

Journal of Applicable Chemistry

2015, 4 (4): 1024-1144 (International Peer Reviewed Journal)

Critical Review (Cr)

ChemoInformatics Part I: Molecular Descriptors in Omnimetrics Research

K RamaKrishna¹, Ch. V. Kameswara Rao² and R. Sambasiva Rao^{3*}

Department of Chemistry, Gitam Institute of Science, Gitam University, Visakhapatnam, AP, INDIA
 Department of Chemistry, Basic sciences and Humanities, GMRIT, Rajam 532 127, AP, INDIA

3. School of Chemistry, Andhra University, Visakhapatnam 530 003, INDIA

Email: karipeddirk@gmail.com, kamesh.chembolu@gmail.com, rsr.chem@gmail.com

Accepted on 11th July 2015

(Dedicated with profound respects to RSR's father R. Venkata Ramanaiah during his birth centenary year) Conspectus

Background: In mid eighteenth century, the observation of increase toxicity of alcohols to mammals with decrease in solubility in water was the start of a new discipline - structure activity or specifically structure-toxicity relationships. The seminal contributions of Hammett in relating chemical reactivity (logarithm of rate constant/equilibrium constants) with change in substituent groups in aromatic acids and Hansch modelling of effective/lethal dose of compounds with partition coefficient during 1950 and 1970s initiated 'Linear free energy relationships (LFER)' and 'Quantitative structure activity relation ships (QSAR)'.

Molecular descriptors: The protocol of inspection of chemicals for their reactivity at the start up begins at looking into functional groups, cyclic rings, substituents and 2D-connectivity-structure. Constituent descriptors are simple number counts of atoms/bonds/rings in a molecule throwing light on compositional profile. The connectivity (symmetric) matrix of zeros or ones called adjacency matrix leads to distance matrix (of same size) of path was the foundation stone of topological chemistry.

Graph theory: Wiener index, column or row sum of adjacency matrix, proposed in 1947 for explaining boiling points of acyclic organic molecules was the start of mathematical (graph theoretical) chemistry and emergence of molecular descriptor research, now a coveted discipline. The continual advances of Wiener graph continues even in 2015 and occupying a pivotal position in application arena. Randic index and several distance derived descriptors viz. Hosoya, Rouvray, Detour and Zagreb topological indices are in vogue.

Electrostatic-, quantum-, Eigen- paradigms: Kier and Hall introduced electrostatic descriptors of local category based on non-quantum chemical ground. These charge distribution quantities use partial charge, topo electronic measure and surface area. The next major category involves 3D-optimized geometry available from X-ray/ neutron diffraction/ NMR experiments or computational (ab initio, DFT) quantum chemical approaches. Geometric molecular descriptors like shape/shadow indices speak out molecular size and shape. The core of WHIM and its clones is based on chemically valid 3D-geometry of a molecule. 3D-MoRSE, RDF_Wtd descriptors found extensive applications. The quantum chemical descriptors are well known CQC derived IP, EA, charges, multi-pole moments, electronic energies and thermodynamic quantities. The chemical hardness/softness, Fuki's parameters shed light on radical / electrophilic/nucleophilic reactions. Eigen matrix analysis has a key role in several molecular descriptor

categories primarily to get rid of correlation among descriptors. WHIM descriptors derived from Eigen values of 3D-weighted co-variance matrix encode shape, size and atom distribution. GWHIM takes into account of grid reflecting interaction field dimensions. The minimum and maximum Eigen values of atomic charge, polarizability or H-bonding ability instead of atomic number of diagonal matrix of Burden matrix and Eigen spectra of CQC-generated UV-Vis, IR, NMR profiles are coveted first-order probes per molecule. Many of topological and other types also were subjected to Eigen structure enabling use of classical hard least squares analysis. Information descriptors based on Shannon information theory mirrors mass distribution in the molecules. Bond Environment Descriptor (BED) and Augmented Environment Descriptor (AED) from first and second nearest neighbors and their bonds account for effect of fragments around an active atom.

Hybrid descriptors: The hybridization of descriptors of different origin opened a super-highway embracing the best of both information worlds to predict complex responses in real life materialistic compositions. The components of GETAWAY descriptors are geometric and distance matrix based one. The Topo-Geometric/ Electro-topological state atom (E-state)/ Topo-QC descriptors have high impact in statistical modelling and interpretation perspectives. The classical physico-chemical-biological parameters like logP, refractivity, Lipinski (rule of 5) alert index are also now in the band-wagon of molecular descriptors.

Applications: The applications of molecular descriptors over the last two decades engulfed almost all research disciplines under an umbrella term structure activity relationships (SAR). It comprises of computations of molecular descriptors (simple counting to advanced CQC, graph theory, matrix operations), pruning (selection) to a subset based on statistical, information and process-details basis, modelling strategies (MLR, PCR, NN, SVR etc.), validation procedures (residual analysis), ensemble/forest approaches. The target sciences of focus are chemistry, biology, pharmacy, material synthesis, environment are in the priority list. The typical subclasses of SXR include 'activeSite, AntiOxidant, Blood brain barrier, binding, complexation, drug, genetics, HIV/AntiHIV, inhibition, interaction, $Log\beta_{mlh}$, pharmacokinetic, protein-Ligand-interaction, receptor and toxicity'. This qualifies these cutting edge investigations to be referred as "computational descriptors in Omni_metrics", in equilibrium with Chemometrics, Chemoinformatics, Mathematical chemistry, CQC and nature inspired algorithms.

Molecular descriptors from trustworthy packages for sizable number of compounds from academic research stand point have been used for HIV-1 integrase inhibition, activity against HIV-1 reverse transcriptase, Myorelaxant, Antimalarial activity, Serine protease active site, Ocular toxicity, Opiate/ antinidatory activity, PDE4 inhibition, CYP450 inhibition activity, BBB receptor crossing antagonists, Adenosine receptors, corticosteroids binding, Drug-protein interaction, PharmacoKinetics etc.

In biophysical chemistry, Protein-Ligand interactions, Putative proteins, β -blockers, drugs leading to Phospholipidosis, consequences of amino acid sequence, Chromosomal aberrations were studied with mathematical molecular descriptors. The variation of chromatographic/¹³C NMR responses of large variety of compounds are interpreted and predicted with a pool of descriptors. The validity and accuracy of prediction of chemically significant mathematically/statistically derived constants (parameters) like log β of metal-ligand complexes, ΔG , logP, Cell permeability and chemical properties -- solubility Boiling point, melting point, Viscosity refractive index and glass transition temperature-- is significantly increased over classical approaches with properly selected descriptors.

Software: The calculation of molecular descriptors started in manual mode mostly with paper and pencil. Later hand-held calculators played an important role for a molecule of large size. Leaving aside many historical in house programs, ADAPT by Jurs, Package of Kier and Hall are the stand alone tools. CODESSA by Katrizky in late 1990s is a full-fledged software package for generation of over 1000 descriptors and regression procedures for cause-effect model. DRAGON from University of Milan by Todeschini is a mega descriptor generator to over 4500 descriptors along with modelling tools. Some of the typical packages (ADRIANA, MOLGEN-QSPR, PreADMET..)in vogue are compared from the stand point of number and classes of descriptor outputted.

Keywords: Physico- bio-chemical properties, Hammett substituent constants, Hansch parameters, Weiner/Randic index, WHIM, Topological, geometric, electro-topological, quantum-chemical, Eigen, spectra, CODESSA, DRAGON

	Contents						
	<mark>)</mark>	<mark>Nolecular descriptors</mark> in OmniMetricS <mark>Research</mark>					
1.		Introduction					
	1.1	Historical perspective explanatory variables and cause-effect relationships					
	1.2 1.3	Molecular descriptors Waves in descriptor research					
2.		Applications of descriptors in Structure X relationships (SXR)					
		 SHIVR SActR SActSitR SAntiOxiR SToxR SToxR SToxR SInhR ShhR ShhR ShhR ShhR ShindR SBBBR Blood brain barrier SInteractR SharmacoKineticR SPharmacoKineticR SPhortLigIntR SProtLigIntR SProtLigIntR SProgR SChromatR SChromatR SPhysChemPar R SPhysChemPar R SPhysico-Chemical_parameter SPropR SPropR Aqueous solubility Aqueous solubility Aqueous solubility Acqueous solubility Acq					

3. M	ethodBase_MolDes (MB. MolDes)				
3. M	 Constitutional Topological Environmental Electrostatic B-CUT Geometric 3D-Morse, RDF Quantum chemical Thermodynamic Orthogonal Ligen value WHIM, GWHIM GETAWAY Information Hybrid Topo-electrostatic Electro-topological state atom (E-state) Topo-QC descriptor Information content + Gravitational index 				
	Physical_chemical_biological				
	30 Recent descriptors				
4. So	Software packages				
5. St	State-of-knowledge of molecular descriptors				
6. <mark>E</mark> z	Exploratory super-highway for future MolDes research				

INTRODUCTION

Chemical science has a primary concern of energetics in bond-making and bond-breaking between chemical moieties. H-bonding, electrostatic/ van der Waals attraction, dispersion, stacking interactions, although of small magnitude, have a dominant contribution in biological-macro-molecular interactions. A hierarchical representation of structure of a chemical moiety and its interactions with environment/radiation reflects the intricacies in perception of materials. A zero order representation is name or empirical formula of a compound. A linear (or first order) format is molecular representation showing the functional groups. A 2D-structure explicitly shows nature of bonding (including H-bond) and graph-theoretic-connectivity. Chemists were comfortable to show a third dimension on a 2D- sketch for many decades. A 3D-representation of a molecule (XYZ coordinates or Z-transform etc.) explicitly point out bond-length, bond-angle and dihedral angles of a conformer. The 4-D picture many a time in unfolded form is informative about conformers, but limited to vacuum/gas phase. In other words, only more rigorous format enables one to have details in solid state, liquid phase or in presence of a solvent/salt/micelle/cell etc. In a nut shell, the functional properties of molecules are understood at the moment with complimentary, redundant, unique structural details from 1D to 4D-representation.

Historical perspective explanatory variables and cause-effect relationships

Greeks were intelligent to choose orthogonal explanatory variables as X (or independent) and thus later multi-linear regression was adequate. With the available orthogonalization, project pursuit, rotations of variable space after transformation are a solace to arrive at acceptable results for correlated variables. But, this is at the cost of either loosing physical significance of transformed variable space or high explainability/predictability with unknown combination of variables.

In 1863, it was observed that toxicity of alcohols to mammals increased with decrease in their solubility in water. Later, in 1890 this effect was attributed to lipophiliciy. Hammet explained chemical reactivity (ionization, rate of reaction) of meta- and para-substituted aromatic acids in terms of substituent

constant (σ). Taft extended this idea to ortho and aliphatic analogues. Hansch modeled biological response (ED₅₀, LD₅₀) with hydrophobicity measured as partition coefficient of the compound between noctanol and water. Second order terms in multi-linear parametric equations accounted for the non-linear trend. Hansch and his group applied the quantitative structure activity relationship (QSAR) model to drugs, agrochemicals etc. Free and Wilson proposed binary regression model indicating the presence or absence (yes/no 1/0) of an atom (N,O,S), group (C=O, NH₂) or sub-structure (n-membered ring) in a compound. In Hansch like models, this factor was independently proposed as indicator variable. Of course, the consequence is increased statistical correlation between X and y and decrease in variance of residuals in y. The goals of scientific activity are to enhance the health and quality of life mankind and have fewer effects from even natural disasters (chart 1.1).

Molecular descriptors

The classification of descriptors into different categories is closely related with scientific evolution over last 75 calendar years. The representation of a molecule in zero to four dimensions throws light on simple atom/bond/ring counts, identification of groups /functional groups/moieties, details of bonding/ connectivity, spacial (three-dimensional) orientations of molecules/varieties of conformers. The classes of molecular descriptors are, mathematical (graph theoretical) calculations from 2D-connectivity in chemical structure and 3D-optimized geometric one of a conformer of a molecule. Others include molecular fingerprints consisting of numerous bit positions, spectral data derived tensorial descriptors. The derived

and indirectly calculated vector/matrix of descriptors enable one to probe into electro-static potential, electron density, multi(mono- to hexadeca-) poles, Eigen spectra etc. The newer and modified descriptors are in the direction of reducing degeneracy for a homogenous set of compounds and to include intrinsic but critical properties operating under extreme conditions (P, V, T, Concentration)/ environment (solvent, matrix, cell). A bird's eye view of evolution of molecular descriptors can be broadly divided into four waves, of course with merging border lines.

Waves in descriptor research

First wave

Wiener initiated the descriptor research in 1947 and the number of molecular descriptors now exceeds 4000. Many teething problems were circumvented over years and the tool occupies a niche in interdisciplinary academic as well as industrial pursuits.

Second wave

Kier et al. and Randic made seminal contributions for over a quarter century past 1970s in developing molecular connectivity indices χ_s based on graph theory. In descriptor space, χ_s are low dimension depictions of structure of a molecule (chart 1.2, KB. 1.1).

Chart 1.2: Molecular connectivity indices χ_s	KB. 1.1: Graph theoretical information
- Correlation between χ_s	IfTopological index is same for two structuresThenIt is called graph invariant
Modifications in χ_s	If Isomorphic graphs Then Graph invariant
 Valence Augmented valence Electro-topological state of AIM 	IfIsomorphic compoundsThenIsomorphic graphs

Bonchev in 2001, proposed overall connectivity index, which surmounted the degeneracy of connectivity index even when higher order path clusters are considered. Mandel found over all connectivity superior for physico-chemical properties of C3 to C8 alkanes. These developments of a vector of descriptors per compound are the highlight during this period.

Third wave

The Eigen value analysis of spacial distribution and spectra of compounds in 1990s was a new facet in mathematical analysis of physico-chemical responses of molecules. The progress continued and Eigen value based descriptors of a molecule were calculated from CQC derived IR, UV-Vis and NMR spectra. WHIM descriptors of Todeschini encode information about molecular size, shape, symmetry and atom distribution.

- WHIM
 - + Orthogonal
 - + Surmounts limitations of correlation among explanatory variables

There is a treasure of around nine thousand references up to the year 2007 incorporated in the monographs (chart 1.3) of Todeschini group [1, 3-5] published in 2000 and 2008. The formulae and definitions are exhaustively spread in journal papers besides reviews and software manuals/fliers. DRAGON with more than four thousand and CODESSA with around fifteen hundred descriptors are both from academic research groups of Todeschini from Italy and Katrizsky of Florida (US). These packages are a treasure of knowledge, yet easy-to-implement tools for interdisciplinary researchers for generating breadth wise information store without really going deep into the intricacies.

The two perceptive means (eyes) hither to in vogue in science are experimental and computational (statistical/ theoretical/ simulated) probes. The coveted knowledge based approach and

Devillers, J.	Li, LF.
Diudea, M.V.	Livingstone, D.J
Estrada, E.	Meyer, A.Y.
Fujita, T.	Mezey, P.G.
Gasteiger, J.	Pogliani, L.
Gilvez, J.,	Randic, M.
Gutman, I.	Rekker, R.F.
Hall, L.H.,	Rouvray, D. H.
Hansch, C.,	Schultz, H.P.
Hopfinger, A.J.	Taft, R.W.,
Hosoya, H.	Todeschini, R.,
Jurs, P.C.	Trinajstic, N.
Kaliszan, R.	Trinajstic, N.,
Kamlet, M.J.	Wiener H
Katritzky, A.R.,	Xu, L.

tensorial computation of this century are well in practice in our laboratory since three decades. We attempted to perceive the molecular descriptor research through this third eye. Typical scrutinized reports during this decade are incorporated in reference section. Our long term goals include object oriented display and implementation in MATLAB, the necessary conditions, formula, m-file, typical data sets showing success as limitation/ failure of a descriptor/set and available chemical interpretation. The derivation of a descriptor from a more general version, relation with other descriptors, and its area of influence are underway. The quality of results of course is dependent under the supervision of third eye of an expert and/ or international standard protocol.

The nascent molecular descriptors and their all-pervading applications mostly of this decade [1-200] are reviewed here. In continuation of our series of publications [195-200] in complex equilibria in aquoorganic mixtures, Chemometrics, kinetometrics, environmtrics, piscimetrics, speciometrics, omnimetrics and internet chemical education (HAI, ICE, Hot_Ice), We don't intend to duplicate literature citations or mathematical equations. Yet, nascent disciplines viz. chemoinformatics, toxicoinformatics, chemical_biological_informatics pooled up large knowledge bits apart from (numerical, nominal) data bases worth exploring for sparkles/hot_ice or cold-diamonds to have leap in the present day expertise.

During loud thinking of ways and means of picking up phenomenon relevant descriptors, it was found up to late 1990s even published heuristics are limited. During the last one decade there are scanty reports about the bio-chemical/pharmaceutical relevant categories of descriptors. Ever since multivariate-SXR started, the elimination of variables is based on inter correlation of X or nearly same numerical values. After preliminary scrutiny, the further, the basis of elimination of descriptors is with low cc of Y with X. In the final set of models the descriptors and their type are documented as if trivial.

02. Applications of molecular descriptors in SXR

The theoretically computed descriptors are at most fundamental level and reflect quantitative picture of several factors of structure of compounds. Thus, their use in prediction and explanation of physical-

chemical-biological (PCB) properties and activity in bio- and eco-systems have been preferred to the earlier (successful) macroand microscopic explanatory factors. With an initial set of a single digit to few hundreds of descriptors, predictive models in physico chemical investigations, environmental management studies, drug discovery from leads and material science resulted in many success stories. The similarity measure in descriptor space is a probe to achieve set of compounds with desired characteristics. Diversity measures are appropriate to discriminate compounds with desired characteristics from the remaining set. The subtle sub goals viz. classifying drug like molecules from non-drugs and toxic from non-toxic groups is achieved with a large number of measures of similarity, diversity in multi-dimensional descriptors space. The statistical and mathematical tools employed clustering, classification and for discrimination are broadly categorized into supervised and unsupervised learning techniques. Software for LDA, ODA, PCA, HCA, SVM, rough sets, ridgelets and SOM-Kohonen are available as freeware and commercial products. A virtual library of size 10K to 200K is developed based on

chart 2.1: Abbreviations: Structure \$\$\$ Relationship						
Abbreviation	Structure	\$\$\$	Relationship			
SActR	Structure	Activity	Relationship			
SActSitR	Structure	ActiveSite	Relationship			
SAntiOxiR	Structure	AntiOxidant	Relationship			
SBBBR	Structure	Blood brain	Relationship			
		barrier				
SBindR	Structure	binding	Relationship			
SComplexR	Structure	Complexation	Relationship			
SDrugR	Structure	Drug	Relationship			
SGenetR	Structure	Genetics	Relationship			
SHIVR	Structure	HIV/AntiHIV	Relationship			
SInhActR	Structure	Inhibition	Relationship			
		Activity				
SInteractR	Structure	Interaction	Relationship			
SlogβR	Structure	Log _{βmlh}	Relationship			
SPharmaco	Structure	Pharmaco-	Relationship			
KineticR	~	kinetic				
SProtLigIntR	Structure	Protein-Ligand	Relationship			
	~	interaction				
SReceptR	Structure	Receptor Relations				
SToxR	Structure	Toxicity Relations				
Acronym	Abbreviation	Molecular D	escriptors			
Lethal dose	LD ₅₀ , LD ₇₅	in_act	ion			
Effective dose	ED ₅₀ , ED ₇₅	ADME/toxicit	y prediction			
Inhibitory conc.	IC_{50} , IC_{75}	Cause-effect n	nodels			
		Virtual screen	ing			
		Diversity anal	ysis			
		Library design				

variation of substituent, side chains etc. by commercial and academic research groups.

During last two decades, SPropR, SActR and many such correlations (chart 2.1) encompass every discipline and breadth wise growth is noteworthy. However, the depth wise inventions always have a lag in the translation, implementation and wide application in inter- and intra- and cutting edge-cross disciplinary research tasks as usual. Bulk and macroscopic physical chemical biological parameters which were instrumental in MLR models now play a secondary role. The objectives and quality of reports are diverse and there cannot be a utopian framework (save international agencies' stipulations) as it changes with scientific progress. Typical literature reports on applications of descriptors in diverse fields of research in physical chemical and bio-sciences follow.

GAPTIC Structure HIVRelationships)

HIV-1 protease inhibitors: Maw and Hall [61] applied E-state and molecular connectivity indices in predictive model of HIV-1 protease inhibitors (chart 2.2). Huuskonen [78] used TIBO derivatives against HIV-1 reverse transcriptase (chart 2.2b). Saíz-Urra et al. [154] modelled HIV-1 integrase inhibition compounds with GETAWAY, WHIM etc. (chart 2.2c). The model explainability increased from 62.4% to 72.5% after elimination of 5 outlier chemical compounds from the dataset. Wisniewski and Castleman [60] reported SActR model for compounds against HIV-1 reverse transcriptase with E-state descriptors (chart 2.2d). Hall [74] reported binding affinity to human serum albumin (chart 2.2e).

Chart 2.2a: SAn	tiHIVActivityR		S HIV R
Desc A E-state indices A Molecular connectivity	criptors-Model 2 Hydrogen shape index y	Molecules A HIV-1 pro inhibitors • 32 : Tru • 15 : Pre Response In vitro en binding	Model_StatisticsTraining r^2 s_{PRESS} q^2 n0.860.600.79ed $Prediction$ nzymeMAE0.82
Chart 2.2b: SInhib	Properties A Log P A MR Response A HIV-1 inhibit	RT tion SHIV R Inf.Bits. HIV-1 RT inhibition of TIBO derivatives Influencing factors lipophilic electronic	Chart 2.2c: Descriptors for HIV-1 integrase inhibition WHIM GETAWAY 3D-MORSE
Model # MLR 41 Comp nds	Residual s Training r ² Spress 0.85 0.56 000 TIBO derivatives aga transcriptase	statistics Prediction # r² SPRE 24 0.80 0.64 ainst HIV-1 reverse	RDF Geometrical Randić
Chart 2.2d: SAntiH \bigcirc Descriptor \bigcirc E-stateindices \bigcirc log P	HVActivityR rs-Model2 □ four (2, 4, 8, carbon) atoms level ▶ MR	Molecules TIBO derivative: 41 :Trn 24 :Test Response HIV-1 reverse transcriptase	s $\frac{\hline Model}{Prediction}$ $r^{2} \qquad s_{PRESS} \qquad q^{2} \qquad s_{PRESS}$ $0.85 \qquad 0.52 \qquad 0.80 \qquad 0.56$
Chart 2.e: SBindAff	R	SActR	S HIV R
Descriptors E-state Topological o Chi	Properties Response_ biological Response_ Instrument Compounds Software	 Log P MR Binding affinity to human serum albumin HPLC _RI Immobilized albumin 94 drugs MDL QSAR 	Inf.Bits. Randomization of response input No chance models Five-membered heteroatomic rings have a negative factor Six-membered heteroatomic rings have positive effect HIV-1 RT inhibition of TIBO derivatives

Model]	Residua	al statistic	5	
	# drugs	r ²	S	S _{PRESS}	q ²	10% LGO CV
Training	94	0.77	0.29	0.69	0.70	0.69
Test (external set)	10				0.74	
	10% LGO CV	10% 1	10% leave-group-out cross validation			

G SActR (Structure Activity Relationships)

The activity is confined to biological response in human beings, animals and insects, bacteria/ viruses. These studies were primarily in vitro and then the results were extrapolated for planning investigations in animals. However, due to the insurmountable gap between ex-vivo (in vitro) and vivo activity, a new era of in vivo investigations started in 90s. The broad discipline biological activity has firm offspring. In many neurological disorders, JNK3 signaling pathway plays a crucial role (chart 2.3a). Ijjaali et al. [10] used BCUT and P_VSA descriptors in developing SActR models with different biological activity thresholds from IC50 data . Pinheiro et al. [163] investigated molecular descriptor model for antimalarial activity against P. falciparum by soft modeling approach (chart 2.3b).

Myorelaxant: Sharma et al. [21] applied DRAGON software to calculate molecular descriptors (chart 2. 3c) of cromakalim analogues in developing ATP-sensitive potassium channel activation.

Chart 2.3a: Molecular descriptor modeling of JNK3 signaling path way					
X(MolDesc)					
1) BCUT	2) P_VSA				
Response: JNK3 activity IC50	Database: Aureus Pharma' AurSCOPE Kinase knowledge database				

Chart 2.3b: Model for antimalarial activity against P. falciparum with molDesc							
	X(MolDesc)						
Molecular Total surface area	Randic's index, path-1	Bond information index	Shape index based on				
softness	molecular connectivity-		paths of length 2 of				
	average		Kier				
		Model					
Van der 🐱 WHIM-3D indices							
Waals' (L1v and Tv)		PCA					
volume		L KNN					
		SIMCA					
Chart 2. 3c: Molecular descriptors of low ex	mlainability for A2B agonist e	effect					
Churt 2, 50. Moleculur descriptors of for explaindonley for M2D agoinst cirect							
X(MolDesc)							
1) BCUT 2) Functional	3) Topological	4) Constitutional	5) Atom centered				
			fragments				

6) Empirical	Impirical7)BCUT_modified8)2D autocorrelations9)Gal		vez topological charge indices				
Software : DRAGO	N	Descriptors : 470					
Compounds: 89: A	Compounds: 89: Adenosines Model						
Response: Myorelaxant (ATP-sensitive potassium channel) activation of cromakalim				Combinatorial Protocol in MLR			
Inf.Bits.							
🖑 The activi	\checkmark The activity can further optimized by changing substituent groups in chromans.						
The incre positive e	The increase in polarizability with increasing path length or higher atomic mass with decreasing path length have a positive effect on activity						
High bond order of carbon atoms attached to heteroatom as well as no or less branching augments activity							

Human intestinal absorption: Wegner et al. [92] filtered 2900 molecular descriptor for 196 molecules in predicting by GA coupled with Shannon Entropy Cliques algorithm (chart 2.4).

Chart 2.4: Binary classification of compounds of interest in human intestinal absorption							
Descriptors							
💪 RDF	Correction Topological polar surface area						
Conjugated electrotopological state	Conjugated electrotopological state						
Molecules 196	Software JOELib and MOE						
Response Human (Measured) intestinal absorption	Model Binary classification Adaptive boosting						
Descriptors 2934	Feature O GA +						
	 Shannon Entropy Cliques 						

Chalcones: The derivatives chalcones possess anticancer activity. Rybka et al. [18] developed a best linear predictive SXR model for anticancer activity of chalcones against HT-29 human colon adenocarcinoma cell lines (chart 2.5).

Mason and Beno [9] employed BCUT chemistry space and 3D- multiple-point pharmacophore descriptor values to arrive at molecular diversity/similarity in combinatorial virtual libraries

Chart 2. 5: Molecular descriptors in SXR modeling of Chalcones							
X(MolDesc)							
1) BCUT2) Topological3) Electronic							
4) Geometrical	5) QC						
		Best model					
Response: anticancer activity	Compounds:	10-member rings					
against HT-29 human colon	136 Chalcones	BCUT weighted by van der					
adenocarcinoma cell lines	Descriptors >1000	Waals volume					

SActSitR (Structure ActiveSite Relationships)

Mason and Beno [9] developed a combinatorial library for Ugi condensation reaction and a serine protease active site using BCUT chemistry space and multiple four-point pharmacophore fingerprints. SAA was employed for simultaneous optimization of combinatorial reagent selection and diversity of product shape. **SToxR** (Structure Toxicity Relationships)

Chemical toxicity: Singh et al. [88] applied molecular descriptors in predicting toxicity of diverse chemical list of Organization for Economic Co-operation and Development (OECD) with classification and regression SToxR models (chart 2.6).

Toxicity of Phenols: Ertürk and Saçan [147] used WHIM descriptors in toxicity studies of phenols towards *Chlorella vulgaris*. The WHIM (with T total size index/weighted by atomic masses descriptor) based SToxR model has better predictive power for even anilines. The validation set consisted of toxicity of 58 compounds to freshwater alga *Pseudokirchneriella subcapitata*.

Opiate/ antinidatory activity: Dervarics et al. [97] introduced a chirality-sensitive flexibility (CSF) descriptor in SXR models for compounds of opiate/ antinidatory activity with better performance compared to pharmaco pair distance measure (chart 2.7).

Cytotoxicity: Saíz-Urra et al. [13] found 2D-autocorrelation descriptors successfully modelled cyto toxicity of 37 naphthoquinone ester derivatives against oral human epidermoid carcinoma (chart 2.8).

Chart 2.7: SActR with a new descriptor for chirality- sensitive flexibility						
Descriptor: Pharmacophore point pair distance						
	+ Prediction of features	of the active conformation				
	 Not able to describe chiral arrangement of pharmacophores Remedy: Chirality-sensitive flexibility (CSF) descriptor Basis: Definition of a plane by three pharmacophore points; Calculation of distance between a reservement of the plane 					
Model: 3+3D-SActR						
#	Compounds	Response:\$\$\$ Activity				
37	Endomorphin analogues	Opiate				
38	PGF2α analogues	Antinidatory				

Chart 2. 8: Model compounds for oral human epidermoid carcinoma					
X(MolDesc)					
1) BCUT	2) Galvez topological charges indexes	3) Randic's molecular profiles	4) geometrical	5) RDF	
		Resp = MLR (2D-autoCorr)	Comparison		
Response: cytotoxicity of these compounds against oral human epidermoid carcinoma	Compounds: 37 naphthoquinone esters	> 84.2% of variance GA: descriptor selection			

Cytotoxicity of benzophenazines: Saíz-Urra et al. [15] compared MLR-GA models for IC_{50} of topoisomerases I and II versus drug-resistant human small cell lung carcinoma line cell H69/LX4 (chart 2.9). 3D-MoRSE descriptors for 64 benzophenazines explained 82.2% of the variance of observed experimental activity after elimination of outliers (chart 2.9).

Chart 2. 9: Cytotoxicity of benzophenazines with differents sets of descriptors						
3D-MORSE WHIM RDF						
Topological, Randić Geometric						
2D autocorrelations Galvez topological BCUT charge indexes						
Response : inhibition of the topoisomerases I and II expressed as cytotoxicity						

Insect toxicity: Grodnitzky and Coats [69] predicted insect toxicity of mono-terpenoids with no experimental insecticide data or those compounds which are not yet synthesized from S Insecticide Activityt R using molecular descriptors (chart 2.10).

