  

 Indian ocean dipole   

Performance measures 

   MSE, MAE, CC 

   Willmott index  
of agreement 

Generalisation 

Victoria 
CC 

MLR NN 

East  −0.99 to −0.90 0.42–0.93; 

West   0.68–0.85 0.58–0.97 
 

Inference 
NN_LM >> [MLR, large scale climate models] 

 
 

Chart  28:  Seasonal rainfall forecast in 

Queensland, Australia using Pacific Oscillation 

parameter 

X 

Climate indices 

y 

Rainfall forecast 
 [continuous variable] 

Model 
NN 

Performance measures 
RMSE, MAE, CC 
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Phase model Output 

 I NN_classification convective activity 

If convective activity 
Thenregression_ ANN 

 II  NN_regression Thunderstormintensity 
forecasting 

 

 

Rainfall retrieval:  Wei [321 identified influential factors viz. brightness temperatures of 19, 22, 37 and 85 

GHz for retrieval of rainfall. The results of Bayesian networks (BN) and BN hybridized with scattering index 

(SI)/ polarization  corrected temperature (PCT) are compared with SI,  SI_SVR and MLP_NN (chart 30). 
 

Rainfall and runoff (TS) forecast:  Farajzadeh et al.[398] forecasted monthly rain fall in Urmia lake basin 

for the period 2012-2017 with NN and ARIMA models(chart 31). The correlation coefficient and RMS are 

0.62 and 12.43mm. Urmia lake basin, located in northwestern Iran, is the second largest   saline lake in the 

world. The   water level of the Urmia Lake has been decreased from 1997 as a cumulation of consequences 
of construction of dams, climate changes and mismanagement of water resources. The result was 

emergence of thousands of hectares of salty land with ecological imbalance. Soil moisture is critical geo-

physical parameter playing a key role in absorption and runoff   of rain. 
 

Hourly run off:Tayfur et al.[256] predicted hourly run off at small catchment areas with generalized 

regression_NN in Italy from measurements of soil moisture and rainfall (chart 32). 
 

The drastic seasonal changes render the prediction of runoff of Annapolis River catchment a hard task to 

model. Piotrowski and Napiorkowski [283] found that NNs with hybrid training using DE with Local/ 

Global Neighbors, LM excels other EAs in forecast of runoff river(chart 33).  
 
 

Chart 30: identification of   rainfall intensity 

Data Model 

 Location: Tanshui river basin, Taiwan 

 meteorological data 

 Period: 2000–2012 ; typhoons :71 

 Instrument :Special Sensor  Microwave/Imager (SSM/I) of the 
National Oceanic and Atmospheric  Administration (NOAA) 

 Response : seven passive microwave brightness  temperatures, 

 Obj : detect rain rates  

 

 Bayesian networks    + polarization corrected 
temperature (PCT) + scattering index (SI) methods  

 Learning Alg  

   Tabu search    

   Simulated annealing    

   Genetic algorithm   

Expert opinion 

BN identifies influential factors in rainfall retrieval 

and causal relationships  

BN + [PCT, SI] >> [SI-SVR] [MLP_NN]  if heavy/ torrential downpouring rainfall  
 

 
 
 

Chart 31: Multiple-models 

 NN    

 ARIMA 

Test period : 
2012-2017 

 Predictive 
uncertainties    

R = 0.62  
RMS = 12.43 mm 

 

  Chart  32: Forecast of hourly run off 

Input 
 Rainfall + soil moisture  

 Depth  10, 20, 40 

cm  

Trn : October 2002–March 
2003  
Predict:  anuary–April 

2004 

Output 
 Discharge    

 

Sub-catchments of Tiber  

river 

Colorso   :  13 km2 
Niccone  : 137 km2 

Model Performance 
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Generalized 
regression_NN 

R2  :0.87  
Nash–Sutcliffe efficiency: 
0.86 

 

 

Chart 33: Forecast of rainfall-runoff 

River : Annapolis River catchment 

daily  rainfall–runoff 

Seasonal changes 

 Runoff  

 Rapid floods  

 Dry summers  

 Severe winters with snowfall  

 Snow melting  

 Frequent freeze and thaw  

 Presence of river ice  

Tr. Alg.Model.Evolution (Tame) 

 Differential Evolution  (DE)  

 Distributed DE + Explorative–Exploitative Population 

Families  

 DE  + Self-Adaptive  

 DE + Global and Local Neighbors  

 DE + Grouping 

 JADE 

 

 PSO 

   Comprehensive Learning Particle Swarm Optimization 

   Efficient  Population Utilization Strategy Particle 

Swarm Optimization 
 

 Levenberg–Marquardt algorithm  
 

 Levenberg–Marquardt alg 

   Speed 

---    Trapped in poor local optimum  

 Remedy:  Multi-start approach 
 

 

 

Chart 34 : Forecast of runoff  

Annapolis River, Nova 

Scotia, Canada   

 Differential Evolution  

 Global and Local 

Neighborhood 

 Trailing 
 Levenberg–

Marquardt 
  Evolutionary 

Computation 
 

 

Table  7: Explanatory variables of predictive 

model for stream nitrogen concentration [397] 

Input variables 

Forest  FOR 

Agriculture  AGR 

Urban  URB 

Wetland  WET 

Other categories  OTH 

Animal unit density  ANI 

Average annual precipitation  PRE    

Annual stream flow  FLO. 

OTH  Difference 
between total 
watershed 
area and the 

four other 
areas  

Output variables 

Mean 
Inorganic nitrogen concentration  

INC 

Total nitrogen concentration  TNC 
 

 
 

Table 7(b) : Performance of NN in  

prediction of stream N2 with input 

variables 

Data 

Average CC for five sets of data 

Total 

nitrogen 

Inorganic 

nitrogen 

Tr 0.861 0.845 

Te 0.845 0.832 
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Table 7( c): Comparison of NN   stream N2 

with FAS at different sites   [397] 

Site MSE CC 

NN FAS NN FAS 

Duifpolder local 
control 

0.0003 0.028 0.999 0.913 

Woudse Droogmakerij 
Local control 

 0.065 0.959 0.179 0.918 

Woudse Droogmakerij 
Centralized control 

 0.021 0.986 -- -- 
 

Courtesy from Olery et al (1997) 

 

Product-Units_NN: The first hidden layer consists of neurons where inputs are raised to exponential 
weights.  In the other layer, summation function is used for the neurons.  Although, it is difficult to train 

unbounded weights, acceptable results are found for weights in the interval [−1, 1]. Piotrowski and 

Napiorkowski[4] applied ProdUnitNN to forecast runoff of Annapolis River, Nova Scotia, Canada with 
success(chart 34). 

NNs have been proven with better prospects in imputation of missing data inrainfall around Luvuvhu 

river catchment [333], air pollutant prediction,streamflow in the Shire river basin, Malawi [335] anddaily 

flow rates of Middle Firat catchment [136]. 
 

 Stream water: 

The streams and natural rivers consist of a main channel and flood plains.  Rainfall-/stream-/river- flow 
models have a function in flood mitigation measures, construction of hydraulic structures, and prediction 

load of sediment and water resource management of arid inland zones.  The nitrogen concentration in 

streams is through non-point source pollution at the watershed level.  The concentration has been found to 
increase in USA and Europe.  Denitrification process is used when high nitrogen concentration is found.  

The control requires the origin and distribution of N2 in stream water.  The spacio temporal patterns are 

complex.  Lek [397] predicted the export of nutrients (inorganic and total N2) in stream water versus the 

parameters of watershed drainage area and its environment(table 7).  The patterns are non-linear or with 
non-monotonous trends. The maximum contaminant level stipulated by US-EPA for NO3-N is 10 mg/lt.  

WASMOD is nitrogen-modeling software, which accepts the description of nitrogen discharge as a 

function of soil relief, land use and climate. Performance of radial basis and MLP_NN (trained with LM) in 

predicting daily watershed runoff is better than that with MLR.Zounemat-Kermani  et al.[25] reported NNs are 

superior to MLR in one-day ahead forecast of stream flows in Alabama, USA (chart 35). 

 

Chart 35:  Prediction of one day ahead stream flows 

 MLR 

 MLP_NN 

 RBF_NN 

Location  

Cahaba River, 

Alabama 
 
Residual analysis 

 RMSE, MAE 

 CC 

 K-fold CV 

 

 

 

Statistic MLP_NN 
(LM) 

MLR 

Average (MAE) 100-18 100 

Ave(RMS) 100-21 100 

 

 RMSE m3/s 

Prediction RBF_NN  MLP_NN 
(LM) 

Highest flow rate 

 rangeduring flood   

26.8  <<  40.2  

Watershed runoff 19.2  >> 18.8   
 

 

Test Performance 

Mann-Whitney    
statistical  significance   
(measured median -
predicted median) 

Levene's  
Differences in variances 

 

Chart 36: Monthly streamflow forecast 

Data 

 

Chart 36(b) Chemical composition of synthetic storm water 

Solution of deionized water  autoclaved 

Concentration Major  ions 
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 six monthly streamflow sets  

 two successive gauging stations 

 

Phase I: SLP_NN  
Phase II: Input(s) and output records were 
decomposed into sub-time series components 
using wavelet transform.  
Phase III:   Wavelet_NN for each sub-time 

series    

Performance  

RMSE 

Nash–Sutcliffe 
efficiency  

 

Inference 

 
LGP >> WANN 

 

mM 

5.1   NaCl 

0.75   CaCl2 

0.075 mM 
 

of MgCl2 

0.33  Na2SO4 

1   NaHCO3 

0.072  NaNO3 

0.072   NH4Cl 

0.016   Na2HPO4 

  

Ionic strength  20 mM 

pH range [6.9 to 7.2]  

pH adjusted with 0.1 N NaOH or  0.1 N HCl 

 
 

 

Stream flow prediction: Mehr et al.[265] found linear GP is better than wavelet_NN in the prediction of 

monthly streamflow (chart 36). Mehr  et al.[98] found that Linear_genetic_Programming performs better 

than NNs (MLP_, RBF_ and GR_) in  successive-station monthly streamflow prediction for two gauging 

stations on Çoruh River.  RMS and Turkey Nash–Sutcliffe measure are considered for performance 

comparison.  
 

NN + ABC:Kisiet al.[282] reported a hybrid NN with artificial bee colony (ABC) algorithm to  estimate a 

daily stream flow and river carried suspended sediment concentrations at Rio Valenciano and Quebrada 

Blanca  Stations. The logarithm transformed data were also used as input to the model and the hybrid 

model was better than neural differential evolution, adaptive neuro-fuzzy and rating curve. 
 

 Stormwater 
The storm water originates during precipitation and snow/ice melt events. It soaks into the soil (infiltrate), 
held on the surface and evaporate or runoff.  Finally, it end up in nearby streams, rivers, or other water 

bodies (surface water). It contains a myriad of contaminants including suspended solids, nutrients, heavy 

metals, hydrocarbons, and pathogens. 
 

 Rivers 
For successful water resources management, the key factors are accurate/precise measurements, shrewd 

analysis, trustworthy future plans for irrigation, energy generation and drinking water. The Water Resource 

Data mining (WR_DM) is interlinked with climate changes, land utilization and pollution. The land ocean 
coupling is understood from river flow involving processes based on land-atmosphere characteristics. 

Albostan et al. [136] found NNs are superior to MLR in predicting daily rainfall data at a station not 

included in training from four stations on Murat River. Cole et al.  [259] successfully predicted daily mean 
temperature in Delaware River over a wide range of conditions with GLScos, ANN, and HFM models 

(Chart 37, table 8). It serves as a basis to manage thermal releases in regulated river systems.  
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River flow: Nayak et al.[269] 
investigated conceptual and 

Wavelet_NN models for river 

flow from the results of 
rainfall_runoff relationships in 

Malaprabha basin in India 

(chart 38). The results show 

that the loosely coupled 
sequential hybrid model 

consisting of wavelets 

transforms and NNs excelled 
simple NNs and also popular 

NAM (North American 

Mesoscale) model.  Badrzadeh  
et al.[270] proposed a hybrid 

NN model for m-day ahead 

forecast of  Harvey river flow 

with higher accuracy compared 
to component models(chart 39). 

He et al.[257] found SVM 

excels NN and ANFIS in the 
forecast of river flow in semiarid mountain regions of China (chart 40). Lohani et al. [255] introduced a 

concept of rare and frequent   hydrological situations in fuzzy models.  Threshold subtractive clustering 

based Takagi Sugeno (TSC-T–S) fuzzy   inference system is used to predict low to medium   (frequent 

events) as well as high to very high flows (rare events) in upper Narmada basin, India (chart 41). 
Antanasijević et al. [254] reported generalized regression NN to forecast dissolved oxygen in river Danube 

with good modeling practices (chart 42). Sirdari et al.[233] found that NN (accuracy: 97%) is better than 

genetic programming (93%) in modeling bedload transport of small rivers in Malaysia (chart 43). Kim et 
al.[126] found that a tight coupling of phase wise refinement of knowledge and evolutionary optimization 

of parameters of multivariate models  of riverine water  increased  the quality by more than 50% compared 

to MLR and NNs(chart 44).  
 

 

Chart 38: Rainfall-runoff model for Malaprabha basin 
Model 

I. Phase   

 Rainfall-runoff   

II. Phase II  

 River flow  

Wavelet_NN modeling 
 

Stage Input Model Output 

I 

 

Daily data 
 Rainfall 
 Discharge  
 Evaporation  

 

Time period 
1980 to 2000 

Wavelet 

transform 

Decomposed 

sub series 

II 
 

Decomposed 
 sub-series     

NN 

Calibration 
Performance 

   Nash–

 

Chart 40:  River flow forecast in 

 semiarid mountain regions in China 

 
Models 

 NN 

 SVM 

 ANFIS 
 

Performance 

 RMSE, CC  

  Nash–Sutcliffe efficiency 
coefficient 

 Mean absolute relative error  

Inference 
SVM > [ANN; ANFIS] 

 

Chart 41: Threshold subtractive clustering based 

Takagi Sugeno (TSC-T–S)-FIS for river flow 

prediction 

 

Data: Hourly rainfall 

 River flow    
 

Location 

 Upper Narmada basin, 

Preprocessing 

 Rainfall–runoff data 
classified into 
frequent and rare 
events 

Chart 37:Prediction of  temperature of Delaware River 

Input 
Weather station 

 Climate data  
 Solar    radiation 

 Wind speed 
 
U.S. Geological survey   gages 

  Temperature 
   Hydrologic data 

 

Location 
 Upper Delaware River (USA) 

 

(1-, 3-, 5-) day ahead  forecast_success 

     Baseline-modified prime index of 
agreement   

Data years 

Trn   2008 to 

2011 

 Test   2012 

 
Performance 

 RMSE  

 Nash Sutcliffe efficiency  

  percent bias   

 Index of agreement statistics 

Models 
 Gen.LS 
 Cosine trend 
 ARIMA 

 NN 
 Mechanistic Heat  Flux  

 Basis: Energy gain and loss 
 

Table 8:  predicted daily  

mean river temperature 

Statistic ARIMA All models 

RMSE   0.57 0.58–1.311 

NSE  0.99 0.99–0.97 

d -- 0.98–0.99 
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Chart 39:  Multi-step-ahead forecast of  river flow 

m-day ahead forecast 

m : [1, 2, 3, 4,5] 
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Chart 42: Dissolved oxygen Forecast in Danube 

River 
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Chart 43: NN modeling of bedload transport of small rivers in 

Malaysia 

small rivers in Malaysia  

X 

 flow  discharge 

 water depth 
 water surface slope  

 surface grain diameter  (d50) 

y  

 

Estimate bedload  

transport 

 

Chart 44: Tight integration of KB refinement and Evol optimization 
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GreyNNs in river stage forecast: Alvisi and Franchini [334]introduced grey number theory into NN 
modeling of river stage forecast(chart 45).  They found that even when data is uncertain, Grey_NN is 

better than Bayesian_NN. The parameters of NN are represented by grey numbers and output is an interval 

(not a crisp floating point value) unlike in all types of NNs. 
 

