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To  

Mother Nature 

Creator/ preserver/ assimilator of knowledge/ Information/ Data systems (Kids) 

Conspectus 
 

Background:Tensorial representation of numerical (integer, floating point) values, also called m-way 
data, is the basic input in data-information-knowledge cycle.  Graphical output of primary data as scatter 

diagrams to model fitting, residual trend exploitation for better explanation are not only coveted visual 

appreciation tools, but explore misfits, unexplained/unexplored information etc. The reliable software no 

doubt result in parameters/ statistics of model mostly in the traditional mode or in limited cases with 
expert system (ES) driven inferences. 

 

3D-surfaces and 2D-contours: The profiles of linear, full quadratic, polynomial, exponential, 
transcendental functions in two variables as 3D-surfaces, 2D-contours with gradients, rotating view angle 

(i.e. keeping one of the variable constant ) such that surface reduces to  2D- plots are detailed.The depth 

and breadth of the response surface modelling strategy is highlighted.The popular graphics of data sets in 

vector/ matrix form using today's state-of-art-profiles are incorporated in appendices. 
 

m-Way data generation:Zero to third order instruments, variation of influential experimental variables 

and external environmental factors in the interacting as well as non-interacting chemical systems generate 
one- to multi-way through 5-way data tensors.  They are usually modelled with multi-variate methods in 

the unfolded modeor as they are.  The possible unfolding modes and ill effect on end results are discussed.    

The nomenclature of numerical data under different heads like vector, matrices, tensors, multi-ways are 
brought under the same roof.   

 

Applications in Omnimetrics:The role of multi-dimensional graphics of raw experimental data in 

exploratory data analysis and in various phases of multi-variate-multi-response-linear-nonlinear 
parametric-/non-parametric-/ free-variable models in prime disciplines viz. environment, foodomics, 

medical diagnosis, pharma industry, physical chemistry reported during last two years are incorporated. 

The typical case studies incorporated in this research tutorial (HOT Ice: hands on tutorial for intelligent 
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chemical education) include applications in quality of natural water (streams, estuaries etc.)/ artificial 
water reservoirs, water quality tap water, potable watertreatment,waste water treatment plants, aerosols, 

metabolic profiling, pollutants like PAHs, adulterants in lime fruits/fruit juices, wine discrimination 

andclinical analysis of urine.  The DOM (dissolved organic matter) in different phases of environment 
drew attention of multi-variate methods and graphics. The estimation of rate/ equilibrium constants of 

metal ligand systems and outersphere/ innersphere complexes are improved by multivariate chemometric 

methods and contour diagrams.  The excitation-emission fluorescence spectroscopy, 2D-NMR, HPLC-

DAD etc. are prime second order hyphenated instrumental techniques employed in these studies.The 3D 
surfaces and corresponding contour diagrams in basic and inter-disciplinary chemical research are 

reproduced from research literature in the appendices. 

 A brief note of a few multi-way chemometric methods are incorporated with a tinge of knowledge 
base/necessary conditions /failure instances and remedial measures.  The statistical/fuzzy distributions, 

chaotic series, multiple global functions not discussed here will be described in a separate communication. 

 

Keywords:3D-surface, 2D-contour, Tensorial data, Local/global extrema, iso-surfaces/contours, Kriging, 

Neural networks, Interpolation, omnimetrics, experimental design, Environment, Dietetometrics, physical 
chemistry, chemical physics, chemical biology. 

______________________________________________________________________________ 
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8  Appendices  

   A1: DataStructures 
   A2: 

 

Multichannel, hyphenated instruments of different 

orders 

   A3: 3D-surfaces and 2D-contours of 3-way data-
tensors from hyphenated instruments 

   A4: m-way Models 

   A5: Graphic Display of Data and its products 

   A6: Output and matlab programs for Canonical analysis  

 

INTRODUCTION 

 
In yester-centuries, human race gathered data about themselves (inside and/or outside) and surroundings 

through theirfive senses.  The progress in science, engineering and technology brought simple as possible 