Chart 2.10: S InsecticideActivityt R SActR				
	Response (Measured)	$ \ \fbox{ LD}_{50} \text{ values for house fly toxicity } $		
	Compounds Task	Aromatic mono-terpenoidsPrediction		
	Model	👃 MLR		
Descriptors Mulliken Population GETAWAY	Inf.Bits. Predictive models In plants, monoterpenoids defend against herbivores, plant-directed pathogens or competing plant species. Results of SActR pave way to good lead compounds for synthesis of effective insecticides			

Ocular toxicity: Solimeo et al. [51] reported ocular toxicity predictive consensus model with DRAGON calculated molecular descriptors along with chemical environmental ones for a pruned data set obtained from a national data center (chart 2.11).

Mosquito larvicidal activities: Pasquale predicted mosquito larvicidal activities of a series of prepared chalcones similar in structure to the most active molecule by SActR models using molecular descriptors (chart 2.12).

Chart 2. 12: Molecular descriptors in probing into larvicidal activity					
Dragon descriptorsConstitutionalTopologicalElectronicGeometrical		 Model characterstics Response: Larvicidal activity Task : Prediction #Descriptors : 1000 #Compounds : 28 chalcone derivatives 			
Inf.Bits.					
Chalcones having one or both electron-rich rings showed high toxicity					
activity of chalcones was reduced by electron-withdrawing groups					

G SAntiOxiR (Structure AntiOxidant relationships)

Antioxidant activities: Li et al. [149] applied SAntiOxR model for 214 tripeptides using molecular descriptors as explanatory variables (chart 2.13, table 2.1)

C	Chart 2. 13: SAntiOxidantR with WHIM descriptors					
Molecular Surface-WHIM			Hydrophobic Electronic Steric Hydrogen (HESH)			
Vectors of Hydrophobic Steric and Electronic properties (VHSE)			Divid Prop	Divided Physico-chemical Property Scores (DPPS)		
Is e	otropic surface lectronic charge index ISA–ECI)	area–	Z-sc	ale		
	Y : Measured antioxidant activities with ferric thiocyanate method					
	Table 2.1: SAntiOxicElimination of outlierresidual analysissix	dantR m s by Hoto significat	odel s elling's nt mod	tastistics s T ² meth els	od and	
	Desister	Model/	/Training		Prediction	
	Descriptors	R^2	Q^2	RSD _c	R^2	
	DPPS, HESH, ISA–ECI, VHSE	0.6	0.5	0.39	> 0.7)	
	MS-WHIM, Z- scale	0.6	0.5	0.44		

SInhR (Structure Inhibition Relationships)

PDE4 inhibition: Rizzi and Fioni [44] employed discriminate analysis of PLS components for a variety of descriptors to pick up PDE4 inhibitors from a pool of drug like compounds (chart 2.14). The DRAGON descriptor set from 2D-structure performed better as is evident from ROC curve analysis.

Chart 2.14: Sbioconcentration_factors R			SActR
 Descriptors DRAGON EVA descriptors 	Response Task	 PDE4 inhibition Virtual screening Classification 	
• QikProp	Model	💪 PLS_DA	

Zheng et al. [155] made an exhaustive predictive SXR modeling with mono- and bis-quaternary ammonium salts (42 in numbers) which are antagonists to neuronal nicotinic acetylcholine receptors (nAChR) (chart 2. 15). These compounds mediate nicotine-evoked dopamine release. This project resulted in discovery of six molecules with IC_{50} measured values less than 0.1 μ M at nAChR subtypes.

Inhibition activity: Mattioni and Jurs [100] developed SInhibitionR computational_NN models using molecular descriptors as explanatory variables (chart 2.16). CYP1A2 is an important member of CYP450 superfamily and accounts for 15% of total CYP450 presence in human liver. A large number of SActR 1039

models with 7500 compounds using molecular descriptors are studied using NNs, SVR and domain approach (chart 2.17) for inhibition activity [52]. Franke et al. [83] performed a multiphase screening of compounds of increasing activity of inhibitors of human 5-lipoxygenase (5-LO) (chart 2.18) showing the feasibility of lead structure identification through natural-product-derived screening libraries. CYP450 1A2 inhibitory modeling by Novotarskyi et al. [52] (chart 2.19) and adenosine kinase inhibitory activity by González et al. [24] (chart 2.20) employed descriptors as causative factors.

Chart 2.1	Chart 2.16: SInhibitionR models with molecular descriptors							SActR
	Descriptors				Mode	ls	Classific	ation
🔒 Elec 🔒 Geo	etronic metric	Copologica	opological			A MLR A k		ſ
	т т т		Trai	nir	ıg	Predic	tion	
	Enzyme	1#- П #- U #	Rms		R2	Rms	R2	
	CA-I	8-5-1	0.10)5	0.994	0.208	0.98	
	CA-II	9-5-1	0.140	0	0.992	0.231	0.971	
	CA-IV	8-5-1	0.14′	7	0.992	0.221	0.991	

Chart	Chart 2.18: Sequential ligand-based approach a novel class of 5-LO inhibitors				
Step:	<u>One</u>	Input: 430 compounds			
Step:	<u>Two</u>	Scaffold-hopping: Search for similarity with topological (CATS 2D) pharmacophore descriptor Output: 18 compounds	Courtesy of Ref 83		
Step:	<u>Three</u>	seed ← Find two most potent molecules Ligand-based virtual screening: Analyze with focused natural- product-derived combinatorial library Output: Best molecules			
Step:	Four	+ Molecules with potentl	y suppressed 5-LO activity in intact cells		

Chart 2.20: Adenosine kinase inhibitory activity				
	Adenosine kinase inhibitory activity (32,1) = fn(Desc)			
🛆 Geometric	Constitutional	🖨 GETAWAY		
2D-auto correlation	orrelation 🚨 BCUT		Expl: <70%	
🚨 whim	🖨 getaway	👃 Topological		
TOPological Sub-St	Expl >77%			
	Compounds: pyrrolo[2,3-d]pyrimidine nucleoside analogues			

BBB receptor crossing: Cammarata et al. [102] proposed NNs models for SActR of BBB receptor crossing of glycine/NMDA receptor antagonists with molecular descriptors (chart 2.21).

Chart 2.21: SInhibitionR NN models with molecular descriptors					
			Models	Descriptor	
Descriptors				pruning	
Electronic	J Topological	6	MLR	6 GA	
🔒 Geometric	Polar surface	Ð	Computational NN		
		Ð	RBF-NN		
Compounds 109					

Response	log(IC50)	Range : -0.57 to 4.5

Soybean 15-Lipoxygenase inhibitory activity: Camargo et al. [111] reported MLR and PLSR models for SXR between Inhibitory activity of Soybean 15-Lipoxygenase and molecular descriptors (Chart 2.22).

Chart 2.22: SInhibitionR N	IN models with	molecular	descriptors	
Descriptors		ıΓ	Models	Descriptor pruning
AQuantum chemicalAGeometric	Topological	4 4	MLR PLS	GA GA
Solvent-accessible surf LUMO	face area 🔒	Average	listance/dista	nce degree descriptor
Compounds	Mono-, di-, an	d trisulfides	derived from	the essential oil of garlic
Response	soybean 15-lip	oxygenase	inhibitory acti	vity

SBindR (Structure binding Relationships)

Adenosine receptors: González et al. [19] proposed TOPological Sub-Structural Molecular Design (TOPS-MODE) procedure for prediction of affinity for A1 adenosine receptors with explainability of 79% of variance of binding (chart 2.23).

Protein-flavonoid interaction: Rolo-Naranjo et al. [107] employed protein geometrical parameters and a quantum mechanical descriptor, Binding Local Site (BLS).

PocketAlign algorithm: Yeturu and Chandra [110] introduced PocketAlign, a new algorithm to probe into structural superpositions in binding sites. This approach encodes shape descriptors from geometry and classification of chemical groups (Chart 2.24).

Binding to Serotonin Receptors: Hong et al. [53] selected ligands for binding to serotonin Receptors 5HT1E and 5HT1F (chart 2.25) by CODESSA descriptors.

PTK binding by flavonoids: Oblak et al. [42] put forward SActModel for biological activities of binding flavonoids to PTK using descriptors generated from CODESSA (chart 2.26).

Binding affinity of corticosteroids: Maw and Hall et al. [57] reported predictive modelling of binding affinity of corticosteroids with E-state and shape descriptors (chart 2.27).

Chart 2.23: TOPological Sub-Structura	al Molecular I	Design of A	A1 ad	lenos	sine receptor	S
		X (I	MolD	lesc)		
TOPological Sub-Structural Molecular Design (TOPS-MODE)	Response: receptor	Affinity	of	A1	adenosine	Compounds : 32
Model : MLR Explainabilit: 79% of the variance						

R. Sambasiva Rao et al

Chart 2.24: PocketAlign

- Alignment exploration through different schemes
 Captures similarities in abilities for ligand recognition
 Probing into similarity of sites
- + Detecting residues and atoms contributing to similarity

Chart 2.26: S logCMC R		SPropR
 Descriptors CODESSA Electrostatic Quantum chemical 	Compound Response (PTK) inh	ds: 104 flavonoid derivatives : p56 ^{lck} protein tyrosine kinase ibition
Model Descriptors : Orthogonalization Cause-effect relation: MLR	▲ Influer PTK is C−O b	Inf.Bits noting factor in binding flavonoids to s maximal total interaction for a bond

Chart 2.27: Corticosteroid binding globulin	
Descriptors E-state Kappa shape index Hydrogen E-state descriptors	Molecules Response (Measured) \bigcirc 31 steroids Binding affinityTask \bigcirc Prediction

r^2 s r^2_{press} s_{press} 0.810.510.720.62Prediction $0.70:$ r^2_{LOO} r^2_{LOO} r^2_{LOO} Leave-group-out (LGO) for model-validationData set divided into random groups of 20% each Remove each observation three times from data set Cal residuals		SRespR_ models							
0.810.510.720.62Prediction0.70 : r^2_{LOO} Image: Constraint of the sector of the sec		r^2	S	r	2 press	S _{press}			
Prediction 0.70 : r r r 2 LOO Image: Constraint of the set of		0.81	0.51	0.72		0.62			
r 2LOO Leave-group-out (LGO) for model-validation Data set divided into random groups of 20% each Remove each observation three times from data set Cal residuals	Prediction	0.70 :							
Leave-group-out (LGO) for model-validation Data set divided into random groups of 20% each Remove each observation three times from data set Cal residuals 		r^{2}_{LOO}							
	E Da Re Ca	emove each obser ll residuals	vation the	ee times	from da	ata set			
		E-state model pre	dicts pK	of bindin	g value	s for			

BBBBR (Structure Blood brain barrier Relationships)

BBB concentration ratio in vivo: Rose, Hall and Kier [68] estimated logarithm of blood brain barrier concentration ratio in vivo of around twenty thousand compounds without resorting to 3D-structure from SlogBBBR model (chart 2.28).

		Inf.B	its.	
Chart 2.28 SACIR	Molecules that	t penetrate Bl	BB have	
Descriptors	Descriptor va	ues	Groups	
 E-State index for hydrogen bond donors 	Large HST(ar	om) values	Aromatic gro	oups
 Hydrogen E-State index for aromatic CHs Valence molecular connectivity index 	Small values HST(HBd)	of	Fewer or we	aker H–Bond donors
(second order difference)	Smaller d2χv	values	Less branche molecules w	ed ith fewer
Descriptor	Encodes		electronegan	
	MAE	RMS		
Test	0.38	0.47		
Prediction	27 correct out of 28			
Estimation of log BB	Drugs & drug like compounds: 20 02	9		

SInteractR (Structure Interaction Relationships)

Drug-protein interaction: Cao et al. [80] reported PyDPI (drug-protein interaction using Python software) to compute structural and physico-chemical descriptors for proteins and peptides from amino acid sequences. These descriptors are compared with those standard packages (chart 2.29)

Chart 2.29: Molecular packages for comp	parison with PyDPI
Molecular Operating Environment (MOE)	Chemical Computing Group
MODEL	Molecular Descriptor Lab
Kappa shape indices	kappa module

SPharmacoKineticR: Yap et al. [157] proposed predictive SR models (chart 2.30) for total clearance of a compound using descriptors from DS-WHIM, DS-GATAWAY etc.

Chart 2. 30: Predicti	ve SP	harmacoKineticR	
Compounds : 503			
Des	cripto	rs	
DS-Mixed		DS-WHIM	
DS-3DMoRSE	DS-ATS		
DS-RDF			
Y: total clearance	e (CL _t	ot)	
of a compound			
Model	Aver	rage-fold errors	
GRNN	1.63	6 to 1.96	
SVR	1.66	i to 1.95	
k-nearest	1.90) to 2.23	
neighbour			

GREEPTR (Structure Receptor Relationships)

Benzodiazepine receptor: Carotti et al. [162] classified 2-phenyl-2,5-dihydropyrazolo[4,3-*c*]quinolin-3-(3*H*)-ones (PQs) into subsets (full and partial agonists, antagonists, and inverse agonists) of varying efficacies using overlapped hyperspace of molecular descriptors (chart 2. 31).

Adenosine receptors: Sharma et al. [16] applied modified BCUT descriptors in modeling 2-chloro-N6-substituted-4'-thioadenosine-5'-uronamide compounds which have agonistic activity against human A3 adenosine receptors (chart 2.32).

González et al. [159] studied A_1 adenosine receptors agonist effect and A2B agonist effect making use of descriptors as explanatory factors (chart 2.33). Marzio, Todeschini et al. [164] proposed MLR of acute response in freshwater fish species for nine congeneric aromatic hydrocarbons using WHIM descriptors. Also, it was found that linear regression with Hansch's parameters has adequate predictive ability for non-polar compounds.

GRECEPTORS_AffinityR:

Vitamin D receptor: González et al. [12] performed SActR modeling of vitamin D receptor affinity of 1α ,25-dihydroxyvitamin D3 analogues (chart 2.34).

Adenosine receptors: González et al. [8] used BCUT descriptors for explaining more than 80% variance in experimental agonist effect of adenosine analogues towards A3 adenosine receptors (chart 2.35).

Adenosine analogues: González et al. [20] reported a predictive A2B agonist model of explainability 70% with RDF descriptors. The data set consisted of 89 adenosine analogues and any other type of descriptors could not account more than 47% of variance in response (chart 2.36).

Adenosine receptor: González et al. [22] proposed a MLR for affinity of A1 adenosine receptor explaining 84% of variance. The other models using different kinds of descriptors could reach only 75% explainability (chart 2.37).

SReceptors_agonistR: González et al. [14] made use of molecular descriptors for N^6 -arylcarbamoyl, 2-arylalkynyl- N^6 -arylcarbamoyl, and N^6 -carboxamido derivatives (29 compounds) in investigating A_{2 A} adenosine receptors agonist effect. The model explained >78% of variance in the experimental activity (chart 2.38).

SReceptors_agonistR: González et al. [158] compared the efficacy of different types of molecular descriptor in SActR predictive modeling of A2A adenosine receptors agonist compounds (chart 2.39).

Dopamine antagonists: Kim et al. [11] classified dopamine antagonists based BCUT and MOLCONN-Z descriptors using SIMCA procedure (chart 2.40).

Chart 2. 31: Classi ligands in molecula	fication of H r descriptor	High affinity central benzodiaze	pine receptor
▲ 3D-WHIM▲ CLOG P		Classification Classification PCA K-nearest neighbors LDA	
🖑 LDA >k-nn	Ι	nf.Bits.	

Chart 2.32: Agonistic activity of	f human A3 adenosine receptor	lig	ands			
X(Moll Software DRAGON	Desc) 488 Topological descriptors			Significa	nt descriptors	
1) BCUT _modified	2) Functional group classes		Average valence connectivity index of	Sum of topological distances between O	Lowest eigenvalue n.2 of Burden matrix/weighted	Number of secondary aliphatic amides,
Response: Human A3 adenosine receptor agonistic activity of 2-chloro-N6- substituted-4'-thioadenosine- 5'-uronamides	Model: Combinatorial Protocol in Multiple Linear Regression (CP- MLR)		order zero	and Cl, T (O…Cl) from the TOPO class	by atomic masses, , from the BCUT class	nCONHR, from FUNC class

Chart 2.3	3: Descriptors	s for a	adenosine receptors	s ago	nist compounds	
Model GTA:	🔒 Geometr	rical	👃 Topological	Ð	Atom-Weights As	semblY (GETAWAY)
Response receptors	• A ₁ adenosin agonist effect	e	Explainability: 77%	N ⁶ ary dei	arylcarbamoyl, 2-ar lcarbamoyl, and N ⁶ ivatives: 32	ylalkynyl-N ⁶ - -carboxamido
Mode TG	1	Ð	Topological	4	Galvez Topologica	l Charges indexes
Mode RGW	1 7	Ð	Randić	٩	Geometrical	la WHIM
$\aleph R^2$	of Models T	G and	Inf.Bits. RGW 0.70 je. failur	e of 1	nodel	·

l <mark>el</mark> s nability:
]

A 3D Morse	🖨 Randić	Geometrical	la whim	 Alt_models with other types of Descriptors fail
🖨 BCUT	2D autocorrelation	lacktrian America Amer		(Expl : 47% variance

Chart 2. 34: Molecular descriptor modeling of vitamin D receptor affinity									
🔒 whim	TopologicalGalvez charge indices	2D autocorrelations	🖨 BCUT						
	Response vitamin D receptor affinity	Compounds : 86							
Model_explainability: WHIM (71%) >> others (38%)									

Chart 2.35: Model for antimalarial activity against P. falciparum with molDesc										
X(MolDesc)										
1) BCUT	2) Galvez topological charges indexes	 Randic's molecular profiles 	4) Geometrical	5) Topological						
	Resp = fn(BCUT); Failed Models									

Response	Compounds	>80% of variance	With molDes (2 to 5)
Predicting affinity toward A3 adenosine receptors	32 adenosine analogues		

Chart 2.36: Molecular descriptors of low explainability for A2B agonist effect										
X(MolDesc)										
10) BCUT	11) WHIM	12)	Topological	13)	Constitutional	14)	Molecular walk count			
15) Geometric	16) GETAWAY	17)	QC	18)	3D Morse	19)	2D autocorrelations,			
20) Galvez topologi	ical charge indices									
Comp 89 adenosines	ounds						% Variance explainability			
Removed A2R acconist			Best 1	Best model : $\text{Resp} = \text{fn}(\text{RDF})$		F)	70			
Response: A2D agoinst			Mode	Models [1 TO 11]			<47			

Chart 2.37: Molecular descriptor modeling for N6-(substituted-phenylcarbamoyl) adenosine-5'-uronamides analogues								
X(MolDesc)	Compounds: 89 adenosines	Best model % Variance explainability						
1) BCUT 2) Randic	Response: A2B agonist	TOPological 84 Sub-Structural						
3) Geometric		Models [1 TO 11] 75						

Cha	Chart 2.38: Descriptors for adenosine receptors agonist compounds								
Ð	GETAWAY	A	3D-MORSE	Ð	WHIM		A	2D	
Ð	Geometrical	4	BCUT	A	Galvez Topologic indexes	al Charges	Ð	Radial Distribution Function	
A	Topological	Ð	Randić	Autocorrelation					
Inf.Bits.									
1	Bulkiness and stereoselectivity are key factors in affinity for A _{2A} adenosine receptors agonist compounds								

Chart 2.39: Descriptors for adenosine receptors agonist compounds								
Model GTA	lacktriance Geometrical	💪 Topological	Atom-Weights Assembly					
Response: A _{2A} ac	lenosine receptors agon	ist effect	N ⁶ -arylcarbamoyl 2-arylalkynyl-N ⁶ -arylcarbamoyl N ⁶ -carboxamido	derivatives : 29				
		Inf.Bits.						
🛄 Mode	el GTAexplainabiliity	$77\% >> \begin{bmatrix} Top \\ Gal \\ Geo \\ WH \end{bmatrix}$	ological vez Topo_Charges metrical IIM	70%				

Chart 2.40: Model for antimalarial activity against P. falciparum with molDesc									
	X(MolDesc)								
1) BCUT 2) Molconn-Z									
			Models						
Response: predicting affinity toward	Compounds	1328	SIMCA 80% Success						
A3 adenosine receptors	Activity	Dopamine antagonists							
	database	MDDR							
Inform.Bits									
Functional feature hypotheses + t	Punctional feature hypotheses + topological descriptors better in classification								

G SProtLigIntR (Structure Protein-Ligand interaction relationships)

These investigations comprise of interactions of simple proton, water molecule or small ligands to drugs, proteins and other bio-molecules. Many of them are essential for life processes, while some others result in life threatening scenarios.

Ligand–receptor interactions:

Ijjaali et al. [10] used BCUT descriptors to choose a firm for purchase of compounds relevant to ligand–receptor interactions.

Putative proteins: Amadasi et al. [96] estimated both conserved (making at least two hydrogen bonds) and non-conserved water molecules in putative proteins using geometric

descriptor (rank) and HINT score. The bound water molecules gain 0.6-2.0 Kcal mole⁻¹ of binding energy (fig. 2.1).

SDrugR (Structure Drug relationships)

 β -blockers: Quigley and Naughton [144] correlated physico chemical parameters of β -blockers employing molecular descriptors with success (chart 2.41).

Phospholipidosis: Many cationic amphiphilic drugs intervene with cells and the processes resulting in excess accumulation of phospholipids and this adverse effect is called Phospholipidosis. It is detected by electron microscopy of cells by the presence of lamellar inclusion bodies. This is one hurdle in development of drug development.

Lowe et al. [48] (chart 2.42) predicted phospholipidosis employing a larger data set using DRAGON software for molecular descriptors.

S Seq R (Structure sequence relationships)

The variation in properties of tri- and higher peptides with change in amino acid sequence is a hard core and is in borderline between biophysical and biochemical research. A few literature reports indicate the success stories of employing molecular descriptors.

GenetR (Structure Genetics relationships)

Chromosomal aberrations in Chinese hamster lung cells: McElroy et al. [108] employed molecular descriptors in the classification of organic compounds in the context of chromosomal aberrations in Chinese hamster lung cells (chart 2.43).

Mutagenicity halo acetic acids: Pérez-Garrido et al. [151] predicted direct mutagenicity haloacetic acids in drinking water as chlorination by-products making use of spectral moment descriptors and others (chart 2.44). The experimental data for TCAA—Trichloroacetic acid, BDCAA—Bromodichloroacetic acid, and TBAA—Tribromoacetic acid confirm the validity of predictive SmutaGenR models.

Chart 2.43: SChromosomeR NN models with molecular descriptors									SGenetR							
Ceome	Descriptors nic 🖨 Topo tric 🖨 Polar	logical surface			Cla	ssification Models GA kNN		C M ad	Thart 2.44: Descriptors for Autagenicity haloacetic cids							
297	297 Compounds causing chromosomal aberrations in Chinese hamster lung cells Aberrant		ng rations ster lung		; itions er lung		nds	% correct classificati Training	ion Prediction		Geometrical RDF WHIM					
			Aberrant	Aberrant	Aberrant	Aberrant	Aberrant	Aberrant	Aberrant	Aberrant	Aberrant	2	297		86.5	80.0
D		cells		279		85.7	85.7		Information							
Response	Clastogenic	>10%		182		91.5	94.4									
	Nonclastogenic	<5%														

Bio concentration factors: Bordás et al. [43] used DRAGON descriptors in developing predictive models for bio-concentration factors (BCFs) of POPs (persistent organic pollutants) in different plants with ensemble NN models (chart 2.45).

Table 2.2 incorporates a few test cases of activity data sets analysed with molecular descriptors and supervised regression methods.

Chart 2.45: St	Chart 2.45: Sbioconcentration_factors R SActR								
#Descrip Package/type 1660 DRAGON 150 VolSurf 11 QC Predictive models Image: Construction of the second secon									
Response (Measured)BCFs of POPs in different plantsTaskModelCompounds20 Polychlorinated dibenzo dioxins/dibenzofurans14 Polyhalogenated biphenyls									
	Training Validation								
Regression	#	\mathbf{R}^2	q^2	DE	F				
Model-1	27	0.940	0.922	0.155	392.1				
Model-2	27	0.921	0.898	0.161	140.4				

Table 2.2: Typical stu	dies in S	S Act R		
Activity	#	Molecules	Descriptors	Model
Inhibitory effect		Benzothiazole	 Classical variables 	Stepwiseregression
Muscarnic activity	2000	Compounds	 TOPO 	Trend vectoranalysis
Enzyme P56 Protein tyrosine kinase	105	Flavonoid inhibitors	QCClassicalphysico-chemical	• CNN
Herbicide PI 50	30	Triazines	TOPOOrthogonalized	 MLR PCA Dominant Component analysis
Human intestine absorption	86	Drugs	 728 Descriptors CORINA HYPERCHEM ADOPT MOPAC 	MLR CNN
IC50	37	Bis amidines Isohelical pentamidines	Similarity indexCharge indexShape index	• MLR

Log(1/C)	39 60	Carboquinones Benzodiazepines	•	LogP MR	0	NN
BR	256	Diaminodihydrotriazines	•	Hydrophobicity Size Hammett σ	0	NN
BR	128 129 130	4-substituted Guanidino Thiazole	•	Wiener X	0	Correlation
Carcinogenic activity binary(exo-or-endo-)	11	РАН	•	Ordinal data NMR ¹³ C		
Mutagenic activity		Nitro sub PAH	•	MW # N #Ar rings #methyl groups Estate index		
Base line toxic Pol parcosis	172		•	QC	0	PLS
LC50					0	MLR

Contributions of Katrizky

Katritzky et al [26-32, 35-38, 40-41], developer of CODESSA from University of Florida, reported predictive skin permeability rate (chart 2.46), solvent effect on decarboxylation of 6 nitrobenzisoxazole-3-carboxylic acid (chart 2.47), molecular adduct formation of β -cyclodextrin with organic guest molecules (chart 2.48), thermodynamic free energy relationships (chart 2.49) for solvation of 80 solutes in varying number of solvents (upto 80), SToxR multi-parametric models for aquatic toxicity of Poecilia reticulata (guppy) (chart 2.50), six-parametric SpropR model (chart 2.51) for melting points of ionic liquids, six parametric SXR model for gas phase lithium cation basicity of organic compounds with quantum chemical descriptors (chart 2.52), multi- (Lipophilicity Hydantoin by HPLC-RT, fragment descriptors in SPropR regression models of cmc of anionic surfactants (chart 2.53), critical micelle concentration (chart 2.54),4-variate linear models for boiling point of azeotropic mixtures (chart 2.55), and melting points of potential ionic liquids with CODESSA (chart 2.56).

• Entropy effect predominates

four-descriptor MLR
 Validation

InternalExternal

Task: Regression

Inf.Bits									
• Descriptors are related to three components of the enthalpy (heat) of vaporization									
Courtesy of Ref 26									
Chart 2	2.56: S lo	ogCMC R	SPropR						
	escriptors CODESS	SA Co	ompounds: 104 esponse : Melting point (MP)						
Com	pounds								
#	Set	R^{2}	Model						
57	A	0.7442							
29	В	0.7517	5-Parmater equation						
45	D	0.6899							
18	18 C 0.9432 3-Parmater equation								
	Set D: Benzimidazolium bromides								
Sets A,B,C:N-substitution in imidazolium bromides									
Inf.Bits Size and electrostatic interactions in the cations are major contributors for MP									

SRespR (Structure Response Relationship)

The response of an instrument for a chemical/biological system revolutionized the knowledge processing to understand, predict and arrive at materials of desired characteristics within reasonable limits. The tensorial order of data (zero to three) in standalone and hyphenated instruments per compound is a signpost of the intricate details of the structure mirrored in response. The studies pertaining to one compound are primarily aimed at chemical structure elucidation. The similarity and diversity investigations involve a small to a large set of compounds. Quantitation on the other hand, deals with one or many compounds at different concentrations. In table 2.3, the investigations reported on ¹³C NMR and chromatography using molecular descriptors is presented.

Table 2.3: A few typical studies in S Res R									
Property	#	Molecules		Descriptors		Model	Software		
HPLC RI	126	PAHs	•	Total energy Polarisability IP	0 0	MLR AMI	MOPAC		

			•	μ Sub polarity	0 0 0	MLRI MNDO PM3	
NMR ¹³ C	24	Trn	•	24 Descriptors	0 0	MLR NN-BP	ADAPT
NMR	13	Compounds	•	150 Topo Geo Elec	0 0	MLR(10) NN	
Structural variation	154	PCB	•	52 QC	0	PCA	HYPERCHEM

For, ¹³C NMR data, the quantum chemical (charge) and environment (nearest neighbour) descriptor play an important role. In chromatography, the characteristics of the stationary, mobile phases and the compounds dictate the type of descriptors to be used as explanatory variables. Size and ionization potentials are of prime importance in modelling MS response. However, many other descriptors of different types enhance the power of the model and accuracy of prediction. Thus, the cycle of descriptor research jargon is repeated and the best model is proposed based on case-by-case inspection. The experimental response with sophistication in instrumentation and automation is reliable only in the hands of pure experimentalists of the time tested laboratories. That is why the response data already published or compiled by authentic agencies are the source of data in molecular descriptor activity.

⊥ SChromatR (Structure Chromatography Relationship)

Aldehydes: Ren et al. [131] applied MLR in structure GC_ response_ relationships of aldehydes and ketones on different polar stationary phases (chart 2.57).

Saturated esters: Liu et al. [132] put forward structure GC retention relationship model for a series of saturated esters on several stationary phases with MLR with acceptable statistics (chart 2.58)

Flavor/fragrance Molecules: Rojas et al. [133] [used DRAGON software to model GC retention index of fragrance and flavors compounds with nearly five thousand molecular descriptors of various categories (chart 2.59).

Oxyethylenes: Voelkel et al. [166] proposed topological descriptors in SGC_ Reten_ Relationship model of oxyethylene derivatives (chart 2.60).

Heterocyclics: Farkas et al. [161] predicted gas chromatographic retention indices for heterocyclic (O-, N-, and S-) compounds on standard nonpolar polydimethyl siloxane stationary phase employing molecular descriptors (chart 2.61).