NN + SVR: Chih-Chiang Wei[142] et al. reported NN and SVR are better than MLR to forecast river 

stages during typhoons in Tanshui River Basin in Taiwan (chart 46) 
 

  

 

Chart 45: Grey_NNs in river stage 

prediction 

  Crisp forecasts derivable from output 
of grey_NN  

 Output_ bands  of grey_NN narrower 
than Bayesian_NN 

   % of observed values are same 

band :  [envelope of the intervals] 

Chart 46: NN prediction of river stage during typhoons 

 Tanshui River Basin,Taiwan  

 Hydrological datahourly 

 Period : 1996–2007. 

 50 historical typhoon events  

 Forecast : [1 h to 4 h] 

 
Inference 

    [NN, SVR] > MLR 

Models 

 Lazy learning models 

    Locally weighted 

regression  

    k-nearest neighbor 

 Eager learning 

    MLR 

    SVR 

    NN 
 

 

Temperature of river water: DeWeber and Wagner[253] brought out neural network ensemble for prediction 

of mean daily temperature of river water in eastern U.S. (chart 47).The model could predict mean daily 
water temperature in 197,402 individual streams in the warm season (May–October) of 2010 endorsing its 

generalizability for newer streams under different environments.  

 

Chart  47:   Ensemble of NNs in prediction of mean daily temperature of river water 

 

Predictor categories 

 Climatic  
 Landform 

 Land cover attributes 

Data 

 

RMSE 
°C 

1980 to 2009  
Trn : 886  

 1.91 

Test  2010 1.93 

Validation 96 sites  1.82 
 

 

Influential predictors 

 Mean daily air temperature 

 Prior 7 day mean air temperature  

 Network catchment area  

 

Predictors with negative effects 

- Forest land cover 

---    Riparian 

---     catchment    
 

 

DO in Surma river:  Masrur Ahmed [288] predicted   dissolved oxygen  with MLP_NN and RBF_NN 

models by measuring BOD  and COD in the Surma River, Bangladesh for a three year period (table 9a).   

 
Rapid changes in river flow: In Taiwan, typhoons and intensive storms resulting in rapid and short term 

high river flows pose a threat to the quality of water and plight of ecosystem.  This necessitates the 

monitoring/estimation of daily water quality rather than conventional monthly/quarterly schedules. Chang 

et al.[245] found NARMAX_REC_NN modeling using hydrological data successfully estimated ammonia 
nitrogen, an indicator of water quality. Further, the model detects peak values during the critical period 

(September–April) for pollution (chart 48).   
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Chart 48: NN model for Ammonia 

nitrogen in Taiwan river 

Chart 48(b) Typical input factors for   river water quality[163] 

Hydrological  Input factors 
 Discharge 
 Days w/o discharge 

 Water temperature 
 Rainfal  
 
 
Model :  NARX_RecNN 
 

CC 0.926 

RMSE 0.386 
 

 

%DO  % Dissolved Oxygen 

 Cond  Conductivity e Lab Meter 

 DO  Dissolved Oxygen 

 DOC  Dissolved Non-Purgeable Organic C 

 DRP  Dissolved Reactive Phosphorus 

 Ecoli  Escherichia Coliforms e MF MFC/ NA-MUG 

  

 FC  Faecal Coliforms e MF MFC 

 FS  Faecal Streptococci e MF 

HardT  Hardness Total 

HCO3  Bicarbonate 

HPC  Heterotrophic Plate Count 35"C 

 

Cruise in river:  Lu and Liu  [23] simulated and tested a hybrid (fuzzy_NN and ACO)  model based 
controller for vessel cruise on a river (chart 49). 

 
 

Chart 49: Simulation and cruising vessel on a river with 

hybridized NN 
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Chart 50:  Long-term (6 and 12  

months ahead) forecasting  of 

Standard  

 Precipitation Index drought 

Location 

 Awash River 

Basin in 
Ethiopia   
 

Performance 
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The data driven robust NNs have been found superior to other model driven procedures in water 

quality index for Kinta  River (Malaysia) [305],also other rivers [339,394], precipitation over  complex 

mountainous terrain  [5], water flow  [99], discharge routing of Kizilirmak river in Turkey  [284], spatial  
distribution of macro invertebrates under flow regulation in the Lijiang  river  [125], estuary water stage 

[2], river stage forecasting with uncertainty [334], flood evaluation river mapping from MODIS images  

[3], monthly reservoir  inflow forecasting [278],  prediction of  daily and hourly  multi-time-step ahead 

intermittent reservoir inflow of Koyna river watershed in  Maharashtra,   [279], steel pipe pile in Arkansas 
river  [107], daily suspended sediment in river  [224], eco system health by   richness of native fish Júcar 

River  Basin District [371], blind fish  [113], river   discharges at Yichang and Datong hydrological 

stations under three  greenhouse gas emission scenarios from 2011 to 2050 in the Yangtze River [347],  
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runoff at Annapolis River, Nova Scotia, Canada [4],  catchment [271], prediction of discharge in straight  
compound open channel flow   [221], monthly stream flow forecasting[280],  total nitrogen concentration 

on monthly basis in   streams [240], forecasting river flow rate from the Melen Watershed of  Turkey 

Western Black Sea region [275], estimation of monthly river flow in arid  inland basin of Northwest China 
[276], monthly river flow forecasting   [277], river flow forecasting  [283], riverbed grain-size distribution     

[272], dissolved oxygen in a riverine   [118], riverine fish   diversity   [266], longitudinal dispersion 

coefficients  in rivers   [217] prediction of river temperatures [274], sediment load of river systems 

(Mississippi, Missouri and Rio Grande) in USA  [9],  soil acid sulfate mapping in  Sirppujoki River 
catchment area, south-western Finland  [247],  Soil water dynamics  [287], spatial distribution of soil 

heavy metals in Huizhou City  [344], suspended sediment concentrations in Fraser River at Hope, British 

Columbia, Canada  [101], suspended sediment modeling   [281],  prediction of daily sediment (suspended)  
load in rivers [373], predicting sediment yield  in the Nagwa agricultural watershed in Jharkhand, India   

[8], prediction of upstream and downstream station sediment data   [273], river suspended sediment 

estimation [103], suspended daily load  in Doiraj River, Iran [268], chemical pollution in sediments in  
estuary of  Nerbioi-Ibaizabal River  (Bilbao, Basque Country), discharge-suspended sediment  

relationships  [282], longitudinal velocity in open channel junctions [222], water resource, SST [345] and 

sediment classification [114]. 

 

 Floods and droughts 

The floods in River Nile destroy houses, crops, roads and basic infrastructure causing people to migrate to 

other regions.  Elsafi [10] predicted flooding at Dongola Station for Nile (Blue Nile, White Nile, Main 

Nile) and Atbara rivers using the data between the period 1965 and 2003. A wavelet NN along with 
parallel GA is proposed to simulate and predict floods in arid areas in China.  The model was compared 

with Xinanjiang hydrological model.  The success of the NN is in that the simulated runoff is strongly 

related to the rainfall with four time steps lag and the observed runoff with three step lag.  The wavelet TF 
models have strong nonlinear trends.  GA overcomes local optima often encountered in BP training.  The 

parallel version drastically (82%) reduces CPU time. Belayneh  et al.[258] found that NN or SVR with 

wavelet pre-processing is an adequate model for 6 and 12-month ahead forecast of drought index for a 

river basin in Ethiopia (chart 50).   
 

Alternate floods and droughts:  These irregular cyclic phenomena occur in Southwest China over a large 

karst plateau (Yun–Gui Plateau) [349] as a consequence of total water storage anomalies for the last three 
decades (chart 51). 
 

Chart 51a: Hind-cast of total water storage anomalies 

(TWSA, Tot.Wat.Store.Anomal.) in Yun–Gui   Plateau, 

China 

 Data 
Gravity Recovery   
Climate Experiment 
(GRACE) satellite    

 Model : NN   

 

River R2 

upper Mekong    0.91 

Pearl   0.83 

Wujiang   basins [0.76 
0.57] 

 

 

Chart 51a: Flood and drought cycle  

Years TWSA 

1980s Fairly stable 
 

 
 

1990s 
Increasing trend  
@5.9 ± 0.5 mm/a 

 

1990 July 
 to 
1991 

Extreme flooding   

 

 

>2000 

 
Drastic fluctuation 

 

 

Severe spring 
Droughts   

2003 to  
2006 

Most  extreme  
Spring drought    

2010 
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2008 Severe flooding 
 

 
 

 

 Flood management 

 Forecasting the extreme values rather than a normal one of discharge in a river is crucial to manage floods 
and droughts. Experimental monitoring is hazardous and is to be planned fast at the time of catastrophe. 

The incidents are untold and thus spread over a long period of time. Hence, the activity is costly.  The long 

practiced rating curve is a cause and effect functional relationship between measured discharge and water 
level. ARIMA is inadequate as the phenomenon is complex [326]. Thus, the routine hydrological models 

often fail especially to predict run offs or the extreme (very high or very low) values [173]. Further, results 

are not convincing even in gazed catchment areas for short-term and long-term management.  However, 
neural networks a machine-learning paradigm supersedes in performance in hydrology, watershed and 

flood management. Bhattacharya [326] compared the results of NN, rating curve and M5 model tree.  The 

combined urban and rural water system management prevents flooding water, scarcity and quality of 

drinking water.  The system is multifarious and dynamic in time.  For example, a typical large water 
system consists of 1200 subsystems, 1500 regulating structures in 12 time steps.  The data for optimization 

consists of 100K variables, 100K constraints and 350K non-zero data points [385].  AQUARIUS is a 

software package, which builds deterministic models for water quality and quantity in urban and rural 
areas.  Lobbrecht [385] employed NNs and fuzzy adaptive system to control the operation of water 

management with acceptable accuracies.  The machine learning technique is used for flood 

prevention.Juma et al.[220] found that SLP excels MLR in predicting discharge coefficient (Cd) for a 

hollow semi-circular crested weirs (table 9), which are small overflow dams.  They are used to alter/raise 
water flow upstream and regulate spill water downstream watercourses and rivers. Tayyebi and Pijanowski  

[231]   found NNs are superior to CART and MARS in modeling land use change in South-Eastern 

Wisconsin   (SEWI) and Muskegon River Watershed   (MRW), Michigan (chart 52).  
 

 

Table 9(a): Prediction of DO with 

MLP_NNand RBF_NN 

Dataset MSE  E     R  

Test 0.465 0.905 0.904 

validation 1.009 0.966   0.963 

E: coefficient of efficiency  

 
 

Table 9(b): NN model of Q(t) as a function of  

artificial precipitation for three years [385] 

Site 

MSE cc 

NN FAS NN FAS 

Duifpolder local 
Control 

0003   0.028   0.999 0.913 

Woudse Droogmakerij 
Local control 

0.065   0.179   0.959 0.918 

Woudse Droogmakerij 
Centralized control 

0.021  --  0.986 -- 

 

 

Table 9( c):  Comparision of models applied to  

AQUARIUS control[385] 

Site 

Average water level 

(m+MSL) 

Control with 

Intelligent 

control with 

 

AQUARIUS ANN FAS 

Duifpolder 
 

3.16 *  
0.104 

3.15  
0.085 

3.14  
0.099 

Woudse 
Droogmakerij 
 

4.56*  
0.034 

4.60   
0.029 

4.59  
0.028 

Woudse 
Droogmakerij 

4.56 ** 
0.035 
 

4.55  
0.048 

-- 

** :  central control           *: local control 
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Table 9( d): SLP_NN for  

discharge coefficient 

 estimation 

 MSE R  

SLP 
2-10-1 

0.0011 0.91 

 SLP >> MLR 

 

Table 9(e): comparison of RMSE for water level  
discharge models and prediction accuracies[326] 

Model 
RMSE %Ve data with prediction error 

Tr Ve >5% >10% >20% 

Model tree   92.0 69.7 20.3    1.6 0.2 

ANN   90.5 70.5 21.4     3.1 0.3 

Conventional  
rating   

143.3 111.2 42.4    11.8 1.9 

 

 

 

Chlorophyll-a   

Cho et al.[310] reported the influential factors to predict chlorophyll-a  (chart 52a) and consequently 
abundance of algae in a water reservoir behind the dam on the river using NNs. Muñoz-Mas et al.[148]  

studied microhabitat suitability for adult brown trout (Salmo trutta   L.) with prob_NNs  in Iberian   rivers. 

 
Effect on habitat: Fukuda et al.[122] used NN, CART etc. to find spatial heterogeneity of habitat in small 

agricultural canals of Japan. This information based on quantity and quality of medaka (Oryzias latipes) is 

pivotal in conservation and restoration to increase biodiversity (chart 53).  
 

 

 

 

 

 
 

Chart 52a: NNs to predict Chl-a in man-made Lake Juam 

Automatic monitoring 
data 

 Water temperature 
 pH  
 Dissolved oxygen   
 Electric conductivity 
 Total organic carbon    
 Chl-a 

 Total nitrogen   
 Total phosphorus  

TimeSeriesData 
Trn: 2008–2010 
Test : 2011 

Weather data 

 Precipitation 

 Temperature 

 Insolation  

 Duration of 
sunshine  

 
Hydrologic data 

 Water level  

 Discharges  
Inflows 

 
 

Chart 52(b)Land 

use classes 

 Agriculture 

 Forest  

 Urban 

 

Chart 52( c): Land use change models 

USA Time interval 

South-Eastern 
Wisconsin  
(SEWI)    

1990–2000 

Muskegon River 
Watershed  
 Michigan  

1978–1998 

 

Chart 52(d): Inferences 

 
 Forest gain close to current 

forests 
 Agriculture gain closer to 

agriculture and forest patches 
 Influence of elevation is high 

onurbanization   
 No effect in SEWI 
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Chart 53: Models for spatial heterogeneity of habitat 

Input 

 water  depth  
 flow velocity  

 
Species 

 Japanese medaka (Oryzias latipes), 

Models 

 CART 

 NN 

 SVM   

 Xx 
 

Model Function 

2D hydrodynamic 

 Basis: Information 

entropy 

 Instream special habitat 
conditions   

Coupled ecohydraulics 

Quantification 

 Habitat quality & spatial 
heterogeneity 

 

 Differences in canals   

o Earthen  

o Concrete-lined   
 

 

Chart 54: NN model for respiration rates 

of global krill 

Oceanographic  
conditions 
with depth 

 Temperature 
 Light  
 Oxygen 

availability   
 Latitude 
 Day of  the 

year 
  # daylight 

hours   

Basal variables 
 oxygen 

consumption   
 Temperature 
 Body mass 
 Depth  

 
 

Chart 55: SLP_NN for conservation of biodiversity 

 Area : yangtze river basin  

 2.143 million km2, (20% of china's territory) 

 

 Biodiversity 

 Habitats of 627 indicator species    

 Planning tool,  

 Marxan,  

 Output: Optimal set of planning units,   

 Models 

 Priority ranking analysis with SLP_NN( 6-12-1 BP)   

 Hierarchical cluster analysis  classifications of human 
disturbances   

 

Chart 56: Simulating groundwater flow 

Kathajodi–Surua Inter-basin of Odisha 

Data for MODFLOW model 

Calibration 

Period : February2004 
        to 
May 2006 

Frequency 
: 

Weekly   

 

Validation  June 2006 to May 2007 

Simulation 

Groundwater levels 18 observation wells  

NN model 

  Weekly rainfall, 

evaporation  

  River stage 

  Water level in drain  

  Pumping rate of tube 

wells    

  Groundwater levels 
at previous time step 

 
 

Trn:  122  
Test : 52 
 
 
 
 

Week_ahead Prediction 

groundwater levels  18 observation wells    

Chart 57:  Imputation of missing data  

Data 
Rainfall  

Location 
Luvuvhu River Catchment 

RBF_NN 

Par_opt : Shuffled   
Complex Evolution  

ObjFn : RMSE 

 
 

 NSE  % Bias 

Calibration [0.55 to 0.85] [−2 to 23] 

validation [0.49 to 0.75] [2 to  19] 

NSE:Nash–Sutcliffe  Efficiency 

 

 
SOM+ART:  Park [364]reported a two level classification approachwith SOM and ART to understand the 

multivariate ecological data.  This hierarchical clustering process is used to study the variations in 

communities of macro invertebrate in stream eco systems.  Ab initio understanding of ecological model is 
beyond the present realm of understanding.  Fuzzy inference system (FIS) introduces experts' 

heuristic/empirical as well as traditional skills from practitioners' knowledge.  
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Respiration of krill: Tremblay et al.[127]studied respiration rate with seasonality ofAntarctic krill, North 

Pacific krill Euphausia Pacifica (chart 54).  NN model for a global krill respiration has a correlation of 0.78 

indicating a decrease in respiration with increasing LAT and decreasing DLh.The standard respiration rates 
with MLR and general additive model accounting   seasonal effects showed that in mid-June   metabolic 

activity was minimum while it is at maximum in late December.   