(SAP) instruments like pH/ DO/ conductivity/calori-/ colori- meters, microscope to multi-channel-
hyphenated-self-adaptive instruments and nanoscope.  The highest and ultimate instruments to date include 

those in Mars exploration, Boson discovery, probing into dark-matter/dark-energy and largest telescopes, 

spectrometers to discover news in the galaxy and universe. 
 Remembering and reproducing what has been seen/felt is a natural bliss to humans 

through trivial activity of brain. The representation of data as attributes, nominals, numbers, pictures and 

images was a step forward in giving emphasis to next level of understanding than simple oral reproduction 
in toto.  Mathematics, statistics, fuzzy sets etc. are the core in fitting data in curve fitting, modelling to 

grasp essential trends rather than sheer reproduction, knowledge extraction through model information are 

now basic tools in understanding, predicting, controlling and mimicking bio-/geo-/oceanographic-

/atmospheric-/chemical-/bio-chemical- phenomenon/ rare events or even calamities. Algebraic-, 
differential-, matrix-, tensorial-, symbolic-computations are the corner stone in deriving information from 

primary data in most of disciplines. Euclidean geometric representation of data, model parameters, 

information etc. is a high impact output for grasping broad picture (or trends) on one hand, and probing 
deep into what is not easily graspable from bundles of numerical data. The man is the best pattern 

recogniser even in three dimensions and all intelligent machine learning techniques (of course manmade) 

are marching fast towards this novel simple goal in nature.  The graphical representation in two 

dimensional Cartesian spaces is a popular well-practiced tool for exploratory data analysis.  A detailed 
account of 3D- surfaces, 2D-contours from scatter plots, model development, trend analysis deserves 

attention, as unfolding 3-way tenors to sets of 2-way matrices and analysis is non-optimal/ misleading or 

even wrong.  
 The present day interdisciplinary tasks involve thousands of correlated, redundant, 

conflicting, non- orthogonal variables on different scales with missing values and so on. Thus, data/ 

dimension reduction techniques without losing information involve more number crunching, of course, in 
a crutch mode, as it not possible to probe into every tiny detail. The theoretical proof the methods in 

scaling up operation are the guidelines in this pursuit.  Here, too multi-dimensional graphics have a key 

role throughout data processing. The 3D- display of total electron density, ESP, HOMO/LUMOs in 

computational quantum chemistry gave a new life to organic chemicals, bio-materials compared to yester 
years ball-and-stick models. The display is computationally intensive job and computer is indispensable.  

 

The prime goal of any laboratory or industrial experiment is to obtain drugs with minimum side effects, 
conversion of harmful materials and pollutants into non-hazardous ones, preparing materials of desired 

characteristics (semiconductors to superconductors) and developing products useful in transportations and 

enjoyment with optimum cost.A major part of chemistry is devoted to isolation of organic compounds and 
other materials through inexpensive routes from abundantly available natural resources and synthesis.  In 
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order to achieve the desired characteristics trillions of chemical experiments are performed by chemists 
varying physical, chemical and biological factors. 

  Some of the important chemical tasks pertinent in industry as well as training a chemist for 

twenty first century to face the challenges of biological and environmental tasks are (a) complete/partial 
separation of a mixture of compounds into their constituents (isomeric compounds, metal ions, pollutants), 

(b) quantitation in partially (if not completely) unknown matrices in presence of interferences, (c) partial 

synthesis of organic or inorganic compounds, their structure elucidation and (d) reactivity and stability of 

different chemical species.  In an attempt to achieve one or more of these goals destructive or non-
destructive chemical techniques are adopted employing instruments of increasing sophistication.  The raw 

data obtained in these venture range from a zero order (scalar), first order (vector), second order (matrix), 

third or a multi-order (tensor) instruments. When the size of the data (chart 1.1) is small, a careful 
inspection ofthe numbers results in chemical information.  But with the explosion of the data with 

computerized instruments, adopting 

statistical methods is a rule (a natural 
way) rather than exception 

The 3D-surfaces and 2D-contours in 

chemical sciences [1-125] is the main 

focus of this research tutorial. The 
basics of multi-dimensional graphics 

and typicalpublished literature were 

described earlier [57].  In 
continuation of our efforts in 

Omnimetrics [63, 65-73] including 

nature inspired algorithms [70-72], 

the current research tutorial in 
chemical sciences includestensorial 

data display, isocontours/ 2D-

profiles/ surfacesfor simplest possible 
model (z = 0) to polynomials and 

transcendental/exponential functions.   