Oxygenated organic molecules: Liu et al. [132] found polarizability based descriptors could explain variation in Kovat retention index for a set of diverse oxygenated organic structures (Chart 2.62).

Reversed-phase fused-core HPLC: D'Hondt et al. [148] developed peptide_ SRetentionR for 16 chromatographic systems using WHIM, 3D-MoRSE, RDF and log P descriptors of amino acids.

Reversed-phase HPLC_ pesticides: D'Archivio et al. [150] found inferiority of WHIM and GETAWAY descriptors compared to quantum chemical or physico-chemical parameters (log kow and pKa) in SRetentR of pesticides.

HPLC_RT: Novotarskyi et al. [52] put forward ensemble MLR and MLP_NN models for retention indices of HPLC data with SIR, state descriptors etc. (chart 2. estate-18) as explanatory variables (chart 2.63).

The variation in variation GC retention index values for alkylbenzenes (chart 2.64), Chlorinated dibenzodioxins [140] (chart 2.65), fatty acid methyl esters [137] (chart 2.66) and Terpenoids [138] (chart 2.67) are reported. Selection of subset of compounds with similar or orthogonal character is calculated with WHIM (chart 2.68).

Similarity of chromatographic systems: Gyseghem et al. [156] selected a set of 10 compounds with orthogonal properties using WHIM descriptor data. Earlier, a set of 68 active pharmaceutical substances were tested for orthogonality/similarity of chromatographic systems.

NLO response with QC descriptors: Xu et al. [152] applied 3D-SXR models for nonlinear optical responses of organic chromophores with quantum chemical descriptors. The R2 values for prediction of β and γ are 0.943 and 0.963.

Chart 2.59: Predictive SGC_Reten_Relationships of							
DescriptorsSoftware :DragonMolDesc:4885	 Flavor/fragrance Molecules Response (Measured) Glass capillary gas chromatography column I 208 GC retention i OV-101 	ndex					

Chart 2.61: GC_RI indices of heterocyclic compounds										
X(MolDesc)										
1) Connectivity	2) Constitutive3) Zero- dimensional	4) Galvez Topological Charges indexes								
5) GETAWAY										
Response: Boiling point Molecular weight	Model : Resp = fn(Moldes)									
Variable selection	Subset selection	🖨 PLSC								
Response = fn(moldes)	💪 MLR	🖨 PLSR								
Validation	👃 CV	£								

(Chart 2.62: SGC_GCReten_Relationships for oxygen-containing organic structures							
ſ	Descriptors		Molecules		٩	Diverse organic st	oxygen-containing	
	A Molecular polarizability effect index		Response (Measured)	Ð	Kovat's re	etention index	
A Modified molecular polarizability index			Stationary	ary phases 🛛 矣		OV-1 and	1 SE-54	
	Modified inner molecular polarizability index			Model		MLR	1	
			S	Statistic		r > 0.99		

Chart 2.64: alkylbenzenes					
Descriptors ▲ Topological ▲ Geometric descriptors ▲ electronic	 Molecules Response GC _ Kovats_RI (Measured) 				
 Descriptor selection SRespR Model Max (information of RI [SRespR_ models ita Analysis and Pattern Recognition Toolkit (ADAPT) tion) I NN Inf.Bits. Inter laboratory reproducibility				

Chart 2.66: Fatty acid methyl esters								
Descriptors Molecular Mumber of double bonds mass Topological descriptors	 Molecules Molecules 130 Fatty acid methyl esters (Branched, saturated and unsaturated) Prediction A Fatty acid methyl esters A Response (Measured) GC _RI 							

⊥ S NMR R (Structure NMR Relationship)

COSY (¹³C-¹³C): Beger et al. [75] reported structure NMR information relationships using molecular descriptors (chart 2.68b). This study combined CQC_NMR chemical shift information and atom-to-atom distances of the molecule in SRespR modeling.

Chart 2.68b: 2D-NMR COrrelation Spectroscopy (COSY) ¹³ C- ¹³ C						SActR	
		Π	Molecules	ے 3	0 Steroids		
Descriptors Lestate				A B	Binding to corticosteroid binding globulin		
	ogical ^C hi		Response	Y=(¹³	$^{13}C COS$	SY)	
			Descriptors	$X = (^{13})^{13}$	C- ¹³ C dista	ance spectra	a)
		Π			St	atistics	
			Model		St I	atistics Leave -m-o	ut
Dimension reduction an	d cause-effect models		Model	r ²	$\frac{St}{a^2}$	atistics Leave -m-o	$\frac{\mathbf{ut}}{a^2}$
Dimension reduction an Orthogonalization/	d cause-effect models PCY = PC(Y)		Model	r ²	$\begin{array}{c} \mathbf{St} \\ \mathbf{I} \\ \mathbf{q}_1^2 \end{array}$	atistics Leave -m-o q_3^2	$\frac{\mathbf{ut}}{q_{10}^2}$
Dimension reduction an Orthogonalization/	d cause-effect models PCY = PC(Y) PCX =PC(X)		Model PCR	r ² 0.96	$ \begin{array}{c} \mathbf{St}\\ \mathbf{I}\\ \mathbf{q}_1^2\\ 0.92 \end{array} $	atistics .eave -m-o q_3^2 	$\frac{ut}{q_{10}^2}$

S PhysChemBiolPar R (Structure Physical_Chemical_Biological-parameter Relationships)

The data from an instrument or scientific experiment if operated in Physical_ Chemical_ Biological_ Marine framework generates free parameters called constants. These are popularly fixed in the mind as chemical constants, biological constants etc. In general, a single (scalar) or nth order tensor (hitherto first order are common) of constants are in reduced dimension compared to the data generated (0 to 4th order or way) for this purpose. Further, these constants are in a specialist's (chemist/ physicist/ Biologist/ Geologist/ marine scientist) space and contain a lot of implicit information. But, it is obscure to nonspecialists who may be even experts in other fields. For example, rate constant in chemistry varies with temperature, dielectric constant and/ or chemical structure; but the important information outpoured is how fast the said reaction takes place. Further, they are not like fundamental constants Avogadro number in chemistry or Plank constant in Physics and so on. The variations of such physico-chemical (Henry, logmobility, biochemical binding) constants are explainable in terms of molecular descriptors cited in table 2.4.

Table 2.4 : Select cases of S PCC R						
PCB parameter	#compounds	Descriptors	Model	Software		
Henry's constant	63	 144 descriptors 53 GA SAA 9 TOPO Geo 	• MLR	ADAPTMOPAC		
Ion multiple constant	168	 83 TOPO 23 Geo 48 Electronic 	NN6-2-1MLR	 HYPERCHEM ADAPT EHNDO (in house) selection of descriptors SA,GA 		
Ion multiple constant	70 Tr 70 Te	 79 TOPO 17 Geo 5 Electrostatic 25 CPSA 126 Total 	MLRNN	🗁 МОРАС		
log(1/K _m)	89 Peptides	• 29 Parameters	PLSQ-PLS			
Logk	57 Unsaturated	• QC	O PLS			
LogP	219	TopologicalGeometricInformation	• MLR			

The applications of molecular descriptors brought a renaissance in cause-effect relationship modeling. In the classical modeling, experimental (logP, dielectric constant) /derived parameters ρ , σ etc. were from 2 to 8. Leaving aside the improvement in modeling technology, the number of X variables increased to nearly 4000. This posed the same old hurdles like correlation in multi-channel responses. The correlation may be in chemical (X) space and/ or Y space. These correlations are again are statistical, chemical or chance based.

 $Log\beta$ of metal complexes of ionophores: Tetko et al. [58] applied $Slog\beta R$ model for metal complexes of ionophores with E-state molecular descriptors (chart 2.69). The hurdles in comparing different methods, descriptors in trust worthy comparisons are difficult with small number of datasets.

 $log(1/K_i)$: Zheng et al. [153] modeled measured $log(1/K_i)$ values with of 104 VMAT2 ligands using different categories of molecular descriptors (chart 2.70).

S ΔGR : Katrizky et al. [37] proposed structure solvation free energy models for a solute in a series of solvents employing advanced descriptor selection procedure with their CODESSA PRO software (chart 2.71). Boudene et al. [101] reported SNMRR and STherR of a series of methylaluminoxane (MAO) cages of varying repetition units with a follow up good predictivity of ΔG_r (chart 2.72).

Log P: Tetko et al. [76] performed an extensive ensemble NN modeling for nearly 13 thousand logP values of organic molecules to develop ALOGPS (v2.0) software for prediction purposes (chart 2.73). Panek et al. [90] applied Kohonen_NN in unsupervised classification of 88 substituted aromatic compounds in molecular chemical descriptor space followed by cause-effect model of measured properties using Counter-Propagation_NN (chart 2.74).

logD uranyl species: Varnek, Katrizky et al. [35] performed an exhaustive study of modeling of uranyl extractants with molecular descriptors, generation of virtual library, prediction of logD, synthesis of best hypothetical compounds and finally testing them for extraction behavior. Two compounds met the criteria endorsing the success of SXR as a preamble before attempting synthesis of lot compounds (chart 2.75) as in irrational brute force approach.

Caco-2 Cell permeability: Randić and Pompe [25] made use of around 900 descriptors from different software packages (chart 2.76) to arrive new molecular entities (NMEs) by screening PBC and BCSs based on Caco-2 Cell permeability and dose Number.

SPermeabilityR: González et al. [23] reported a TOPological sub-structural molecular design to account 90% variance of permeability coefficient for 63 compounds and assessed the efficacy of many types of molecular descriptors (chart 2.77).

• Hansch parameters vs molecular descriptors:

Chiu and So [65] showed that E-state descriptors as well as Hansch (π and MR) parameters yield similar results in SPropR for a variety of compounds. And molecular descriptor sets based upon the approach of Kvasnicka, Sklenak, and Pospichal are capable of substituting F and R parameters. The hydrophobic, steric/polarizability, electronic (field and resonance) characteristics of the substituents are reflected in π , MR, F and R.

Chart 2.6	69: SC	ComplexationR				
A E-sta A Cour atom	ite	 Descriptors Sub-structural molecular fragments toms determined for E-state 	Mole Resp (Mea	ecules ponse ponse (asured) $iogK_1$ for ML $log\beta_2$ for ML ₂ M: Ag ⁺ ; Eu ³		
				Model_Statistics		
	N	Aodels		S-fold external-CV		
MLR	RBF_	_NN		Robust statistical tests Proststrap		
SVR	Maxi	imal Margin Linear Programming		Solmogoroy-Smirnoy		
K_NN	Asso	ociative NN		Wilcoxon signed-rank test		
		Inf Bits				
	 Predictive models [SMF descriptors + E-state counts] superior to [E-state indices] Average (MLR) with SMF has good predictability Results with [SMF] ; E-state counts Less significant models with E-state indices 					

Chart 2.7	0: SXR model f	or VMAT2 with m	ol	ecular descriptors				
WHIM	Descripto GETAWAY	rs Topological		Durit	Mode	/Training	Prediction	
RDF	Geometrical	Aromaticity		Descriptors	R^2	RMSD	Q^2	LOO RMSD
				NN model (experimental vs predicted)	0.91	0.225	0.82	0.316
				Non-linear NN	0.93	0.382		
				Inf.Bits.				
. 🥙 :	🖑 SXR model reflected critical role of size, steric structure and atomic distribution							
. 🥙 :	Sheds light on RDD of new chemical moities as ligands of VMAT2							
🥂 I	Tirecting synthesis of new futuristic molecules							

Chart 2.71: S ΔG R			SPropR
Descriptors CODESSA Pro			Compounds 500 Solvents 69
Model2-pyrrolidonedipropyl ether	R ² 0.837 0.998	SD 0.1 0.02	 Descriptor selection Advanced variable procedure CV

Chart 2.72: Predictive modeling of ΔG_r with molecular	-76	
descriptorsStep: \underline{Zero} Input:56methylaluminoxanecagestructures $[AlMeO]_n$, n = 6:12	-78 -80 -80	s. inter

			Courtesy of Ref 101
Step:	<u>One</u>	Geometry opt with DFT	
Step:	<u>Two</u>	Calculation of molecular descriptors Geometric, electronic	
Step:	<u>Three</u>	Response: \checkmark Internal energy \checkmark Enthalpy \checkmark Gibbs free enthalpy (ΔG_r),	
Step:	Four	Supervised Learning Identification of opt descriptors	
Step:	<u>Five</u>	Predictive modeling Input : opt descriptor Prediction of ΔG_{rof} [AlMeO] _n n= 6 to 33	

Chart 2.74: Kohonen and counter propagation NNs in

Μ	MolDisc modeling of aromatic substituted compounds Descriptors							
Ð	WHIM & RDF & 3D-MoRSE							
Ð	Atom	ns in Mole	ecules 💪 Electron Localization Function	Q	G ETAWAY			
5	Step:	<u>One</u>	Input: 88 nucleophilic and electrophilic substituted aromatic compounds]				
5	Step:	<u>Two</u>	Descriptor calculation					
5	Step:	<u>Three</u>	Classification_unsupervised: Kohonen NN					
8	Step:	<u>Four</u>	Response:					
5	Step:	<u>Five</u>	Supervised Learning : Counter-Propagation_NN					
5	Step:	<u>Six</u>	Testing of MolDesc space					

3D-MoRSE	Three-Dimensional Molecule Representation of Structures based on Electron
	Diffraction
GETAWAY	Geometry, Topology and Atom-Weights Assembly
WHIM	Weighted Holistic Invariant Molecular

Chart 2.76: S Cell permeability R	SParR
 Descriptors CODESSA S6 topological indices Variable connectivity index ¹χ^f (not availabe in CODESESS) 	 Property: [™] Boiling point Compounds : 100 alcohols
Model equation BP = $38.12^{-1}\chi^{f} - 37.56$ rRMS °CFisher ratio0.00154.21	 Task : Prediction Models: MLR
0.9915 4.21 5691	

Cł of	nart 2.77: Permeability molecular descriptors	y of polyethylenes as		
		X(MolDes)	permeability coefficient (63,1) = fn(Desc)	
A	Geometric	Constitutional	GETAWAY	
A	2D-auto correlation	🔒 BCUT	General 3D-Morse	Expl: <90% (Compounds :63)
Ð	WHIM	General 3D-Morse	💪 Topological	
A TOPological Sub-S		tructural Molecular	Design (TOPS-	Expl >77%
	MODE)		U X	Compounds: Low-density polyethylene Temp : 21.1 °C

S Process R (Structure Process Relationships)

Jelcic [160] put forward solvent molecular descriptors for elucidating the effect of solvent on the poly(D, L-lactide-*co*-glycolide) (PLGA) nanoparticle size in the emulsification– diffusion method. The experimental data correlated well with information from molecular descriptors (chart 2.78) and this is a reliable probe to have an insight into thermodynamics and the molecular nature of the polymer nanoparticle formation in the solvent environments.

Chart 2.78: Moleo	cular descriptors for	r solvent effects on sizes of nanoparticle
Model	Response	Fn(MolDesc)
Coarse	Nanoparticle sizes	 hydrophilicity index Randic shape descriptor
Rigoruous		 GETAWAY Directional WHIM 2D Morse

Sorption: Schüürmann et al. [71] reported E-state descriptors predictor model for sorption of organic molecules into soil (chart 2.79). Andersson et al. [47] (chart 2.80) used a combination of topological, geometric and quantum chemical descriptors in prediction of soil sorption studies.

Chart 2.79:	SlogKR							SPropR
E-stat	escriptors	► 24 Frag	gments	Response	(Measured)		\bigcirc log $K_{\rm oc}$	7
A Moleo	ular weight	Bond c	onnectivity	Task Generation				
	Models			Data set	571	r ²	Standard error	٦
	MLR	Linear		Training	Compounds 80%	0.852	0 469 log units	_
	PLS	Non-linear		Test set	20%	0.052	0.109 log units	
	Continuu	m Regression						
Mode Analy	Inf.Bits. Model >> linear solvation energy relationships Analysis for subsets of H-bond donors/acceptors & non-polar/weakly polar compounds							

S Reaction R

Homolysis of C-X bonds: Hiob and Karelson [33] predicted logk values for gas phase homolysis of C-X bonds with molecular descriptors (chart 2.81). The variation of bond lengths especially of C-C, C-H in different environments drew the attention of molecular groups. Molecular descriptors successfully modelled these precise and accurate numerical values.

G SPropR (Structure Property Relationships)

Boiling point, melting point, refractive index and glass transition temperature are some of the widely studied properties of physico-chemical relevance. The explanation and prediction of these properties of a set of congeneric or diverse organic compounds found a niche as SPropR. It encompasses both linear and non-linear trends in descriptors and their transformed space. The advances in cause-effect modelling technology, selection of variables, similarity/diversity measures, residual analysis, best set of models, ensembles, forests and optimization methods

continuously uplift the quality of these chemoinformatic models. The soft from of the table is available in WINWORD, Excel and database formats. It can be readily sorted chronologically compound/ response/ modelling techniques wise. The link field (references) common to the literature enables picking up the contributions of an author(s) and references form a single or a group of journals specific period of time etc. The static knowledge base contains the up to date state of art of each of the sub goals in descriptor research like geometry of optimization, hard modelling, soft models, residual statistics and packages to calculate different types of descriptors, typical data sources.

• Aqueous solubility: Catana et al. [70] tested continuum regression and linear andnon-linear PLS models for a large set of aqueous solubility of a large number of compounds (chart 2.82). Tetko et al. [59] proposed SLP_(33-4-1)_NN for aqueous solubility of around 1200 molecules with electro-topological E-state indices (chart 2.83). Abramov [86] obtained thermodynamic intrinsic aqueous solubility of compounds by indirect measurements and molecular descriptors. The accuracy and predictive power depend upon solid state contribution viz. solid state, ΔG_{fits} and nonsolid state, ΔG_{mix} . The results with SpropR and descriptor based models show the need for molecular descriptors accounting for long range periodic effect in the crystalline state. Liu et al. [34] predicted C60 solubility in different solvents with CODESSA descriptors as explanatory variables in SVR (chart 2.84). Pham-The et al. [55] made use of around 900 descriptors from different software packages (chart 2.85) to arrive new molecular entities (NMEs) by screening PBC and BCSs based on Caco-2 Cell permeability and dose Number.

Melting point: Varnek et al. [66] developed predictive structure melting point relationships with descriptors from DRAGON software with good success.

Boiling point: Lima Ribeiro et al. [146] reported physico-chemical properties modeling of PAHs in molecular descriptor space by soft regression techniques (chart 2.86).

Glass transition temperatures : Kim et al. [145] employed MLR and NN models to model and predict glass transition temperatures of electroluminescent molecules with different kinds of calculated descriptors based on graph theory, thermodynamics and quantum-chemical-electrostatics (chart 2.87). Mattioni and Jurs [98] reported 10-descriptor computational _NN SPropR models for glass transition temperature of monomer and polymers with good predictive statistical measures (chart 2.88)

Viscosity of ionic liquids: Mirkhani and Gharagheizi [89] arrived at SPropR model for ionic liquids using molecular descriptors as causative factors for variation of viscosity.

Chart 2.82: SSolubilityR						SPropR
Descriptors	Response (M Task	easured)	Aque Aque	eous Solubility diction		
ModelsNNsDLS		Data set Training Test set	<i>Compounds</i> 930 177	<i>r</i> ² 0.935 0.911	RMSE 0.468 0.475	
PLS Non-linear Continuum Regression	Ini	f Bits				
Predictive Aqueous solubility m	nodels (R) \cong Non-linear m	nodels				

Chart 2.86: Predictive r	Chart 2.86: Predictive modeling in molecular descriptor space for properties of PAHs							
	X(Mol	Desc)						
Connectivity		A Topological	A	HOMO,LUMO energies		Surface area		
A Molecular hardness	A Polarizability	Atomic charges	A	Electrnoic	A	Steric		
	Respor	ise						
				Property	PLR	PLSR		
				BP	0.995	0.995		
 Boiling point 	 Octanol-water partition coefficient 	• Retention time i	ndex	log Kow	0.975	0.976		
				RI	0.898	0.898		

Chart 2.87: Molecular descr Descriptors 1 Topological 1 spatial 3 electrostatic 1 thermodynamic	ptor modeling of glass transition temperature Molecules 103 organic electrolumi-nescent devices molecules Response glass transition temperature #Descriptors 83
$\begin{array}{c c} & 1 \text{ thermodynamic} \\ \hline & 1 \text{ structural} \end{array}$	Model statistics

ا گ Desc گ SPro	Models criptor Se GA pR MLR NN	election		Molecules Training Prediction	8 # 81 22	R ² 0.989 0.976	Aver error 8.8 13.	age • (K) 8 9		
Chart 2.88	Glass t	ransitio	n temperature	prediction with mole	cular o	lescripto	ors using	g NNs		
		D	escriptors			<u>^</u>	Mode	els	Desc	selection
	Ge Ele	ectronic cometric		ogical		ML	.R nputatio	nal NN	🖨 SAA 🔓 GA	A
					_					
		N	Aonomer					Р	olymers	
	RMS	R2	Compounds	165			RMS	R2	Compounds	251
Training	10.1	0.98	Response	Glass transition Temperate	T	raining	21.1	0.96	Response	Glass transition Temperate
Testing	21.7	0.92	Opt_descrip	10	Т	esting	21.9	0.96	Opt_descrip	11
			Committee	10 CNNs					Committee	10 CNNs

Table 2.5 describes a few typical investigations of molecular properties employing descriptors from a variety of packages.

Table 2.5: Ty	pical stu	dies in S Property R				
Property	#	Molecules	Descriptors	0	Model	Software
	150	\bot Alkanes (C ₁ -C ₁₀)	•	0	MLR	 MDE Molecular distance edge vector
חח	299	 ⊥ Tetrahydrofuran ⊥ Thiophene ⊥ Furan 	TOPOQC	0	MLR	
BP	572	⊥ Pyran ⊥ Pyridine	CPSAGeo	0	NN (20:10:1)	▲ ADAP1
BP	185	 ⊥ Ethers, peroxides ⊥ acetals, ⊥ sulphur analogues 	• 11 TOPO	0 0	MLR RBF	
BP	1020	Ť	GEOTOPOInformation	0	MLR	 Poll SYBYL .2 CONCORD 3.2.1
BP	9	\perp Isomers of heptane	• 4 Orthogonal	0		*
BP	532	▲ Halo-poly halo alkanes	 TOPO 	0	MLR	*

ВР	134 209	1 1	Thiophenes Furans/tetrahydrofurans	•	77 TOPO Electrostatic	0	MLR	*	ADOPT
BP	296	Т	Hydrocarbons	•	40 total descriptors	0 0	MLR NN	* *	GA (selection of)
BP	185 22 44		Acyclic compounds Ethers Sulphides	•		0	MLR		
BP			Halo polyhalo alkanes C ₁ -C ₁₁	•	12 descriptors	0	MLR		
BP	52	Т	Chloroethanes	•	Descriptors	0	MLR		
BP	155	⊥	Acyclic ethers	•	TOPO E-state Balaban	0	MLR		
ВР			Haloalkanes (C1-C4) C1 : 15 C1-C2 : 62 C1-C4 : 276	•	TOPO Information	0	NN		
BP CT	298 Tr 154 Te	⊥ ⊥	Industrially important	•	QC TOPO	0	NN MLR	* *	ADAPT MOPAC
BP Critical temperature	298	⊥	Saturated/unsaturated	•	8 descriptors	0 0	MLR NN		
BP Critical temperature	227 100 327	1 1	Non-nitrogen nitrogen	•	Descr selection SA GA	0 0 0	MLR NN 8-3-1		
ВР	298 19	т Т	O,N,Cl,Br Pred Compound	•	2 Geometric	0	MLR(8)	٠	CODESSA
BP MP CP MV	150	⊥	Alkanes (C_1 - C_{10})	•	8 TOPO (substructure)	0	NN 8-7-1		
BP MP Crit temp MV	150	⊥	Alkanes (C ₁ -C ₁₀)	•		0 0	NN MLR		
Crit temp Crit PRES	165	\perp	Industrially important organic compounds	•		0	MLR	* *	MOPAC ADOPT
Critical temperature	76 165	⊥	Hydrocarbon	•	TOPO QC	0	PCA MLR	* *	CODESSA MOPAC 6.0
МР	443	⊥	Substituted benzenes	•	Information QC Electrostatic Geometric	0 0	PCA MLR	*	CODESSA MOPAC
МР			Pyridinium Bromide	•	Information QC Thermodynamic	0	MLR	*	CODESSA MOPAC
Octane		1	Heptanes	•	TOPO	0	PLSR		

1	1			-				1	
number					Sub graph				
Refractive									CODESSA
index	125	1			Geometric	0	MLR		CODESSA
Defrective		T	Amorphous	-	Geometrie				455 CODESSA
index		T	Homopolymers	•	QC	0	MLR (5)	*	055 CODESSA
			Homoporymers		144 Descriptors				
					144 Descriptors				
Solubility	140	1	Aromatic		DI UA, SAA				ADAP1 MODAC(PM)
Soluonity	140	L	Aliphatic		9 IOPO	0	NN		MOFAC(1 MI)
					GEO				
					Tamplogian				
	109	L	II-decombone		Topological				CODECCA
Solubility	132		Hydrocarbons		Electrostatic	0	MLR		CODESSA
	241	-	Halogens		QC L farmation				MOFAC 0.0
				•	Information				
Calability	150	H	Alkanes C_1 - C_{10}						
Solubility	54	-	Alcohols &	•	Cavity surface area	0	MLR		
			Hydrocarbons						
				•	ТОРО				ADAPT
Solubility	332	T	Compounds	•	GEO	0	MLR	*	HyperCHEM
			compounds	•	Electrostatic		CNN	*	MOPAC
				•	QC				
~	200			•	TOPO				
Solubility	300	-			GEO	0	MLR		
0.1.1.1%				•	Electrostatic				
Solubility	52 Tr				00	0	NIN	*	ADAPT
111 super	52 II 6 Te	1			QC		ININ	*	HyperCHEM
critical CO ₂	010			•	GEO	0	7-2-1	*	MOPAC
Solubility				•	00		MID		CODESSA
of gases	400	1	Compounds		GEO	0	MLK		MOPAC
C -1 nt	25			-	ULC L farmation		FCK		CODECCA
polarity	25 67				Information	0	MLR		CODESSA
polarity	07			-	Geo		PCR		
Tg	88	L	Polymers	•	QC	0	MLR(5)	*	CODESSA
1/D				•	GEO	-			
VP Solubility									CODESSA
logP	411	1		•	QC	0	PC		MOPAC 6.0
logi									MOI AC 0.0
				•	25				
		\bot	РАН	•	Constitutional				
VP	479	L	Acids		Geo	0	NN-MI R	*	CACHE
		L	Feters		00			*	MOPAC (MP3)
			Esters		TOPO				
					1010			*	POLLY 2.3
1/D	342	L	Tr					*	SYBYL 6.2
VP	134	T	Те	•	92 TOPO	0	MLR	*	CONCORD
			ic .						3.2.1

Miscellaneous:

Cyclic compounds: Hu et al. [67] [extended SPropR models to cyclic compounds with a hybrid method

of projection pursuit and number theory based algorithms (chart 2.89). It generates uniformly distributed directions on unit sphere helping interpretation. The information hidden over the spaces are spanned in connectivity, Kappa and Atom-type E-State Indices.

Diversity of compound collection: Ma et al. [85] increased of an existing compound collection through BCUT chemistry space and prioritization algorithm. Further, it was probed into correlation of distance of chemistry-space and Tanimoto similarity index in weighted linear regression (Fig. 2.2).

Isoxazoline and oxime derivatives: Wang et al. [91] used GA in selecting molecular descriptors and MLR for an optimum model for 33 isoxazoline and oxime derivatives of podophyllotoxin (chart 2.90)

Pesticides: Che et al. [93] reported SpesticidalActR of N-Arylsulfonyl-3-acylindole Arylcarbonyl Hydrazone derivatives against nematicidal activity with a variety of molecular descriptors (chart 2.91).

Uptake capacities of methane: Fernandez et al. [94] studied \sim 58,000 hypothetical Metal–Organic Frameworks structures for uptake capacities of methane, N₂, and CO₂.

Test Data : ~25,000 MOFs						
\mathbb{R}^2	0.70 to 0.82					

Scavenging activity: Argüello-García et al. [143] reported hard and soft regression models for SActR of scavenging behavior of thioallyl compounds with energy and surface area descriptors (chart 2.92).

Pereira et al. [46] modeled Parr electrophilicity index with supervised models based on different philosophies using molecular descriptors as causative factors (chart 2.93)

Chart 2.92: Aliphatic, heterocyclic amines	
Descriptors Descriptors Topological Descriptor	Molecules Thioallyl Compounds from Garlic Response Scavenging activity Method Catalase protection assay
Electronic E Total energy	

In binary classification of compounds using molecular descriptors of properties, naive Bayes classifier is suboptimal with a possible large bias (Fig. 2.3). ROC plot is instrumental in consolidating the descriptors with true positive and false positive characteristics for promiscuous compounds (Fig. 2.4).

03. MethodBase_MolDes (MB. MolDes)

3 Constitutional descriptors

Constitutional descriptors refer to atom/bond/ring/groups/substituent counts in a molecule along with bulk quantities viz. molecular weight, average molecular weight (Chart 3.1). In a nut shell, they reflect the compositional details of a molecule. The total number of moieties, the ratio or fraction is more informative compared to basic data of presence/absence of a group.With advanced spectroscopic/ quantum chemical/ reaction dynamics techniques, the numerical information from constitutional category is simple/ trivial and assimilated as preliminary from purists' chemistry point of view. However, they have a niche in molecular descriptor research of macromolecules/drugs/ materials so on.