 

 Ecological imbalance restoration 
 

Ecological engineering designs of river banks with concrete structure: The construction of concrete banks 

along rivers associated with human development has become a serious problem in Taiwan.  Most 

ecosystems used by amphibians are lakes and stream banks, yet no related design solutions to 

accommodate the needs of amphibians. The need to develop the relevant design specification considering 

protection of the amphibian is imperative. Chuang and Chang [117] simulated climbing ability of 

Swinhoe's Frog with NNs with good concurrence of experimental data. These results are critical in 

ecological engineering designs of river banks in any region. Zhang   et al.[246] used results of SLP_NN 

and defined 17 biodiversity priority areas containing 33,200 units (approximating to of 0.83 million km
2 

area) in Yangtze River Basin, China (chart 55). It is based on experts’ knowledge, mountain boundary data 

and irreplaceability of units in the model. There is protection of 56% of 32 types of rare forest ecosystem 

in these areas.   

 

 Ground water level 

Mohanty et al.[267found NN   results are  better than those of  simulation model (MODFLOW) for weekly 

forecast of ground water level in 18 wells in Kathajodi–Surua Inter-basin of Odisha,  India (Chart 56).  
 

 Missing data and imputation   

It is not uncommon that most datasets is riddled with missing values, questionable quality especially in 
low budget situations.  The hydrological modeling, water resources planning and management are not an 

exception.  But, the primary requirement of reliable information is primary data of good quality for long 

duration over shorter grid intervals with state-of-art-sampling, analytical methods and processing 

algorithms.  Mawale et al.[335] reported that SOM_NN is promising tool to impute missing values of 
rainfall and stream flow in Shire River basin in Malawi. Nkuna and Odiyo [333] proposed RBF_NN 

imputation method to fill missing data in rain fall based on neighboring stations measurements. It is 

satisfactory (chart 57) for hydrological modeling as well as planning and management of water resources.  
 

 

8.3 Marine environment  

 
Around 70% of earth surface is covered with (oceanic) water bodies.  The atmosphere above and earth 

crust below is its environment apart from distinctly diverse flora and fauna, living organisms, and energy 

and mineral resources.  The main constituent water has miraculous physic-chemical-biological 
characteristics in all its three phases and in nano- to macro assemblies of pure compound and in 

association with organic and inorganic species and in interfaces. This marine component as a whole is an 

important sub-category of global eco-system. During last few decades, a large number of different kinds of 
wastes are discharged into oceans/seas indiscriminately.  

 

    Rain over oceans 
Ghosh et al.[350] applied NNs in detection and estimation of extent of rain (precipitation) over the global 

oceans from Oceansat-II scatterometer data (chart 58).  NNs are used in identification of rain/no_rain and 

quantitative measure of extent of rain. The prediction of instantaneous/ 3-day/ monthly/ seasonal rain rates 
and probability distribution of monthly values of scatterometer agree well with AMSR-E data.  
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Chart 58: Satellite data for prediction of rainfall over global oceans 

  Detection of rain Oceansat-II overpasses 

 Oceansat-II scatterometer  
o Radar back scattering 

coefficient and 
o Brightness  temperature 

measurements from  

 Rain sensitive parameters  

 Weather prediction NN model  

Rain/no_rain prediction 

 

Tropical Rainfall Measuring Mission  (TRMM)  

 

Advanced Microwave Scanning Radiometer for 

Earth Observation  Satellite (EOS) (AMSR-E) 

 

Chart 58b: Quantitative estimation of rain by NN 

Region I II III IV V 

Geographic  (25°N–25°S) (15°N–45°N) (35°N–70°N) (15°S–45°S) (35°S–70°S) 

      

Rain % 93    87 90 79 85 

No_rain % 97 87 86 84 86 

Rain   
(mm  h− 1 ) 

45 25 25 45 20 

RMS error  
of instantaneous  
rain 

 1.86 0.69 0.47 0.56 0.46 

 

   Ocean wave models 

The phenomenon of wave transmission through floating breakwaters by considering all the boundary 

conditions is difficult to model. One of the reasons is vagueness of values of variables, complicated 

interactions and also their effect on breakwater.  This being so, the entire ocean system is responsible of 
rain cycle, temperature equilibrium and typhoons /tsunamis.  It is similar to other mega complicated 

systems viz. solar system, human brain, life, origin of universe and beginning of life. Puscasu [336] 

proposed Neural Network Interaction Approximations (NNIA) in third generation ocean wave models resulting 

in noteworthy improvements (chart 59).  
 

Chart 59: NNs in third-generation ocean wave models  

Wavewatch III model 

    Robust NNIA 

   Speed_of_ model  

NNIA  > 2 *  DIA  
         NNIA  > 200 * (-    
                       Web-Resio  
                      Tracy,exact  
                                                           method) 

   Emulates exact nonlinear interaction for single-

and multi-modal wave spectra  
 

Datasets 
Test scenarios  
Idealistic  
Real 

Accuracy_ NNIA 

---    Configuration dependent 

 

Future scope 

    Emulation- practical 

  Time consuming exact nonlinear interactions  

  Fast, high accuracy   
 

 

 Direct mapping  

wind-wave spectra  Exact nonlinear interactions 

 

 Sea surface wind speed 
Sea surface wind speed is calculated fromAdvanced Microwave Sounding Radiometer 2 (AMSR2) data.  In the 

first algorithm, brightness temperature at higher frequency over the oceans is simulated by numerical 

procedures and subsequent inversion with NNs.  The second procedure is based on low frequency channels. 

These values are highly correlated with estimates of MetOp-A scatterometer ASCAT for low and moderate 

wind speeds. The study area [352] is at platform weather stations in the North Sea and Norwegian Sea even for 

high wind events.  
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  Salinity Oceans 

The measurement of salinity in large scale in open ocean environments from space has been a long term 

practice. But, this is not used for estimation in coastal regions.  Geiger et al.[110] compiled∼2 million 
salinity records from four regional research vessels and analysed for prediction of salinity in Mid-Atlantic 

coastal region and estuaries (chart 60). Gueye et al.[97] reported an inverse model with SOM_NN to 

estimate vertical salinity profiles(chart 60b) in tropical Atlantic Ocean only from input of surface 

characteristics. It is considered as a classification task. The tidal levels and fresh water discharge effects 
are influential factors for many human activities in estuarine waters. 

 

Chart 60: NN prediction of salinity in Mid-Atlantic coastal ocean and estuaries 

Salinity is critical for  

 circulation patterns,  

 river plumes, 

 transport ecosystem 

Corr ([spectral shape of  water-leaving radiance, sea surface 

temperature] versus in_situ_salinity) = Very high 
 

 
 

# records ∼ 2  million salinity   Data 

 ∼9 thousand  

salinity records    

 MODIS-Aqua 
data. 

High 
matching 

Regional research  
Vessels 

Four  
 

Period (years) 2003–2008 

Predictive_NNs for salinity 

 Mid-Atlantic coastal region  
 

 Estuaries  

 Hudson,  

 Delaware  

 Chesapeake   
 

 Range of 
RMS_errors (psu) 

NN model 1.40    2.29 

Null model  4.87    10.08 

Natural  range    0 32 

 

 
Chart 60b: SOM_NN to predict vertical salinity in tropical Atlantic ocean 

Input 

    Latitude  

    Sea surface salinity 

Performance 

  CC >0.95  

  SOM_NN >>        [ in situ data ;  classical_ 
model] 

- Inadequate model for high time-space variable areas 

Reason: Limited available  dataset  in spacio-temporal domain   

 

The salinity of near-surface coastal and estuarine waters changes drastically in spacio-temporal regime and 

an accurate quantitative data is an absolute need for probing into ecological processes.  The satellite 

remote sensing is a sought after method.  But, sensors and algorithms available to monitor open ocean 
salinity are not adequate [359] for coastlines high resolution applications. Liu et al. [95] reported random 

forest (RandForest) model was better than MLP_NN, CART etc. to predict SSS (sea surface salinity)in 

coastal waters making use of in situ as well as  remotely sensed data (chart 61). 
 

Chart 61: Prediction of sea surface salinity (SSS) 

 Hong Kong Sea, China 

Data 

 In situ measurements  

 Optical remotely sensed data from China's HJ-1 

Models for SSS = fn (X;) 

 MLR 

 MLP_NN (BP) 
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satellite  CART 
 

 

X 

 SST 

 pH 
 

 Total inorganic nitrogen 
(TIN)  

 Chl-a 
 

 

   Color of oceans 
Remote sensing data has unique features like wide range, synchronization and high spatial resolution.  This 

data is useful to monitor the color of waterand to assess the water quality parameters of oceanic, coastal 
and inland waters.  In the estimation of color of oceans from satellite data, the primary pre-processing 

required is filtering (removal) of atmospheric signal.  The black pixel assumption valid for phytoplankton 

dominatedwaters is generally employed.  But, turbid water violates this heuristic.  Goyens et al.[354] 

compared the performance of four algorithmsviz. standard NIR from NASA, NIR similarity spectrum, 
NIR-SWIR, NN.  These results are instrumental in improving retrieval of leaving radiance (Lw(λ)) in 

water from  satellite images.  Ioannou et al.[355] retrieved inherent optical properties (IOP) of 

Phytoplankton and non- Phytoplankton in ocean water with NN modeling from remote sensing satellite 
data (chart 62). In another step, chlorophyll concentrations were calculated more nearer to measured ones 

than in earlier similar high tech ventures. Orzepowski et al.[7] studied the efficiency of MLP_NN (chart 63) 

in retrieving diffuse attenuation coefficient for down welling spectral irradiance ((Kd at landa=490)) using 

field measurements of global oceanic and coastal waters. 
 

 

Chart 62: Prediction of Phytoplankton characteristics and  chlorophyll concentration with NNs using remote sensing 

satellite data in multiple-sequential-steps 

Input (X) Model Output 

Wavelength 
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 NN 
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 Probe:  water remote sensing reflectances (Rrs) 
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Chart 63: Diffuse attenuation coefficient  

Datasets Models 

NASA bio-optical marine algorithm dataset (NOMAD) 
Eastern China Seas dataset 

 Lee's quasi-analytical algorithm-based   
semi-analytical model,  

 Wang's switching model, Chen's semi-

analytical   model,  

 Jamet's neural network model,  

 MBPNN 

Instrument(MODIS) 
NASA Moderate 5420 Resolution Imaging Spectroradiometer () 

Atmospheric effect removal Near-infrared band-based   and shortwave infrared band-based 
combined models 

 

Inferences 

 MLP_NN >>other models 

 28% uncertainty in estimating Kd(490) from the MODIS data 
 

 

      Neural network modeling is used in ocean color [338,358], color of European seas[357], tropical 

cyclone track forecasting  [62], ocean wave energy in Atlantic/ Pacific  Oceans, [329], wave transmission 
prediction   [330], wave forecasting  in East-coast of India    [331], forecasting ocean wave height    [328], 

oceanic total alkalinity estimation   [289], surface salinity in the Chesapeake Bay [359], prediction of  two 

unnamed seamounts in  the Arabian sea [232], prediction of bathymetry from satellite altimeter [232], sea 
level in   Darwin Harbor   [100] and prediction of marine beach water daily quality in Hong Kong [251]. 

 
Chlorophyll-a   

 

Coad et al.[149] proposed successful predictive models for Chlorophyll-a concentrations with NNs.  The 

accuracy decreases with one-, three- and seven day-ahead predictions(chart 64).  A further step in near real 

time sourced data from telemetered monitoring buoys, automated systems and results of mixing predictive 
model enhanced the efficacy of proactive algal bloom managerial strategies. Awad [121] estimated 

concentration of chlorophyll-a from Hyperion satellite hyperspectral images using FF_NN data driven 

model (chart 65).  

 
Palmer et al.[348] performed an intensive study of algorithms for retrieval of chlorophyll-a (chl-a) in the 

highly turbid and productive waters of Lake Balaton,  Hungaryby  MERIS (MEdium Resolution Imaging 

Spectrometer)data of 10 years.  Sentinel-3 Ocean and Land Colour 
Instrument (OLCI) will be used in the phase of the study.  
 

 

Fluorescence Line Height  
Maximum Chlorophyll Index  

Good 

NN Less accurate 
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The content of chlorophyll a in coastal waters of Galician rias (NW Spain) from MERIS full resolution 
data [361] and in optically complex waters (rias Baixas, NW Spain) [360] were investigated with NNs.  

The origin of green macroalga [87], macro invertebrate image databases retrieval [108] and dispersal of a 

pelagic species [131] drew attention with data driven NNs. 
 

Marine structure 

Kim[22] applied NARMAX based quadratic Volterra seriesto predictdynamic response of a slender marine 

structure (chart 66). 
 

 Cyclone forecast 

In accurate forecast of cyclone, a combination of global as well as basin specific techniques is used to 

minimize economic toll and no-loss–of-human life. The dissimilarity of geographical and climatological 
profiles of various cyclone formation basins are hurdles for a single forecast system.  

 

9.  Quality of water 

Water quality analysis, stipulations and their indicators vary with purpose and standards of the concerned 
authority/governess.  Concentrating on recent trends, multivariate statistics, time series analysis and 

neuralnetworks are sought after tools in number crunching to bring out information and action course by 

agencies.  Liu et al.[307] applied hybrid SVR with real coded GA in forecasting water quality in   aquatic 

factories of YiXing, in China (chart 67). López-Lineros et al.[252] validated an automatic detection of 
incorrect records and retaining quality control stipulations for ten-minute river stage data using non-linear_ 

autoregressive_NN (NonLin-AR-NN). The detection efficacy was ascertained by injecting noise of 

different magnitude. The hybrid NN detected more than 90% of altered records, while long practiced 
conventional tests detected only around 13% for high noise. Further, nonLin-AR-NNhas consistent 

efficiency even at intermediate/ lower error ratios, while earlier test could detect up to 6% of erroneous 

data. Olawoyin et al.[215] used SOM_NN to probe into water, soil and sediment quality in petrochemical 
regions of NigerDelta (Nigeria) (chart 68).  