The salient research results during the 
last couple years in Envirometrics, 

Dietetometrics etc. using PARAFAC 

model and Ex-Em_Fl spectroscopy 

are described with a focus on multi-
variate analysis. The popular 2D-

graphic displays are summarized 

citing researches in environmental 
monitoring.The profiles of 

probabilistic, fuzzy logic and chaotic 

frame will be described 
elsewhere[113]. 
 

2. Tensorial (or multi-way) data 

Tensor operations started a century 

ago in the hands of mathematicians. It 
took nearly five decades to enter into 

applied science in a small way. 

Physicists started using tensor algebra earlier to others.  The geometric representation of tensorial data was 

brought to the forefront from Kowalski's school [16,33]. Differentiation of matrix equations was in higher 
strata compared to long algebraic derivations.  Hamilton's geometric algebra was in archives for over a 

Chart 1.1: Observations & Data 
 

┴ Observation  

 Human senses: Eye,  ..... 

┴ Instruments 

o Single 

o Hyphenated 

o Satellite 

o Sky Lab 

┴ Nature 

 

Chart 1.1b: Challenging 

disciplines 

 

  Proteomics 

  Foodomics 

  Metabolomics  

  Petroleomics  

  Proteins  

  Glycoproteins  

  Metabolites  

  Petrochemical 
products 

 

 Chemistry 

 Physics 

 Biology 

 Paleology 

 Future 
 

┴ Simulation  

 Mathematical Functions 
 Wavelets, Ridgelets 

 

 Statistical distributions 
 

 Fuzzy sets 
 Possibility profiles 
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century. Instead, Maxwell differential equations have become bread winning tools.  The geometric 
representation leave alone visualization/comprehension/integration in the brain like a mother tongue, 

native/learned logic for most of end users is a pie in the sky.  It is worth  practicable paradigm to visualize 

process, physical/chemical/biological model and appropriate mathematical equivalent and the best possible 
solution effortlessly just like distinguishing  airplane, train, bullock cart, bicycle etc. and seeing their form 

and components.  In the next generation if not in coming decade,  this should be the common sense base in 

any discipline just like blind touch keying in of  English alphabets. One should visualize effortlessly (with 

comfort) algebra, tensorial manipulation, 3D-graphic profiles, algorithmic sequences of steps in both or 
any direction, although now, it is with well learned expert professionals.Particularly in chemistry, Rasmus 

Bro' s seminal Ph.D. thesis [114]and follow up dissertations [115-117] opened a new era for tensorial 

manipulations in curve resolution and calibrationfrom 1990s and now reached a stage of a tool in the hands 
of Omnimetricians to comfortably arrive at understandable graphic output through the glasses of their core 

disciplines. 

 

Data to intelligence cycle 

The different categories of collections of method_Bases, data structures, and implementation in MATLAB 

environment are briefed in Appendix-A1. The concerted efforts in instrumentation, generation of m-way 

data tensors, nano-electronics to nano-chemistry, information science, signal processing, data massaging, 
data driven models, nature inspired algorithms on one hand and transferring/translating them into 

chemometric frame changed the mold of measurement science (Appendix-A2 to appendix-A6).Unfolding 

of tensorial data, models for different tasks in mathematical, chemical domains, typical chemometric 
models in m-way supervised and unsupervised analyses follows mostly in tabular and object oriented 

format.The combination (including fusion) of outputs of different instrumental techniques dramatically 

enhanced the reliability of classification/discrimination, calibration/prediction even in presence of 

unknown interferents/matrices of foodstuffs/ beverages as compared to using a single analytical technique 
that to classical univariate calibration of single pure analyte using one-variable-at-a-time(OVAT) approach 

without experimental design at any stage. However, the combination of data from several techniques is not 

straightforward and is challenge for chemometricians to train armatures into skilled personnel and more 
importantly impart formal education to undergraduates with a tinge of handling real life datasets in 

tutorials session.  This should be accompanied by hands-on-tutorials (HOT) [113] intelligent chemical 

education (ICE) with simple as possible datasets and white box approach software with a focus of tensorial 
notation and corresponding geometric interpretation. 