					Co	unt descriptors
		Descriptor	Fragment	#\$\$\$		
		Input	1D-strucutre		A	Total non-Hydrogen
Descriptor	Constitutional	Significance	Gross composition of		Δ	Single
Input	1D-strucutre	Significance	molecule		$\overline{\mathbf{a}}$	
Annlingtion	Similarity searching	Retains	Chemical information		6	Multiple : [Double
Application	and clustering	Does not	Neighboring fragment	Bonds		triple]
Significance	Molecular composition	retain	influence		9	Rotatable 3.aromatic
		Domody	Environmental		A	Rotatable 3.fraction
		Kenledy	descriptor		0	
		Limitation	Does not indicate		6	Order (H-
		Linntation	connection			suppressed/depieted)

		between in atoms		 Including in hydrogens Between heavy a
	[pri qua [SP	mary, secondary, ternary] 3, SP2, SP]	Tertiary,	H-bond donors H-bond acceptor
		Thart 3 lb: Functional Gro	uns	
	• • • • • • • • •	ammonium	phenols	phosphites
phosphates	phosphothionates	phosphodithionates	Phosphothioates	* *
aldehydes	amidine	anhydrides	hydroxyls	Azetidines
Aziridines	Beta-Lactams	carbonate	carboxylic acids	CH2RX
CHR2X	CHRX2	CR2X2	CR3X	CRX3
cyanates	disulfides	dithioacids	dithioesters	esters
ethers	Furanes	guanidine	hydrazones	hydroxyl
hydroxylamines	hypohalogenydes	Imidazoles	imides	imines
isocyanates	Isothiazoles	isothiocyanates	Isoxazoles	ketones
N azo-	hydrazines	nitriles	nitro groups	nitroso
N-nitroso	Oxazoles	oximes	Oxiranes	Oxolanes
Oxetanes	oximes	phosphanes	phosphates/	phosphites/
			thiophosphates	thiophosphites
phosphonates/	phosphoranes/	positively charged N	primary alcohols	primary amides
thiophosphonates	thiophosphoranes			
primary amides	primary amines	primary amines	Pyrazines	Pyrazoles
Pyridazines	Pyridines	Pyrimidines	Pyrroles	Pyrrolidines
quaternary N	R#CX	R=CHX	R=CRX	R=CX2
secondary alcohols	secondary amides	secondary amines	sulfates	Sulfenic (thio)
thio-/dithio-	sulfones	sulfonamides	sulfonates	sulfoxides
sulfuric	tertiary alcohols	tertiary amides	tertiary amides	tertiary amines
Thiazoles	thioacids	thiocyanates	thioesters	Thioethanes
thioketones	thiols	Thiophenes	Thiranes	Thiophenes
Triazoles	urea	water	X on aromatic ring	X on exo- conjugated C
(thio-) carbamates	124-Triazines	135-Triazines	acyl halogenides	
CH2X	CR2HX	CR3X	R=CHX	R=CRX
R#CX	CHRX2	CR2X2	R=CX2	RCX3
X-C on aromatic ring	X-C- on ring	X-C= on ring	X-C on conjugated C	donor atoms for H-bonds (with N and O)
acceptor atoms for H-bonds (N O F)	CH3R / CH4	CH2R2	CHR3	CR4
CH3X	CH2RX	CH2X2	CHR2X	CHRX2
CHX3	CR3X	CR2X2	CRX3	CX4
=CH2	=CHR	=CR2	=CHX	=CRX
=CX2	#CH	#CR / R=C=R	#CX	RCHR
RCRR	RCXR	RCHX	RCRX	RCXX
XCHX	XCRX	ХСХХ	XCHX	XCRX
XCXX	Al-CH=X	Ar-CH=X	Al-C(=X)-Al	Ar-C(=X)-R
R-C(=X)-X / R-C#X	X-C(=X)-X	X—CHX	X—CRX	X—CXX

***** Topological descriptors

Structure of a molecule is not a set of physical properties. But one of the ways of representation is by a molecular graph taking into account of atom-atom connectivity based on molecular orbital (MO) and graph theoretical principles. A notable consequence is it mirrors some of arisingproperties. A graph of a molecule is ID picture of the adjacency/connectivity of atoms. The search of sub graph in a graph is analogous to substructure identification in a structure of a given organic compound. Typical and popular types of sub graphs are path (P), cluster (C) and path-cluster (PC) and chain of different orders (Chart 3.2).

Chart 3.2: Principals of graph [128,129]
□ Let G(k,n) be the set of connected simple *n*-vertex graphs V(G)= v₁, v₂, ... v_n with edge set E(G)= e₁, e₂, ... e_m
□ Among all *n*-vertex graphs with edge or vertex connectivity k, graph G=K_k ∨ K₁+K_{n-k-1}, the join of K_k, complete graph on k vertices, with disjoint union of K₁ and K_{n-k-1}, is unique graph with maximum sum of squares of vertex degrees

Topological descriptors (Wiener to Kier and Hall connectivity indices) are global ones, as the entire molecule was searched for a fragment (path, cluster, path cluster of different orders). They could successfully model many physic-chemical properties depending upon the characteristics of the entire molecule. However, the limitation of these descriptors is that they do not explain phenomenon depending upon an atom or a group like nucleophilic attack, biological response (BR)of an atom at specified site. This led to the need of local characteristics like those depending on atomsof a molecule. Again Kier and Hall are the forerunners in this pursuit by proposing E-state index.

Mathematical perspective of chemical structure

Quantum mechanics had influence in progress of chemical bonding, apart from galaxy of chemical reactions researched. Even then, traditional chemists were looking into molecules in terms of bonding in two dimensional planar picture of chemical structure. The representation of bonded and non-bonded atoms in molecule in numerical second order tensor form started with adjacency/connectivity matrix.

Adjacency matrix

Adjacency matrix or connectivity is a numerical representation of how the atoms are connected in the molecule in 2D framework. It is a square symmetric matrix, where each entry is one if connected or zero if not connected to the other atoms. The row or column sum in an adjacency matrix represents connectivity number of that with the neighboring ones. Jurs and Katrizky proposed normalized descriptors.

escriptor	2D	Descriptor	Adjacency matrix
Input :	Atom and connection information	Input	2-D structure
	(elements, bonds, formal charge)	Basis	Undirected graph theoretical
Output:	Numerical values		representation of hydrogen implie
Invariant to	Conformations of molecule		(formerly called suppressed) 2-D
Don't require	3D-Atomic coordinates,	41 14	structure of a molecule
	conformers	Algorithm	AdjMat $(1,j) = 1$ if 1 and j are
Z	Atomic number Lone pair		neignbours
	pseudoatoms LP (Z=0)	Application	= 0 outerwise
	· · · · · · · · · · · · · · · · · · ·	Application	Distance mauta

			i .			
	Heavy ato	oms	Z>1			
	Trivial ato	om:	LP or H with one heavy neighbor	ur		
	Hydrogen	count	No. of hydrogen attached			
	(h):			_		
	Heavy de	gree d	No. of heavy atoms to which it is	;		
			bonded			
Γ	Descriptor	Extende	d adjacency matrix		Торо	
		ſ	$\frac{\delta_i}{\delta_i} + \frac{\delta_j}{\delta_i}$	a_{ij}^E	Elements of adjacency matrix Vertex degree	
		$a_{ij}^E = $	$a_{ij}^{\frac{\partial_j - \partial_i}{2}}$ if $i \neq j$	δ	Number of lines meeting at each vertex	
		l	0 if i = j	$e \ln_i$	Atomic electronegativity	
				π^{*}	Conventional Bond order	
		If hetero	atoms			
F	formulae	$a_{ij}^{H} = \left\{ \right.$	$\begin{array}{c} \frac{\delta_{i}^{h}+\delta_{j}^{h}}{\delta_{i}^{h}+\delta_{i}^{h}} \\ a_{ij} \end{array} if \ i \neq j \end{array}$	$\delta_i^h =$	$\delta_i^* * eln_i^{\dagger}$	
		If bond n	$e \ln_i$ if $i = j$	δ_i^h	$^{\mathbf{b}} = \delta_{\mathbf{i}}^{\mathbf{h}} + \left(1 - \frac{1}{\pi^*}\right)$	
		$a_{ij}^{HB} = \cdot$	$\begin{cases} \frac{\delta_{i}^{hb}}{\delta_{j}^{hb}} + \frac{\delta_{j}^{hb}}{\delta_{i}^{hb}}}{2} & \text{if } i \neq j \\ a_{ii}^{hb} = a_{ii}^{h} & \text{if } i = j \end{cases}$		0.00 if $\pi *=1$ 0.33 if $\pi *=1.5$ 0.50 if $\pi *=2$ 0.67 if $\pi *=3$	

Distance matrix

Distance matrix (DistMat) or path of m-bonds is m^{th} power of adjacency matrix. It is also square symmetric second order tensor like adjacency matrix. Each element (DistMat_{ij}) corresponds the distance of ith to jth atom. The chronological developments in distance matrix amply demonstrate different frames of thought in conceiving the neighborhood.

Characteristic	Distance matrix	Characteristic	Adjacency matrix or
Input	H-suppressed 2D-connectivity structure	Characteristic	connectivity table
Basis	Adjacency matrix		Hydrogen atom
Definition	 Number of edges on the shortest path from node i to node j. Each element is equal to the number of 	Input	implied (formerly called suppressed) 2D- structure of a molecule
	bonds on the shortest path form atom i to atom j	Basis	Undirected graph theory
Application	Computer search for functional groups	Algorithm	AdiMat(i,i) =1 if i and

 Partit equiv Sub s 	ioning of ato alent classes tructure searc	ms of a moleo hing	cule into		Applic	cation	j ato connected = 0 else Distance n	oms are /bonded natrix	ð
Algorithm		Formula DistMat(1) DistMat(2) DistMat(3) DistMat(4)	Powers of AdjMat AdjMat ² AdjMat ³ AdjMat ⁴	adja Or 1 2 3 4	rder	matrix Indicates Path of c Path of t Path of t Path of f	s one bond wo bonds hree bonds four bond		
Sum of topological distance between atom _i atom _j	NN NO NS NP NF NCl NBr NI	00 0S 0P 0F 0Cl 0Br 0I	SS SP SF SCl SBr SI	pmj	PP PF PCl PBr PI	F. F. C C C B B I.	F Cl Br I lCl lBr lI rBr rBr rI .I		_

Graph theoretical research in adjacency and distance matrices

Mathematical graph describes abstract vertices joined by edges. Each molecular graph is represented by a matrix, a polynomial, a sequence of numbers or a numerical index (called topological index). The order of graph equals to the number of vertices in the graph. In a multi graph, two vertices may be joined by more than one edge (Fig. 3.1). Estrada [116] proposed a generalized graph-theoretical matrix; the specific cases of it being adjacency and distance matrices. The vector–matrix–vector multiplication procedure and generalized invariant concept paved way to generalization of classical topological indices. In a connected graph, the chemical structure has at least two connectivity points. The number of chemicals exceed 10¹⁰⁰; chemists' representation molecules ranges from 0 to 6D, while a spectroscopist/ molecular descriptor scientist uses 100-300 dimensions in Eigen frame or spectral domain.

A Polarity number

Polarity number is half of the count of all paths of length three. It is directly obtained from distance matrix. Recently maximum/sum/absolute of sum of Eigen values of distance matrix weighted with a variety of properties (electro-negativity, mass, polarizability etc.) are proposed.

		9 0
Descriptor	Polarity number	<pre>% PolNum.mR S Rao (8-6-15) %</pre>
Input	H-suppressed 2D-connectivity structure	[PolNum] = om_polnum(AdjMat)
Definition	Wiener polarity index of a graph G is number of unordered pairs of vertices such that the distance between u and v is 3	DistMat = om_distmat(AdjMat) PolNum = 0.5 *sum(sum(DistMat))
Definition	i.e. Count of all parts of length three	• Bound for the Wiener polarity index of
Formula	$PolNum = 0.5* \sum_{i=1}^{Natom} \sum_{j=1}^{Natom} distMat_{i,j}$	 Maximum Wiener polarity index of unicyclic graphs determined
	+ good discriminatory power	

Wiener index

The popular Wiener index proposed in 1947 is the column or row sum of DistMat. In other words, it is equal to sum of distances between all pairs of vertices of H-depleted molecular graph of an organic compound. It is the start of a new era of explanatory variables and the saga continues even in 2015. Winer index and its clones continue to be principal descriptor set that correlating a chemical compound's molecular structure with experimentally measured data. It is based on connectivity (adjacency) matrix for alkanes to explain physico-chemical properties like boiling point (BP), change in heat (ΔH) etc. Further, it widely used in sub-structure search in silicon virtual library of compounds.

Descriptor	Wiener Index	Wiener index
Input Def	2-D Structure Sum of distances between all pairs of vertices of a connected graph. Or Sum of all topological distances in H- depleted molecular graph	 + Accounting for variation of physico-chemical properties (like boiling point) of organic compounds (alkanes) - Does not encode cis-/trans- isomeric or chiral phase information
Nomenclature Basis	Path number in beginning Trees with identical number of points have equal number of paths	 Wiener number gives lower weights to peripheral bonds Higher weights to internal C-C bonds Remedy :
Output	Increases with molecular size Decreases with branching or compactness	
Formula	Wiener Ind = $0.5 * sum(sum(D))$	
Encodes	Cube of Van der waal's attraction between two parts of a molecule Measure of mean external contact area of molecule (3) Branchedness Of a molecule acyclic compounds	Reverse Wiener indexWiener _ reverse = $\frac{n^* \ n-1 \ ^*D}{2}$ - Wiener(G)-Larger weights to peripheral bonds
Aplicable to Application	Ayclic alkanes Chromatographic retention times-correlation extremely well monoalkyl and o-dialkylbenzenes	 Smaller weights to internal C-C bonds
	o drankyroenzenes	Expert opinion: Weiner number better than Randic
H. wiener Structura H. wiener,J. An	J.Am. Chem. Soc., 69 ,1947, 17- 20 al determination of paraffin boiling points n. Chem. Soc., 69 ,1947, 2636-2638	
Correlationof h vaporizatio	eats of isomerization and differences in heats of on of isomers among paraffin hydrocarbons	

Descriptor	All-path Wiener index	Descriptor	Balaban distance connectivity index
	\$ Type Index from \$\$ weighted	\$	\$Type Index from \$\$weighted
Wiener	• Z	Balaban	Z

Image: Constraint of the second state of the second sta	Mass Van der Waals Distance matrix Electronegativity Polarizability Mean square distance index (Balaban) Balaban centric index
Wiener polarity index [177] Cycles of <i>G</i> have at most one common edge, $W_p \ G = M_2 \ G - M_1 \ G - 5*N_p - 3*N_h + E_G $ Def: Wp(G) : Number of unordered pairs of Vertices u, v of G such that distance d _G u, v <i>is</i> 3 Wiener Path	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Total number of bonds between all pairs of atoms in the hydroge	n suppressed graph
Descriptor Partial Wiener Index	Topological
Formula $W = W_{S} + W_{D} + W_{T} + W_{A}$ $= \sum_{b \in S} w_{b}^{*} + \sum_{b \in D} w_{b}^{*} + \sum_{b \in T} w_{b}^{*} + \sum_{b \in A} w_{b}^{*}$	BondsSSingleDDoubleTTripleAAromatic
Descriptor Wiener Index for substituted compounds	Topological
Formula $S_{A} = W_{A} + n_{A} * s_{a} + n_{A} * n_{M} + n_{M} * s_{c}$ $S_{B} = W_{B} + n_{B} * s_{b} + n_{B} * n_{M} + n_{M} * s_{d}$ $W = W_{M} + S_{A} + S_{B} + S_{AB}$	Bonds M Parent structure A,B Substituents W Weiner index S _A , S _B Topological substituent indices N Number of atoms
Decomposition of the Wiener Topological Index. Applicati	<i>Chern.Soc. Perkin</i> Trans., 2, 1988 , 1667-1671. on to Drug- Receptor Interactions

Linear combination with Wiener index

A summation with due regards to algebraic sign of different topological indices played a critical role in descriptors research in explaining different types of phenomenon.

Descriptor	Lin_comb: Wiener + Szeged	Topological
Formula	$\eta(G) = Sz(G) - W(G)$ classification of graphs with $\eta(G) \le 3$	G : Molecular graph W(G) : Wiener index Sz(G) : Szeged index

Classification of connected graphs
which satisfy $\eta(G) {\leq} 4 or 5$

Manso et al. [114] introduced a new topological descriptor (Fiindex) to predict boiling points of saturated/unsaturated and cyclic alkanes. It produced smaller deviations in prediction compared with other descriptors viz. Weiner, Hosoya and Randić.Chen and Chiu [171] proposed a novel set of Wiener indices and applied for a number of C_3 - C_8 alkanes.

MolDesc	Fiindex	Topological
Application	Boiling point Alkanes Alkenes, alkynes cycloalka	anes
Robustness	Small deviations in property (BF Weiner, Hosoya and Randić.	P)Compared to

Chemical interpretation of topological indices

Randić and Zupan [115] interpreted topological indices in terms of chemical bond contributions (chart 3.3). The proposed partition is straightforward for Wiener index and the molecular connectivity indices developed in terms of bond additive contributions.

Advances in Wiener index from Graph theoretical perspective

In organic compounds, branching is very typical to govern many physico-chemical properties. Graph theory provides natural mathematical frame for the quantitative codification of classical chemical bonding ideas (chart 3.4). However, there is no mathematical quantitativemeasure of it explicitly with complexity of branching. Here, star is the most branched graph, while path corresponds to least branched one.

Li and Jalbout [173] reported hyper-Wiener index weighted by Mulliken bond orders are correlated with vibrational frequencies of formaldehyde derivatives. Hamzeh et al. [175] calculated the join, composition, Cartesian product, symmetric difference and disjunction of graphs under y-Wiener index. Wiener polynomials of a graph hyper-Wiener index of graph operations are generalized. Deng and Zhang [179] showed some pairs of trees and chemical trees indistinguishable revealing degeneracy of terminal_Wiener index. Liu and Liu [169]identifiedthe kth smallest and kth greatest indices of modified

Wiener indices for all k up to $\lfloor \frac{n}{2} \rfloor + 1$ among the class of trees of order *n*. The edge Szeged and edge Wiener indices of graphs are new topological indices hexagonal systems are also proposed.

In 2008, Wang and Zhang independently characterized trees with specified degree sequence that minimizes the Wiener index. Zhang et al. in 2010 pointed out that a corollary on maximizing the Wiener index was incorrect. Later, Çela et al. viewed this task as a quadratic assignment problem and arrived at an algorithm polynomial in time. Later information on the candidate trees for the maximum Wiener index is proposed.

Descriptor	Hyper Wiener Ind	ex				Topological
Formula	Formula $ \begin{array}{r} {}^{m}Wiener = \sum_{m_{pij}} w_{ij} \\ = \frac{1}{2} * \sum_{i=1}^{A} \sum_{j=1}^{A} \left[{}^{m}W \right]_{ij} \\ Hyper_Wiener = \widehat{W}(W) \\ = \frac{1}{2} * \sum_{i=1}^{A} \sum_{j=1}^{A} w_{ij} = \sum_{m=1}^{D} {}^{m}W \end{array} $			$^{1}W, ^{2}W, ^{3}W, \dots ^{D}W$ Wiener numbers of different ordersDMax length of paths in graph i.e. topological diamater W Wiener operator W Sparce Wiener matrix of mth order		
W(G) = H'(G, 1) $H(G, x)$:Hosoya $W(G) = HH'(G, 1)$ $WW(G)$,:First de $WW(G) = HH'(G, 1)$ $WW(G)$,:Hyper-W $HH(G, x)$:Hyper-F			polynomial of a graph erivative calculated at : Wiener index Hosoya polynomial	κ = 1	[187]	
Axioms : C Proved: i	for Wiener space Consider $(1,2)$ -Sobole $W^{(1,2)}(U)$ on subse Wiener space, whic anonical Dirichlet space $W^{1,2}(U)$ have smo functions as a dense of U is H-convex and D	 rivative calculated at x Hyper-Wiene structures Extended to containing s 	r index <i>R</i> cyclic n tructures	proposed	for acyclic i.e. cycle-	

Modified Winer index for treesTopologicalWiener index of a tree T
Wiener _ Tree =
$$W(T) = \sum_{e=1}^{T} n_1(e) * n_2(e)$$
n1(e), number of vertices on the two
sides of the edge e
TWiener _ Tree = $W(T) = \sum_{e=1}^{T} n_1(e) * n_2(e)$ T

q-Wiener index

Liu et al. [183] motivated by the theory of hypergeometric series, conceived q-analogs of Wiener index. The formulas are derived to computeq-Wiener indices of some compound trees. These generalize expressions are known earlier for Wiener index.

Derived descriptors from Distance matrix

The chronological developments in distance matrix amply demonstrate different frames of thought in conceiving the neighbourhood. Hosoya index, Rouvray index, Platt number etc are a few typical descriptors derived from distance matrix.

			Descriptor Input Basis Alg Related to	Rouvray index 2-D Structure Hosoya index/wiener Sum of d _{ij} element Rouvray Ind=2*wiener Ind	d	
Descriptor Input Basis Def	Hosoya index 2-D Structure Wiener index Extension to Wiener index Count of non adjacent edges (k) in a molecular graph.		Compounds Resp Model Solution	Alkanes, alkenes, alkynes, MP, BP, Densitym, MR, S Viscosity Resp=a ₁ *(Rouvray Ind) ^{a2} L.S	, arenas Surface Tensi	ion,
Alg Application Hoyasa index + Accountir properties compound	K edges chosen such that number two of them or adjacent Length of shortest path connecting the ith and jth atoms in cyclic compounds Computer search for functional groups g for variation of physico-chemical (like boiling point) of organic (alkanes)		Descriptor Input Basis Feature Application	Platt number 2-D structure Sum of first C-C neighbou C-C bond in the species Improves correlation Multi parametric equation TI: [wiener, polarity numb cc (wiener, Platt)	rs of every Resp=f(TI) er, Platt]	
- Larger we	ds (alkanes) eights to peripheral bonds reights to internal C-C bonds		Average vert Square recipi Hyper-distan Reciprocal hy Mean distanc	cc (Platt, polarity number) is worth studing ex distance degree ocal distance sum index ce-path index yper-distance-path index e degree deviation		

Combination of distance matrix + adjacency matrix

Eigen analysis of weighted adjacency distance, distance matrices or their combination resulted in orthogonal matrices alleviating correlation problems.

Detourindex: The maximum distance matrix of Detour gave birth to new set of descriptors called Wiener^{*} (W^*) Harare^{*} (H^*) molecular topological index^{*} (MTI^{*}).

The difference between the descriptors using DistMat and DistMat^{*} matrices contains new structural information. It is applied in SPropR for hydrocarbons.

Spanning tree number (log)		
Reciprocal hyper-Detour index	Distance/detour ring index of	[3:9]
Distance/detour index	order	

Gravitational topological index: Here, topological distances instead of interatomic ones are used.

Descriptor	GravInd	FP	Scal	Topol
Def	Topological distance between ith and jth			
	bonded atoms			

Basis Intermolecular forces in bulk solvent media topological index based on topological distance				FP Scal	Floating point one value for a compound i.e. tensor of zero order (Tens(0)
Limitation – Varies little with isomers					
$GravInd = \sum_{i=1}^{Nator}$				$\sum_{i=1}^{m-1} \sum_{j=i+1}^{Natom}$ c mass of	$\frac{m_i * m_j}{dist_{ij}^2}$ f bonded atoms
		Natom	: Numbe	r of atom	ns in a molecules

Eigen value of (AdjMat + DistMat)

Descriptor	Eigen value of (AdjMat + DistMat)			Eigen value
Basis	Distance matrix			
Formulae	eValues, eVec = eig DistMat + AdjMat AscEig = AscOrd(EigValues) Large_eig_AD = AscEig(1) MolDes = log Large_eig_AD	X y y	<i>MolDes</i> Physico chem Mod P= fn MolD	nical properties

Tensorial classification of descriptors:

Zero-order descriptors: The descriptors hitherto discussed yield only a single numerical value (scalar or zero order tensor) for each compound. Thus, Wiener, Hosoya, molecular volume, polarity number etc. is referred as zero-order descriptors.

Correlation among classical molecular descriptors

For a set of compounds, Winer, Hosoya indices and polarity number are correlated among themselves for a series of compounds or with some bulk properties. In the light of this, earlier results of two-three parametric regression models worth reinvestigation.

Randic Index

In 1975, Randic and Kier and Hall proposed connectivity index encoding degree of branching. It is calculated from adjacency matrix. This is the first non-empirical structural descriptors, which was renamed as molecular connectivity index (χ).

Vukičević[122]consideredchemical trees i.e. simple connected graphs with maximal degree at most 4 and thus path becomes extremal graph. The consequence is path alone remains in the analysis instead both measures (star, path). Here, it is proposed generalized Randić index to be a suitable measure for branching.

Randic_index = $\sum d_u, d_v$	If $\alpha = 1$ Then it is weight of graph	d(u)	:	Denotes the degree of a vertex u in G
$\alpha = \left(-\frac{1}{2}\right)$	Elseα≠0	d(v)	: ion	Denotes the degree of a vertex v in G extends over all

Correlated for conjugated polyenes

|--|

Co	onnectivity indices for	hexane isome	ers					
		Paths of length 2	Paths of length 3	Paths of length 4	Paths of length 5	χ^0	1χ	2χ
	\sim	4	3	2	1	4.828	2.914	1.707
	$\frown \frown \frown$	5	4	1	0	4.992	2.808	1.922
	\downarrow	5	3	2	0	4.992	2.770	2.183
Ar	drew R. Leach, Valerie J	. Gillet, 2007 ,	Springer, An	Introduction t	o Chemoinfor	rmatics (Re	vised Editi	on).

Randić index

- \overrightarrow{D} Determinants of the adjacency matrix \overrightarrow{D} Distance matrix to maximum wave length (λ_{max})

Descriptor	Randic Index		FP	VecCol	GraphTh
Def	Summation over all paths of length one i structural graph	n	Randic Index	Formula	Order
Input	2-D Structure		Randic	Ν	0
Basis	Modified form of Zagrab group index		VO	$\sum 6^{-9.5}$	V
Model	Sum of bonds connecting pair of atom other than hydrogen. Each atom i	S S	Randic	$\sum_{i=1}^{N} \mathbf{v} \mathbf{A}$	1
	encoded by a cardinal number	_	V1	$\sum \Psi_i * V_j$	1
	 Degree of branching 		Pandia	<u> </u>	2
	• Weighted count of skeletal bonds		V2	$\sum \mathbf{q}_i * v_j * v_k \mathbf{j}^{*}$	2
Encodes	 Sigma bond (SP3 carbon) 		Randic V3	$\sum \left(v_i * v_j * v_k * v_l \right)^{=0.5}$	3
	ConnectivityDispersive nature of molecules		Randic Vh	$\sum \mathbf{v}_i * v_j * \dots * v_h^{\geq 0.5}$	
	 Non-empirical structural descriptor 			For hetero atoms	70.5
	 Not a measured property 		Randic '	$V1 - mod = \sum V mod_i * V mod_i$	l_{i}
Characteristics	• Not derived from or translated		Vmod S	Sum of relative atomic	5-
	into a physical property		weights	of all adjacent atoms	
	 Skeletal branching index of molecular 	or	weights	of an adjacent atoms	
Algorithm	Powers of adjacency matrix				
Property	Graph invariant				
KB	If Branching increases				
	Then Index decreases				
Applicable	Acyclic alkanes Molecules can be classified a compact/spherical and extend	s			

R. Sambasiva Rao et al

- Limitation	No provision for atoms, cyclic – a It does not distin Degeneracy • Examp cis-/tra phase Does not encode Kier Hall Valence	compounds with hete nd unsaturated structu guish positional isome le: does not distinguis ins-isomeric or chiral information binding information e Molecular Connecti	ero ires ers sh			
Randic index	[0:3]	path/walk [2:5]		Connectivity index	Randic Average Valence Average valence Solvation	[0:5]
Kier alpha-modi Kier and Hall Kier and Hall sh 2D Petitjean sha	ified shape index appe index pe index	path/waik [2:5] path [1:3] [1:3]		Connectivity index	Modified Randic Reciprocal distar Reciprocal distar Squared	nce nce
Total adjacency Randic	 (+) graph invari. (-) highly degen (+) increases wi (-) decreases wi 	ant erate th size h complexity		Narumi index (log) Narumi topological index Narumi topological	Simple top Harmonic Geometric	
Kier symmetry i Kier flexibility i Kier benzene-lik	ndex ndex celiness index			index		
Pogliani index Ramification inde log of product of r	x row sums (PRS)			eccentric connectivity eccentricity average eccentricity eccentric	index	
Schultz Molecular (MTI) Schultz MTI by va	Topological Index	es		Gutman Molecular To molecular to based on val degree Gutman MTI by valen	pological Index pological index ence vertex ce vertex degrees	
Xu index				First Mohar index TII second Mohar index T	712]
Hyper-detour index	ex					

Descriptor	Comment	Ref
Modified _Randic _index = $\sum \max d_u, d_v$	Represents a lower bound of Randić index	[124]
generalizations of \mathbf{R}' and its counterpart, \mathbf{R}'' , real number $\boldsymbol{\alpha}$ Generalized $\mathbf{R}' = \sum \min d_u^{\alpha}, d_v^{\alpha}$	 Lower bound for the generalized Randić index α : Real number 	[124]
Generalized _counterPart _R' = $R_{\alpha}^{"}$ G = $\sum \max d_{u}^{\alpha}, d_{v}^{\alpha}$	Upper bound	
Randić index of a triangle-free graph G with given minimum degree $\delta(G)$	Best-possible lower bound	[118]
Randić energy of a bipartite graph &	Sharp upper bound	[119]
Graphs whose adjacency matrix is partitioned into blocks with constant row sum		

▲ Randić index of a graph of order n without isolated vertices is at least n-1
For a connected nonbipartite graph G with $n \ge 5$ vertices and girth $g \ge 5$, bound is best possible when the graph is composed of a cycle $C_5 \text{ on } 5$ vertices & a tree T on $n-4$ vertices sharing a single vertex $S_z G - W G \ge 2*n-5$
Por a connected nonbipartite graph G with $n \ge 4$ vertices, bound is best possible when the graph is composed of a cycle C_3 on 3 vertices & a tree T on $n-4$ vertices sharing a single vertex.
Proved that for every large enough integer w there exists a tree with Wiener index equal to w $2^{\Omega^* \sqrt[4]{w}}$ non-isomorphic trees with Wiener index w [Wiener-18]
Concerning the minimum Randić index among all n- vertex connected graphs with the minimum degree at least k True
Conjectures
--
Aouchiche and Hansen Proved for: Graphs in $G(k,n)$ for which Randić index attains $k \le \frac{\pi}{2}$ its minimum value for
Generalized results of [extremal graphs are complete split graphs $K_{k,n-k}^*$, with two degrees (k, n - 1)] to graphs with prescribed maximum degree q

Randic Index	Formula \$\$\$\$				
General Randić matrix					
	Matrix $R_{\alpha} = \begin{bmatrix} R_{\alpha} \end{bmatrix}_{ii} \int_{m_{\alpha}} of G$ is defined by				
	$\mathbf{D} = 1 \mathbf{*} 1^{\alpha}$ if $\mathbf{u} = 1$				
	$R_{\alpha_{ij}} = a_i * a_j$ if vertices v_i and				
	v_j are adjacent in G				
	0 alsa				
	0 eise				
	Let d_i be the degree of the vertex V_j				
Randić signless Laplacian matrix	matrix, $Q_{\alpha} = D^{2^* \alpha + 1} + R_{\alpha}$ where α is a nonzero real number and D is the degree diagonal				
	matrix of G				
General Randić energy					
General Randie energy	Energy RE_{α} is the sum of absolute values of the eigenvalues of R_{α} .				
General Randić incidence matrix	Matrix $B_{R_{\alpha}} = \begin{bmatrix} B_{R_{\alpha}} \end{bmatrix}_{nm}$ of a graph G is defined				
	$B_{P} = d_{1}^{\alpha}$ if v is incident to e.				
	by $r_{\alpha} ij$ i j				
	0 else				
General Randić incidence	BE : sum of singular values of B_{-}				
energy	DD_{α} . Sum of singular values of $D_{R_{\alpha}}$				
	Lower and upper bounds on general Randić incidence energy.				
	<u>KB</u>				
Generalized Randić index R_p	$d_u(G) = \sum_{uv \in E(G)} d_u * d_v^{p}$ is a suitable measure for branching				
iff $p \in \left[\lambda, 0 \bigcup 0, \lambda' \right]$];				
λ: solution of equation $2^x + 6^x + \frac{1}{2} * 12^x + \frac{1}{4} * 16^x - \frac{11}{4} * 4^x = 0$ in the interval $-0.793, -0.792$					
λ^\prime : positive solution of the e	$quation 3 * 3^{x} - 2 * 2^{x} - 4^{x} = 0$				

Zagreb index: It is the sum of squares of number of connections to other non-hydrogen atoms irrespective of bond order

Descriptor	Zagrebindex	
Input	Distance matrix	

zagreb(1)= zagreb(2)=	$\sum_{i=1}^{latom} \sum_{j=1}^{Natom} distMat_{i,j}^{2}$ $\sum_{i=1}^{Natom} \sum_{j=1}^{Natom} distMat_{i} * distMat_{j}$
Zagreb (1) = Zagreb (2) =	Also called Gutman index Zagrb(1) = F + 2(A-1) = 2 * (N2 + A - 1); Related to zero order connectivity index + Increase with size - Increases with complexity Related to first order connectivity index + Increases with size - Increases with size - Increases with size - Increases with size - Increases with complexity
Firs Zag Firs deg Qua Def: Sum of squ bond order	and second m = 1 to 2 reb index m = 1 to 2 Zagreb index by valence vertex m = 1 to 2 ees m = 1 to 2 dratic index m = 1 to 2

G Kier and Hall connectivity index

Kier and Hall inspired by Huckel MO calculations and graph theory put forward this concept of connectivity. It is calculated as the sum of reciprocal of geometric mean of δ terms. It is known that geometric mean is more unique than arithmetic mean. The basis of the model, features, limitations and remedial measures are described. The χ index was extended to compounds with hetero atoms, multiple bonds and cyclic structures. The physic-chemical interpretation of terms in connectivity index based on simple and valence connected molecular descriptors, the algorithm, limitations and misuse of this connectivity index through light on the intensive research on the molecular descriptors.