 

 

Chart 64: Prediction Chlorophyll-a concentrations 

Monitoring schedule (15 min 
intervals) 

 Chlorophyll-a,  

 Temperature (water   and 
air) 

 Salinity  

 Photosynthetically available 
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Chart 65: Factors affecting  
Quality of coastal sea water 
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Chart 66: Multiphase modeling of time series 

Method Function 

NARX Identification of 
wave-structure interaction system 

Multi-tone harmonic  
probing method 
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 frequency response functions 

Quadratic Volterra series Prediction of  
time series  of response 
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Knowledge extraction by rough sets in water quality (TDS) analysis: The vagueness and inherent 
uncertainties in water contamination/pollution poses a threat to reach the desired accuracy.  Karami et 

al.[109] used rough sets, variable consistency dominance-based tool, to derive knowledge in TDS (chart 

69) in Latyan Watershed, north of Tehran, Iran.  

 
  

 
 

Chart 67: Prediction of water quality in aquatic 

factories of YiXing, in China 

Real-valued GA Optimal SVR parameters 

SVR  Input : optimal parameters    

Inference 
[SVR + GA_realValue] >> SVR or MLP_NN_BP 
 

 
 

Chart 68 : SOM_NN for quality of water, soil 

and sediment in  into petrochemical areas of 

Nigeria 

  Goals 

 Identification 
of pollution 
sources  

 Similarities in   
quality of 
samples 
 

Model 
SOM_NN 

 

X 
 Chemical,  
 Ecotoxicological 
 Toxicokinetic 
  Physical  

 #Samples 

Water 11 

soil 38 

sediment 54 
 

 Location 

Niger Delta, Nigeria 

 4 areas 

 
 

 

Table 10: Quantitative estimation of phycocyanin 

in potable water sources with  NNs 

 

Model 

(R
2 
) 

Location 

 

CIN SA 

PLS_NN    0.92 0.09 

TBM 0.77 0.94 

NN 0.86 0.95 

\ 

Spectra (Expt & 

simulated ) 

RRS  

ESA/Sentinel-3/ 

OLCI 

EO-1/Hyperion 

spectra 
 

 NP :  363 

 #field 
surveys: 24 

 

RRS Remote Sensing Reflectance Spectra 

OLCI Ocean And Land Color Instrument   

SA  South Australia 

TBM  Three Band Model 

CIA central Indiana USA 

 

 

 

Chart 69: Rough sets in rule extraction of TDS in water 
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9.1 Drinking water  

According to one estimate, one billion (884 million) people have no access to safe drinking 

waterworldwide. Estrogens are common in river and sometimes found even in drinking water.  The scarcity of 

potable water and even fresh water for domestic/industrial use is multiplying with increase in world 
population as well as contamination of water bodies. Now, even using water once in a day has become 

luxury.   Phycocyanin is a threat to diminution of quality potable water sources. The remote monitoring of 
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cynobacterial blooms in central Indiana and South Australia is of recent interest.  Song et al.[234] reported 
(table 10) PLS_NN is better than TBM and NN through remote sensing spectral data. 

Soak holes:  They are drilled directly into the top of the fractured-rock. The storm water and sediment 

runoff from the city streets are collected into the soak holes and reaches water table through infiltration.  
The immediate effect in Mt.Eden aquifier cannot be predicted by conventional mathematical methods.  

Hong [386] studied the effect of storm water infiltration of rainfall on the ground water quality using 

SOM-NN.  The extraction of knowledge from ground water usage, the land use patterns and geological 

data is performed through hierarchical Kohonen SOM-NN.  The decrease in contamination of surface 
water of the urban streams, and increasing the recharge of the shallow aquifer are the noteworthy 

advantages.  

 
Reservoirs: These are an alternative major source of drinking water in regions with insufficient ground 

water sources.  NNs were used as innovative computational tools in water resource management in 

Cyprus.  NN model performs better in the estimation of annual water supply with inputs -- area of the 
watershed, altitude, slope, average of annual and monthly rain height. Iliadis [163] proposes that this 

model can be applied to other countries with appropriate changes to imbibe the information about areas 

facing the water deficit or flood.   

 
Quality of the potable water: The quality of the potable water reaching the consumer depends on 

multistage compound subsystems viz., quality of input water, processes in treatment plant, distribution 

system,   chemical/microbiological deterioration [181] in the distribution pipes etc. Of the several 
processes, coagulation/flocculation/ sedimentation/ filtration are typical sub processes deserving attention. 

The practices in water treatment are governed by complicated non-linear relationship between a large 

number of physical, chemical, biological parameters, operational conditions and the quality of the 

chemicals used.  Further, the processes in coagulation are multiple interwoven and are not understood 
rendering the development of a mechanistic/physical model extremely difficult.  Thus NNs, the data driven 

models have been in vogue with commendable success rate. This drinking water source protection 

measures in operation in China after 2005 incident in Songhua River are still hampered by inadequate 

monitoring schedules. It is worth noting that GA-NN model predicted better even 8 h ahead of time.  

 

9.1 Drinking water through treatment   

 
- Residual aluminum 

In order to keep the outlet from water treatment plant (WTP) [183]as clean as possible, the optimum alum 

and powdered activated carbon for diff183erent control actions are critical. The acceptable residual 

aluminum concentration in the water is 0.2 mg/lt [190]and any higher amount of Al is against the imposed 
laws. In coagulation, alum (Al2SO4.18H2O) is used. If the PH is not maintained, the added alum decreases 

the pH resulting in removal of DOC (Dissolved Organic Carbon) [White-1997].  NN was used as a module 

in the process for predicting optimum concentration of alum and carbon.  Jar test determines optimum 
alum dose [190], the disadvantage being cost and longer time(table 11).  These limitations are 

circumvented in current drinking WTPs by    inverse-process models as well as earlier ones.  Since, the 

prediction was poor; the forecasted water quality parameters are included in the input.  It is a 
straightforward prediction approach of optimum alum doses directly.  Maier [181] employed the NN 

model to assist the treatment plant operators in estimating optimum alum dose [183]for WTPs in southern-

Australia, which is based on improving inverse model.  The model predicts treated water quality 

parameters from raw input --turbidity, color, residual aluminum, absorbance of UV light at 254nm, pH and 
alum dose. Another option is prediction of optimal alum dose from raw and analytical parameters of 

treated water.  
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Table 11:  details of NN predictive model for optimum alum dose in water treatment  for drinking [181] 

Model  Output  Input  
Architecture 

I-H1-H2-O 

Lr 

rate 
Momentum 

M1  

Turb  Col   Turb    UVA-
254 

pH Col 

 7-8-0-3 0.5 0.5 

UVA254    Alk DOC  

    

M2  

Resid-Al  pH   I# of M1 + 

UVA-254 

Turb Col 

 10-8-0-2 0.8 0.2 Alum-dose   

M3 

 

Alum-dose 

 I# of M1 + Turb Col 

 

9-8-8-1 0.8 0.2 

 

 UVA-254 Resid-
Al 

 

 

 

- Residual Cl2 in drinking water 
Chlorination is carried out in the final disinfection phase of a drinking water treatment system to eliminate 

pathogens [194].  The amount of chlorine should be sufficient to ensure microbiological stability and as 

low as possible not to cause odor throughout the distribution system.  Residual chlorine is an efficient 

indicator of quality of water in the distribution system.  The minimization of disinfection by-products, 
which are formed by the interaction of organic matter and excess residual chlorine in the treated water, is 

warranted [183].  Further the greater the organic matter present in the water, the higher is the chance for the 

formation of DBPs. The decay of residual chlorine is related to operational conditions of the treatment 
plant, the characteristics of pipelines in the distribution system and the quality of the input water. The 

chlorine content is controlled by monitoring it at strategic points in the treatment plant and distribution 

system.  Although, online-analysis is employed, there is a time delay due to the passage of water between 
different points.  Thus, modeling and prediction of residual chlorine in the entire cycle is of prime 

concern(table 12). From the forecast values of residual chlorine, the operator will adjust the dose in the 

treatment plant, for example, the storage tank outlet and at a point located down the stream in the pipeline 

[194]. 

Chlorcast is a decision support system with NN in the core, to model the residual chlorine in drinking 

water tank and water distribution system for a city(table 12). It is applied for water distribution at city of 

Sainte-Foy [183]based on time series model for evolved residual chlorine. The advantage of this method is 
generation of information useful for operator.  The chlorine dosage or residual concentration at critical 

location can be modeled separately. Yet, the disadvantages noted are requirement of large amounts of past 

data, disability to explain results, bacterial regrowth due to under doses of chlorine and by-products 
formation [190]that are harmful to human health due to over doses. 

 

 

Table 12a: Model  errors of  forecast model 

 (residual chlorine –verification database) [194] 

Model  Erel (%)  REQ 

Trivial 0.089  11.3  0.122 

 

Table 12b: Forecast  models in different 

 seasons [194] 

Model 
Winter Summer 

Erel (%) REQ Erel (%) REQ 
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ARX (6 inputs)    11.5  0.130 

ANN (6 inputs)   11.1  0.128 

ARX (7 inputs)  9.0  0.111 

ANN (7 inputs) 0.073  8.8  0.108 
 

ARX      7.9 0.100 10.1 0.120 

ANN 7.8 0.091 9.8 0.114 
 

 

Table 12c: Average errors in  forecast model 

for extreme values of residual chlorine  under   

summer condition [194] 

Values of residual  

chlorine at the tank outlet 

ARX NN 

<Mean 6 S.D.  0.162  0.121 

>Mean -S.D.  0.151  0.103 
 

 

Table 12d: Forecast  models in different seasons [194] 

Model 
4-inputs 6-inputs 

Erel (%) REQ Erel (%) REQ 

Trivial 9.3  0.036   

 Winter condition    

ARX     26.3  0.090 9.1  0.037 

ANN 25.5  0.087 8.9  0.036 

 Summer condition    

ARX     18.8  0.098 9.0  0.055 

ANN 17.9  0.092 8.8  0.053 
 

 

Table 12e: Performance of Chlorcast in  

Treatment for drinking water (Clear water tank)[190] 

Data #observations R2  MAE   (mg/l) 

Entire data sets   3551 0.9871 0.012 

Training   2494 0.9990  0.003 

Test  701  0.9603  0.032 

Prediction  356  0.9551  0.032 

MAE :Mean average error 
 

 

Table 12f: Performance of Chlorcast in  drinking 

 water treatment (distribution network) [190]   

Data #Observations R2  MAEa (mg/l) 

Entire data sets   2886  0.9904  0.008 

Training   2025  0.9999  0.001 

Test  581  0.9710  0.024 

Production  280  0.9624  0.025 
 

 

9.2. Domestic Water consumption 
In Kuwait, fresh water is only from desalination plants and 88% of the total consumption is in the 

residential houses [387]. The inputs for NN are those from best MLR model.  The treatment plants of 

drinking water remove microorganisms and natural/anthropogenic chemicals [190].The reduction of color, 
odor, turbidity etc., ensures acceptability from aesthetic point of view, while removal of biological and 

chemical components is to safeguard the health of the consumers.  A NN model was developed to predict 

the turbidity and color of treated water from Rossdale water plant in Edmonton, Alberta, Canada.  The 

software employs only a single parameter, (i.e absorbance of UV light at 254nm) to control turbidity and 
color.  The limitation of this method is that it ignores high aluminum content, responsible for Alzheimer 

disease.  Further, it is implicated in individuals requiring renal dialysis. The water use in different 

countries and the variables relevant are described in table 13. 
 

 
 

Table 13a: Water consumption 

in different countries 

Water 

consumption per 

person per day 

 

Liters 

Bahrain, 526 

Kuwait, 481 

UAE 700 

USA 744 

 

Table 13b:Input variables to model weekly water consumption  

in few of residences of Kuwait [387] 

I# Name of Input variable Model 1 Model2 Model3 Model4 

X1 Income category     

X2 Number of rooms     

X3 Number of bath rooms     

X4 Number of people residing     

X5 Size of attached garden   Log(x5) Log(x5) 

X6 Temperature (average)   Log(x6)  

X7 Humidity (average)    Log(x7)  

X8 Transformed week-in-the-year     
 

 

10. Pollution of water bodies 

 

 Discharge standards 
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The discharge standards of effluents waste and gases into environment (air, water and land) are a part of 
keeping up the quality standards [183]of environment.   This in turn produces healthy living surroundings 

for the inhabitants. 

 

Urban lakes contaminated with Perfluorooctane sulfonate (PFOS): Perfluorooctane sulfonate (PFOS) is a 

wide spread pollutant in urban lakes worldwide.  Xiao et al.[393] performed EDA of PFOS concentration 

in 304 fish from 28 urban lakes using GIS information. The NN model is applied to lakes in Minnesota 

contaminated with high levels of PFOS (chart 70). The highlights and limitations of EDA and Kriging 

interpolation are compared. 
 

Chart 70: NN model for PFOS in urban lakes 

 Preliminary classification     Hierarchical 
cluster 

analysis 

 Predictor  
Screening 
 

 Regression 
tree 

 Model :  NN 

 

 Test data  

 Minnesota    

 #lakes :40 

Source of 

pollution 

 Industries 

 Commercial 
activities   

 Vehicular 

traffic 

 Surface 
runoff   

 

 

 
 

Chart 71:  SOM_NN  + PCA for water toxicity in river 

basin 

Pollutants 60 

Period : 2007 and  2008 

Sampling stations: 232 

 

PCA Influential variables trends in  pollution  

Kohonen_ 
SOM_NN 

Spatial distribution of toxic risk 

 

 

 

Water toxicity:Carafa [374] et al. reported tool for water managers in mitigating Water toxicity in a 
Mediterranean River Basin District using SOM_NN (chart 71).  The field data on macroinvertebrate and 

diatom communities are correlated with NN_model predicted toxic profiles. 

 
Arsenic pollution and its effects on human health:The increase in arsenic levels in environment is through 

anthropogenic activities.  The species of inorganic arsenic (as As(III) or As(V)) in the ground water 

depend up on pH, adsorption reactions,  biological  activity and redox conditions.  The contaminated 
drinking water and crops harvested are routes of ingestion causing severe ill effects on human health [293]. 

 

Health hazard due to edible mushrooms 

Li et al. [77] reported SparR (structure parameter relationships) for logarithm of formation constant of 
macrocyclic ligands and cesium with six molecular descriptors using MLR, NN, uniform design optimized 

(UDO_) SVM with a correlation coefficient of 0.95 for test set. Edible mushrooms have high affinity for 

cesium with a consequence that humans eating those mushrooms accumulated cesium and had health 
disorders. 

 Surface water pollution 

The fast pace industrialization and growing population are key factors for     surface water pollution events 

even in China in the last two decades. Burchard-Levine et al.[236] reported an early (2 h ahead) warning 

model topredict   NH3–N, COD  and TOC with  GA-ANN using most sensitive input variables monitored 12 

km upstream(Chart 72). 

 

Chart 72a: GA_NN for drinking water source quality  Chart 72b: Quality of surface waters 

 Sensitive Input MSE MPE Regression   

    Protection of ecosystems NH3–N,  TOC,  

 CODmn,  

0.0033 6 92 
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 TP,  

 NH3–N  

 Turbidity 
 

 Long term sustainable water 
supply 

    Control of emissions  

 Minimize priority pollutants 
in surface water   

    Protection of coastal seawater on 
an international basis    
min (anthropogenic pollutants ) 

 
 

COD  Turbidity  

 CODmn 

0.201 5 0.87 

TOC  Turbidity  

 CODmn 

0.101 2 0.94 

 

 Aquifer quality deterioration 

Other sources of contamination for aquifers, like in ground water, are residential, agricultural and 

industrial activities. Further the untreated wastewater or even the partially treated one decreases the quality 
of water [185].  Nitrate, both from point and non-point sources pollute shallow aquifers.  Nitrate is lost 

from soils by leaching because of its high mobility.  The generation of land use scenarios is an 

optimization task.  