 

Tensor Laboratory for Chemistry (TLC):  It is a conglomeration of mathematics, translation of chemical 

tasks into mathematical space, hyphenated instrumental data acquisition and solution methods.The 
mathematical component consists of tensor algebra and solution methods.Tensor algebra relieves the 

drudgery of representation of multi-way data, mathematical formulae, their traditional derivations, 

decomposition into lower dimensional sizes, solution methods, accumulation operations 
(addition/multiplication etc.).  A chemist immediately remembers thin layer chromatography which is a 

popular experimental procedure (simple enough requiring a glass place, coating material, a small roller) of 

puristorganic chemists of last century. This simple, no high tech, is a powerful separation technique to 
detect and later determine the mixture of compounds. The state-of-art-of TLC of 21

st
 century is high ended 

imbibing expert systems, technology etc. Today, 2D-LC, HPLC, UPLC etc. does the same, of course, 

many more intricate separations not possible by simple TLC. 

 

3.Applications of multi-dimensional surfaces and contours in Omnimetrics   
The chemical tasks are broadly divided into non-interacting and interacting chemical systems.   The case 

studies that follow are those reported in literature in different disciplines of chemical research. Hyphenated 
instruments and multi-variate calibration/curve resolution methods revolutionised the understanding of 

chemical systems in natural environment (fig.1) 
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Natural organic matter in Songhua River water: Shao et al. [87]detectedtwo humic-like (C1 and C2) and 
one protein-like (C3) components in NOM fractions of Songhua River from PARAFAC analysis of ex-em-

fluorescencespectra (fig. 3.2).  These components give foul smell to ultrafiltration membrane. 
 

Fig.3.1: Chemometric approach to natural  systems 

 
Courtesy from Ref: 61 

 

Fig.3.2:   Ex-Em-Fl spectra of NOM in  Songhua River 

 

 
Courtesy from Ref:87 

 

 

 
Artificial water reservoir:Cid et al. [14]applied PARAAC, Tucker-3 and matrix augmentation _PCA, N-

way-PCA models for 3-way water quality data (sampling sites × parameters × sampling time) in Midwest 

of Argentina (chart 3.1). The first PARAFAC factor implies organic pollution with seasonality and the 
second one has lead pollution information. A plot of PARAFAC loadings as a function of the UTM 

(Universal Transverse Mercator) coordinates depicts polluting sources and areas in the reservoir.  

 

 

 

 

 

Chart  3.1: 3-way water quality data in Argentina with PARAFAC model 

Surface water samples 

o # points of the water reservoir : 38 

o # sampling campaigns :eleven 

o Period : October 1998 to June 2000 

o Seasons:  warm wet, cold dry season  

 

X(38,30,11) 
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Dissolved organic matter (DOM): Soil organic matter (SOM)/ dissolved organic matter (DOM) is a major 

reservoir of reduced carbon. It has a vital role in many ecosystem processes viz. nutrient supply, metal 

solubulization, sediments, carbon sequestration and it’s cycling in the coastal-shelf-ocean boundaries.   
The production, structure/ composition and transformation of watershed-derived dissolved organic matter 

(DOM) have been increasing over several decades. The wetland structure and climate change have definite 

roles on it.   However, it carries information on changes in sea and landscape modifications over long 

periods of time. The beneficial applications include in assessing formation of disinfection byproducts in 
chlorination/treatment of drinking water sources. The complexity, however, is a hurdle to monitor its 

concentrations and character during drinking/ waste water treatment processes. Further, the distribution 

and transformations of biogeochemical changes in the atmospheric boundary involve multitude of 
processes and as such probing into natural organic natter (NOM) in atmospheric aerosols remained to be a 

challenge.  In this context, the classical univariate/ multi-variate curve resolution/calibration/prediction 

analytical/instrumental/chemometric tools are inadequate/ invulnerable to arrive at conclusive trustworthy 
inferences.  In this decade, parallel factor analysis (PARAFAC, PARAFAC2), quadrilinear decomposition, 

residual tri-linearization  etc. of  fluorescence excitation–emission (EEFs) of 3-way/4-way tensors threw 

light on correlating mathematical factors with chemical moieties and probing into concentration profiles in 

presence of unknown interferents in the test samples.  Further, knowledge extraction from blind source 
apportionment of factors/ clustering methods drew the attention of cross-disciplinary research scientists.   

Ishii and Boyer [61] reviewed results of studies on analysis of humic-like components in DOM of 
natural systems with PARAFAC from published literature after the year 2000. It is opined that 

fluorescence spectroscopy with PARAFAC is a weak predictive tool.Mendoza and Zika [88] resolved 
fluorescent chemical moieties inDOM from near-shore to off-shore coastal-shelf-ocean boundary on the 

southwest (SW) Florida by PARAFAC model (chart 3.2). The humic- and protein- components of different 

origin are detected in DOM here. 