\square Kier and Hall χ indices of multiple orders

Kier and Hall later introduced χs of different order (m=0 to 6) to alleviate the limited structural characteristics of the first order Randic index. They encode counts and weights of structural features like atoms, bonds and topological assemblies (cluster and path-cluster). The connectivity index (χ) is limited to normal alkanes. On the other hand, vertex valence (χ^{ν}) is a term used by mathematical graphical theoreticians and accounts for heteroatoms, multiple bonds and cyclic structures. Thus, χ and χ^{ν} have same numerical magnitude for alkanes. Molecular connectivity indices (${}^{m}\chi$ and ${}^{m}\chi^{\nu}$) are of the fixed type. Some of the variable connectivity indicesput forward are variable Balaban index and path variable weights. Molecular orbital and graph theoretical principles enable to represent the structure of a molecule by molecular graph reflecting atom-to-atom chemical connectivity. In this back drop, Kier and Hall introduced connectivity indices of different (zero to sixth) order (χ S) (Formulas: zzz). They alleviate limited structural information of Randic index.

Descriptor	Kier and Hall connectivity indices	
Encodes	 Counts and weights of structural features Atoms, bonds Topological assemblies (path, path cluster) Encodes specific fragment Bond additivity 	KB 3.1:Choice of χ s based on bonding If σ bonds are needed & only alkanes Then ${}^{1}\chi$ is adequate If Multiple bonds or hetero atoms or acylic compounds Then ${}^{1}\chi^{\nu}$ is used
Independent of	└ Conformers └ 3D-Geometry	If π and lone pair of electrons are needed Then Valence state electro-negativity δ ratio is used
Advantage	 + Alleviates limited structural information Randic index 	IfBoiling pointThenNon-covalent interactions considered
Limitations	 Decreases with complexity Intermolecular forces (polarizability, volume) are not considered Does not take into account heteroatoms and multiple bonds 	If Nucleophilic attack Then Atom based descriptors are used.
	(=, =) i.e. χ is same for • CH3.NH2 • CH3-CH3 and • CH2=CH2	DescriptorCRI indicesConnectivityBasisConnectivity matrix of valence vertex eValues = eigen value (ConnectMat_Val)FormulaeeValues_positive = (eVlaues > 0)
Misuse	 Employing of χ for o-, p- and m- substituted compounds where polarity operates Reason: X is designed for bond-additivity 	CRI = sum (eValues_positive)EncodesInformation of all connectivities in H-deplete molecular graphDiscriminationSensitive to presence of hetero atoms

Degeneracy of χ and remedial measure

A molecular descriptor say χ distinguishes the connectivity with increasing carbon atoms. However, degeneracy develops for some conformers. This renders the descriptor inadequate to reflect the chemical information. This is the reason why descriptor is modified. χ is corrected for double bonds, hetero atoms cyclic rings etc. (KB 3.1). Even then, the problem of degeneracy is eliminated and so 3D Weiner index is introduced. Newer descriptors are based on different basis of looking at the chemical information in the molecule.

Linear combination of χs

Linear combination(difference and addition) of χ and χ^{ν} have been found to be potential descriptors encoding information not covered by either of the two (chart 3.5). The difference $({}^{m}\chi - {}^{m}\chi^{\nu})$ reflects electronic information with regio-specific properties.

Correlation between linearly combined descriptors

The derived descriptors by linear combination of connectivity indices have new type of information. However, their use along with others deserves attention from statistical/chance/chemical partial/completecorrelation (chart 3.6).

				Ch of '	art 3.6: Limitations and Fopological descriptors	l remedial measures
				Liı	nitation	Remedy
Chart 3.5: Lin	ear combination of χ	and χv SXR $\chi^0_+ {}^0 \chi^v$	$\chi^{0}_{+} \chi^{\nu}_{+}^{2}$	-	Do not encode 3D- infomaion of molecule	 ③ Geometric ③ WHIM ③ QC ④ Topo-electric
Bio concentration factor	$ \begin{array}{c c} \hline \square & \text{Benzene} \\ \hline \square & \text{Biphenyl} \\ \hline \square & \text{Diphenyl} \end{array} \end{array} \begin{array}{c} \chi^0 & {}^0\chi^2 \\ \chi^2 & {}^+\chi^2 \end{array} $	$\chi^{0}_{+} \chi^{2}^{2}$	-	No electronic characteristics of atom	ॐ QC	
.	oxides Alkyl amine			-	Statistical linear correlation	ॐ Orthogonalization
potential	Alcohol Ether	$\Delta^0 \chi$	$\Delta^1 \chi, \Delta^2 \chi$	-	Higher order connectivity	
					indices no physico- chemical significance	

Tensorial classification of descriptors

First-order descriptors: Zagreb, Randic, Kier and Hall indices are vectors of descriptors per moleculeand thus referred as first order category. It no way reflects the order (0 to 6D) of representation of the molecule.

Correlation of connectivity indices

Connectivity indices of different order form a first order (vector) descriptor. The information in successive elements of the vector is overlapping resulting in correlated quantities. The extent of overlapping information is not transparent to a naked eye. But, the use of all these (statistically linear) correlated descriptor sets results in ill conditioning of the design matrix of the cause-effect model.

Remedy to correlation hurdle: Randic orthogonalized second, third etc. indices with respect to first connectivity index resulting in reliable model free parameters. The fringe benefit is separating the overlapping information present in the raw data matrix. Here, the number of orthogonal descriptors is equal to the number of correlated ones and thus there is no dimension reduction.

PC and PLSC analysis: The less the number of explanatory variables, the better is the model. Rotation of χ space into PC or PLSC space is preferable. PC and PLSC analysis followed by regression is a sought after in drug research as superior models.

***** Environment descriptors

It describes the fragment surrounding an atom as a single parameter. It is calculated from its first and second nearest neighbors and their bonds. The algorithms of BED and AED are inchart 3.7 and alg. 3.1.

D Electrostatic descriptors

The descriptors under this category reflect charge distribution and are calculated by non-quantum chemical methods. The important sub classes of electrostatic descriptors are based on partial charge, topo electronic measure and surface area (chart 3.8, Fig. 3.2).

Partial charge based electrostatic descriptors

The empirical partial charges ae calculated by Zefirov's approach. The molecular electronegativity is calculated as geometric mean of atomic electronegativities. The minimum and maximum of partial charges on the molecule/fragment/atom (C, O, P etc.) are a few typical descriptors. The derived ones are the difference of maximum and minimum charge and are equal to the polarity. The normalized parameter obtained by weighting with reciprocal of the squares of the distance between atom bearing maximum and minimum charge has been in vogue in descriptor research.

Molecular surface area

The calculation steps of Van der Waal's (polyhedral) surface area are in Alg. 3.2. Van der Waal radii, interaction energies, sum of atomic volumes etc. used in SPropR to account for cohesive forces in physical properties.

3 B-cut descriptors

Pearlman et al. used atomic charge, polarizability or H-bonding ability instead of atomic number of diagonal matrix of Burden matrix. The minimum and maximum Eigen values for the three matrices are calculated. It results in either a 2D- or 6D- descriptor space encoding chemical structural information. An open question posed was regarding the adequacy of 6D for representing the structure explaining all types of properties. Now, Eigen value descriptors in very high dimensional space (200 to 400) are available from theoretical UV-, IR-, NM-R spectra.

Molecular identification number

Burden proposed a descriptor combining connectivity information with atomic number. The Eigen values results in molecular identification number.

Descriptor	B-Cut							
Authors	Frank Burden CAS Unive (Bob Pearlman)	ersity of Te	exas,	BCUT_\$\$\$	Diagonal elements	l nd to	BCUT_\$	\$\$
Basis	Call based partitioning	of ohor	miaal	Mass	Atomic r		hi ala a st	[1.0]
	space	of cher	incai	IVIA55	Atomici	nasses	nignest	[1:8]
Encodes	Intermolecular interaction						lowest	[1:8]
Advantage	Non correlated space			Electronegativity	Sanderso	n	highest	[1:8]
Limit	Non intuitive nature				Electrone	gativity	lowest	[1:8]
Application	Small molecule receptor	(bi molec	ular)	Vdw radius	(SE) of the	wale	1.1.1	F1.01
	bonding	(vuw laulus	radii of th	ne atoms	highest	[1:8]
					ruun or u		lowest	[1:8]
				Atomic charges	Atomic c	harges	highest	[1:8]
							lowest	[1:8]
				ALOGP	ALOGP	of the	highest	[1:8]
Alg. 3.3 B-c	ut descriptor	1			atoms		lowest	[1:8]
Step 0	2D strucdture of compou	ind		F-State	Flectroto	nological	hickory	[1.0]
Step 1	Diagnonal matrix			L-State	state valu	les of the	nignest	[1:8]
	Atomic polarisabil	lity:			atoms		lowest	[1:8]
	H-bonding ability]]	Polarizability Pol		Polarizab	ility of	highest	[1:8]
Step 2	EV = eig(A=Diag)	-			the atoms	5	lowest	[1:8]
Step 3	M1 2D space = min(min	(ev1,ev2,e	ev3))					. ,
	M2 = max (max(ev1,ev2))	2,ev3))		Descriptor		Randic N	Molecular 1	ID
Step 4	6D space [ev1,ev2,ev3,]				Square ro	oots of rec	ciprocal
						of the	for nine	ed ge
Step 5	Output : 6 indices corres	sponding t	o six	Formula		commonly	v encount	ered i
	dimensions.			1 official		chemical graphs		
						+ Priı	ne number	s instead
						aton	n valences a	are used
	Desc	<mark>criptor</mark>	Molecul	ar identification num	ber			
	Auth	hors	Burden					
	Inpu	it i	2D-struc	ture				
	Basi	is	Hybrid r	nolecular connectivity	у			
			and mol	ecular path count				
	Form	nula	$D^2 = \sum_{n=1}^{\infty}$	$\sum (ai-bi)$				
			$a_i, b_i : M$	olecular path				
			length i	of two structures				
	Enco	odes	Measure	s dissimilarity				
	Simi	ilar to	Euclidea	in measure of dissimi	larity			

Molecular Identification Number for Substructure Searches

29, **1989**, 225-227

Descriptor	•	Burden matrix			
Input		H-depleted molecular			
		graph			
Output		Burden matrix	Descriptor	Eigen values_Burden modified	
Dend		• Diagonal element B _{ii} : Atomic	Def	largest absolute eigenvalues of Burden matrix	
Dona	$=0.1^{*}\pi$	numbers Zi of the		[Evec,eigVal_Burden] = eig(BurdenMat)	
Single	0.1	atoms	Formula	L : Maximum length 15; user defined	
Double	0.2	elements Bij: two		BME: $BME \equiv \langle \lambda_1, \lambda_2, \dots, \lambda_L \rangle$	
Triple	0.3	bonded atoms i			
Aromatic	2 15	and j are			
		$=0.1*\pi^*$			

3 Geometric descriptors

The descriptors calculated from optimized 3D-coordinates of fragment/atoms in a molecule are under geometric category (Chart 3.9). They reflect molecular size and shape which play a pivotal role in correlating biological response (BR) and molecular properties. The quality of geometric descriptors does depend upon the quality of geometric optimization, convergence and algorithm of CQC. Although Cartesian coordinates are obtainable from X-ray crystallographic data, they are generally derived from optimised geometry of the molecule by quantum chemical methods. A multistage refinement of the geometry starting with molecular mechanics followed by AM1, or PM3 and finally with ab initio methods is rarely taken up. Some of the important geometric descriptors widely used in structure property relationships (SPR) are Wiener_3D, Randic_3D, WHIM, shadow indices, shape parameters, moment of inertia, molar volume etc.

Moment of inertia

It signifies distribution of mass along three principle moment of inertia axes. These are calculated by rigid rotator approximation. The descriptor is calculated with and without hydrogen suppressed graph concept. Not only the total and components of moment of inertia along the three axes but also the ratios have been reported to be prospective explanatory variables.

Shape index

Shape index represents the area of the rectangle enveloping the molecule (Alg.3.4)

Shadow index

It reflects the size of the natural shadow of the molecule. The X-coordinate of the molecule is aligned along the main axis of inertia. The shadow indices and the normalized ones are calculated as descried in (Alg.3.5). The geometric distances between the atoms (N, O, S, P, F, CL, Br, I) are outputted by many packages and account for processes involving interatomic distance.

			Alg. 3	3.5: Shad	low index
Alg.	3.4 : Shape	index Draw a rectangle enveloping molecule with minimum area	Step:	<u>One</u>	X-coordinate of molecule is along main axis of inertia
Step	<u>Two</u>	Measure longer (long) and shorter(short) sides of rectangle	Step:	<u>Two</u>	Orientation of molecule in space along axes of inertia

Step: <u>Three</u> Shape index = $\frac{long}{short}$ Modified shape indexStep: <u>One</u> Draw rectangle such that brreadth ratio is maximized	$\begin{array}{c c} \mbox{Step:} & \underline{\mbox{Three}} & Calculate areas of shadows (S_1, \\ S_2, S_3) \\ \mbox{Significance} & Size (natural shadow indices) \\ \mbox{of molecule} \\ \mbox{length to} \end{array}$
AreaPlane of molecular shadow	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
Shadow indicesAreaPlane of molecular shadow S_{XY} XY S_{YZ} YZ S_{YZ} YZ S_{ZX} ZX	 L.B. Kier Acta.pharm.Jugosl.36(1986) 171-188 Indexes of molecular shape from chemical graphs L.B. Kier Ed. D. H. Rouvray Nova science publishers, N Y 1990 (151-174) Indexes of molecular shape from chemical graphs computational chemical graph theory

*** RDF** (Radial Distribution Function) descriptors

The distribution of distances in 3D-geometric coordinate frame of a molecule is the basis of RDF category. The RDF of an ensemble of A atoms reflects the probability distribution of picking up an atom in a volume of sphere of radius R. Further, by including atomic properties as weighting factors, more useful information for regression and interpretation is generated.

- + Invariant against translation and rotation of entire molecule
- + Describes steric hindrance or structure/activity properties of a molecule about bond distances, ring types, planar and non-planar systems and atom types

3D-MoRSE (3D-Molecule Representation of Structures based on Electron diffraction) descriptors

A transform technique is employed in electron diffraction to prepare theoretical scattering curves. It is the basis of 3D-Morse descriptors generated from optimized 3D-optimized XYZ coordinates of atoms of a molecule. A 3D-MORSE code consisting of a 100-dimensional binary vector is generally used.

Quantum chemical descriptors

Quantum chemistry provides information that is not easily obtainable at molecular level. QC packages [AMPAC, MOPAC, HYPERCHEM, Schrodinger, GAUSSIAN 09, GAMESS etc.] output a large amount of geometric, electrostatic and electronic information for a chemical moiety. The parameters include optimised geometry, charge distribution at atom level, occupancy of electrons in each molecular orbital (MO), different types of charges, total energy and its components like core-core repulsion and electron– electron repulsion/attraction. HOMO (highest occupied molecular orbital), LUMO (lowest unoccupied molecular orbital), frontier orbital, total electron density and transition state energies are typical descriptors not amenable by experimental and other mathematical procedures. These parameters are instrumental in calculating physically significant quantities like dipole moment, ionisation potential and electron affinity.

Electrophilic and nucleophilic reactivities of the atom derived from quantum mechanical parameters predict the chemical interaction before performing the reaction. The other descriptors of chemical significance are Mullikan ($\sigma - \sigma$, $\pi - \pi$ and $\pi - \sigma$) bond orders, which explain the shifts in UV-visible spectra. The total surface area and volume obtained from optimized geometry are employed in arriving at atom, positive/negative solvent accessible areas in simple and normalized forms. The descriptors of Jurs are successful in explaining structure property relationships for compounds of diverse structures.

The computation of quantum chemical parameters for a whole molecule, fragment or atom was confined earlier to gas phase and only to small molecules with a few atoms in the periodic table. Due to concerted efforts in extension of theoretical results and development of fool proof commercial (with direct participation of expert quantum chemists in academia) packages, now it is a child play to derive QC parameters for large molecules consists of even hundred atoms and many of the elements in the periodic table, almost in all the three states of matter. The CQC derived spectral and molecular field are given chart 3.10. A general tendency is to limit first to as gas phase, followed by recalculation in solution (aqueous or non-aqueous) phase employing various solvation models like Born, Kirkwood, Poisson, Boltzman, Polarisable Continuum model (PCM) and Langevin-Dipole (LD) method.

Descriptor	Quantum-chemical descriptors	Chart 2 10 Decemintary derived from COC exection
Input	3-D structure	Chart 5.10 Descriptors derived from CQC spectra
Method	Semi empirical or ab initio or DFT	COMFA
Definition	Molecular descriptors calculated based on data obtained from QC principles	COSIMA
Alg	 Semi empirical AM1 PM3 Ab initio DFT 	QC_derived SPECTRA

Charge based descriptors

Many of the physico-chemical processes like protonation, ion exchange and electrophoresis have a bearing on the charge on the species. Alg. 3.6 lists total, maximum, minimum and relative charge of different nature viz. positive, negative and absolute. The other important subclasses are based on polarity, partial and square of the charge. The H-bond based charges have significant role in biomolecules and their interaction with drugs, foods and small ionic species.

Alg. 3.6 QC derived charges							
$Q_{\max}^{-} = \max qneg $	Maximum negative charges	Descriptor	Extreme (minin values of the pa	num and maximum) artial charges			
$Q_{\max}^+ = \max \ qplus$	Maximum positive charges	Moiety	Atoms (N) of a species (adenos (ATP)	given chemical ine) in the molecule			
$\Delta = \left Q_{\max}^{+} - Q_{\max}^{-} \right $	Submolecular Polarity Parameter	Example Basis	δ H (min) is the minimum (negative) MO LCAO theory				
$Q^+ = \sum_{i=1} qplus_i$	Total positive atomic charge	Definition	Mulliken defini charge On an hydroger	tion for atomic			
$Q^- = \sum_{i=1}^{n} qneg_i$	Total negative atomic charge		calculation				
$Q = \sum_{i=1}^{Natom} q_i $	Total absolute atomic charge	Qsquare	$=\sum_{i=1}^{Natom}q_i^2$	Total squared atomic charge			

QC energy based descriptors

The total energy computed from computational chemical methods depends upon the rigor of the model and it is one of the parameters of utmost significance. The standard scale in QC calculation is considering the isolated electrons and nuclei at 0°K. In chart 3.11, the potential energy component for bond angle, bond stretch, out-of-plane torsion are described An inspection of its components down to the level of electron and nucleus gives an opportunity to relate micro processes in chemical interaction. The magnitudes of QC descriptors vary significantly as they are developed in different energy scales based on a variety of partition theories.

Chart 3.11: Components of QC energy	Quantum mechanical molecular rotational- vibrational descriptorsExtreme (maximum or minimum) values of atomic harmonic force constants
	Extreme (maximum or minimum) values of normal mode vibrational frequencies Extreme (maximum or

Thermodynamic descriptors

Theoretically calculated thermodynamic descriptors find place in explaining some of the bulk properties like B.P., M.P., solubility and flash point. Translational, vibrational and rotational components of enthalpy, entropy and heat capacity are the major components of thermodynamic descriptors. Normalized and total numerical values have better explainability compared to the component ones. Chart 3.12 lists some of the typical thermodynamic descriptors. Recently, probability based entropy descriptors have been applied by Jurs and Katrizsky.

Orthogonal descriptors

The insignificant (<0.05) correlation between two descriptors is rare. The overlapping information, descriptors calculated from overlapping concepts, congeneric compounds etc. result in correlated descriptor vectors. In order to circumvent the limitations of hard modelling techniques, orthogonalisng the columns of variable descriptor matrix or development of orthogonal descriptors themselves are the alternatives. In PCA, linear combination of variables is used to calculate orthogonal PCs. Linear combination of chemically significant variables does not transparently indicate the individual chemical information and thus PC analysis is criticized. The molecular descriptors from optimized 3D geometry are known as geometric descriptors viz. moment of inertia, shadow index etc. They are also correlated and the same measures of remedy are in use. The basis of the sets of a large number of QC descriptors is the optimized geometry. Again QC descriptors (mostly zero order tensors) are correlated and PCA is in practice.

The well thought dream of creating orthogonal descriptors with chemical significance is realized in a way in 90's. Todeschini proposed orthogonal descriptors basing on finding Eigen values of a modified form of optimized Cartesian coordinate matrix of the molecule. These descriptors, being simple functions of Eigen values, encode size, shape, symmetry and atom distribution in the molecule. GWHIM considering a grid reflects interaction field dimensions. GETAWAY based on hat matrix encodes atomic information, mutual accessibility etc. Weighting with several electrostatic and quantum chemical quantities, WHIM descriptors grew from 11 to more than 40.

3 Eigen value descriptors

The Eigen analysis of multivariate (2way or 3-way) explanatory variables or response tensorial data is a sought after approach in Chemometrics (chart 3. 13). This versatile (SVD) method has been used at different stages in descriptor research. The first category is Eigen analysis after calculating descriptors. Distance matrix is calculated from adjacency (connection) 2way-tensor. A weighting scheme (with respect to atomic number, mass, van der waals volume, electro negativity or polarizability) is operated on the distance matrix. Scalar (zero) and first order (topological) descriptors are derived from distance matrix. The sum and sum of absolute Eigen values are one group of descriptors. The other category is from Eigen vector coefficient and comprises of sum, average, Randic and average Randic type. The Eigen vector analysis for geometric and QC descriptors also is beneficial. Alg. 3.7 and Alg. 3.8 describes electronic eigen value descriptor calculation.

- Chart 3.13. : Eigen value analysis in chemical research
- Elimination of redundant or linearly dependent variables
- Arrive at hidden roots i.e. indistinguishable species in chemical
- equilibrium or independent reaction paths of dynamic (space or time) systems
- Feasibility studies of hypothetical reaction from reaction matrix

escriptor	Electronic Eigen value descriptor (Ele.EV)			
Significance	Mass distribution in molecule			
Basis	Shannon information	Alg. 3.	7 : Elect	ronic Eigen value descriptor (Ele.EV))
	$EleEV x = -\sum_{i=1}^{n} \frac{1}{\sigma^* \sqrt{2^* \pi}} *$	Step: Step:	<u>Zero</u> One	Input: Structure of moleccule Choice of COC
Formula	Г 2Л	1		[SEMO, CQC, DFT]
	$ - x - E_i^2 $	Step:	<u>Two</u>	Scaling of energies between -45 and 10ev
	$exp\left[\frac{1}{2*\sigma^2} \right]$	Step:	Three	Gaussian kernel $\sigma{=}0.1ev$
Reflects	Combined effect of sub molecular polarity and molecular topography	Step:	Four	Summation of overlaid kernel $\frac{\sigma}{\sigma} = 0.1 ev$
Expert	Better structural descriptor compared to			$\frac{1}{2}$
opinion	electronic excess energy on individual atoms			
		Alg. 3.	8 : Elect	tronic Eigen value descriptor (Ele.EV)
		Step:	Zero	Molecule is freely and separately imbedded in centre of grid (XG)
		Step:	<u>One</u>	Calculate scalar field values (W)
		Step:	<u>Two</u>	W is the weight for grid point co-ordinates

Radius of gyration The Eigen values of gyration matrix of the molecule signify the three principle radii (alg. 3.9).

Alg. 3.9 : Radius of gyration Step: One Locate center of mass	Descriptor	Leading eigenvalue of the distance matrix	Eigen value
Step: <u>Two</u> Develop tensor for gyration matrix	Basis	Distance matrix	
	Formula	Max(eigenvalue((DistMat))
Step: Three Cal Eigen values Significance Eigen values correspond to three principle radii of molecule	Reflects	Good discriming increasing size for a compounds	inant of series of
Orientation of original molecule in			
 Remedy Remedy Sum of atomic van der Waals volumes (scaled on Carbon atom) 	Descriptor	VAD indices _Balaban	Eigen value
	Basis	Distance matrix	
	Formulae	eValues = eig (DistMat) VAD1 = negative (eValue	gen value Unnique_ s)
		$VAD2 = \frac{VAL}{A}$	$\frac{D1}{2};$

The negative Eigen values of distance matrix are made use in VAD_Balaban, VED, VRD and leading eigenvalue of the distance matrix descriptors.

Eigen values of CQC Spectra as molecular descriptors

The theoretical IR, NMR, UV-VIS spectra computed from quantum chemical calculations are highly correlated, but reflect structure to a greater extent compared to other simple probes. Turner et al. used as many as 300 and 400 Eigen values as orthogonal descriptors. But, here again the chemical significance could not be explicitly transparent.

The hybrid nature of topological and electrostatic characteristics is achieved by taking quotient of shape (WHIM) descriptor with Polarizability or electro-negativity. Mostly, in descriptor research, weighting in terms of division by a descriptor value of other categories are used to have holistic information of as many types as possible.

WHIM descriptors

Todeschini put forward a novel set of weighted holistic invariant molecular (WHIM) descriptors viewing the geometry of the molecules in the Eigen framework. The algorithm for computation of WHIM descriptors are given in Alg. 3.10.

	Alg. 3	.10: WHIN	1					
	0.		Same motion of stamic Contains		Descriptor	\$\$\$ directional		weighted by \$\$
	Dhaca I	ase I coordinate matrix				Size	[1:3]	Unweighted
1	-nase i					Accessibility	[1:3]	Atomic masses
			Input: X, Y, Z co-ordinates of			Symmetry	[1:3]	Atomic van der Waals volumes
5	Step:	<u>Three</u>	W: diagonal weight matrix; Weights are along main diagonal		d-directional WHIM	Shape	[1:2]	Atomic Sanderson electronegativities
5	Step:	<u>Four</u>	Weighted center of each coordinate		index			Atomic polarizabilities
5	Step:	<u>Five</u>	Centre molecular for each coordinate					Atomic electrotopological
5	Step:	<u>Six</u>	Weighted covariance matrix	states			states	
S	Step:	<u>Seven</u>	Three Eigen values and loading matrix of Eigen vectors λ_1 λ_2 λ_3					
	Eight Score matrix (T) in PC space (Project atom coordinates on to three principal axes				Un <u> </u>	ique features of V Statistical	VHIM d	escriptors
		<u>Nine</u>	along principal axes preserving invariance to roto-translation Invriance to rotation is guaranteed by uniqueness of PC solution For $i = 1$: weighting schemes	Image: Second contraction Image: Second contrection Image: Second contrection				ariance es
		<u>Ten</u>	For j = 1: 3 Calculate descriptors (i,j) end j end i					

The scope of information of WHIM descriptors is enhanced by weighting each component by mass, van der Waals volume (geometric), polarizability/electro-negativity (electrostatic). They contain 3D information regarding molecular size, shape, symmetry and atom distribution.