 
 Ground water contamination 

A number of human induced changes continuously threaten natural aquatic ecosystems.  The ground water 

is contaminated through transportation of chemicals from industrial, commercial, residential activities as 
well as influences from the storm water infiltration, transport and reactions.  Accidental spills, landfills, 

storage tanks, pipelines etc. further deteriorate its purity.  Thus, decrease in the quality is due to complex 

and uncertain factors.  When the reservoirs are near the agricultural land, the nutrients/pesticides diffuse 
through leaching.  The chlorinated compounds in air reach surface of land as dense nonaqueous phase. It 

then passes through unsaturated zone under capillary and gravitational force and settles in low geological 

layers of low permeability resulting in long term (persistent) contamination of groundwater.  On the other 

hand, chlorinated ethenes in the ground water volatilize and migrate by diffusion into soil surface and then 
into air. The thermodynamics and kinetics of the mass transport processes between unsaturated and 

saturated zones of sub surface dictate net fate of the chemicals [208].  One of the groundwater pollution 

sources is nitrate nitrogen (NO3−-N) from agricultural activities. The saturated water content (SWC),  field 
water capacity (FWC) [88], effects of chicken manure on ground water [26] and groundwater pollution in 

Shandong by nitrate nitrogen [308] were investigated with NN modeling.  

 

 Fecal pollution of water resources 
Fecal indicator bacteria (FIB) 

The downstream water is generally contaminated with fecal indicator 

bacteria (FIB) rendering them for high risk to waterborne illness, if 

consumed as potable or during recreational exposures. LVQ_NN has been 
used to forecast recreational water quality using fecal indicator organisms 

[394] in Charles River Basin (Massachusetts, USA). 

 

Microbial fecal source tracking (MST): Reischer et al.[212] reported that dominant sources of fecal 

pollution in mountainous karst spring catchment area of Austria were ruminant animals(chart 73).  This is 
from a monitoring schedule of 17 months employing nested sampling design covering hydrological and 

pollution dynamics of the spring. E. coli is one of the FIB used in regulatory limits. But, recently fecal 

Bacteroidetes having host-specificity are detected by quantitative real-time PCR 
 

 Marine pollution 

The transportation on seas and oceans day by day introduce marine invasive species posing a great threat 

for the sustenance of marine organism. The genus Physalia (Cnidaria: Siphonophora) around coastal New 

Zealand, were used to arrive at factors influencing a passive disperser. Of several routes of marine 

pollution, oil spills counts high and arise due to uncontrollability over made-made ventures themselves.    

Fecal indicator bacteria 

(FIB) 

 Enterococcus faecalis  

 Escherichia coli 



R. Sambasiva Rao et al                           Journal of Applicable Chemistry, 2015, 4 (2): 355-449 

 

411 

www. joac.info 

 

 
- Oil spill 

The eco system pays a price for Oil spills (Chart 74) which indirectly affects of welfare of mankind and 
life of marine organism. A simulation model was developed for trajectory of oil released from pipeline 

leaking in the Gulf of Mexico.  For synthetic-aperture-radar (SAR) observations, a Texture-Classifying 

Neural Network (Tex.Class_NN) was used to delineate ocean oil slicks. During the simulation, GNOME 

model was driven with ocean currents from NCOM (Navy Coastal Ocean Model) outputs and surface wind 

data measured by an NDBC (National Data Buoy Center).  Wei et al.[299] employed NN classification to 

pin point the oil spill areas from SAR images.  Based on historical data of other oil-spill episodes, MLR 

model was developed.   Singh et al. [303]  proposed a semi-automatic model for detection of oil spill with 
NN .  The system is optimized utilizing wind and current history information for near real time offshore 

platform pollution making use of TerraSAR-X over the North Sea. Synthetic Aperture Radar (SAR) is an 

effective tool for remote sensing through satellite. 
 

 

Chart 73: Monitoring 

parameters 

  Genetic markers 
for fecal sources 

  Microbiological 

  Hydrological 

  Chemo_physical 

 

 

Chart 74( a): Cost of losses 

 Cleanup  

---    Socioeconomic    

---    Environmental   

 
 

Chart 74(b): Semi-automated approach for oil spill 

detection 

Data: 156 TerraSAR-X images 
X: Eight feature parameters extracted from each 
segmented dark spot 

Classification algorithm:  NN 
 

 

Chart 74( c): Marine pollution due to a few oil spill accidents 

2006 pipeline 
bombing 

 

Lagos, Nigeria 
 

People # 

Killed 270 

injured 170 

2010, Drilling Platform 
explosion 

Deepwater Horizon 
Gulf of Mexico 

 

oil Leak: 1.43 million m3 
water pollution: 9900 km2 

 

2011 Pipeline explosion Dalian, China  

oil Leak: 1500 tons 
water pollution: 430 km2 

 

Daily production of oil: 
 87 million barrels globally 

 

 

Schulz and Matthies et al.[301] found NN is superior to MLR in predicting litter from fishing, shipping, 

and tourism sources in southern North Sea even with less information.  Lammoglia, [356]detected   oil 
seepages on the ocean surface by qualitative remote characterization. 

 

Influential factors 
 Biological nature of the process. 

 Variability of influent 
composition  
 Dynamic nature 
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11. Waste water (WW) Treatment 
The prime concern is to maintain natural water systems with as high 

quality as possible (AHQAP).  Waste water treatment before letting them into rivers helps in ensuring 

good quality of flora and fauna in marine/riverine environment and other water bodies. Thus, the 
management of wastewaters or waste solid is indispensable, but not an option.  Municipal wastewater 

contains suspended solids, organic matter, pathogens and nutrients.  Oxidation of biodegradable organics is 

stabilized as low energy compounds by maintaining the optimum level of microorganisms and oxygen 

through aerators [192].   The management of odor in waste water treatment plants (WWTP) and solid 
waste is complicated.  The emissions from bio waste and their treatment plants are more offensive to the 

public. It leads to an odor impression with 50% of defined population.  The laws in Germany are stringent 

regarding the odor acceptance.   
 

WWTP (Waste water treatment plant) 

The processes depend upon sources of wastewater, their flow rates/chemical/biological 
composition/processes, ambient conditions etc.  The recycle rate of the settled sludge and mode of 

operation in different seasons and geologically diverse sites dictate the requisites parameters for real time 

control.  The multiple objectives in this pursuit are target efficiency of process and minimum ratio of cost 

to throughput under dynamic loading conditions [166]. Thus, the wastewater treatment plants (WWTP) 
involve composite physical/biological/chemical/ processes not viable by classical modeling approaches 

[183].  The number of influencing factors for anaerobic digestion is large and differs with the source of the 

waste.  The physical modeling of biogas formation involves mass transfer between gas and liquid phases.  
The data on mass transfer coefficients between gas and liquid phases are scarce rendering anaerobic 

biological treatment of wastewater is an intricate process. Further, the processes in WWTP are dynamic 

involving incoming water discharge, actuation and outgoing variables [192]. They are with strong non-

linear distribution between I/O variables in spatio-temporal domain.   Input as well as output variables are 
interrelated.  Missing data, variable errors associated with different factors are common.  The magnitude of 

variables in time domain is in small chunks with varying patterns. Hence the process is multifaceted and 

not amenable for straightforward solution. Thus, WWTP translates into inverse-hard, non-polynomial 
(NP)-incomplete models.  The solution is not unique and the choice of best set of models from the multiple 

sets of solutions is also not viable. NNs had a track record of offering a solution for systems with 

incomplete information. But, the complicated equations are solvable with recent numerical methods using 
high-ended hardware systems.Thus, translation into mathematical model is not trivial. 

 

WWTP processes inverse-hard, non-polynomial (NP)-incomplete models 

 
Limitations   of mechanistic models in WWTP:Mechanistic or ab initio physico-chemical-biological-

meteorological principles projected on to mathematical framework results in a set of stiff differential 

equations.  The data requirement, boundary conditions and solution procedures are not a cake walk like for 
a small set of ODEs in routine use [164]. Further, extensive simulations are required before arriving at 

even a sub optimal solution. Also, the system of equations developed for WWTP are stiff with a broad 

range of time constants necessitating long simulation time due to small integration steps required(table 
14).The way out is to resort to surrogate mechanistic approach, where in complex mechanistic models are 

replaced with simpler ones. For instance, ODEs are used instead of PDEs. The model fails when tanks 

connected in series are employed.  The complexity of model is reduced through boundary location.  

Removing the upstream parts of the sewer mechanics reduces the size of the system. 
 

Control theory:The programmable classical logic control theory employs a trial and error method of 

mathematical models.  The advantage claimed then was minimal human expertise and thus was deemed as 
automated system.  Further, the provision for manual intervention in case of catastrophic incidents was 

acclaimed as a remarkable way of disaster management.   Now, continued stipulations are in the direction 

of alerting and automated control of disastrous moments.   

 Delay of analytical results and 
 Lack of on-line sensors 



R. Sambasiva Rao et al                           Journal of Applicable Chemistry, 2015, 4 (2): 355-449 

 

413 

www. joac.info 

 

 
 

 

 
 

 
 

 

 
 
 
 

Table 14 Comparison between plant performance indexes  for 

Scenario 1 calculated for 20 years of mechanistic  WWTP model 

(ASM3) and ANN predictions 

 
Variable 

No. of violations 

ASM3  ANN 

BOD5 (g/m3)  0  0  

SNH4 (g N/m3)  5894  5620  

TN (g N/m3)  8081  8403  

TSS (g/m3)  0  0  

COD (g/m3)  0  0  

   

 

 
 

 
Courtesy ref [164] 
 

 

Table 14(b) Reduction of CPU time for simulation of WWTP [164] 

 Replacing mechanistic 
models with simple ones 

ODE reduced to partial differential 
equations 

 Reduced activated 

sludge model 

Integrated urban water system 
simulation 

 Activated sludge model 
2d 

Empirical model with WWTP data  

 Secondary classifier of 

WWTP  

Mechanistic model replaced by 
empirical 

 Primary classifier Empirical model  

 NN Reduction in CPU 
 

 

Table 14( c): Advantages of NNs over 

mechanistic models in WWTP[164 ] 

   NNs function over wide range of operating 
conditions with adequate prediction accuracy 

   Simulation is (36 times) faster than with 
mechanistic models 

   Repeated training is not necessary when 
combined with integrated waste water 
system. The time reduces by a factor of 1300 
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NN models:In this decade, data driven evolutionary NNs with well proven supporting tools are not the 
alternative by choice or prejudice but based on their performance and growing theoretical proofs of their 

purpose under a variety of conditions.   Raduly [164] replaced mechanistic model by NNs with lot many 

advantages.   The data for a longer period (one year) is minimum as the seasonal temperature variation has 
profound influence. The current stipulation is to run the plant with comparable performance under all 

environmental conditions, unlike in yester years when the performance was assessed based on weather 

conditions of that day.  Now, model should respond to changes in frequency, intensity and duration of rain 

events.  Data for longer periods are essential to take care of rare occurrences of combined sewer overflows.  
For example, a three-year data cannot recognize overflow in case of a detention cycle of 5 years. Further, 

more accuracy is needed and complexity increases if it is integrated with urban waste water system.   

However, models, (model driven or data driven), simple or complex do not explain all the experimental 
results in toto. 
 

SLP_NN:Sridevi et al.[72] applied SLP_NN with LM training to 

predict biohydrogen production in distillery wastewater of a   hybrid up 

flow anaerobic sludge blanket reactor (chart 75).  
 

Fuzzy NN:  Honggui et al.[93] introduced a fuzzy NN based online 

fault detection of sludge volume   index (SVI) sensor. The results of 
earlier fault free operation of WWTP were the training data set and 

detection of fault was from residual of measured and predicted concentration values. The rigorous testing 

on a real WWTP system showed the efficiency of NN approach.  
 

 NN + Fuzzy logic+ rough sets:A hybrid fuzzy NN employing rough set theory for automating the control 
of processes in industrial wastewater treatmentis proposed.  The analysis consists of three stage sequential 

procedure.  It searches a set of multi-objective control strategies.  Rough sets have greater indiscernable 

capability.  GAs are parallel procedure in search space and they are the best to arrive at an optimum 
without the knowledge of derivative information.  The choice of fitness function is the key factor.  The 

combination of Gas, rough sets fuzzy logic with NNs is far superior compared to individual components or 

their binary- ternary- hybrid strategies (table 15).  Fuzzy sets and rough sets are used to analyze inexact 

imprecise uncertain and vague knowledge.   
 

NN + SVM:Betrie et al.[368] found NN to be better than SVM and integration of results of prediction of 

NN and SVM by aggregation is superior to component procedures (chart 76).  
 

 

Table 15(a): The definitions of parameters for 

modeling analysis  industrial waste water 
 

Parameters Definition 

Control variables 

pH at B1  The pH value at B1  

pH at H1  The pH value at H1  

pH at I1  The pH value at I1  

TP  Total phosphorous (mg/L)  

TN  Total nitrogen (mg/L)  

TFR  
The flowrate of treatment effluent 
(m3/d)  

EL  The amount of electricity 
consumption (kW h/d) 

State variables 

HAC  Acetic acid at equalization basin 

 

a : Acetic acid at equalization basin 
(mg/L). 

b : Benzoic acid at equalization basin 
(mg/L). 

c : Paratoluic acid at equalization basin 

(mg/L). 

d : Terephthalic acid at equalization basin 
(mg/L). 

e : Total organic carbon at equalization 
basin (mg/L). 

f : The pH value at B1. 

g : The pH value at H1. 

h : The pH value at I1. 

i : The flowrate of treatment effluent 
(m3/d). 

j : The amount of electricity consumption 
(kW h/d). 

k : Total phosphorus. 

Chart 75: prediction of   biohydrogen 

production in sludge blanket reactor 

 SLP_NN 

 4-20-1  

 Trn: LM 

 

 NP : 231;  

 Temp: (34 ± 1 
°C) 

 pH : 6.5 
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(mg/L)  

BA  Benzoic acid at equalization basin 
(mg/L)  

Ptol  Paratoluic acid at equalization basin 
(mg/ L) 

TA  Terephthalic acid at equalization basin  

 (mg/L)  

TOC  
Total organic carbon at equalization 
basin (mg/L) 

  

Control goals 

COD  COD in the effluent (mg/L)  

SS  SS in the effluent (mg/L)  

cost  
Partial operatingcost (NT$/ton COD  
removal) 
 

 

l : Total nitrogen 
 

  

 
 
 
 

Table 15(b) : The derived fuzzy rule table based on GA and rough set 
theory_________________________________________________________________________ 
Rule 
no.  