 

Chart 3.2: DOM analysis with PARAFAC model 

 

Water quality parameters 

 DO, conductivity, pH 

 COD, BOD 

 Viable aerobic bacteria   

 Total coliform bacteria   

 Ammonium, nitrate, nitrite 

 TDS, alkalinity, hardness  

 bicarbonate, chloride 

 sulphate  

 Calcium, magnesium 

 fluoride  

 Sodium, potassium, iron  

 Aluminum, silica, phosphate  

 Sulfide, arsenic, chromium  

 Lead, cadmium  

Methods_chemomet 

o PCA 

o Matrix  

  augmentation 

o N-way-  

o Tucker3   

o PARAFAC   

Inf.Bits. 

 Tucker3 model not appropriate for the dataset     

┴ MA-PCA accounts for organic pollution 

parameters    

+ PARAFAC  (two-factor) model projects best 

picture 

 
Courtesy from Ref: 
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Samples from 
cruises 

 May and October 

2008 
 January and April 

2009  

Model.Inf.Bits. 

- Model not appropriate for the dataset     

┴ Accounting for organic pollution parameters    

+ (Two-factor) model projects best picture 

 
Models 
Tucker3  

 
MA-PCA  
 
PARAFAC   

 

 

Inferences of 

PARAFAC resolution 

Humic-like components  
 

component 1 Natural    

component 2   anthropogenic  

Unidentified component  component 3  

Tyrosine-like component 5  

Output 

o Spatial and temporal distribution maps for each components on the shelf  

o Biological, chemical, and physical processes controlling DOM variability   

Inf.Bits. 

 Evidence of offshore transport of land-derived materials.  

 
 

 

 

Courtesy from Ref:88 

 

Banaitis et al. [85] studieddissolved organic matter (DOM) from soil organic horizons and tree leaf 

tissues with ex-em-fluorescence spectral data modeling with PARAFAC (chart 3.3).  

 

Cuss and Guéguen [13] correlated fluorescing components with molecular weight fractions/size of 

dissolved organic matter (chart 3.4).  

Chart 3.3: DOM in soil organic matter 
 

Inferences of 
PARAFAC resolution 

 

 peak location 

$$$-like 
excitation  
(nm) 

Emission 
 (nm) 

1 Tryptophan <255 342 

2 Tyrosine  276 312 

3 
Humic- 
substance 
 

255   456 

4 309   426  

5 255   401 

 

 

 
 
Courtesy from Ref:85 

Inf.Bits. 

+ PARAFAC of 3-way (Ex-Em-Fluorescence) 

data quantitatively describe the chemical 

fractionation of DOM with mineral surfaces 
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Chart 3.4: Correlation of fluorescence with molecular size 
 

Instruments Experimental Procedure 
 

1) Ex-Em-Fl      

2) UV-Vis      

 

 Asymmetrical flow field-flow fractionation  

Chemometric_methods 

 PARAFAC     Statistical fractogram deconvolution 

 

Tyrosine/polyphenol-
like fluorescence 

smallest size group  
(relative molecular weight 
= 310 ± 10 Da) 

Microbial humic-like 
and terrestrial visible 
humic-like 
fluorescence  

Intermediate size group 
(1600 ± 150 Da 

Terrestrial fulvic-like 
and 

tryptophan/polyphenol-
like fluorescence 

Largest size group (4300 ± 
660 Da). 

 

 
Courtesy of  Ref Ex-Em-34 

 

Cuss and Guéguen [57] studied size and optical properties of  leachates of  unfractionated and AF4-

fractionated DOMs over 72–96 h to probe into molecular weight distributions (chart 3.5).    

Chart 3.5:  AF4-fractionated DOMs 

 

Instruments Chemometric_methods 

1) Ex-Em-Fl      

2) UV-VIs      

 

 PARAFAC  PCA of proportional 

component loadings 

 

 
Courtesy of  Ref 57 

 

 

Information.Bits. 
 Unfractionated or fractionated leachates are highly correlated with 

PC_loadings  

 

#Loading R2 

1 0.85 

2 0.95 
 

Inference.Bits. 