3 GWHIM descriptors

Todeschini extended the basic framework of WHIM descriptors in Grid-WHIM taking into consideration of interaction scalar fields. In G-WHIM, electrostatic and H-boning interaction energies non-bonding (Lenard-Jones) at each of the grid points is calculated using classical potentials (chart 3. 14). The conformer of a molecule is considered to be placed in a cubic box of large number of grid points. The interaction energy, calculated by conceiving that a probe (H^+ , H_2O , or methyl) has moved all the grid points, is used as the weighting factor. The Eigen values of covariance of weighted grid pints gives GWHIM descriptors. The KB for choosing the grid points is given KB. The differences between GWHIM and WHIM are noteworthy. Ideally the information at each grid point in the field interaction should be the same independent of the orientation. It is achievable only for an infinite isotropic dense grid and scalar field calculated should reflect all structural aspects. However, in any theoretical or experimental method probe, mathematical function, grid size and shape play a role which sometimes is misunderstood as the inadequacy of the descriptor itself.

Electrostatic		H^+			
Chart 3. 14: Prob Interaction field	oes to monitor		Chart 3.14b: In as a function of	teraction energy distance	Ÿ
Interaction	Probe		Non-bonding	r ⁻⁶	Van der waals
Lennard-Jones non-bonding	Methyl like		Electrostatic	r ⁻¹	Large grid
Electrostatic	H^+		Range of points	0 or r	
Hydrogen bond	H ₂ O			R limit where interaction is	

GETAWAY (Geometry, Topology and Atom_Weights Assembly)

In 2002, Todeschini proposed a new set of descriptors combining geometry and distance matrix (which is a key topological tuple). The hat matrix is calculated to arrive at a nascent class of GETAWAY (chart 3.15).

Chart 3.15: List of different GETAWAY descriptors				
GETAWAY\$\$\$	\$\$\$_ [0:8]			
\$\$\$				
H autocorrelation	unweighted			
Leverage-weighted autocorrelation	Atomic masses mass			
	vdw volume			
R autocorrelation	atomic Sanderson electronegativity			
R maximal autocorrelation	atomic polarizability			
H total index	 unweighted atomic masses vdw volume atomic Sanderson electronegativity atomic polarizability 			
R maximal index				
R total index				
Randic-type R matrix connectivity				
R matrix average row sum				
First eigenvalue of the R	matrix			

***** Information based descriptors

The information theory widely employed in computer science started in 1960s. However, it was imbedded in biology since times immemorial (38 million years). Biochemists, molecular biologists, chemical geneticists nowadays base their arguments within the frame of 3D-structures of conformations in presence of solvent/cell environment. The success of prediction and explanation of several phenomena enthused computational chemists to adopt information and coding theory right from the bonds to the whole molecule.

Shannon information derived descriptors, no doubt, encodes distribution of mass in the molecule but reflects diversity of atoms/bonds. Information based descriptors are also classified as simple and hybrid (chart 3. 16) and illustrates the neighborhood information descriptors of zero and first order symmetry.

Descriptor Significance Basis	Information index Mass distribution in molecule Shannon information	Descriptor Basis:	Average Information Content (AIC) Shannon Information Theory
Formula	$IC = -\sum_{i=1}^{\infty} \frac{n_{\nu}}{n} * \log_2 \frac{n_{\nu}}{n}$	Output: Formula:	Arranges molecules in order of rising chain length & No. of substituents of aliphatic alkanes $\sum r = \frac{R}{r}$
Encodes Reflects	Size and shape of molecule Diversity of atoms/bonds in molecule		$AIC_{(K)} = -\sum \log_2 \frac{i}{n}$ n _i : No. of atoms in ith class
Application	Solvation studies of non- polar solutes		k: valence shell ; indicates order

Desc_Inf =
structural informa

```
structural information order [0:6]
complimentary information order [0:6]
information order [0:6]
```

```
clean
S1= ['structural ';
    'complimentary';
    .
            ']
orderz = 'order [0:6]'
 n = 0
for i = 1:3
   n = n + 1;
   Desc_Inf(n,:) = [S1(i,:), '
information ' orderz ]
end
k = 0;
for i = 1:3
   for j = 1: 7
    k = k+1;
     desc(k,:)= [S1(i,:), ' information
order (', int2str(j-1), ')'];
    end
end
```

Atom total information content	$a_IC = n^* a$	Radial centric	information index	
Atom mean Information content		Mean	Mean information content on	distance equ
Vertex adjacency information	$f=(n^2-m)/n^2$ VadjEq = - (1-	Mean	Mean information content on	distance ma
(equality)	f) $\log_2(1-f)$ - f $\log_2 f$ interval (0,1)	Mean	Mean information content on	distance deg equality
n : number	If f is not	Mean	Mean information content on	distance deg magnitude
of	open	Total	information content on	distance equ
neavy	Then 0 is	Total	information content on	distance ma
m : number of	returned	Mean	information content vertex	degree equa
heavy- heavy		Mean	information content vertex	degree mag
bonds		total	information content on	leverage equa
		Standardized	information content on	the leverage
		mean	information content on	leverage mag
Vertex adjacency	VadjMa =1+log ₂ m	geometric	mean on	leverage mag
information	If m is zero Then 0 is returned			

desc,k

	Information index on molecular size		1
Total	information index of	atomic composition	
mean	information index	on atomic composition	
Bond	information content neighbourhood symmetry	M = 0 to 5	
	Information content index (neighbourhood	M = 1 to 5	
	Total information content index (neighbou	rhood symmetry of 1-order)	M = 1 to 5

3 Hybrid descriptors

The word hybrid refers to combination of two or more terms, basis sets, philosophies or disciplines. The extent of combination (complete amalgamation, loose combination, sequence operation) at component level pushes towards emergence of a new concept for interpretation. Many a times, it is next level of development and sought after over individual components.

Randic index (χ) is based on graph theoretical principles while, Valence (ν) has been proved in its greater explainability of many physico-chemical processes. χ^{ν} is not popularized as a hybrid descriptor, although it combined two different disciplines. Another instance is proposal of modified Balaban index, wherein graph theoretical distance was weighted with physico-chemical quantities like electronegativity, polarizability etc. In molecular descriptor research, hybrid descriptors are calculated using the information from any two or more of the categories viz. topological, geometric and electrostatic/electronic.

Binary hybrid descriptors

Binary, ternary and quaternary combinations of four major unary descriptor categories are in chart 3. 17.

Chart 3. 17: Hy descriptors	brid system	s with differe	ent classes of
Unary	Binary	Ternary	Quaternary
T(opological)	T,G		
	T,E	TGE	
G(eometric)	T,Q		
		TGQ	TGEQ
E(lectrostatic)	G,E		
	~ ~ ~		
	G,Q	GEQ	
Q(uaternary)			
	E,Q		

A Topo-electronic indices

Kalizan proposed two descriptors one for all pairs of atoms and the other for bonded pairs only. The topo-electronic index (Alg. 3.11) is for both connected and disconnected atoms in the molecule. It is an electronic analogy to the valence connectivity index and reflects the electronic structure of the molecule.

Alg. 3.11: Topological electronic index							
Step:	<u>One</u>	Cal electronic charge distribution of a solute by					
Step:	<u>Two</u>	Cartesian co-ordinates for each atom of solute					
Step:	<u>Three</u>	Excess electronic charge is assigned to each vertex atom					

Step:	<u>Four</u>	For each pair of vertices Find absolute value of excess charge difference Square of inter atomic distance
Step:	<u>Five</u>	Summation
Encodes		Charges along with inter atomic distances

Electro-topological state atom (E-state) indices

In 1990s, Kier and Hall proposed electro-topological state atom (E-state) indices and are equal to numerical values computed for each atom in a molecule. The algorithm of computation is same as that of molecular connectivity index except that partial charges are employed instead of vertex/valence values. The hybrid descriptor is denoted as $ET_{order m}$ (order-m, m= 0 to 3). The sum of the electro-topological state values over all atoms in the molecule is represented as a single numerical value. It inspired many applications in SXR over the last quarter century.

Topo-Geometric descriptor

Broto and Moreau et al. proposed several sets of binary hybrid descriptors.

D Topo-QC descriptor

The topological descriptor in combination with QC derived charge, polarizability or electro-negativity constitutes first order hybrid descriptor. In this set, there is a scalar descriptor encoding global information of charge as well as topology.

Descriptor		Complim content gravitatio	entary (zeroth on index	informat order)	ion +
Encodes	Size and sh	ape of mol	ecule		

Appllication Solvation studies of non-polar solutes

□ Information content + Gravitational index:

Combining the complimentary information content of zeroth order with gravitation index, a new hybrid descriptor is generated.

		Descriptor	Complementary Information Content zero order (CIC0)
<mark>Hybrid</mark> d <mark>escriptor</mark>	Grav itational Index + CIC-zero	Encodes	Degree of branching of a hydrocarbon molecule
Encodes:	Size & Shape information about molecule	Formula	$\log_2 n - OIC$
Application:	 Solvation of non-polar solute in water Represents dispersion & cavity formation effects 		$OIC = -\sum_{i} \frac{n_i}{n} \log_2 \frac{n_i}{n}$
			n _i : no. of atoms in ith class n: total number atoms in the molecule

***** Physical_chemical_biological descriptors

Lipinski's alert index along with new drug-like and lead-like indices increase search efficiency in picking for right molecule for a prospective drug. The bulk properties like dielectric constant, refractive index, molar refractivity also form a class of molecular descriptors.

Molar Refractivity

From measured refractive index, molar refractivity is calculated.

Correlation of connectivity indices with macroscopic properties

The classical physico chemical properties and connectivity indices or their functions are linearly correlated in the statistical sense (table 3.1), warning modelers to be cautious in using bulk properties along with connectivity indices in hard models like MLR.

Recent Descriptors

Topological electronic index for GLC: Ośmiałowski et al. [136] introduced a new topological electronic index and applied for GLC response variation using total energy and electro-topological descriptors.

Descriptor Electro-topologi	cal index- Ośmiałowski
CNDO/2 Descriptors Total energy Electronic index	MoleculesAliphatic, heterocyclic aminesResponse (Measured)GLC
For all pairs of atoms	Stationary phase 🚨 Three
Term1 = Cal absolute differences in electronic excess charges on each atom pairs Term2 = Cal squares of interatomic distances Term3 = Divide Term1 by Term2 End ETI_Osmialowski = sum(Term3)	Table 3.1: Correlation between macroscopic properties and connectivity indicesPhysico chemical properties $\chi 1s$ Polarizability $\chi 1$ Vander waal a, b $\chi 1, \chi v$ Resonance $1\chi - 1\chi v$ Charge $\chi 1$ Molecular mass 0χ to 1χ

Hong et al. [53] found Mold derived 2D-molecular descriptors have similar information as those of Cerius, Dragon, and Molconn-Z based on Shannon entropy analysis.

Inf.Bits_Mold

- \bigcirc Shannon entropy analysis demonstrated that Mold² descriptors convey a similar amount of information.
- + low computing cost for Mold²
 - + Large databases in virtual screening.
- + High reproducibility and reliability are expected because Mold²does not require 3D structures.
- + $Mold^2$ is freely available to the public

Descriptor	Molconn-Z Estate molecular descriptors
Encodes	topological environment of that atomelectronic interactions due to all other atoms in the molecule

Semi empirical Topological Descriptor: Zhou et al. [141] proposed a new topological descriptor using SEMO paradigm and found its high predictability of thermodynamic properties of an extensive set of organic molecules (chart 3.18).

MEDV-13 descriptor: A new set of 91 descriptors called 'Molecular electronegativity distance vector' based on 13 atomic types predicts biological activities (chart 3.19). It includes relative electro-negativity of non-hydrogen atoms and a topological distance for relative distance. Some of the elements C, H, O, N, S, Cl, Br, I and P are considered.

Atomic property weighted radial distribution function (AP-RDF) descriptor: Fernandez et al. [94] proposed the descriptor for large scale SPropR of gas absorption. The PC transformation of AP-RDF descriptors has good discriminating properties.

Count based molecular structure descriptor based on the Distribution of Molecular features: Baumann introduced a descriptor based on histograms of types of atoms and bonds in the molecule (chart 3.20). This descriptor was weighted by topological distance counts with geometric distance.

Ch	art 3.20: Count based molecular structure descriptor Encodes
+	It is invariant to both translation and rotation.
+	Computationally easier.
+	Descriptor >> CoMFA orEVA descriptor
	it does not require the alignment of the structures under study.
Ext	tended Count based descriptor
	Encodes
	Geometric features

Descriptors based on orthogonality measure: Nowik et al. [104] introduced a new measure of orthogonality from distances between nearest neighbors (NND) in the apex plot. New descriptors calculated from NND values reflect peak distribution (arithmetic mean) and homogeneity (geometric/ harmonic mean). This new descriptor is compared with fractal dimensionality. A stereo-signature descriptor based on their earlier signature_moleuclar_descriptor reported.

Electronegativity based descriptors: Liu et al. [72] found a new set of descriptors based on electronegativity are equivalent to 3D-based CoMFA.

4. Software

Liu et al. [84] developed PowerMV, a tool with target researches by biologists and statisticians. It has modules for visual appreciation of molecules, descriptor calculation, model development and arriving at optimum best set of models along with evaluation tools of high priority hits. The pros and cons of SXR with optimized geometry based descriptors dilated. even 3Dare The software Codessa Pro (Comprehensive Descriptors for Structural and Statistical Analysis) by Katrzsky eta al. is one of sought after packages for SXR. A perusal of typical software packages, types of descriptors are described in chart 4.1. The preliminary perspectives of molecules in nature, real/virtual molecules and modeling/inverse models are briefed in chart 4.2, Fig. 4.1 and Fig. 4.2.

Chart 4.1: Ty	pical packages of molecular descriptors	
Package	Туре	#MolDes
DRAGON	Constitutional, topological, 2D-autocorrelations, geometrical, WHIM, GETAWAY, RDF, functional groups, properties, 2D binary and 2D frequency fingerprints, etc.	4885
CODESSA	Constitutional, topological, geometrical, charge-related, semi-empirical, thermodynamical	1500

ADRIANA	Global physicochemical descriptors, atom property-weighted 2D- and 3D-autocorrelations, RDF, surface property-weighted autocorrelations	1244
Sarchitect	Constitutional, 2D and 3D descriptors	1084
PowerMV	Constitutional, atom pairs, fingerprints, BCUT, etc.	1000
PreADMET	Constitutional, topological, geometrical, physicochemical, etc.	955
PaDEL- Descriptor	Constitutional, WHIM, topological, fingerprints 729 1D, 2D descriptors and 134 3D descriptors	863
MOLGEN- QSPR	Constitutional, topological, geometrical, etc	707
MOE ADMET	Topological, physical properties, structural keys, etc. Constitutional, functional group counts, topological, E-state, Moriguchi descriptors, Meylan flags, molecular patterns, electronic properties, 3D descriptors, hydrogen bonding, acid-base ionization, empirical estimates of quantum descriptors. 266 2D and 31 3D	300 297
ADAPT	Topological, geometrical, electronic, physicochemical.	260
MARVIN	Topological, geometrical, fingerprints, physico-chemical, etc.	
JOELib	Counting, topological, geometrical, properties, etc.	40
MOLCONN-Z	topological	40

5. State-of-knowledge of molecular descriptors

Yester years' beliefs/myths: Due to the sizes (number of atoms) of molecules and CPU time for CQC, lower level geometric optimizations were in use for the follow up descriptor calculation. The later jargon of variable selection, modeling method, validation and best model selection are from standard practices in other disciplines.

Today' reality

Now graph-theoretical, quantum chemical, electrostatic, spectroscopic, Eigen approaches are separate streams with a consequence of exponential growth of descriptors of chemical moieties. Molecular structure describes constituent atoms and connections between them from chemical bond stand point. The count of each atom, bonds (double, triple, partial) and chosen fragments form a numerical representation of a molecule in terms of simple molecular descriptors. It does not involve any calculation and thus algorithm. The next stage is to invoke structure as a 2D-molecular graph and the corresponding connectivity matrix is binary matrix of zeros and ones. Various scalar descriptors are calculated by simple matrix operations and simple number crunching. This also does not require any intricate chemical knowledge and thus the descriptors also do not contain all information for diverse structures. The 3D-structure of molecule derived from X-ray, NMR or CQC is a quantum leap, but with higher information content. The first and foremost set is geometric descriptors with straight algebra resulting in shape and size based knowledge.

The binary and ternary hybridization of Topo, geo, electrostatic, QC categories brought forth more explainability/correlation/explaining variance of response of diverse sets of compounds. The number (statistical) correlation between sets of descriptors for given molecules is a stumble block in hard-regression. Although, orthogonolization (PCA, PLSA) surmounts this hurdle, the chemical space is now mapped on to non-orthogonal mathematical space. Here, the axes of mathematical space are linear combination of chemical space. But, chemical interpretability is lost. The fruits of search for orthogonal descriptor research are WHIM by Todeshini.

It is now a common sense that high quality geometry optimization methods are indispensable in descriptor based models research. Further, 3D-molecular descriptors are to be averaged for different conformational structures to be nearer to real time interactions of bio-/pharmaco-interactions.

Rational designs in drug leads or electronic/industrial material templates are target oriented research pursuits, ideally involving biologists, material scientists, chemists, and information/ omni-metric scientists. In the recent past, chemical genetics and high content screening depend upon screening in cells or animals. The limitation is that the biological target is mostly unknown. Software and hardware are fast life enabling tools. But, in practice, sub goals are investigated by technocrats with a little knowledge of many of the said fields. The consequence is like searching reliable bits from an ocean bed of admixture of data/information/knowledge. The simile goes as a costly venture of high tech search for a needle in a hay stack. Thus, the modelling and prediction with molecular descriptors is a multi-disciplinary research area especially for critical issues. Chemometricians are comfortable in trying with advanced mathematical and statistical tools for optimization/ classification. Quantum chemists trained in COC pickup appropriate abinitio or DFT procedure for 3D-structure optimization and chemically significant quantum descriptors. Mathematical chemists, with expertise in graph theoretical principles, look at molecules from pure connectionist point of view. But, later the descriptors are hybridized with quantum chemical, electrostatic, topological and geometric perceptive. Traditional synthetic organic chemists toil to produce larger sets newer analogues of a chosen moiety. Combinatorial chemists work hard to bring large number of chemicals in one pot synthesis and so on. Computational chemists work out virtual libraries, HTS and SXRs to short list sets of moieties without performing conventional experiments. Each of these approaches has pros and cons, yet yield unique, complementary, supplementary, redundant, conflicting information. From of a pool of these, a best model, information is to be sought. But, in routine research a trodden path is followed to bring out presentable/publishable results in a tiny way. Coveted research/commercial centres perform the jargon in a mega way in an effort to bring out most trust worthy outcome. At a higher level, the confidence on each of these paradigms and standard protocols available restrict the final say.

Rules for leads of fungicides: Liu et al. [39] proposed rules for leads of fungicides, insecticides, and herbicides (chart 5.1) as Lipinski-Rule-of-5 was unsuitable, although it was widely employed in drug discovery efforts. Around 400 descriptors were calculated by CODESSA and screening test was based on statistics (chart 5.2).

The definition base (DEF.MolDes) contains object oriented strings amenable for intelligent computer augmented instruction (ICAI). The necessary conditions, formulae, limitations and remedial measures of soft (LMS, PCR, PLSR) and hard (LS, MLR) modelling approaches are available. The knowledge base is in the form of IF Then rules (Horn clauses of first order predicate logic) is the heart of the knowledge based expert system. The use and misuse of supervised classification, clustering and discrimination (LDA, QDA, NN) with different measures of similarity, diversity, residual statistics and error distribution assumptions are coded as knowledge bits.

6. Exploratory super-highway for future MolDes research

The future course of research in better physico-chemical theories and new line of descriptors especially for solid/semi-solid/ biological cell states of molecular systems along with higher level of accuracy of experimental probes [66] (chart 6.1) improve this predictive science.

Fourth wave: In the coming years, new descriptors evolve with a reduced degeneracy, high invariance, maximum information, less correlation and increased discrimination to probe into real life point blank tasks. The base is however simple molecular descriptors derived by counting some atom-types or structural fragments in the molecule, others calculated from algorithms applied to a topological 2D-molecular graph and descriptors derived from a 3D-optimized geometry with follow up involved computations. The, less degenerative, , process oriented descriptors will evolve with better perspective.

Software Model_Statistics	ISIDA, NASAWIN VCCLAB RMSE 5-fold-CV	$\begin{array}{c} Br^{-}R_{3} \\ & \\ R_{2} \\ R_{3} \\ & \\ Br^{-} \\ R_{4} \end{array}$	$\begin{array}{c} \mathbf{Br}^{*} & \\ \mathbf{R}_{2} & \\ \mathbf{R}_{2} & \\ \mathbf{R}_{2} & \\ \mathbf{R}_{2} & \\ \mathbf{R}_{3} & \\ \mathbf{R}_{5} & \\ \mathbf{Br}^{*} & \\ \mathbf{R}_{5} $	Melting Point Prediction RMSE (°C)
IfTwo MolDesVThenInformation Ver MLR results in good predictiveIfTwo MolDesVIfTwo MolDesVTheninformation Two vectors ar MLR failsIfTopological ind structures graph invariantIfIsomorphic gra ThenIfisomorphic con ThenIfisomorphic gray MolDesV : Two molecular descr compounds	do not duplicate chemical ctors are orthogonal & unbiased results with e capability have duplicate e collinearity & dex is same for two phs phs pounds ohs o column vectors of iptors for a series of	Predicti No MI	Inf.Bits ve models n-linear [SVI .P_BP] mod Moderate pr models — Low qu data — Poor re feature to glass effects,	M ; Associative NN; els are superior redictive quality of aality of experimental presentation of structural s in ILs in solid state due s formation, polymorphic eutectics etc.

Acknowledgements

We admire Dr. Anantha Ramam, committed to probe into cause of visible/invisible phenomena one experiences by searching for truth through chemistry. Prof Ramam was deeply immersed in final scrutiny of manuscripts on neural networks up to ten days before of his last breath.

We thank Dr M Suryanarayna, scientist (DRDE, Gwalior), alumni of Andhra University for a startup session for the project 'Molecular structural information for nerve agents'. RSR lectured on 'Impact of Chemometrics in structure response relationships' on invitation of Rama Chandran director of DRDE. RSR expresses his gratitude to Dr Swamy, director general for his keen interest in high tech applications in organic chemistry. During period 1999 to 2001, a technical report of various categories of molecular descriptors was prepared after experiencing structure-response relationships using of CODESSA software. This is the core of third section of the review. The encouragement of editors (Dr Somasekahara Rao and Prof Suresh) to cross a little of conventional boundaries in documenting references in our earlier publications brought a positive feedback to pick up sets of sought after literature on subjects prime concern. It also favors to browse through breadthwise results to find gaps for further research at a glance.

I was fond of explicitly expressing the assumptions in any theory or derivation. I tried to write down for thermodynamics like that on the left side page of my notes in M Sc. I was selected for an officer post in BARC in 1972 just after three months of joining research, but remained in Andhra University as a research scholar and faculty since 1974, of course, up to my retirement in 2008. My career was along the stream and never an upstream swim. I started computer programming on IBM 1130 with ten days reading of FORTRAN book by Ratnam and Raju. Myself along with Satyanarayana, a research scholar learned statement by statement by writing programs of course for calculations in complex equilibria. Those formulae and solution of equations were already done with FX8 calculator (which does not have even logarithm or exponential functions) during 1974 to 1976. With, in a couple of years, we started running the

then standard programs like SCOGS, POT3 and MINIQUD-74. With satisfactory results for chemical tasks oriented to Ph.D. programs, MINIQUAD series (MINIQUAD 75, SUPERQUAD and HYPERQUAD) was continued in our school for the last three and half decades. During the last two and half decades the high computing power, multi-dimensional graphics, data structures, and object oriented patterns of MATLAB have been extensively applied in research programs, apart from DBASE III+ and TurboProlog software.

The author's (RSR) first chemical education article with Bapanaiah, a co-research scholar was published four decades ago in Science Reporter (12(1975)315-318). The impetus was the language barrier between statisticians and chemists in that decade at least here. Although now trivial, the first question statisticians use to ask was 'Is your data adhere to normal distribution of errors?' The chemist uses to say ' My data is accurate as we have taken care at all stages of experiment. Our desire is to apply statistical analysis to obtain more accurate result and eliminate errors unknown. Neither the chemist nor statistician could understand the other's mind (or science in it). With the help of four figure logarithmic tables or calculating machine (which does not give decimal point finally), the averages to coefficient of variance were calculated and both groups call it day with utmost satisfaction and contentment. Again for a query of statistician, 'is there data for repeated experiments', and the reply of chemist were replicating measurements of absorbance readings in spectrophotometric analysis were available. The implicit fun is the experiments like preparation solutions for measurements were not repeated, but only with solution, the measurements were made six or eight times. Naturally the readings were always within the readability of instruments. Thus, it is not standard deviation of chemical experiment, but only repeatability of instruments within a matter of five minutes. These lone stories or many others do not have long shelf life with the progress of one's own experiences, unless one takes care of probing into details of interdisciplinary research. The outliers, robust statistics, distribution free statistics, fuzzy/rough sets, possibility, robotic-experimental operations, hyphenated (second and third order) instruments, were all later add-ons in chemistry, mostly under Chemometrics, matured discipline. Its off-spring and cousins are -mics, -omics, and/or -metrics are tertiary or quaternary cross-disciplinary research areas, challenging even an expert in one or two disciplines to feel and have vision when closed his eyes.

REFERENCES

Monographs in Molecular descriptors

- [1] R. Todeschini, Handbook Of Molecular Descriptors, Wiley-VCH, New York, 2000.
- [2] P. Duchowicz, E. Castro, The Order Theory in QSPR QSAR Studies, ISBN: 978-86-81829-90-5, 2008.
- [3] R. Todeschini, Handbook Of Molecular Descriptors, 2008.
- [4] R. Todeschini, Molecular Descriptors For Chemoinformatics, John Wiley & Sons, 2009.
- [5] R. Todeschini, Molecular Descriptors For Chemoinformatics, Wiley-VCH Verlag GmbH, 2009.
- [6] I. Gutman (Editor Boris Furtula), Distance in Molecular Graph Applications; Distance in Molecular Graph Theory, **2012.**
- [7] M. Dehmer, Statistical Modelling Of Molecular Descriptors, John Wiley & Sons, **2012.**

Bcut descriptors

[8] M. P. González, C. Terán, M. Teijeira, P. Besada, M. J. González-Moa, *Bioorganic & Medicinal Chemistry Letters*, 2005, 15, 15, 3491-3495.

BCUT descriptors to predicting affinity toward A3 adenosine receptors

 [9] J.S Mason, B. R Beno, J. Molecular Graphics and Modelling, 2000, 18, 4–5, 438-451.
 Library design using BCUT chemistry-space descriptors and multiple four-point pharmacophore fingerprints: simultaneous optimization and structure-based diversity

[10]	Ijjaali, F. Petitet, E. Dubus, O. Barberan, R. Michel, <i>Bioorganic & Medicinal Chemistry</i> , 2007, 15, 12, 4256-4264.
	Assessing potency of c-Jun N-terminal kinase 3 (JNK3) inhibitors using 2D molecular descriptors and binary QSAR methodology
[11]	H. Kim, Y. S. Cho, H. Y. Koh, J. Y. Kong, K. T. No, A. N. Pae, <i>Bioorganic & Medicinal Chemistry</i> , 2006 , 14, 5, 1454-1461.
	Classification of dopamine antagonists using functional feature hypothesis and topological descriptors
[12]	M. P. González, P. L. Suárez, Y. Fall, G. Gómez, <i>Bioorganic & Medicinal Chemistry Letters</i> , 2005 , 15, 23, 5165-5169.
	Quantitative structure–activity relationship studies of vitamin D receptor affinity for analogues of 1α ,25-dihydroxyvitamin D3. 1: WHIM descriptors
[13]	L. Saíz-Urra, M. Pérez González, M. Teijeira, <i>Bioorganic & Medicinal Chemistry</i> , 2007 , 15, 10, 3565-3571.
	2D-autocorrelation descriptors for predicting cytotoxicity of naphthoquinone ester derivatives against oral human epidermoid carcinoma
[14]	M. Pérez González, C. Terán, M. Teijeira, A. Morales Helguera, <i>European J. Medicinal Chemistry</i> , 2006 , 41, 1, 56-62.
	Radial distribution function descriptors: an alternative for predicting A2 A adenosine receptors agonists
[15]	L. Saíz-Urra, M. Pérez González, M. Teijeira, <i>Bioorganic & Medicinal Chemistry</i> , 2006 , 14, 21, 7347-7358.
	QSAR studies about cytotoxicity of benzophenazines with dual inhibition toward both
	topoisomerases I and II: 3D-MoRSE descriptors and statistical considerations about variable selection
[16]	S. Sharma, B. K. Sharma, S. K. Sharma, P. Singh, Y. S. Prabhakar, <i>European J. Medicinal Chemistry</i> , 2009 , 44, 4, 1377-1382.
	Topological descriptors in modeling the agonistic activity of human A3 adenosine receptor ligands: The derivatives of 2-chloro-N6-substituted-4'-thioadenosine-5'-uronamide
[17]	M. G Ford, W. R Pitt, D. C Whitley, <i>J. Molecular Graphics and Modelling</i> , 2004 , 22, 6, 467-472. Selecting compounds for focused screening using linear discriminant analysis and artificial neural networks
[18]	M. Rybka, G. Mercader, E. A. Castro, <i>Chemometrics and Intelligent Laboratory Systems</i> , 2014 , 132, 18-29.
	Predictive QSAR study of chalcone derivatives cytotoxicity activity against HT-29 human colon adenocarcinoma cell lines
[19]	M. P. González, M. del Carmen, T. Moldes, <i>Bioorganic & Medicinal Chemistry</i> , 2004 , 12, 11, 2985-2993.
	A TOPS-MODE approach to predict affinity for A1 adenosine receptors. 2-(Arylamino) adenosine analogues
[20]	M. P. González, C. Terán, Y. Fall, M. Teijeira, P. Besada, <i>Bioorganic & Medicinal Chemistry</i> , 2005 , 13, 3, 601-608.