State variables  
------------------------------------------------ 

Control variables  
  ---------------------------------------------------- 

 a          b  c  d  e  f           g  h  i                      j k  l  

1  4  3  —  —  6  2  1  2  3  3  —  —  
2  5  3  —  —  6  4  2  3  7  6  —  —  
3  4  3  —  —  4  3  2  4  6  2  —  —  
4  3  3  —  —  4  2  1  2  3  3  —  —  
5  5  3  —  —  7  3  2  4  6  2  —  —  
6  4  3  —  —  5  3  3  3  6  5  —  —  

7  5  3  —  —  4  2  2  3  5  5  —  —  
8  3  3  —  —  6  2  3  3  7  5  —  —  
9  2  2  —  —  4  2  2  3  3  5  —  —  
10  4  3  —  —  3  3  2  4  6  2  —  —  
11  2  3  —  —  3  2  1  2  3  3  —  —  
12  5  3  —  —  5  4  2  3  7  6  —  —  
13  2  3  —  —  5  4  2  4  7  5  —  —  
14  2  2  —  —  2  4  3  1  2  3  —  —  

15  4  2  —  —  5  3  3  4  5  4  —  —  
16  2  3  —  —  4  2  2  3  3  5  —  —  
17  3  3  —  —  5  2  3  3  7  5  —  —  
18  2  2  —  —  5  4  2  3  7  6  —  —  
19  3  3  —  —  3  3  2  4  6  2  —  —  
20  2  3  —  —  2  4  2  3  7  6  —  —  
21  5  2  —  —  5  2  2  1  4  6  —  —  
22  2  2  —  —  3  2  1  3  4  2  —  —  

23  4  2  —  —  6  2  1  3  4  2  —  —  
24  2  2  —  —  6  2  2  3  5  6  —  —  
25  1  3  —  —  3  3  2  4  6  2  —  —  
26  4  2  —  —  7  2  3  3  6  6  —  —  
27  1  3  —  —  2  4  2  3  7  6  —  —  
28  4  2  —  —  3  2  2  3  5  5  —  —  
29  5  2  —  —  3  4  3  1  2  3  —  —  
 
W. C. Chen, N. Chang, J. Chen,                                                                                         Water research, 37(2003)95-107 

Rough set-based hybrid fuzzy-neural controller design for industrial waste water 
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The limitations of individual component modules are diminished or eliminated while retaining the unique 

positive features.   The information and knowledge bits generated out of the simulation experiments are 
pivotal in intelligent design of new WWTP plants.  The objective is to enhance the functional aspects and 

decreasing the operational costs of the already running prototype plants.  In yesteryears the performance 

indices were evaluated under dry weather. But, nowadays the efficiency of targets are focused in all hostile 

environmental conditions.  Thus the data input requirements include historical incidents under varying 
intensity and duration of rainfall/temperature in addition to the rare sewer/detention pond over flow 

situations.  Raduly [164] developed NN models separately for influent flow and the treatment process. He 

opines a one-year of influent data and decadal data for overflow of detention pond will result in reasonable 
conclusions.  The CPU time for simulation of such a mega event is very large but a first step to quantify 

the control strategies in a real time operable WWTP. 

 
NN + Fuzzy logic + GA (Multi objective optimization) :With a priori information of contaminants in the 

waste stream at the input of the plant, NN-predictive models guide   personnel (operators) at WWTPs to 

maintain quality of effluents. In Houston city, an automated wastewater flow control at pilot level was 

studied. It controls the incoming flow by 14 pumps of different capacities.  NN is employed to activate or 
deactivate the pumps based on weather conditions, time of the year and approved protocol. Prior to this, 

this task was done by human operators.  A multi objective control strategy for WWTP was successfully 

applied for a plant in Taiwan [183].  A representative static function was generated in the model.  The 
treatment plant is controlled through automatic tuning employing the fuzzy logic and GA is used along 

with NN.   A sequential NN architecture consisting of two MLPs for WWTP with notable success is 

reported.  The first NN is for a routine control, while second monitors the critical parameters.  The output 
is to control measures like stopping the process or controlling the inputs. Here, SLP_NN (16-6-14) was 

used, where two of the variables are real numbers representing the average wastewater level over an hour 

and 2hours.  The other 14 inputs are binary variables corresponding to the status (off or on) of the pumps.  

Based on 120 samples, the actual pump status and that predicted by NN are almost the same with a small 
error.  Thus, NN mimics the human operator performance paving way to automation.  It is based on past 

data and not on explicit decision rules.  Phase wise automation and providing information for the operators 

will increase the efficiency of the wastewater treatment plant.   
 

WWTP at El-Gabal El-Asfar:An NN model was applied to the WWTP located at El-Gabal El-Asfaron the 

east bank of Nile River, Egypt [183]. It is considered as the largest WWTP in Middle East.  The operations 

 

Chart 76:  Prediction of  acid rock drainage 
chemistry 
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include screening and grit removal, primary sedimentation, surface aeration, final clarification followed by 
chlorination.  This plant is a non-nitrifying conventional type. BOD and SS at different locations in the 

treatment process for a period of 10 months are analysed with NNs. Fuzzy NNs to simulate up flow in 

anaerobic sludge blanket and fluidized bed reactor.  Knowledge discovery from databases (KDD) is 
employed [391] for aqueous effluents from a manufacturing plant.  

      NN modeling found place in maintaining DO concentration in a  WWTP  [111], adaptive control 

dissolved oxygen [27], industrial  wastewater treatment process in  activated sludge treatment  in a pulp 

mill [309],  COD concentration of effluent [116] etc. 
 

Combined sewer systems (CSS) 

Although combined sewer systems are no longer constructed the existing ones require newer 
methods of control [165].  CSS collects and transports both urban wastewater and rain/storm water.  It is a 

network of urban drainage system.  Real time regulation involves control of gates pumps and weirs. CSSs 

contribute to the pollution of nearby water bodies especially when the load exceeds the discharge capacity 
of sewer or treatment plant.  The modeling of CSS is complex in each of its sub goals.  The typical 

modules are storm water runoff, sewer hydraulics etc.  The simulation and appropriate use of the real time 

data are attempted.  Rec.NN is applied for CSS in King County wastewater treatment division, Seattle, 

USA.   Jordan-NN captures the dynamic and rapid response characteristics of the combined sewer systems 
[165].  The inputs are spatially distributed rainfall (current and past) previous controls optimal gate 

controls from OPTCON and UNSTDY.  The network is retrained offline as and when new storm events 

occur.   
 

Inadequacies of WWTP:   Synergistic environmental toxic effects have been noticed even for binary 

mixtures and thus there is a concern regarding inadequate efficacies of WWTPs. Although each compound 

is less than toxic limit, their cumulative sum results in deleterious effects.Since many WWTPs are 
designed for removal of EDCs/ degradation products, they enter environment.    The stringent protocols of 

REACH (Registration, Evaluation, Authorization, and Restriction of Chemicals) now impose restrictions 

on new chemicals should passes through environmental clearance of European Chemical Agency (ECHA) 
to minimize substances of very high concern (SVHCs). 

 

III. Soil   (12-13) 

 

Soil pollution:  Soil is not a homogeneous mixture of matter.  The special heterogeneity is a good probe to 

follow dynamics of soil heavy metals (SHM), a consequence of man-made activities as well as nature’s 

processes.  Li et al. [344] studied special distribution and pollution of SHM in Huizhou City, Guangdong 
Province with NNs and combined results with GIS spatial correlation of SHM. And NNs, as universal 

function approximators, is one step forward in proposing a data driven models without explicit model 

driven equations.  
 

12.1 Plant uptake Models for pollutants from contaminated soil: Takaki et al.[204] studied plant uptake 

models for neutral hydrophobic organic pollutants based on experiment data(chart 77). The plant uptake 
processes are good indicators to estimate effect on humans exposured to these toxic substances from 

polluted land. The crop yield is modelled using soil quality, nitrogen fertilizer and cropping year with 

radial basis function- (RBF-) NN. 
 

Chart 77: Plant uptake models [204]  
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ACC-HUMAN Shoot 
 

logKOW  > 10 

 KAW >  10−4 

 

Abbreviation  Partition 
 coefficient 

KAW Air−water  

KOW Octanol−water   

 

Other typical models 

 

    RAIDAR  

    CSOIL 

    CLEA 

    CalTOX 

 

Surface vehicles: Peng et al.[323] proposed NN controller design for rendezvous autonomous surface 
vehicles. Lyapunov stability analysis of the distributed NN controllers using  neighboring vehicles’ 

information and graph theory showed that signals in the closed-loop and those with output feedback  are 

uniformly bounded.  These NN_ adaptive observers are found to estimate the unmeasured velocity of each 
vehicle driven in leaderless and leader–follower mode with real life dynamical uncertainties/ ocean 

disturbances etc.  

 
Impervious surfaces: These are mainly artificial structures—such as pavements (roads, sidewalks, 

driveways and parking lots) that are covered by impenetrable materials such as asphalt, concrete, brick, 

and stone--and rooftops. Soils compacted by urban development are also highly impervious. 

 
Solid waste: Bunsan et al.[79] predicted dioxin emission in incinerating treatment of municipal and 

industrial solid waste in Taiwan with SLP_NN (chart 78).  The frequency of injection of activated carbon 

was found to be high impact factor in toxic emission.  
 
  

Chart 78: Incineration municipal and industrial solid 

waste treatment [79]  
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Chart 79 : NN Prediction of  suspended load in the 

Chelchay Watershed, northeast of Iran 
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Sludge: Han et al.[319] applied Hierarchical_NN trained withExt.ExtremeLrnMach for activated sludge of 

wastewater treatment processor (WWTP) with commendable success. Ongen et al.[248] used NNs for 

variations in synthetic (syn-) gas produced by dry air gasification of dewatered sludge from tannery 

wastewater treatment plant. The calorific value of synthetic gas was determined in a lab-scale updraft 
fixed-bed steel reactor. Haddadchi  et al.[250] found that NNs predict suspended load in the  Chelchay 

Watershed better than even the best nine models earlier proposed (chart 79). NN modeled ammonia 

emissions from sewage sludge [34]. 
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13. Treatment/disposal of solid waste 
 

Municipal solid waste (MSW): Sewage contains organic moieties, sulphurous and nitrogenous compounds 

producing directly or indirectly mal-odor[176].  Municipal solid waste (MSW) disposal is through land 
filling.  The emission of gases and leachate production are the prime causes of environmental pollution.  

The limited barren land area also demands the treatment of municipal solid waste (MSW) (table 15) [388].  

Combustion pyrolysis and gasification are the means of energy recovering but are criticized due to gaseous 

pollution.   

Table 15: Hidden units and learning rate [388]   

ESS 1.7  

Epochs  4000  

Lrn_rate  0.05   

# hidden units  3  5  7 9  

ESS 1.657  1.641  1.636 1.674  

    

ESS 1.8   

# hidden units 7   

Lrn_rate  0.01  0.05  0.1 0.15  

Epochs  2913  534  224 542  

 

ESS : Error sum of squares ;           Lrn_rate : Learning rate 

Mal-odor: The concentration of odorant at the threshold is defined as one odor unit. It is a paradox that the 

odor of molecules with different molecular structure is similar although molecules with similar structures 
have distinctly different odors.    In spite of considerable research, well-defined principles are not yet 

available relating the odor with principles of physics/chemistry/biology. In addition to it experimental 

measurement of odor is very complicated but humans are good at it without any effort.  However some 
animals like dog and pig have 100 to 1000 fold neurons olfactory (responsible in the odor recognizing) 

organ.  In the scientific front hitherto a panel of judges discriminate the flavour/odor and of course taste.   

 

E-nose: Recent advances in sensors research electronics, computer science, information theory and 
artificial intelligence-2 revolutionized the odor measurement and electronic nose (E-nose) is a viable 

reliable and accurate device conforming to the routine needs.  Yet they don’t replace trained sniffer dogs 

and other animals in their natural habitat. E-Nose with embedded NNs is exposed to sewage samples  
collected from different locations viz. inlet works settlement tank activated sludge and final effluent of a 

WWTP producing 12 sensor array responses for each sample [176]. The total organic carbon (TOC) by 

flame ionization technique GC with MS and gas sensors with NNs are   unbiased measures of odor.  In fact 
there is no single sewage odor but several compounds with the distinct odor characteristics results in a 

typical sewage odor.  Thus it is not necessary to use GC-MS for detection and quantification of each 

compound. Otherwise, left for longer periods of time especially in absence of O2 results in unbearable odor 

due to anaerobic processes. Apart from human sensory panels H2S analyzers and odor potential are 
employed in sewage odor measurement.  BOD measurement takes five days yet the results are not 

reproducible. There are no perfect or reproducible quantification methods and thus measurement of odor is 

difficult.  

 

Treatment:The treatment of solid waste comprises of collection treatment and disposal of potentially 

odorous materials in liquid form.  The composition of MSW depends on climatic conditions and socio-

economic factors in human activity.  The major utility of MSW is for steam boilers in power station.  The 
heating value depends upon elementary chemical composition which is composite.  In a nut shell the 

relationship between the heating value of MSW and the interacting factors are not straightforward. 
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13.1 Activated sludge model 1 (ASM1 ):It is developed by international association on water pollution 
research and control (IAWPRC) task group on mathematical modeling for design and operation concerned 

with biological wastewater treatment. The simulation model distinguished between slow and rapid 

biodegradable substances as well as hetero-tropic and autotropic biomass.  
 

- However ASM1 is not applicable for wastewater contaminated with coke.   

MLP is put forward to estimate the concentration of nitrogen as ammonia in the effluent.  The solid waste 

in Istanbul per day is around 9000 tons while the total MSW is 18000 m3(0.5 tons/m
3
)[168].  These 

numbers have been growing with increase in population over time.  The Odayeri sanitary landfill is in 

operation since 1995 and the dumpsite is contemplated for 25 years of usage.  

 
Landfill leachate:  It is formed when rain water melted from snow or the sewage liquid percolates through 

the landfill spaces and leaks out from the sides or flows through the bottom.  The transportation of leachate 

carries widely different types of chemicals to the low-lying extremes of the landfill.  There is a correlation 
between rain fall/precipitation and quantity of leachate.  The sanitary landfill produces worst/dangerous 

pollution of environment.  The design of landfill diminishes the ill effects of leachate flow.  The critical 

situations are light rainfall for a long time and short burst of heavy rain cyclones etc. result in quick 

saturation of the cover material.  The consequence is little net infiltration.   Karaca[168]proposed NNs for 
prediction and management of leachate daily flow rates in municipal solid waste landfill site 

(Istanbul/Odayeri) using BP(table 16).  The future scope of NN-LEAP study are given table 16( c) which 

will decrease the uncertainty in prediction of leachate flow rates and improve the odor estimation. 
 

 

Table 16 Comparison of backpropagation algorithms[168]   
Backpropagation algorithms  R-

values 
Mean 

squared 
error 

Iteration 
number 

Batch training  With weight and bias 

learning rules 

0.202  0.8633  113  

Conjugate gradient FletcherePowell 0.773  0.2195  22  

Conjugate gradient PolakeRibiere 0.701  0.2808  19  

Conjugate gradient PowelleBeale 0.888  0.1216  28  

Conjugate gradient  Scaled 0.779  0.2541  19  

Gradient descent    0.250  0.8649  95  

Gradient descent  With adaptive lr.   0.731  0.4286  210  

Gradient descent  With momentum 0.217  0.8110  89  

Gradient descent  With momentum and 

adaptive lr.   

0.335  0.8791  20  

LevenbergeMarquardt   0.847  0.0308  11  

One step secant   0.713  0.1955  34  

quasi-Newton  BFGS 0.774  0.1358  24  

Resilient  (Rprop)  0.676  0.2242  26  
 

 

Table 16(b):Variables for NN-LEAP method [168]  solid waste  leachate municipal 

 

Variable Units 

pH  

Temperature  oC  

Conductivity  mS cm-

1 

Output parameter 

Leachate daily flow-
rate  

m3 day-

1 
 

 

Meteorological parameters 

(Daily means) 

Months  [1 to 12]  

Temperature  oC  

Pressure (sea level)  mbar  

Cloudiness  [0 to 1]  

Relative humidity  %  

Precipitation  mm  
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Maximum temperature  oC 

Minimum temperature   oC 
 

 

 

Table 16( c): Extended scope  of NN-LEAP study  

    Inclusion of forecasted meteorological parameters on the day of prediction  

    Hourly flow rates 

    Contribution of special areas for MSW 
 

 
 

 

Table 16(d): Input 

variables  biogas -

landfill 

Input parameters  
 pH  
 Alkalinity  

(mg/l CaCO3)  
 COD (mg/l)  
 Sulfate (mg/l)  
 Conductivity  

 Chloride (mg/l)  
 Waste temperature 

 (oC)  
 Refuse age (day)  

 Output 

parameter [T] 
 CH4 (%) of 

landfill gas  
 

 

Table 16(e): comparision of BP algorithms and LM [167]  

Alg. 