A radial distribution function approach to predict A2B agonist effect of adenosine analogues
[21]	S. Sharma, Y. S. Prabhakar, P. Singh, B. Kishore Sharma, <i>European J. Medicinal Chemistry</i> , 2008 , 43, 11, 2354-2360.
	QSAR study about ATP-sensitive potassium channel activation of cromakalim analogues using CP- MLR approach
[22]	M. Pérez González, M. Carmen, T. Moldes, <i>Bulletin of Mathematical Biology</i> , 2004 , 66, 4, 907- 920
	QSAR study of N6-(substituted-phenylcarbamoyl) adenosine-5'-uronamides as agonist for A1
[23]	M. Pérez González, A. M. Helguera, H.G. Díaz, <i>Polymer</i> , 2004 , 45, 6, 2073-2079.
	A TOPS-MODE approach to predict permeability coefficients
[24]	M. P. González, M. del Carmen, T. Moldes, <i>Bioorganic & Medicinal Chemistry Letters</i> , 2004 , 14, 12, 3077-3079.
	A TOPS-MODE approach to predict adenosine kinase inhibition CODESSA package
[25]	M. Randić, M. Pompe, J. Chem. Inf. Comput. Sci., 2001, 41, (3), 631-638.
	The Variable Connectivity Index $1\chi f$ versus the Traditional Molecular Descriptors: A Comparative Study of $1\chi f$ against Descriptors of CODESSA
[26]	A. R. Katritzky, I. B. Stoyanova-Slavova, K. Tämm, T. Tamm, M. Karelson, <i>J. Phys. Chem. A</i> , 2011 , 115, (15), 3475–3479.
	Application of the QSPR Approach to the Boiling Points of Azeotropes
[27]	A. R. Katritzky, D. A. Dobchev, D. C. Fara, E. Hür, K. Tämm, L. Kurunczi, M. Karelson, A. Varnek, V. P. Solov'ev, <i>J.Med. Chem.</i> , 2006 , 49, (11), 3305–3314.
	Skin Permeation Rate as a Function of Chemical Structure
[28]	A. R. Katritzky, S. Perumal, R. Petrukhin, <i>J.Org. Chem.</i> , 2001 , 66, (11), 4036–4040. A QSRR Treatment of Solvent Effects on the Decarboxylation of 6-Nitrobenzisoxazole-3- carboxylates Employing Molecular Descriptors.
[29]	A. R. Katritzky, D. C. Fara, H. Yang, M. Karelson, T. Suzuki, V. P. Solovev, A. Varnek, <i>J.Chem.</i> <i>Inf. Comput. Sci.</i> , 2004 , 44, (2), 529–541.
	Quantitative Structure–Property Relationship Modeling of β-Cyclodextrin Complexation Free Energies
[30]	A. R. Katritzky, A. A. Oliferenko, P. V. Oliferenko, R. Petrukhin, D. B. Tatham, U. M. Lomaka, W. E. Acree, Jr., <i>J.Chem. Inf. Comput. Sci.</i> , 2003 , 43, (6), 1806–1814.
	A General Treatment of Solubility. 2. QSPR Prediction of Free Energies of Solvation of Specified Solutes in Ranges of Solvents
[31]	A. R. Katritzky, D. B. Tatham, U. Maran, <i>J.Chem. Inf. Comput. Sci.</i> , 2001 , 41, (5), 1162–1176. Theoretical Descriptors for the Correlation of Aquatic Toxicity of Environmental Pollutants by
[20]	Quantitative Structure-Toxicity Relationships A. P. Katritzky, P. Lomaka, P. Datrukkin, P. Jain, M. Karalson, A. F. Vissor, P. D. Bogors
[32]	<i>J.Chem. Inf. Comput. Sci.</i> , 2002 , 42, (1), 71–74.
[33]	R High M Karelson <i>I Chem Inf Comput Sci</i> 2000 40 (4) 1062–1071
[33]	Quantitative Relationship between Rate Constants of the Gas-Phase Homolysis of C–X Bonds and Molecular Descriptors
[34]	H. Liu, X. Yao, R. Zhang, M. Liu, Z. Hu, B. Fan, J.Phys. Chem. B, 2005, 109, (43), 20565–20571.

Accurate Quantitative Structure–Property Relationship Model To Predict the Solubility of C60 in Various Solvents Based on a Novel Approach Using a Least-Squares Support Vector Machine

- [35] A. Varnek, D. Fourches, V. P. Solov'e vV. E. Baulin, A. N. Turanov, V. K. Karashev, D. FaraA. R. Katritzky, *J.Chem. Inf. Comput. Sci.*, 2004, 44, (4), 1365–1382.
 "In Silico" Design of New Uranyl Extractants Based on Phosphoryl-Containing Podands: QSPR Studies, Generation and Screening of Virtual Combinatorial Library, and Experimental Tests
- [36] K. Tämm, D. C. Fara, A. R. Katritzky, P. Burk, M. Karelson, J.Phys. Chem. A, 2004, 108, (21), 4812–4818.

A Quantitative Structure–Property Relationship Study of Lithium Cation Basicities

- [37] A. R. Katritzky, A. A. Oliferenko, P. V. Oliferenko, R. Petrukhin, D. B. Tatham, U. M. Lomaka, W. E. Acree, Jr., *J.Chem. Inf. Comput. Sci.*, 2003, 43, (6), 1794–1805.
 A General Treatment of Solubility. 1. The QSPR Correlation of Solvation Free Energies of Single Solutes in Series of Solvents
- [38] A. R. Katritzky, S. Perumal, R. Petrukhin, E. Kleinpeter, *J.Chem. Inf. Comput. Sci.*, 2001, 41, (3), 569–574.
 CODESSA-Based Theoretical QSPR Model for Hydantoin HPLC-RT Lipophilicities
- [39] B. Liu, F. Zhu, Y. Huang, Y. Wang, F. Yu, B. FanJianhua Yao, J.Agric. Food Chem., 2010, 58, (5), 2673–2684.

Screening Rules for Leads of Fungicides, Herbicides, and Insecticides

[40] A. R. Katritzky, L. Pacureanu, D. Dobchev, M. Karelson, J.Chem. Inf. Model., 2007, 47, (3), 782– 793.

QSPR Study of Critical Micelle Concentration of Anionic Surfactants Using Computational Molecular Descriptors

- [41] A. R. Katritzky, R. Jain, R. Lomaka, R. Petrukhin, M. Karelson, A. E. Visser, R. D. Rogers, J.Chem. Inf. Comput. Sci., 2002, 42, (2), 225–231. Correlation of the Melting Points of Potential Ionic Liquids (Imidazolium Bromides and Benzimidazolium Bromides) Using theCODESSA Program
- [42] M. Oblak, M. Ric, T. Solmajer, J.Chem. Inf. Comput. Sci., 2000, 40, (4), 994–1001.
 Quantitative Structure–Activity Relationship of Flavonoid Analogues. 3. Inhibition of p56lck Protein Tyrosine Kinase

Dragon software

- [43] B. Bordás, I. Bélai, T. Kőmíves, *J.Agric. Food Chem.*, 2011, 59, (7), 2863–2869.
 Theoretical Molecular Descriptors Relevant to the Uptake of Persistent Organic Pollutants from Soil by Zucchini. A QSAR Study
- [44] A. Rizzi, A. Fioni, J. Chem. Inf. Model., 2008, 48, (8), 1686–1692.
 Virtual Screening Using PLS Discriminant Analysis and ROC Curve Approach: An Application Study on PDE4 Inhibitors
- [45] B. Robson, *J.Proteome Res.*, 2004, 3, (6), 1113–1119.
 The Dragon on the Gold: Myths and Realities for Data Mining in Biomedicine and Biotechnology Using Digital and Molecular Libraries
- [46] F. Pereira, D. A. R. S. Latino, J.Aires-de-Sousa, *J.Org. Chem.*, 2011, 76, (22), 9312–9319.
 Estimation of Mayr Electrophilicity with a Quantitative Structure–Property Relationship Approach Using Empirical and DFT Descriptors

- [47] P. L. Andersson, U. Maran, D. Fara, M. Karelson, J.L. M. Hermens, *J.Chem. Inf. Comput. Sci.*, 2002, 42, (6), 1450–1459.
 General and Class Specific Models for Prediction of Soil Sorption Using Various Physicochemical Descriptors
- [48] R. Lowe, R. C. Glen, J.B. O. Mitchell, *Mol. Pharmaceutics*, **2010**, 7, (5), 1708–1714. Predicting Phospholipidosis Using Machine Learning
- [49] G. Pasquale, G. P. Romanelli, J.C. Autino, J.García, E. V. Ortiz, P. R. Duchowicz, *J.Agric. Food Chem.*, 2012, 60, (2), 692–697.
 Quantitative Structure–Activity Relationships of Mosquito Larvicidal Chalcone Derivatives
- [50] M. Goodarzi, M. P. Freitas Richard Jensen, *J.Chem. Inf. Model.*, 2009, 49, (4), 824–832.
 Feature Selection and Linear/Nonlinear Regression Methods for the Accurate Prediction of Glycogen Synthase Kinase-3β Inhibitory Activities
- [51] R. Solimeo, J. Zhang, M. Kim, A. Sedykh, H. Zhu, *Chem. Res. Toxicol.*, 2012, 25, (12), 2763–2769.
 Predicting Chemical Ocular Toxicity Using a Combinatorial QSAR Approach
- [52] S. Novotarskyi, I. Sushko, R. Körner, A. Kumar Pey, I. V. Tetko, *J. Chem. Inf. Model.*, 2011, 51, (6), 1271–1280.
- A comparison of different QSAR approaches to modeling CYP450 1A2 inhibition
- [53] H. Hong, Q. Xie, W. Ge, F. Qian, H. Fang, L. Shi, Z. Su, R. P. Tong, J.Chem. Inf. Model., 2008, 48, (7), 1337–1344.
- Mold², Molecular Descriptors from 2D Structures for Chemoinformatics and Toxicoinformatics
 [54] X. S. Wang, H. Tang, A. Golbraikh, A. Tropsha, *J.Chem. Inf. Model.*, 2008, 48, (5), 997–1013.
- Combinatorial QSAR Modeling of Specificity and Subtype Selectivity of Ligands Binding to Serotonin Receptors 5HT1E and 5HT1F
- [55] H. Pham-The, T. Garrigues, M. Bermejo, I. González-Álvarez, M. Cruz Monteagudo, M. Ángel Cabrera-Pérez, *Mol. Pharmaceutics*, 2013, 10, (6), 2445–2461.
 Provisional Classification and *in Silico* Study of Biopharmaceutical System Based on Caco-2 Cell Permeability and Dose Number
- [56] A. Kovatcheva, A. Golbraikh, S. Oloff, Y. Xiao, W. Zheng, P. Wolschann, G. Buchbauer, A. Tropsha, *J.Chem. Inf. Comput. Sci.*, 2004, 44, (2), 582–595.
 Combinatorial QSAR of Ambergris Fragrance Compounds

E-state descriptors

- [57] H. H. Maw, L. H. Hall, J.Chem. Inf. Comput. Sci., 2001, 41, (5), 1248–1254.
 E-State Modeling of Corticosteroids Binding AffinityValidation of Model for Small Data Set
- [58] I. V. Tetko, V. P. Solov'ev, A. V. Antonov, X. Yao, J.P. Doucet, B. Fan, F. Hoonakker, D. Fourches, P. Jost, N. Lachiche, A. Varnek, *J.Chem. Inf. Model.*, 2006, 46, (2), 808–819. Benchmarking of Linear and Nonlinear Approaches for Quantitative Structure–Property Relationship Studies of Metal Complexation with Ionophores
- [59] I. V. Tetko, V. Yu. Tanchuk, T. N. Kasheva, A. E. P. Villa, *J.Chem. Inf. Comput. Sci.*, 2001, 41, (6), 1488–1493.
 Estimation of Aqueous Solubility of Chemical Compounds Using E-State Indices
- [60] E. S. Wisniewski, A. W. Castleman, Jr., *J.Phys. Chem. A*, **2002**, 106, (45), 10843–10848. Femtosecond Photodissociation Dynamics of Excited-State SO2
- [61] H. H. Maw, L. H. Hall, J. Chem. Inf. Comput. Sci., 2002, 42, (2), 290–298.

E-State Modeling of HIV-1 Protease Inhibitor Binding Independent of 3D Information

- [62] R. L. McNaughton, J.Min Chin, W. W. Weare, R. R. Schrock, B. M. Hoffman ;, *J.Am. Chem. Soc.*, 2007, 129, (12), 3480–348.
 EPR Study of the Low-Spin [d3; S =1/2], Jahn–Teller-Active, Dinitrogen Complex of a Molybdenum Trisamidoamine
- [63] K. L. Knappenberger, Jr. A. W. Castleman, Jr., *J.Phys. Chem. A*, **2004**, 108, (1), 9–14. Photodissociation of Sulfur Dioxide: The E State Revisited
- [64] H. Qian, P. Shi, *J.Phys. Chem. B*, 2009, 113, (8), 2225–2230.
 Fluctuating Enzyme and Its Biological Functions: Positive Cooperativity without Multiple States
- [65] T. Chiu, Sung-Sau So, J.Chem. Inf. Comput. Sci., 2004, 44, (1), 147–153.
 Development of Neural Network QSPR Models for Hansch Substituent Constants. 1. Method and Validations
- [66] A. Varnek, N. Kireeva, I. V. Tetko, I. I. Baskin, V. P. Solov'ev, *J.Chem. Inf. Model.*, 2007, 47, (3), 1111–1122.
 Exhaustive QSPR Studies of a Large Diverse Set of Ionic Liquids: How Accurately Can We

Predict Melting Points?

- [67] Q. Hu, Y. Liang, H. Yin, X. Peng, K. Fang, J.Chem. Inf. Comput. Sci., 2004, 44, (4), 1193–1201. Structural Interpretation of the Topological Index. 2. The Molecular Connectivity Index, the Kappa Index, and the Atom-type E-State Index
- [68] K. Rose, L. H. Hall, L. B. Kier, *J.Chem. Inf. Comput. Sci.*, **2002**, 42, (3), 651–666. Modeling Blood-Brain Barrier Partitioning Using the Electrotopological State
- [69] J.A. Grodnitzky, J.R. Coats, *J.Agric. Food Chem.*, **2002**, 50, (16), 4576–4580. QSAR Evaluation of Monoterpenoids' Insecticidal Activity
- [70] C. Catana, H. Gao, C. Orrenius, P. F. W. Stouten, *J.Chem. Inf. Model.*, **2005**, 45, (1), 170–176. Linear and Nonlinear Methods in Modeling the Aqueous Solubility of Organic Compounds
- [71] G. Schuurmann, R. Ebert, R. Kuhne, *Environ. Sci. Technol.*, 2006, 40, (22), 7005–7011.
 Prediction of the Sorption of Organic Compounds into Soil Organic Matter from Molecular Structure
- [72] S. Liu, C. Yin, Z. Li, S. Cai, *J.Chem. Inf. Comput. Sci.*, **2001**, 41, (2), 321–329. QSAR Study of Steroid Benchmark and Dipeptides Based on MEDV-13
- [73] D. R. Albaugh, L. Mark Hall, D. W. Hill, T. M. Kertesz, M.Parham, L. H. Hall, David F. Grant, *J.Chem. Inf. Model.*, 2009, 49, (4), 788–799.
 Prediction of HPLC Retention Index Using Artificial Neural Networks and IGroup E-State Indices
- [74] L. M. Hall, L. H. Hall, L. B. Kier, *J.Chem. Inf. Comput. Sci.*, **2003**, 43, (6), 2120–2128. Modeling Drug Albumin Binding Affinity with E-State Topological Structure Representation
- [75] R. D. Beger, D. A. Buzatu, J.G. Wilkes, O. Lay, Jr., J.Chem. Inf. Comput. Sci., 2002, 42, (5), 1123–1131.
 Comparative Structural Connectivity Spectra Analysis (CoSCoSA) Models of Steroid Binding to

Comparative Structural Connectivity Spectra Analysis (CoSCoSA) Models of Steroid Binding to the Corticosteroid Binding Globulin

- [76] I. V. Tetko, V. Yu. Tanchuk, T. N. Kasheva, A. E. P. Villa, *J.Chem. Inf. Comput. Sci.*, 2001, 41, (5), 1407–1421.
 Prediction of n-Octanol/Water Partition Coefficients from PHYSPROP Database Using Artificial Neural Networks and E-State Indices
- [77] R. K, Mitra I., Curr Comput Aided Drug Des., 2012, 8, (2), 135-58.

Electrotopological state atom (E-state) index in drug design, QSAR, property prediction and toxicity assessment.

- [78] J.Huuskonen, *J.Chem. Inf. Comput. Sci.*, **2001**, 41, (2), 425–429. QSAR Modeling with the Electrotopological State: TIBO Derivatives
- [79] M. J.Tubergen, R. J.Lavrich, D. F. Plusquellic, R. D. Suenram, J.Phys. Chem. A, 2006, 110, (49), 13188–13194.

Rotational Spectra and Conformational Structures of 1-Phenyl-2-propanol, Methamphetamine, and 1-Phenyl-2-propanone

- [80] D. Cao, Y. Liang, J.Yan, G. Tan, Q. Xu, S. Liu, *J. Chem. Inf. Model.*, 2013, 53, (11), 3086–3096. PyDPI: Freely Available Python Package for Chemoinformatics, Bioinformatics, and Chemogenomics Studies
- [81] D. R. Albaugh, L. Hall, D. W. Hill, T. M. Kertesz, M. Parham, L. H. Hall, D. F. Grant, J. Chem. Inf. Model., 2009, 49, (4), 788–799.
- Prediction of HPLC Retention Index Using Artificial Neural Networks and IGroup E-State Indices
 [82] M.C. Sharma, D.V. Kohli, J.Saudi Chemical Society, 18(1), 2014, 35-45.
- Insight into the structural requirement of substituted quinazolinone biphenyl acylsulfonamides derivatives as Angiotensin II AT₁ receptor antagonist: 2D and 3D QSAR approach

Geom descriptors

- [83] L. Franke, O. Schwarz, L. Müller-Kuhrt, C. Hoernig, L. Fischer, S. George, Y.Tanrikulu, P. Schneider, O. Werz, D. Steinhilber, G. Schneider, J.Med. Chem., 2007, 50, (11), 2640–2646. Identification of Natural-Product-Derived Inhibitors of 5-Lipoxygenase Activity by Ligand-Based Virtual Screening
- [84] K. Liu, J.Feng, S. S. Young , J.Chem. Inf. Model., 2005, 45, (2), 515–522.
 PowerMV: A Software Environment for Molecular Viewing, DescriptorGeneration, Data Analysis and Hit Evaluation
- [85] C. Ma, J. S. LazoXiang-Qun Xie, ACS Comb. Sci., 2011, 13, (3), 223–231. Compound Acquisition and Prioritization Algorithm for Constructing Structurally Diverse Compound Libraries
- [86] Y. A. Abramov, *Mol. Pharmaceutics*, ASAP (2015). Major Source of Error in QSPR Prediction of Intrinsic Thermodynamic Solubility of Drugs: Solid vs Nonsolid State Contributions?
- [87] S. S. Young, M. Wang, F. Gu, *J.Chem. Inf. Comput. Sci.*, 2003, 43, (6), 1916–1921.
 Design of Diverse and Focused Combinatorial Libraries Using an Alternating Algorithm
- [88] K. P. Singh, S. Gupta, A. Kumar, D. Mohan, *Chem. Res. Toxicol.*, 2014, 27, (5), 741–753. Multispecies QSAR Modeling for Predicting the Aquatic Toxicity of Diverse Organic Chemicals for Regulatory Toxicology
- [89] S. A. Mirkhani, F. Gharagheizi, *Ind. Eng. Chem. Res.*, 2012, 51, (5), 2470–2477.
 Predictive Quantitative Structure–Property Relationship Model for the Estimation of Ionic Liquid Viscosity
- J.J.Panek, A. Jezierska, M. Vračko, J.Chem. Inf. Model., 2005, 45, (2), 264–272.
 Kohonen Network Study of Aromatic Compounds Based on Electronic and Nonelectronic Structure Descriptors

[91]	Yi Wang, Y. Shao, Y. Wang, L. Fan, X. Yu, X. Zhi, C. Yang, H. Qu, X. Yao, H. Xu, J.Agric. Food Chem 2012, 60 (34) 8435–8443
	Synthesis and Quantitative Structure–Activity Relationship (OSAR) Study of Novel Isoxazoline
	and Oxime Derivatives of Podophyllotoxin as Insecticidal Agents
[92]	J.K. Wegner, H. Fröhlich, R. Zell, J. Chem. Inf. Comput. Sci., 2004, 44, (3), 931–939.
L.]	Feature Selection for Descriptor Based Classification Models. 2. Human Intestinal Absorption
	(HIA)
[93]	Z. Che, S. Zhang, Y. Shao, L. Fan, H. Xu, X. Yu, X. Zhi, X. Yao, R. Zhang, <i>J.Agric. Food Chem.</i> , 2013 , 61, (24), 5696–5705.
	Synthesis and Quantitative Structure-Activity Relationship (QSAR) Study of Novel N-
	Arylsulfonyl-3-acylindole Arylcarbonyl Hydrazone Derivatives as Nematicidal Agents
[94]	M. Fernandez, N. R. Trefiak, T. K. Woo, J. Phys. Chem. C, 2013, 117, (27), 14095–14105.
	Atomic Property Weighted Radial Distribution Functions Descriptors of Metal–Organic
	Frameworks for the Prediction of Gas Uptake Capacity
[95]	K. Baumann, J. Chem. Inf. Comput. Sci., 2002, 42, (1), 26–35.
	An Alignment-Independent Versatile Structure Descriptor for QSAR and QSPR Based on the Distribution of Molecular Features
[96]	A. Amadasi, J.Surface, F. Spyrakis, P. Cozzini, M. G. E. Kellogg, <i>J.Med. Chem.</i> , 2008 , 51, (4), 1063–1067.
	Robust Classification of "Relevant" Water Molecules in Putative Protein Binding Sites
[97]	M. Dervarics, F. Ötvös, T. A. Martinek, J. Chem. Inf. Model., 2006, 46, (3), 1431-1438.
	Development of a Chirality-Sensitive Flexibility Descriptor for 3+3D-QSAR
[98]	B. E. Mattioni, P. C. Jurs, J.Chem. Inf. Comput. Sci., 2002, 42, (2), 232-240.
	Prediction of Glass Transition Temperatures from Monomer and Repeat Unit Structure Using
	Computational Neural Networks
[99]	M. S. Costanza-Robinson, K. H. Harrold, R. M. Lieb-Lappen, <i>Environ. Sci. Technol.</i> , 2008 , 42, (8), 2949–2956.
	X-ray Microtomography Determination of Air-Water Interfacial Area-Water Saturation
	Relationships in Sandy Porous Media
[100]	B. E. Mattioni, P. C. Jurs, J.Chem. Inf. Comput. Sci., 2002, 42, (1), 94-102.
	Development of Quantitative Structure-Activity Relationship and Classification Models for a Set
	of Carbonic Anhydrase Inhibitors
[101]	Z. Boudene, T. De Bruin, H. Toulhoat, P. Raybaud, Organometallics, 2012, 31, (23), 8312-8322.
	A QSPR Investigation of Thermal Stability of [Al(CH3)O]n Oligomers in Methylaluminoxane
	Solution: The Identification of a Geometry-Based Descriptor
[102]	A. Cammarata, W. Zhang, P. Shiv Halasyamani, J. M. Rondinelli, Chem. Mater., 2014, 26, (19),
	5773–5781.
	Microscopic Origins of Optical Second Harmonic Generation in Noncentrosymmetric–Nonpolar
	Materials
[103]	S. J.Patankar, P. C. Jurs, J.Chem. Inf. Comput. Sci., 2002, 42, (5), 1053–1068.
	Prediction of Glycine/NMDA Receptor Antagonist Inhibition from Molecular Structure
[104]	W. Nowik, S. Héron, M. Bonose, M. Nowik, A. Tchapla, Anal. Chem., 2013, 85, (20), 9449–9458.
	Assessment of Two-Dimensional Separative Systems Using Nearest-Neighbor Distances
	Approach. Part 1: Orthogonality Aspects

[105]	F. J.Martín-Martínez, S. Fias, B. Hajgató, G. Van Lier, F. De Proft, P. Geerlings, <i>J.Phys. Chem. C</i> , 2013 , 117, (49), 26371–26384.
	Inducing Aromaticity Patterns and Tuning the Electronic Transport of Zigzag Graphene Nanoribbons via Edge Design
[106]	F. De Vleeschouwer, A. Toro-Labbé, S. Gutiérrez-Oliva, V. Van Speybroeck, M. Waroquier, P. Geerlings, F. De Proft, <i>J.Phys. Chem. A</i> , 2009 , 113, (27), 7899–7908.
	Reversibility from DFT-Based Reactivity Indices: Intramolecular Side Reactions in the Polymerization of Poly (vinyl chloride)
[107]	A. Rolo-Naranjo, E. Codorniu-Hernández Noel Ferro, <i>J.Chem. Inf. Model.</i> , 2010 , 50, (5), 924–933. Quantum Chemical Associations Ligand–Residue: Their Role to Predict Flavonoid Binding Sites in Proteins
[108]	N. R. McElroy, E. D. Thompson, P. C. Jurs, <i>J.Chem. Inf. Comput. Sci.</i> , 2003 , <i>43</i> , (6), 2111–2119. Classification of Diverse Organic Compounds That Induce Chromosomal Aberrations in Chinese Hamster Cells
[109]	C. Nativi, M. Cacciarini, O. Francesconi, A. Vacca, G. Moneti, R. Ienco, S. Roelens, <i>J.Am. Chem. Soc.</i> , 2007 , 129, (14), 4377–4385.
	Pyrrolic Tripodal Receptors Effectively Recognizing Monosaccharides. Affinity Assessment through a Generalized Binding Descriptor
[110]	K. Yeturu, N. Chandra, J. Chem. Inf. Model., 2011, 51, (7), 1725–1736.
	PocketAlign A Novel Algorithm for Aligning Binding Sites in Protein Structures
[111]	A. B. Camargo, E. Marchevsky, J.M. Luco , <i>J.Agric. Food Chem.</i> , 2007, 55, (8), 3096–3103. QSAR Study for the Soybean 15-Lipoxygenase Inhibitory Activity of Organosulfur Compounds Derived from the Essential Oil of Garlic
[112]	J.Desaphy, E. Raimbaud, P. Ducrot, D. Rognan, <i>J.Chem. Inf. Model.</i> , 2013 , 53, (3), 623–637. Encoding Protein–Ligand Interaction Patterns in Fingerprints and Graphs
[113]	J.L. Hodgson, C. Y. LinMichelle, L. Coote, S. R. A. Marque, K. Matyjaszewski, <i>Macromolecules</i> , 2010 , 43, (8), 3728–3743.
	Linear Free-Energy Relationships for the Alkyl Radical Affinities of Nitroxides: A Theoretical Study
	Randic indices
[114]	F. C. G. Manso, H. S. Júnior, R. E. Bruns, A. F. Rubira, E. C. Muniz, <i>J. Molecular Liquids</i> , 2012 , 165, 125-132.
	Development of a new topological index for the prediction of normal boiling point temperatures of hydrocarbons: The Fiindex
[115]	M. Randić, J.Zupan, Topology in Chemistry, 2002 , 249-291.
[]	On the Structural Interpretation of Topological Indices
[116]	E. Estrada, Chemical Physics Letters, 2001, 336, 3–4, 248-252.
	Generalization of topological indices
[117]	H. Wang, Discrete Mathematics, 2008, 308, 15, 3407-3411.
	Extremal trees with given degree sequence for the Randić index

- [118] C. Delorme, O. Favaron, D. Rautenbach, *Discrete Mathematics*, **2002**, 257, 1, 29-38. On the Randić index
- [119] I. Gutman, M. Robbiano, B. S. Martín, *Linear Algebra and its Applications*, **2015**, 478, 241-255. Upper bound on Randić energy of some graphs

- [120] R. Liu, W. Chee Shiu, *Discrete Applied Mathematics*, **2015**, 186, 168-175. General Randić matrix and general Randić incidence matrix
- [121] J. Rada, C. Uzcátegui, *Discrete Applied Mathematics*, 2005, 150, 1–3, 232-250.
 Randić ordering of chemical trees
- [122] D. Vukičević, *Discrete Applied Mathematics*, **2010**, 158, 18, 2056-2065. Which generalized Randić indices are suitable measures of molecular branching?
- [123] W. Chee Shiu, L. Zhang, *Discrete Mathematics*, **2009**, 309, 13, 4409-4416. The maximum Randić index of chemical trees with pendants
- [124] M. Knor, B. Lužar, R. Škrekovski, *Discrete Applied Mathematics*, **2015**, 181, 160-166. Sandwiching the (generalized) Randić index
- [125] B. Wu, J. Yan, X. Yang, *Discrete Applied Mathematics*, **2014**, 178, 163-165. Randić index and coloring number of a graph
- [126] A. Taherpour, F. Shafiei, J. Molecular Structure: THEOCHEM, 2005, 726, 1–3, 183-188. The structural relationship between Randić indices, adjacency matrixes, distance matrixes and maximum wave length of linear simple conjugated polyene compounds
- [127] J. Liu, *Discrete Applied Mathematics*, **2013**, 161, 16–17, 2544-2548. On a conjecture of the Randić index and the minimum degree of graphs
- [128] T. R. Divnić, L. R. Pavlović, *Discrete Applied Mathematics*, **2013**, 161, 7–8, 953-960. Proof of the first part of the conjecture of Aouchiche and Hansen about theRandić index
- [129] W. Linert, K. Kleestorfer, F. Renz, I. Lukovits, J. Molecular Structure: THEOCHEM, 1995, 337, 2, 121-127.

Description of cyclic and branched-acyclic hydrocarbons by variants of the hyper-Wiener index

- [130] A. Behtoei, M. Jannesari, B. Taeri, *Applied Mathematics Letters*, 2009, 22, 10, 1571-1576. Maximum Zagreb index, minimum hyper-Wiener index and graph connectivity TOPOlogical descriptors
- [131] B. Ren, Chemometrics and Intelligent Laboratory Systems, 2003, 66, 1, 29-39. Atomtype-based I topological descriptors for quantitative structure-retention index correlations of aldehydes and ketones
- [132] F. Liu, Y. Liang, C. Cao, N. Zhou, *Talanta*, **2007**, 72, 4, 1307-1315. QSPR study of GC retention indices for saturated esters on seven stationary phases based on novel topologicalindices
- [133] C. Rojas, P. R. Duchowicz, P. Tripaldi, R. Pis Die, *Chemometrics and Intelligent Laboratory* Systems, 2015, 140, 126-132.
 QSPR analysis for the retention index of flavors and fragrances on a OV-101 column
- [134] J.C. Drosos, M. Viola-Rhenals, R. Vivas-Reyes, J. Chromatography A, 2010, 1217, 26, 4411-4421. Quantitative structure-retention relationships of polycyclic aromatic hydrocarbons gaschromatographic retention indices
- [135] M. Jalali-Heravi, M. H. Fatemi, J. Chromatography A, 2001, 915, 1–2, 177-183. Artificial neural network modeling of Kováts retention indices for noncyclic and monocyclic terpenes
- K. Ośmiałowski, J.Halkiewicz, R. Kaliszan, J. Chromatography A, 1986, 361, 63-69.
 Quantum chemical parameters in correlation analysis of gas-liquid chromatographic retention indices of amines
- [137] O. Farkas, I. G. Zenkevich, F. Stout, J.H. Kalivas, K. Héberger, J. Chromatography A, 2008, 1198– 1199, 188-195.

Prediction of retention indices for identification of fatty acid methyl esters

- [138] B. Hemmateenejad, K. Javadnia, M. Elyasi, *Analytica Chimica Acta*, 2007, 592, 1, 72-81. Quantitative structure-retention relationship for the Kovats retention indices of a large set of terpenes: A combined data splitting-feature selection strategy
- [139] J. M. Sutter, T. A. Peterson, P. C. Jurs, *Analytica Chimica Acta*, **1997**, 342, 2–3, 113-122.
 Prediction of gas chromatographic retention indices of alkylbenzenes
- [140] S. Sekušak, A. Sabljić, J. Chromatography A, 1993, 628, 1, 69-79.
 Calculation of retention indices by molecular topology: III. Chlorinated dibenzodioxins
- [141] C. Zhou, X. Chu, C. Nie, *J.Phys. Chem. B*, 2007, 111, (34), 10174–10179.
 Predicting Thermodynamic Properties with a Novel Semiempirical Topological Descriptor and Path Numbers
- [142] T. Etienne, X. Assfeld, A. Monari, *J.Chem. Theory Comput.*, **2014**, 10, (9), 3896–3905. Toward a Quantitative Assessment of Electronic Transitions' Charge-Transfer Character
- [143] R. Argüello-García, O. N. Medina-Campos, N. Pérez-Hernández, J.Pedraza-Chaverrí, G. Ortega-Pierres, *J.Agric. Food Chem.*, 2010, 58, (21), 11226–11233.
 Hypochlorous Acid Scavenging Activities of Thioallyl Compounds from Garlic
- [144] J.M. Quigley, S. M. Naughton, J.Chem. Inf. Comput. Sci., 2002, 42, (4), 976–982.
 The Interrelation of Physicochemical Parameters and Topological Descriptors for a Series of β-Blocking Agents
- Y. S. Kim, J.H. Kim, J.S. Kim, K. T. No, *J.Chem. Inf. Comput. Sci.*, 2002, 42, (1), 75–81.
 Prediction of Glass Transition Temperature (Tg) of Some Compounds in Organic Electroluminescent Devices with Their Molecular Properties

WHIM descriptors

- [146] F. Alves de Lima Ribeiro, M. Miguel Castro Ferreir, J. Molecular Structure: THEOCHEM, 2003, 663, 1–3, 109-126.
 QSPR models of boiling point, octanol-water partition coefficient and retention time index of polycyclic aromatic hydrocarbons
- [147] M. D. Ertürk, M. T. Saçan, *Ecotoxicology and Environmental Safety*, **2013**, 90, 61-68. Assessment and modeling of the novel toxicity data set of phenols to Chlorella vulgaris
- [148] M. D'Hondt, B. Gevaert, S. Stalmans, S. Van Dorpe, E. Wynendaele, K. Peremans, C. Burvenich, B. De Spiegeleer, *J. Pharmaceutical Analysis*, **2013**, 3, 2, 93-101.
 Reversed-phase fused-core HPLC modeling of peptides
- Y. W. Li, Bo Li, J.He, P. Qian, J. Molecular Structure, 2011, 998, 1–3, 53-61.
 Quantitative structure–activity relationship study of antioxidative peptide by using different sets of amino acids descriptors
- [150] A. Antonio D'Archivio, M. Anna Maggi, P. Mazzeo, F. Ruggieri, *Analytica Chimica Acta*, 2008, 628, 2, 162-172.
 Quantitative structure-retention relationships of pesticides in reversed-phase high-performance liquid chromatography based on WHIM and GETAWAY molecular descriptors
- [151] A. Pérez-Garrido, M. Pérez González, A. Garrido Escudero, *Bioorganic & Medicinal Chemistry*, 2008, 16, 10, 5720-5732.
 Halogenated derivatives QSAR model using spectral moments to predict haloacetic acids (HAA) mutagenicity

 [152] J. Xu, B. Chen, W. Xu, S. Zhao, C. Yi, W. Cui, *Chemometrics and Intelligent Laboratory Systems*, 2007, 87, 2, 275-280.

3D-QSPR modeling and prediction of nonlinear optical responses of organic chromophores

- [153] F. Zheng, G. Zheng, A. Gabriela Deaciuc, C. Zhan, L. P. Dwoskin, P. A. Crooks, *Bioorganic & Medicinal Chemistry*, 2007, 15, 8, 2975-2992. Computational neural network analysis of the affinity of lobeline and tetrabenazine analogs for the vesicular monoamine transporter-2
- [154] L. Saíz-Urra, M. Pérez González, Y. Fall, G. Gómez, *European J. Medicinal Chemistry*, 2007, 42, 1, 64-70.
 Quantitative structure–activity relationship studies of HIV-1 integrase inhibition. 1. GETAWAY descriptors
- [155] F. Zheng, E. Bayram, S. P. Sumithran, J. T. Ayers, C. Zhan, J. D. Schmitt, L. P. Dwoskin, P. A. Crooks, *Bioorganic & Medicinal Chemistry*, 2006, 14, 9, 3017-3037.
 QSAR modeling of mono- and bis-quaternary ammonium salts that act as antagonists at neuronal nicotinic acetylcholine receptors mediating dopamine release
- [156] E. Van Gyseghem, A. Elkihel, M. Jimidar, R. Sneyers, Y. Ver Heyden, *Analytica Chimica Acta*, 2006, 562, 1, 73-84.
 Chemometric selection of a small set of pharmaceutical active substances used in determining the orthogonality and similarity of chromatographic systems
- [157] C. W. Yap, Z. R. Li, Y. Z. Chen, J. Molecular Graphics and Modelling, 2006, 24, 5, 383-395. Quantitative structure–pharmacokinetic relationships for drug clearance by using statistical learning methods
- [158] M. P. González, C. Terán, M. Teijeira, M. J.González-Moa, European J. Medicinal Chemistry, 2005, 40, 11, 1080-1086.

GETAWAY descriptors to predicting A2A adenosine receptors agonists

- [159] M. P. González, C. Terán, M. Teijeira, P. Besada, M. J. González-Moa, *Bioorganic & Medicinal Chemistry Letters*, 2005, 15, 10, 2641-2645.
 Geometry, topology, and atom-weights assembly descriptors to predicting A1 adenosine receptors agonists
- [160] Z. Jelcic, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 242, 1–3, 159-166.
 Solvent molecular descriptors on poly(D, L-lactide-co-glycolide) particle size in emulsification–

Solvent molecular descriptors on poly(D, L-lactide-co-glycolide) particle size in emulsification– diffusion process

[161] O. Farkas, K. Héberger, I. G. Zenkevich, *Chemometrics and Intelligent Laboratory Systems*, 2004, 72, 2, 173-184.
 Quantitative structure-retention relationships XIV: Prediction of gas chromatographic retention

indices for saturated O-, N-, and S-heterocyclic compounds

[162] R. Carotti, C. Altomare, L. Savini, L. Chiasserini, C. Pellerano, M. P. Mascia, E. Maciocco, F. Busonero, M. Mameli, G. Biggio, E. Sanna, *Bioorganic & Medicinal Chemistry*, 2003, 11, 23, 5259-5272.

High affinity central benzodiazepine receptor ligands. Part 3: insights into the pharmacophore and pattern recognition study of intrinsic activities of pyrazolo[4,3-c]quinolin-3-ones

[163] J.C Pinheiro, M. M. C Ferreira, O. A. S Romero, *J. Molecular Structure: THEOCHEM*, **2001**, 572, 1–3, 35-44.

Antimalarial activity of dihydroartemisinin derivatives against P. falciparum resistant to mefloquine: a quantum chemical and multivariate study

[164] W. D. Marzio, S Galassi, R Todeschini, F Consolaro, *Chemosphere*, 2001, 44, 3, 401-406. Traditional versus WHIM molecular descriptors in QSAR approaches applied to fish toxicity studies

Wiener descriptors

- [165] S. Klavžar, I. Gutman, *Chemical Physics Letters*, 2003, 373, 3–4, 328-332.
 Relation between Wiener-type topological indices of benzenoid molecules
- [166] A. Voelkel, T. Kopczyński, R. Gawałek, J. Molecular Structure: THEOCHEM, 1993, 279, 217-222.

Structural descriptors in organic chemistry. Topological indices of isoquinoline derivatives

- [167] E. Brendlé, E. Papirer, J. Colloid and Interface Science, 1997, 194, 1, 217-224.
 A New Topological Index for Molecular Probes Used in Inverse Gas Chromatography
- [168] V. S. Raman, C. D. Maranas, *Computers & Chemical Engineering*, **1998**, 22, 6, 747-763. Optimization in product design with properties correlated with topological indices
- [169] Muhuo Liu, Bolian Liu, *Discrete Applied Mathematics*, **2010**, 158, 6, 699-705. On the th smallest and th greatest modified Wiener indices of trees
- [170] E. Estrada, *Topology in Chemistry*, 2002, 185-207.The Wiener Number in the Context of Generalized Topological Indices
- [171] L. Chen, X. Li, M. Liu, *European J. Combinatorics*, **2014**, 36, 237-246. The (revised) Szeged index and the Wiener index of a nonbipartite graph
- [172] W. Yan, B. Yang, Y. Yeh, *Applied Mathematics Letters*, **2007**, 20, 3, 290-295. The behavior of Wiener indices and polynomials of graphs under five graph decorations
- [173] X. Li, A. F. Jalbout, J. Molecular Structure: THEOCHEM, 2003, 634, 1–3, 121-125.
 Bond order weighted hyper-Wiener index
- [174] S. Nikolić, N. Trinajstić, M. Rić, *Chemical Physics Letters*, 2001, 333, 3–4, 319-321.
 Wiener index revisited
- [175] A. Hamzeh, S. Hossein-Zadeh, A. R. Ashrafi, *Applied Mathematics Letters*, **2011**, 24, 7, 1099-1104.

Wiener index of composite graphs

- [176] V. Sills, H. Wang, *Discrete Applied Mathematics*, 2012, 160, 10–11, 1615-1623.On the maximal Wiener index and related questions
- [177] A. Behmaram, H. Yousefi-Azari, A. R. Ashrafi, *Applied Mathematics Letters*, 2012, 25, 10, 1510-1513.

Wiener polarity index of fullerenes and hexagonal systems

- [178] X. Qi, B. Zhou, *Computers & Mathematics with Applications*, **2011**, 62, 1, 523-531. Extremal properties of reciprocal complementary Wiener number of trees
- [179] X. Deng, J. Zhang, *Applied Mathematics Letters*, 2012, 25, 3, 580-585.Equiseparability on terminal Wiener index
- [180] M. Knor, P. Potočnik, R. Škrekovski, *Discrete Applied Mathematics*, 2012, 160, 15, 2234-2245.
 The Wiener index in iterated line graphs
- [181] J. Fink, B. Lužar, R. Škrekovski, *Discrete Applied Mathematics*, **2012**, 160, 12, 1851-1858. Some remarks on inverse Wiener index problem

[182]	M. J.Nadjafi-Arani, H. Khodashenas, A. R. Ashrafi, <i>Mathematical and Computer Modelling</i> , 2012 , 55, 3–4, 1644-1648.
	Graphs whose Szeged and Wiener numbers differ by 4 and 5
[183]	J. Liu, I. Gutman, Z. Mu, Y. Zhang, Applied Mathematics and Computation, 2012, 218, 18, 9528-
	9535.
	q-Wiener index of some compound trees
[184]	H. Yousefi-Azari, M. H. Khalifeh, A. R. Ashrafi, J. Computational and Applied Mathematics,
	2011, 235, 16, 4866-4870.
	Calculating the edge Wiener and edge Szeged indices of graphs
[185]	M. J. Nadjafi-Arani, H. Khodashenas, A. R. Ashrafi, <i>Discrete Mathematics</i> , 2011 , 311, 20, 2233-2237.
	On the differences between Szeged and Wiener indices of graphs
[186]	A. Karbasioun, Scientia Iranica, 2011, 18, 6, 1623-1626.
	The Wiener index of a new class of carbon nanojunctions
[187]	G. G. Cash, Applied Mathematics Letters, 2002, 15, 7, 893-895.
	Relationship between the Hosoya polynomial and the hyper-Wiener index
[188]	M. Hino, Bulletin des Sciences Mathématiques, 2011, 135, 6–7, 667-683.
	Dirichlet spaces on H-convex sets in Wiener space
	MOLGEN suit
[189]	T. Grüner, A. Kerber, R. Laue, M. Meringer, K. Varmuza, W. Werther, <i>MATCH Commun. Math.</i>
	<i>Comput. Chem.</i> , 1998 , 38, 173-180.
[100]	MASSMUL
[190]	A. Kerber, R. Laue, M. Meringer and K. Varmuza, Advances in Mass Spectrometry, 2001, 15, 939-
	940.
	940. MOLGEN-MS: Evaluation of Low Resolution Electron Impact Mass Spectra with MS
	940. MOLGEN-MS: Evaluation of Low Resolution Electron Impact Mass Spectra with MS Classification and Exhaustive Structure Generation
[191]	 940. MOLGEN-MS: Evaluation of Low Resolution Electron Impact Mass Spectra with MS Classification and Exhaustive Structure Generation J.Meiler, M. Meringer, <i>MATCH Commun. Math. Comput. Chem.</i>, 2002, 45, 85-108.
[191]	 940. MOLGEN-MS: Evaluation of Low Resolution Electron Impact Mass Spectra with MS Classification and Exhaustive Structure Generation J.Meiler, M. Meringer, <i>MATCH Commun. Math. Comput. Chem.</i>, 2002, 45, 85-108. Ranking MOLGEN Structure Proposals by 13C NMR Chemical Shift Prediction with ANALYZE
[191] [192]	 940. MOLGEN-MS: Evaluation of Low Resolution Electron Impact Mass Spectra with MS Classification and Exhaustive Structure Generation J.Meiler, M. Meringer, <i>MATCH Commun. Math. Comput. Chem.</i>, 2002, 45, 85-108. Ranking MOLGEN Structure Proposals by 13C NMR Chemical Shift Prediction with ANALYZE A. Kerber, R. Laue, M. Meringer, C. Rücker, <i>MATCH Commun. Math. Comput. Chem.</i>, 2004, 51, 187-204.
[191] [192]	 940. MOLGEN-MS: Evaluation of Low Resolution Electron Impact Mass Spectra with MS Classification and Exhaustive Structure Generation J.Meiler, M. Meringer, <i>MATCH Commun. Math. Comput. Chem.</i>, 2002, 45, 85-108. Ranking MOLGEN Structure Proposals by 13C NMR Chemical Shift Prediction with ANALYZE A. Kerber, R. Laue, M. Meringer, C. Rücker, <i>MATCH Commun. Math. Comput. Chem.</i>, 2004, 51, 187-204. MOLGEN-QSPR, a Software Package for the Study of Quantitative Structure Property Relationships
[191] [192] [193]	 940. MOLGEN-MS: Evaluation of Low Resolution Electron Impact Mass Spectra with MS Classification and Exhaustive Structure Generation J.Meiler, M. Meringer, <i>MATCH Commun. Math. Comput. Chem.</i>, 2002, 45, 85-108. Ranking MOLGEN Structure Proposals by 13C NMR Chemical Shift Prediction with ANALYZE A. Kerber, R. Laue, M. Meringer, C. Rücker, <i>MATCH Commun. Math. Comput. Chem.</i>, 2004, 51, 187-204. MOLGEN-QSPR, a Software Package for the Study of Quantitative Structure Property Relationships C. Rücker, M. Meringer, A. Kerber, <i>J.Chem. Inf. Comput. Sci.</i>, 2004, 44, 2070-2076.
[191] [192] [193]	 940. MOLGEN-MS: Evaluation of Low Resolution Electron Impact Mass Spectra with MS Classification and Exhaustive Structure Generation J.Meiler, M. Meringer, <i>MATCH Commun. Math. Comput. Chem.</i>, 2002, 45, 85-108. Ranking MOLGEN Structure Proposals by 13C NMR Chemical Shift Prediction with ANALYZE A. Kerber, R. Laue, M. Meringer, C. Rücker, <i>MATCH Commun. Math. Comput. Chem.</i>, 2004, 51, 187-204. MOLGEN-QSPR, a Software Package for the Study of Quantitative Structure Property Relationships C. Rücker, M. Meringer, A. Kerber, <i>J.Chem. Inf. Comput. Sci.</i>, 2004, 44, 2070-2076. QSPR Using MOLGEN-QSPR: The Example of Haloalkane Boiling Points
[191] [192] [193]	 940. MOLGEN-MS: Evaluation of Low Resolution Electron Impact Mass Spectra with MS Classification and Exhaustive Structure Generation J.Meiler, M. Meringer, <i>MATCH Commun. Math. Comput. Chem.</i>, 2002, 45, 85-108. Ranking MOLGEN Structure Proposals by 13C NMR Chemical Shift Prediction with ANALYZE A. Kerber, R. Laue, M. Meringer, C. Rücker, <i>MATCH Commun. Math. Comput. Chem.</i>, 2004, 51, 187-204. MOLGEN-QSPR, a Software Package for the Study of Quantitative Structure Property Relationships C. Rücker, M. Meringer, A. Kerber, <i>J.Chem. Inf. Comput. Sci.</i>, 2004, 44, 2070-2076. QSPR Using MOLGEN-QSPR: The Example of Haloalkane Boiling Points
[191] [192] [193] [194]	 940. MOLGEN-MS: Evaluation of Low Resolution Electron Impact Mass Spectra with MS Classification and Exhaustive Structure Generation J.Meiler, M. Meringer, <i>MATCH Commun. Math. Comput. Chem.</i>, 2002, 45, 85-108. Ranking MOLGEN Structure Proposals by 13C NMR Chemical Shift Prediction with ANALYZE A. Kerber, R. Laue, M. Meringer, C. Rücker, <i>MATCH Commun. Math. Comput. Chem.</i>, 2004, 51, 187-204. MOLGEN-QSPR, a Software Package for the Study of Quantitative Structure Property Relationships C. Rücker, M. Meringer, A. Kerber, <i>J.Chem. Inf. Comput. Sci.</i>, 2004, 44, 2070-2076. QSPR Using MOLGEN-QSPR: The Example of Haloalkane Boiling Points Omnimetrics T. Grüner, A. Kerber, R. Laue, M. Liepelt, M. Meringer, K. Varmuza, W. Werther, <i>MATCH</i>
[191] [192] [193] [194]	 940. MOLGEN-MS: Evaluation of Low Resolution Electron Impact Mass Spectra with MS Classification and Exhaustive Structure Generation J.Meiler, M. Meringer, <i>MATCH Commun. Math. Comput. Chem.</i>, 2002, 45, 85-108. Ranking MOLGEN Structure Proposals by 13C NMR Chemical Shift Prediction with ANALYZE A. Kerber, R. Laue, M. Meringer, C. Rücker, <i>MATCH Commun. Math. Comput. Chem.</i>, 2004, 51, 187-204. MOLGEN-QSPR, a Software Package for the Study of Quantitative Structure Property Relationships C. Rücker, M. Meringer, A. Kerber, <i>J.Chem. Inf. Comput. Sci.</i>, 2004, 44, 2070-2076. QSPR Using MOLGEN-QSPR: The Example of Haloalkane Boiling Points Omnimetrics T. Grüner, A. Kerber, R. Laue, M. Liepelt, M. Meringer, K. Varmuza, W. Werther, <i>MATCH Commun. Math. Comput. Chem.</i>, 1998, 37, 163-177. Bestimmung von Summenformeln aus
[191] [192] [193] [194]	 940. MOLGEN-MS: Evaluation of Low Resolution Electron Impact Mass Spectra with MS Classification and Exhaustive Structure Generation J.Meiler, M. Meringer, <i>MATCH Commun. Math. Comput. Chem.</i>, 2002, 45, 85-108. Ranking MOLGEN Structure Proposals by 13C NMR Chemical Shift Prediction with ANALYZE A. Kerber, R. Laue, M. Meringer, C. Rücker, <i>MATCH Commun. Math. Comput. Chem.</i>, 2004, 51, 187-204. MOLGEN-QSPR, a Software Package for the Study of Quantitative Structure Property Relationships C. Rücker, M. Meringer, A. Kerber, <i>J.Chem. Inf. Comput. Sci.</i>, 2004, 44, 2070-2076. QSPR Using MOLGEN-QSPR: The Example of Haloalkane Boiling Points Cmnimetrics T. Grüner, A. Kerber, R. Laue, M. Liepelt, M. Meringer, K. Varmuza, W. Werther, <i>MATCH Commun. Math. Comput. Chem.</i>, 1998, 37, 163-177. Bestimmung von Summenformeln aus Massenspektren durch Erkennung überlagerter Isotopenmuster
[191] [192] [193] [194] [195]	 940. MOLGEN-MS: Evaluation of Low Resolution Electron Impact Mass Spectra with MS Classification and Exhaustive Structure Generation J.Meiler, M. Meringer, <i>MATCH Commun. Math. Comput. Chem.</i>, 2002, 45, 85-108. Ranking MOLGEN Structure Proposals by 13C NMR Chemical Shift Prediction with ANALYZE A. Kerber, R. Laue, M. Meringer, C. Rücker, <i>MATCH Commun. Math. Comput. Chem.</i>, 2004, 51, 187-204. MOLGEN-QSPR, a Software Package for the Study of Quantitative Structure Property Relationships C. Rücker, M. Meringer, A. Kerber, <i>J.Chem. Inf. Comput. Sci.</i>, 2004, 44, 2070-2076. QSPR Using MOLGEN-QSPR: The Example of Haloalkane Boiling Points Omminetrics T. Grüner, A. Kerber, R. Laue, M. Liepelt, M. Meringer, K. Varmuza, W. Werther, <i>MATCH Commun. Math. Comput. Chem.</i>, 1998, 37, 163-177. Bestimmung von Summenformeln aus Massenspektren durch Erkennung überlagerter Isotopenmuster K. RamaKrishna, R. Sambasiva Rao, <i>J. Applicable Chemistry</i>, 2015, 4 (2), 355-449.
[191] [192] [193] [194] [195]	 940. MOLGEN-MS: Evaluation of Low Resolution Electron Impact Mass Spectra with MS Classification and Exhaustive Structure Generation J.Meiler, M. Meringer, <i>MATCH Commun. Math. Comput. Chem.</i>, 2002, 45, 85-108. Ranking MOLGEN Structure Proposals by 13C NMR Chemical Shift Prediction with ANALYZE A. Kerber, R. Laue, M. Meringer, C. Rücker, <i>MATCH Commun. Math. Comput. Chem.</i>, 2004, 51, 187-204. MOLGEN-QSPR, a Software Package for the Study of Quantitative Structure Property Relationships C. Rücker, M. Meringer, A. Kerber, <i>J.Chem. Inf. Comput. Sci.</i>, 2004, 44, 2070-2076. QSPR Using MOLGEN-QSPR: The Example of Haloalkane Boiling Points Omnimetrics T. Grüner, A. Kerber, R. Laue, M. Liepelt, M. Meringer, K. Varmuza, W. Werther, <i>MATCH Commun. Math. Comput. Chem.</i>, 1998, 37, 163-177. Bestimmung von Summenformeln aus Massenspektren durch Erkennung überlagerter Isotopenmuster K. RamaKrishna, R. Sambasiva Rao, <i>J. Applicable Chemistry</i>, 2015, 4 (2), 355-449. Omnimetrics, Part II: Applications of neural networks (Ma_NN) in Enviromentrics
 [191] [192] [193] [194] [195] [196] 	 940. MOLGEN-MS: Evaluation of Low Resolution Electron Impact Mass Spectra with MS Classification and Exhaustive Structure Generation J.Meiler, M. Meringer, <i>MATCH Commun. Math. Comput. Chem.</i>, 2002, 45, 85-108. Ranking MOLGEN Structure Proposals by 13C NMR Chemical Shift Prediction with ANALYZE A. Kerber, R. Laue, M. Meringer, C. Rücker, <i>MATCH Commun. Math. Comput. Chem.</i>, 2004, 51, 187-204. MOLGEN-QSPR, a Software Package for the Study of Quantitative Structure Property Relationships C. Rücker, M. Meringer, A. Kerber, <i>J.Chem. Inf. Comput. Sci.</i>, 2004, 44, 2070-2076. QSPR Using MOLGEN-QSPR: The Example of Haloalkane Boiling Points Omnimetrics T. Grüner, A. Kerber, R. Laue, M. Liepelt, M. Meringer, K. Varmuza, W. Werther, <i>MATCH Commun. Math. Comput. Chem.</i>, 1998, 37, 163-177. Bestimmung von Summenformeln aus Massenspektren durch Erkennung überlagerter Isotopenmuster K. RamaKrishna, R. Sambasiva Rao, <i>J. Applicable Chemistry</i>, 2015, 4 (2), 355-449. Omnimetrics, Part II: Applications of neural networks (Ma_NN) in Enviromentrics K. RamaKrishna, R. Sambasiva Rao, <i>J. Applicable Chemistry</i>, 2015, 4 (1), 1-98.
 [191] [192] [193] [194] [195] [196] 	 940. MOLGEN-MS: Evaluation of Low Resolution Electron Impact Mass Spectra with MS Classification and Exhaustive Structure Generation J.Meiler, M. Meringer, <i>MATCH Commun. Math. Comput. Chem.</i>, 2002, 45, 85-108. Ranking MOLGEN Structure Proposals by 13C NMR Chemical Shift Prediction with ANALYZE A. Kerber, R. Laue, M. Meringer, C. Rücker, <i>MATCH Commun. Math. Comput. Chem.</i>, 2004, 51, 187-204. MOLGEN-QSPR, a Software Package for the Study of Quantitative Structure Property Relationships C. Rücker, M. Meringer, A. Kerber, <i>J.Chem. Inf. Comput. Sci.</i>, 2004, 44, 2070-2076. QSPR Using MOLGEN-QSPR: The Example of Haloalkane Boiling Points Omnimetrics T. Grüner, A. Kerber, R. Laue, M. Liepelt, M. Meringer, K. Varmuza, W. Werther, <i>MATCH Commun. Math. Comput. Chem.</i>, 1998, 37, 163-177. Bestimmung von Summenformeln aus Massenspektren durch Erkennung überlagerter Isotopenmuster K. RamaKrishna, R. Sambasiva Rao, <i>J. Applicable Chemistry</i>, 2015, 4 (2), 355-449. Omnimetrics, Part II: Applications of neural networks (Ma_NN) in Enviromentrics K. RamaKrishna, R. Sambasiva Rao, <i>J. Applicable Chemistry</i>, 2015, 4 (1), 1-98. OmniMetrics, Part I: Applications of neural networks (Ma_NN) in Medicinometrics and pharmacometrics

[197]	K. RamaKrishna, V. A. Ramam, R. Sambasiva Rao, J. Applicable Chemistry, 2014, 3 (5), 1807-
	1893.
	Mathematical Neural Network (MaNN) Models, Part V: Radial basis function (RBF) neural
	networks (NNs) in Chemometrics, Envirometrics and Medicinometrics (ChEM)
[198]	K. RamaKrishna, V. A. Ramam, R. Sambasiva Rao, J. Applicable Chemistry, 2014, 3, 6, 2209-
	2311.
	Mathematical Neural Network (MaNN) Models Part VI: Single-layer perceptron [SLP] and Multi-
	layer perceptron [MLP] Neural networks in ChEM- Lab

- [199] K. RamaKrishna, Ch. V. Kameswara Rao, R. Sambasiva Rao, J. Applicable Chemistry, 2013, 2 (4): 698-713.
 Tutorial on gravitational algorithm in Structure activity relationships (SXR)
- [200] I.Suryanarayana, A. Braibanti, R. Sambasiva Rao, V. Ananta Ramam, D. Sudarsan, G. Nageswara Rao, *Fisheries Research*, 2008, 92,115-139.
 Neural Networks in Fisheries Research

AUTHORS' ADDRESSES

1. K RamaKrishna

Department of Chemistry, Gitam Institute of Science, Gitam University, Visakhapatnam, A.P

2. **Ch. V. Kameswara Rao** Department of Chemistry, Basic sciences and Humanities, GMRIT, Rajam 532 127, AP

3. R. Sambasiva Rao

School of Chemistry, Andhra University, Visakhapatnam 530 003, A.P