 
 

Extention 

SLP (8-12-1) SLP (8-15-1) 

R values  

MSE 
(Mean 

 Squared 
 error) 

R values  MSE 

Levenberg Marquardt   0.951  0.0026  0.957  0.0025  

Conjugate gradient  Scaled 0.927  0.0782  0.940  0.0565  

BP  One-step secant 0.948  0.0459  0.946  0.0613  

BP  QuasieNewton 0.946  0.0604  0.933  0.0379  

Gradient descent  
With adaptive  
learning rate BP 

0.948  0.0799  0.931  0.1013  

Gradient descent  BP 0.844  0.2464  0.867  0.2736  

Gradient descent  
With momentum  
And adaptive learning 
 rate bp 

0.950  0.0574  0.931  0.0829  

Gradient descent BP  With momentum 0.787  0.5113  0.509  1.2622  

BP  Resilient 0.941  0.0348  0.921  0.0503  

Batch training with  

weight and bias  
learning rules 

 

0.901  0.1672  0.878  0.1732  

 

  

 
The  prediction of activated sludge bulking   [291],  multi-elemental  determination in soils under sewage 

sludge [379], removal of lead  from industrial sludge leachate using red mud [75], sludge hygienization 

[94],anaerobic sludge blanket  (UASB) to treat  pharmaceutical wastewater containing 6-APA and  amoxicillin 

[249] used NN paradigm. 

 

13.2 Natural hazards/calamities/disasters 

 

Landslides: The prediction of landslide susceptibility helps in reducing the consequent property loss as 

well as death toll of this natural hazard. Conforti et al. [74]applied MLP_NN with BP training algorithm to 
predict landslide zones in Turbolo River catchment of North Calabria in Southern Italy (chart 80).  

 

13.3 Land use:The human activity alters the surface of terrine in a non-linear fashion and is referred as 
land use change. Its’ modeling is still a challenge due to multifactor influences.  Tayyebi et al. [147] 

investigated global and local models (chart 81) for changes in land use. NNs are superior to other models 

for short-time (5 years) intervals and coarse (one km) resolution in East Africa.  The 

regression/classification trees and MARS exhibit similar accuracies in the case of long time (20 years) 
interval or  fine (30  m) resolution with large numbers of cells for Muskegon River Watershed. 

The prediction of (urban) heat island prediction in Athens (Greece)[376], effects of land use changes  

[129], landslide susceptibility assessment in the Hoa Binh province of Vietnam [225], Wenchuan 



R. Sambasiva Rao et al                           Journal of Applicable Chemistry, 2015, 4 (2): 355-449 

 

422 

www. joac.info 

 

earthquake (China)  triggered landslides  (BS),  [102],  land-use  patterns under drought scenarios [105] 
and heavy metal concentrations in rice    [104] have positive impact in modeling with NNs. 

 

  

Chart 80: Landslide prediction with MLP_NN 
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 Chart 81: Land transformation models 
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Chart 82:  Consequences of thermal effects of urbanization 
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Chart 83: Prices of residential abodes  in  

Taranto (Italy) 
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Chart 85: Mobile robot applications 
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13.4 Urban heat island:Compared to rural dwelling, urbanization (chart 82) has a new dimension as a result 

of thermal behavior of materials causing urban heat island (UHI) phenomenon.   
 

13.5 Miscellaneous  

 

Environmental quality vs. real estate price: Chiarazzo et al.[384] proposed NN model for real estate 
appraisal in Taranto (Italy) considering environmental quality and personal preferences (chart 83). 

Bhatti[115] used NN, experimental design and RSM for removal of Cr(VI) by electrocoagulation (chart 

84) 
 

HyperRectangular Composite_NN (HyperRectComp_NN): It is a two layer network. The hidden neurons 

are added as per requirement using supervised decision-directed learning (SupDecDirectLrn) algorithm.  
The weights imbibe classification knowledge, which can be extracted in Horn clauses (If-Then-Else-rules).  

Su et al. [218] reported that this NN is successful (> 99%) to distinguish and identify forest land, river, 

dam area, and built-up land from remote sensing images.   

NNs find a niche in urban growth  allocation model for valley  [298], eco system mapping    [238],  
quality planning policies at a  regional scale in northern Italy  [150], mobile robots in plantation  [337], 

removal of organic micro pollutants by ozonation [80],  biogas production   [362]  and exposure in 

embroidery workrooms  [20]. 
 

Robots in agricultural plantation: Jodas et al.   [337] reported a software implementation of SVM and NN 

to find out route in agricultural plantation by a real time robot which tracks the image features (chart 85). 

 

14. State-of-knowledge-of- health of environment and its impact on health 

The constituents of air themselves become toxicif their levels exceed threshold values.Apart from small 

molecules (NOx, SOx, COx, H2S, O3), PMx, PAHs, PCBs and POPs are noteworthy pollutants in air.  
Further, in the cycle of Ground  surface soilwater air, pollutants reaching air traverse thousands 

of miles and even pollute water bodies and soil system.  The fecal bacteria are other menace in this 

context.  Environmental protection agency (EPA, US), European commission (EC) are environmental 
agencies looking forward for global clean environment with stipulations on emissions, industrial wastes 

etc. The prime objective is clean air to inhale and uncontaminated (treated) water to drink avoidinghealth 

hazards for human beings (children/old/susceptible subjects). At the same time, no hindrance for 

promotion of sustained growth of industries/agricultural or Mari cultural practices/land use, but with less 
contribution of pollutants to environment.  Some governments started levying fines and stopping sanctions 

to discourage extent of contamination and even declared incentives for green processes/technologies with 

near zero harmful outputs.The state-of-art-technology is implemented in (automatic) sampling, analysis 
with high-end-hyphenated-software imbedded instruments, validating protocols for the results.  Now, it 

has gone to the extent of personalized monitoring systems for high risk groups to keep them in safer zone, 
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apart from alarming signals for all. The sharp ended research goes on to bring out more precise/accurate 
sensors even in harsh environments. 

The precipitation, rainfall, streams, rivers levels and run-off, estuaries, absorption/penetration into soil, 

ground water flow, and evapotranspiration from ground are in the cycle natural water body. The 
contamination from ecosystems like fecal bacteria from cattle, fermented flora fauna and animals perturb 

the purity of water.  The human activity, industrialization, land use, release of 

domestic/industrial/biological wastes into water streams is a major hazard. The natural calamities like 

floods, inundations, tsunamis, volcanic gases, earth quakes perturb local environmental scenarios. The 
EPA and other bodies have a target of supply of safe potable water and diminish the pollution scenarios at 

different stages.  

 Modeling plays a major role in monitoring, analyzing, planning and maintaining a sustained water 
system balance.  Linear, transformed linear, polynomial models in all fields of research were coveted.   

Simultaneous multi-linear equations were solved with a paper and pencil or software. Least squares 

solution in statistical parlance has implicit assumptions viz. response is a random variable with normal 
errors and explanatory variables are error free and uncorrelated/ independent/ orthogonal. In early 

seventies of last century, COX models, ARMA settled a firm platform for to probe into empirical 

regression or time series data.  

In late nineties, data driven NNs opened new era to account non-linear relations with only axiom 
that there is a functional relation between response and explanatory variables, but it need be known 

explicitly. NNs, non-linear model free data driven adaptive methods have been used in monitoring water 

contamination, potable water quality maintenance, water-levels, run-off, waste-water treatment plants etc.  
The color of ocean, wave height, precipitation on seas and oceans, sea surface (SS) temperauture/salinity 

has been predicted with NNs. The data here is mostly from satellites and high end modelling techniques 

for corroboration.  The water global budget looks for causes and consequences of melting of ice caps on 

terrestrial and marine environment. 
This was a boon to modelers not to hand write many models (brain waves). The subject specialists 

posed the lacuna, that the results are not in the frame of their discipline, although the experimental results 

are almost nearer to model output and forecast was also satisfactory for short values ahead. The point to 
remember at this juncture, is that with almost all empirical models and even mechanistic models with 

transformed equations, the domain is shifted another. Whatever it is, fuzzy-sets and rule-extraction 

algorithms brought out user readable if-then-else rules from trained NNs.  This has wiped out the long 
standing blemish for NNs. Now, fully automated systems, deep-learning paradigms crossed all these 

boundaries and are a new world itself even for mega projects like LHC. 
 

15. Future track (2015- ) prospects-Afterword 
NN models for prediction of PMx are accurate enough for forecasting.  The governmental agencies can 

consider NNs as recommendable data analysis tools in addition to currently practicable ones.  Complex 

systems require complex networks [397], sufficient training data covering all possible scenarios and 

advanced optimization algorithms. But it is worth noting that the recent reports in environment are 
pertained to NN technology used was of 1990s.  A major finding is that even simple NNs function better 

than MLR, ARMA and parametric non-linear models.  The recent improvements NN and other paradigms 

are to be brought to implementable stage in environmental data analysis.  Further the frequency of data 
acquisition deserves attention.    

The scientific domain is dynamic, the cobweb of data, information, knowledge and intelligence is 

very intricate to discern (chart A2-2).  The definition, scope and applications also have been evolving with 

the needs and hurdles. What is amazing is that yesteryears’ intelligence is today’s common sense.  
Scientists refine the models with pumped in knowledge bits, leaving aside even time tested ones.  The 

features not present in earlier models are smartly included and even the most coveted ones of yesterdays 

are graciously deleted. However, the choosy tendency of a modeler/ experimentalist /theoretician (save 
elite groups) is a hidden but highly influential factor that affects outcome of science.  For instance, low end 

models do not precisely forecast weather conditions such as hurricanes, tornadoes, and blizzards and this 
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partially mars the reputation of modelling approach.It is but a fact that simple models are  ancesers of 
today’s coveted ones and are useful for startup activity or for a sub goal of warning for low cost 

(equipment, expertise and hardware/software resources) pursuits. On the other hand, the lacuna of ‘plug 

and chug’ by amateur practitioners is a quick buck approach for data-in-result-out with no feel of either 
data or methods. But, the results are looked at by the credit of method only, as details of adherence of the 

current data to the method applied is not explicitly available. 

 

Now, it is imperative that each of simplifying assumptions, necessary conditions, and failure 
warnings at every stage of model should be made transparent through the modeling software itself.  

Further, the validity of conclusions reachable from the output also should be displayed.  This was 

emphasized in our earlier chemometric, environmetric, kinetometric, speciometric and piscimetric studies 
[295, 296 and references therein 303 to 392].  The scientists formulate mathematical formulae/ 

relationships with a paper and pencil. The data is operated on these mathematical forest to project what 

they prefer to look for or substantiate/defend/refute a proposal/hypothesis etc. The expert systems of 1960s 
broke the tradition. Genetic programming went a step forward to automatically derive sets of mathematical 

formulae with supplied set of operators, variables etc.  This resulted in sets of functions different in form 

but functionally equivalent. The mathematical function approximation popular outside AI domain also has 

same core philosophy.  Now, CERN is looking forward for an era of automatic learning with a new 
concept called ‘deep learning’.  It does not require manual creation of formulae by human scientists, not 

even traditional machine learning tools or human experts’ insight.  In this decade the buzz words are deep 

learning, peta-/exa-scale hardware/memory based computations, hyper intelligence and beyond. There is 
no final word for ‘the theory’ or ‘highest level of experiment’ in the rational scientific research.  In fact, 

they are also evolving.  ‘Today’s standard model of particle physics is not final, as it does not account for 

dark matter and dark energy. .  The progress of science includes more and more precise measurements and 

observations with still higher and lower energy beating reteram scientist’s capabilities. The outcome will 
focus on tracing cracks in the existing knowledge. This establishes a ground to take off into improvised 

theories /models /experiments/ computations including simulations. The findings of exploration for new 

particles with 14 TeV will culminate into science broadening its spectrum with a deep-sensed eye for 
reformed/ restructured/ reorganized bunch of fool proof scientific theories in the coming decades. 
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Appendix-1: Environment and Science  
 

Chart A1-1. Environment protection bodies 

 

 
 

Agency  Abb 

Department for Environment,  
Food and Rural Affairs  

DEFRA, 
UK 

European Environment Agency EEA 

Environmental protection agency, 
US 

EPA_USA 

Ministry of the Environment (Japan) MoEn 

Ministry of Environment and  

Forests(India) 

MoEnF 

National Ambient Air Quality 
Standards 

NAAQS 

Registration, Evaluation, 
Authorization, and Restriction of 

Chemicals 

REACH 

 

AQI Canada Great Vancouver  
regional  district 

IMECA Air quality  
metropolitan  

Mexico 

PSI  Singapore 

API Air pollution  Hong Kong 

API  China  (1997) 

 

Chart A1-2.  Environmental Science (ES,  Env.Sci.)  Tasks  

  
 

Environment (Env.) 

 

Phases Interfaces 

 Air    Air_Water 

 Water    Water_ Soil 

 Soil    Soil_ Air 

 

Extended environment 

 

  Vegetation  

  Food(veg), 

  Edible animals 

 

Water-environment 

 

Water budget 

 

Ground 

Surface 

Hot water springs 

Glaciers 

Water inside living species 

Atmosphere Water vapor 
 

Atmosphere  water 

 

Lower/Upper 

Cloud 
 

 
 

Surface water 

 Still Ponds 

Surface 

Flowing 
Streams 

rivers 

  

Salty 

Seas 

 

Oceans 

Estuarine   

 

Water  types 

 

Ultra-pure  

Potable 

Agriculture/aquaculture/Mari culture  

Industry/domestic use 

Bath/wash 

 

Effluent   

Polluted /contaminated 

 

 
Influencing 

variables 

 on pollution 

 

Microbiological 

Hydrological 

Meteriological 

Chemo_physical 

Geological 

…….. 
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Water   

 

Single molecule 

Dimers, trimers, 

 tetramers  

Nano clusters 

Large clusters 

Bound water  

Phases of Water 

 

Vapor  

Water  

Ice 

<0
o
C 

High pressure  & 

High temperature 

 

Bound water 

 

Proteins 

Minerals/ores 

Materials  
 

Water Quality indices 

 

SWAN 

PIG 

…. 

 

Science of water 

 

Chemistry 

Physics 

Biophysics 

Geology 
 

Water Theories 

 

Thermodynamics 

Statistical thermodynamics 

CQC/ MD 

……. 

 

Environmental factors 

 

Pressure 

Temperature 

Volume 

Radiation/  

Energy 

Gravity 

Natural calamities/ disasters 

   
 

Catastrophes -- Natural 

 

Earth quakes 

Tsunami, Typhoon, cyclone … 

Meteorites 

Whirl wind 

Glacier in equilibrium  

 

Catastrophes   

 

Oil spills 

Ship wreck 

 

Eco imbalance 

 

Bacteria, virus 

Pesticides 

residues 

Industrial wastes/ 

byproducts/ 

organic solvents 

… 

   
 

Civilisation/industry/Defense  

 

Vehicles on ground 

Ships/submarines 

Aeroplanes/Satellites 

……… 

 

Whirlwinds 

 

Major Minor Lesser 

Tornadoes     Gustnado   Dust 

devils 

Waterspouts Fire whirl Steam 

devils 

Landspouts  Snow 

devils 

 

 

Chart A1-3 Inter-/intra-/cross- disciplinary chemical sciences 

 

Air, Water, Soil 

 
 

 

Alchemy  Chemistry  [ Organic, Inorganic, Physical] 

 

Binary hybrid disciplines 

  

Chemical biology Bio[logical]chemistry 

Chemical physics Bio[logical]physics 

Chemical geology Geo chemistry 

  

Chemical genetics Genetic[s] chemistry 

 

Chemical statistics 

Chemo informatics 

Chemometrics 

 

http://en.wikipedia.org/wiki/Tornado
http://en.wikipedia.org/wiki/Gustnado
http://en.wikipedia.org/wiki/Dust_devil
http://en.wikipedia.org/wiki/Dust_devil
http://en.wikipedia.org/wiki/Waterspout
http://en.wikipedia.org/wiki/Fire_whirl
http://en.wikipedia.org/wiki/Steam_devil
http://en.wikipedia.org/wiki/Steam_devil
http://en.wikipedia.org/wiki/Landspout
http://en.wikipedia.org/wiki/Waterspout#Snowspout
http://en.wikipedia.org/wiki/Waterspout#Snowspout
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Chemical computations  Computational chemistry 

 

 

 

 

Chemical physics 

Physical chemistry 

Chemometrics 

 

 

Ternary hybrid disciplines 
 

 

Bio inorganic chemistry 

Bio physical chemistry 

Bio organic chemistry 

….. 

Biochemical genetics 

 

 

Inorganic bio chemistry 

Physical Bio chemistry 

Organic Bio chemistry 

…… 

Analytical Biochemistry 

 

 

Quaternary hybrid disciplines 

  

Physical chemistry chemical physics (PCCP) BioChemistry ChemicalBiology (BCCB) 

ComputatonalChemistry ChemicalComputations (C
4
) ChemicalStatistics StatisticalChemistry (CSSC) 

…..  

 

Appendix-2: State-of-art-of-Modeling evolution 

in research mode 

 

Chart A2-1: Process  Models 

 

 

Processes 

Nature (Lab) 
 

NL 

-13.7 billion years 

-4.6 billion years 

Now 

4.6 billion years 
Future 

 …. 

Man-made Lab 
ventures 

Satellites 

WWW 

Synthetic materials 

Virtual reality/ 
Artificial life 
…….. 

 

 

Understanding  of processes 

Human senses 
Observation 
 

Lab(oratory) 

Experiment 

Instruments 

 

Simulation 

Computations 

Theory(computations, 
simulations) [TCS] 

 

Conceptual 
First principles 
Empirical 
Hybrid 
….. 

 

Discipline specific models 

Chemistry  
 Schrodinger wave equation 

 Computational 

quantum chemistry 

 Bose_Einstein   Statistical thermodynamics 

Particle  

physics 
 Standard model 

Theory of almost everything (TOAE) 

Environment Single site 
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Regional 

Compartmental 

Global 

  
 

 

Chart A2-2: Intelligent Computational Laboratory 

(Int.Comput.Lab, ICL) 
 

Basis 

Model driven 

Data driven 

 

Type 

Persistence 

Deterministic 

Stochastic 

Mechanistic 

Empirical 

 

Transparency 

Black box 

grey-box 

white-box 

Expert system based 

 

 

 
 

Chart A2-3: Tasks in Mathematical parlance 

 

Object  Components 

Tasks : [Function  approximation, Parameterization, optimization,   knowledge extraction] 

Pattern recognition : 

 
[Classification, Discrimination, clustering],] [Profile recognition, image, scene] 
[Static, Dynamic, movie] 
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[knowledge 
extraction] 
 

: [Rule generation, rule selection] 

Time series 

: [Single, multiple], [Discrete, 
continuous];  
[deterministic, [stochastic, 
chaotic]] 
 

Equations 
:  [Algebraic, differential, integral] 

 

[DE] 
: [ODE, PDE, EDE] 

[parabolic, elliptical, hyperbolic] 
 

PDE :  [Linear, non-linear [stiff]] 
 

 

  

Function approximation min(func(residual)) 

Classification  min(misclassification) 

max(generalizability) 

Parameterization min(var(par), corr(par)) 

 
 

 

 

 

 

 

 

 

Regression  

In linear regression, the constraint is the linearity of the mapping function.  Even though the system to be 

modeled may not be linear, the explanatory variables showing different trends are transformed rendering 
them amenable for application of  linear regression.    
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Chart A2-4: Evolution of Cause-effect, classification models 

 

 

 

 

 

Cause-Effect 

[Theoretical, Empirical] [Linear, non-linear] [distribution-free] 

[Mathematical, Stochastic, Fuzzy] 

[parameter, non-parameter] 

[Hard, soft] 

[Model driven, data-driven] 

[Nature inspired] 

Hybrid 

 

Hybrid [fusionLevel, number of modules, paradigms] 

Number of modules  [binary, ternary, quaternary ..]] 

Hybrid.fusionLevel : [loose coupled, tight, fusion] 

Hybrid. Paradigms : [homogeneous, heterogeneous] 

Hybrid.Paradigms.homogeneous : [ACO PSO Firefly] 
 

 

Classification DA: Discriminant analysis 

[Linear DA,  

Quadratic DA,  

Flexible  DA,  

Mixture DA,  

Penalised  DA] 

[Bayesian] 

Clustering k-means, c-means, Fuzzy-c-means, 

hierarchical clustering 
 

Cause-Effect models 

 

Model Parameters Variables 

Linear    Linear Linear 

Multiple  Linear    Linear Linear 

   

 
Non-linear   

Linear Non-linear 

Non-Linear Linear 

Non-Linear Non-Linear 

 
Non-linear 

 Product  of two linear terms  

 Polynomial  
 Gaussian 
 Log/ exp /transcendental 

 

 

Models based on noise in measurement 

Data Noise 
Model Name 

X y X y 

FP 

 

FP 

 

No No y(t+1) = y(t) Persistence  

  y=fn(X;par) Deterministic 

No Norm(mean, sd) y + N(.) =fn(X;par) Stochastic 

No Fuzzy(mf) y + Fuz(.) =fn(X;par) Fuzzy  
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No Chaotic y + Chaos(.) =fn(X;par) Chaotic 

FP:Floating point 

 

 

Chart A2-5: Heuristics and meta-heuristics for models 

 

 

KB. A2.1:  Meta rules for  modeling   

If 

 

Then 

There is no independent variable 

Response measured as a function of time 

Analyse data with  time-series models 

 

& 

If 

Then 

Independent & dependent variables 

x-y model 

 

 

If 

 

Then 

 

x-y data 

model is from first principles of discipline 

Discipline specific model 

 

& 

If 

 

 

Then 

x-y data 

Model from first principles of discipline not 

available 

Empirical model 

 

& 

 

KB. A2.2:  Heuristics for type of models 

based on errors in y 

If 

Then 

Noise isprobabilistic 

Statistical models 

 

 

If 

Then 

Noise is fuzzy 

Fuzzy_regression 

 

 

 

KB. A2.3:  Heuristics for type of models 

based on data type 

If 

Then 

Binary values 

Binary regression 

 

If 

Then 

Non-numerical data 

Symbolic regression 

 

 

If 

Then 

Empirical models 

Choice is based on data structure, noise etc.  

 

 

If 

 

Then 

Several theoretical models   

Empirical models 

Develop a global one 

& 

 

  

Chart A2-6:  Method_base  of cause-effect models with eXpert System approach 

  

 

 

 

 

Regression 

Likelihood function 

Based on residual 

 

 

Likelihood  

Maximum likelihood estimators 

 

Absolute deviations 

Least absolute deviations 

Maximum absolute deviations 

 

Constraint: Parameters > 0  

Non-negative LS 

Positive definite matrix 

…… 

Residuals 

Least  Squares 

 

 

Method Goal 

Least squares Min (Resid
T 

 * Resid) 

 

Least absolute deviations 

 

Min (sum ( Resid)) 

Max  absolute deviations 

 

Max (sum ( Resid)) 

Least Median squares Min (median(Resid
T 

 * 

Resid)) 

 Outliers 
If Outliers are present in y 
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Least median squares 

 

Iterative Recursive LS 

Alternate LS 
 

 

Then Least median squares 

 

 Variance-based 
If Errors in y is normal distribution & 

Homoscedastic 
Then Unit weighted LS 
  
If Error in y is normal distribution & 

heteroscedastic 

Then Weighted LS 
 

 
 

  
 

Soft regression 

Principal component regression (PCR) 

Partial least squares regression (PLSR) 

…. 

 
 

If Then 

PCs vs y  linear  PCR 
 

PCs vs y  quadratic  QPCR 
 

PLSCs vs y  linear  PLSR 
 

PLSCs vs y  quadratic  QPLSR 

 
 

Statistical  linear correlation, 

Mathematical independence,  

Orthogonality of variables 

If  Then 

X uncorrelated Linear LS 
 

X correlated PCA 
 

X correlated & 
number of ys 

PLSC 

 

Nature inspired algorithms 

Genetic algorithm 

Immune algorithm 

Predator-prey algorithm 

Honey bee mating algorithm 

Mosquito algorithm 

…….. 
 

 

 

Appendix 3: Object functions in different tasks 

 

There are tasks with either single or multiple object functions in estimating the free parameters of the 
model.  Further, these functions vary depending upon the tasks like regression, classification, pattern 

detection etc.   Minimization of a function of residuals for supervised data is generally employed.  

Sometimes, even maximization of performance measures also is a sought after in industry.  In addition to 
residuals in Y with current model, a function of weight is also included which looks like Bayesian 

approach of parameter refinement obj_fun = ESS + f(W).  In weight decay and true weight decay methods, 

scaled Euclidian distance of W from origin is added.  The distance of W from true values (P0
-1 

) is  

considered in standard RLS procedure. 
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Chart A3-1: Categories of object functions 

Chart A3-2: object functions and derivatives 
 

Error in input variable (EIV) based cost 
function: Gorp (2000) introduced EIV-

object function to train data by FF-NNs 

with and without errors only in input or 

both in input and output variables. This 
function works in the stochastic 

framework.   

 
Castillo method:   The error in the input 

scale is used instead of age-old errors in 

output scale.  The object functions are 

ESS and maximum of absolute of errors.  
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The linear programming methods were used for max (abs (error)), while linear equation in the case of ESS.  
This approach results in robust W and global optimum on the error surface. The errors in input scale need 

learning neural function, a new concept and superior to the known sigmoid and the like.  It is implemented 

with polynomial (linear) combination of invertible basis functions (tanh and arc tanh). Even FT can also 
perform the job.  This method is ten times faster compared to earlier ones. 

 

 Regularization methods:A penalty criterion is added to the objective function. But, the penalty term 

creates additional local minima increasing the possibility of settling in a bad local minimum. The object 
function is generally a function of residual (error) viz. error sum of squares, sum of absolute errors, 

regularized ESS, Bayesian error and so on. 

 

Errors/ noise/   outliers in Data 

Any measurement (chart A3-3) is contaminated with known/unknown distortion (chart A3-4).  If the true 

value is known, the difference (ytrue-yobserved) is called an error.  In mathematical analysis, constant and 
proportional errors are prevalent with pessimistic and optimistic limits.  Respecting the law of classical 

statistics that small errors occur more frequently than larger ones (normal distribution), the distortion in 

replicate measurements was attributed to statistical probability.  However, many probabilistic distributions 

(log normal, beta, exponential etc) were derived from seven distributions of Pearson.  Stochastic processes 
also contribute to the perturbation of signal.  The contribution of probabilistic component in the measured 

signal is called noise.    The error/noise may also arise as a result of another sub-process.  The errors in y, 

function (f(x;par)), variables (x), parameters of model are mathematical, statistical or fuzzy. The various 
pre-processing procedures are cited in chart A3-4. 

 
Chart A3-3: Types of Data 

   

Characteristic_ 
of data 

: 

[contradictory,  
redundant, non-
informative] 
 

 

Data : [simulated, observed] 
[Direct observation, 
indirect observation, 

derived from data] 
[Numerical, non-
numerical]  
 

[Non-
numerical] 

: [Nominal, attribute],  
[symbol, character],  
image   [: pixel/voxel],  
sound 

Literal : [word, sentence, 
abstract],  
[tactile-senses] 
Character: [alphabets, 
special character, graphic 
character, shapes] 

 

 

 

 

 

Chart A3-3b: Noise in data 
 
Type of error 
in data : 

[No_error, fuzzy, 
probabilistic, possibility] 
 

 

Chart A3-4:Preprocessing of data 

Preprocessing  : [scaling, Dimension reduction, 

increase of dimension,noise reduction] 
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Numerical : [constant, proportional, 
distribution based, 
Fuzzy, interval, grey, 
rough sets] 
[ outliers],  [trend] 
 

Distribution : [probabilistic, Fuzzy] 
 

Character : [rotation, translation, 

reflection, zoom-in, 
zoom-out, intensity-of-
light, distortion] 

 
 

Dimension  
reduction  

: [ [SVD, PCA, PLS]; 
[Independent Component Aanalysis];  
[Forward selection, backward 
elimination, GA] ] 

Noise reduction : [transform, filter ] 

 

Transform  : [Kalman,  Savitzky-Golay, Hadamart,  
FT, wavelet] 
 

Kalman filter : [Extended KF,  
Ordinary KF] 

 

Scaling : [Mathematical, statistical, fuzzy, 
interval, Grey] 
 

Linear  : [mean centered, variance-zero2one, 
minimum2one,zero2one] 

 

Mathematical : [linear, non-linear] 
 

Non-linear  : [log, exp, power, tanh, boolean] 
 

 

 

The numerical magnitudes of data sets of many tasks are on different orders and thus scaling is mandatory.  
ScaleX.m is a MATLAB function converting the matrix in the chosen range (lower to upper).  Since the 

realistic comparison of residuals for model validation and prediction errors is to be performed in 

measurement scale, the unscaling function is also developed. 

 

Optimization methods 

Optimization (minimization or maximization) of response and error are crucial in every activity viz. high 

yield of product with minimum impurities, high quality of a finished product with a lower cost etc.  The 
categories of optimization are without and with (linear/non-linear/equal/unequal) constraints.   Depending 

upon the viability of calculating the function, first and second order gradients, a galaxy of optimization 

methods have proposed (Chart A3-5 and A3-6). 
 

 

Chart A3-5: Optimization (training) methods 

Optimization:  
[Static, adaptive, dynamic]  
 
[self-starting, non-self-starting] 

 

 

 Heuristics for choice of training methods  

 
If Object function has derivatives   
Then Gradient methods are used  
Else Direct search methods 

 
 

If Derivatives are not calculable &  
 Function value is not available   
Then  Simplex  

   

  Gradient based 

First order 

: [Steepest descent (BP), One-step-secant, Resilent] 

 
BP :  [non adaptive {Without momentum, With momentum},  

  adaptive        {Without momentum, With momentum}] 
 

 

[delta 

rule ] 

:  [Delta rule, Cum-delta, Norm-cum-delta, Delta-Bar Delta, Ext-DBD, Rumelhart and McClelland's 

delta] 
[Quick Propogation, Max Prop, Directed random search] 

   
Second : Newton Raphson 



R. Sambasiva Rao et al                           Journal of Applicable Chemistry, 2015, 4 (2): 355-449 

 

449 

www. joac.info 

 

order  
   

Quasi-
Newton 

: 
 

[Broyden-Fletcher-Goldberg-Shano (BFGS), Limited memory BFGS,  
Davidon-Fletcher-Powell (DFP)] 
[Marquardt] 

[Conjugate gradient] 
[Powell-Beale, Fletcher Powell, Polak-Ribiere, Fletcher Reeves] 

   
Direct 
search 
(Non-
gradient) 

: [Bisection, Golden search, False position, Brent, Simplex] 

 

Direct search + gradient         : [DBrent] 

 

 

 

 

 

 

Chart A3-6a: Global optimization 

methods 

Global 

optimization 

Methods 

 

: [SAA, GA] 

[SAA] 

: [SAA-SS error, 

SAA-WTA error, 

 SAA-WWTA 

error] 

 

Chart A3-6b: Hybrid and adaptive methods 

Hybrid  : [{GN + SAA}, {Simplex + Kalman}, 

{GA+GN+BFGS+GA} ] 

Adaptive  : [Marquardt,CR, non-linear-CR] 

 

 Non-linear  CR : [CR, NN] 

 CR : [MLR, PCR, PLSR  ] 

 Marquardt : [Steepest descent, GN, NR] 

SAA : simulated annealing algorithm GA :genetic algorithm 

CR    : Continuous regression GN : Gauss-Newton 

 

 

 

 