 Differences in optical (fluorescent) characteristics depend upon species 

composition 

 

 

 

Meng et al. [111] attributed the four factors of PARAFAC model of water samples from Zhujiang River to 

amnioacids and humic substances (Chart3.6). 
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Chart 3.6: PARAFAC model for river water samples 
 

Objective 
 Spatio_temporal variations of anthropogenically 

impacted DOM urbanized Zhujiang River 

 
Courtesy of  Ref 111 

 

Water samples 

o Upstream 

o Urbanized area  

o Downstream  

Period 

o Different days of one year 
 

Inference Bits. 
  Four-factor PARAFAC  

 

#facto
r 

R2 

C1 Tryptophan-like 

C3 Tyrosine-like 
proteins 

C5 Anthropogenic 
humic substances 

 

 

Modified MCR-ALS: Malik and Tauler [11] extendedMultivariate Curve Resolution-Alternating Least 
Squares (MCR-ALS) for the analysisof four-way datasets.  The constraints imposed are non-negativity and 

quadrilinearity of the models. It is applicable for huge multidimensional datasets in curve resolution and 

summarizing fewer number major intrinsic factors which are functions of large number of variables 
involved. Theycompared the performance of MCR-ALS with PARAFAC for environmental four-way 

datasets from the most polluted Yamuna River, a largest tributary of Ganges (Chart 3.7). 

Chart 3.7:  Comparison of multivariate methods for four-way environmental data 
 

 
 4-way Water samples 

way Variable # 

I Sampling sites  15 

II Water parameters  9  

III Months 12  

IV Years  7 

 

 
Courtesy of  Ref 11  

 

 

 

MCR-ALS resolved pollution profiles 

 pH, temperature ` 

 Organic pollution 

 Bacteriological pollution 

 

 Spatial and temporal sampling sites 
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DOM in lake sediments:   Xu et al. [86] observed that 2D-COS was a better approach than PARAFAC 
analysis for exploring HM–DOM interactions (chart 3.8). 

Chart 3.8:  PARAFAC for Macrophyte—dominant dissolved organic matter  

 

Instruments Chemometric_methods 

1) Ex-Em-Fl      

2) 2D- correlation spectroscopy   

 

 PARAFAC 

Output 

Component # 

Protein One 

Humic-like   Two 
 

 

 

 
Courtesy of  Ref 86 

 

Information.Bits. 
  2D absorption COS showed  MDOM exhibited more HM binding 

sites compared to  ADOM 

Sediment  (organic materials) OM 

Macrophyte--dominant (MD) 

OM 

 

Algal-dominant (AD) 

OM 

193, 195, 196, 199, 201, 203, 205, 
207, 208, 212, 217 nm 

201, 205 nm 

 

Inference.Bits. 
  2D-COS was a better approach than PARAFAC analysis for exploring 

HM–DOM interaction 

  

 

 DOM in fresh water natural systems: Zhang, Tauler et al. [55] probed into 

resolution of sources of DOM in natural fresh waters from Ex-Em-Fl data 

using MCR-ALS model. The geographical distributions of resolved 
contributions are mapped with MATLAB georeferenced system. 

Pesticides in natural stream : Santa-Cruz and García-Reiriz [118]studied 
alkaline hydrolysis of pesticides with spiked water samples of natural 

stream with hyphenated second order instrument and advanced 

chemometric tools (chart 3.9).  

 

 

 

 

 

 

 

 
Courtesy of Ref 55 
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Chart 3.9: 3way-modeling of kinetic spectroscopic data of pesticides in natural stream water  
 

Pesticides Unexpected 
compounds 

carbaryl, naphthol 
and propoxur 
 

tiabendazole and 
carbendazim 

 

System complexity 

 One of the analytes is the reaction product of 

another analyte 

Consequence 

 Linear dependency between concentration 

profiles 

samples 

Spiked water samples of a natural stream 

Experiment 

Kinetic spectroscopy                            3-waydata   

Chemometric_methods 

PARAFAC  N-PLS  U-PLS/RTL 

Chemometric_advantage 

 Second order advantage to follow  alkaline 

hydrolysis of  pesticides 

 U-PLS/RTL and MCR-ALS  adapts to model 

third-order data 
 

 

 

Courtesy of  Ref 118 

 

 

 

Information.Bits 

 U-PLS/RTL and MCR-ALS, the latter conveniently 

adapted to model third-order data 

 MCR-ALS, the latter conveniently adapted to model 

third-order data PARAFAC and MCR-ALS were the 

algorithms that  

U-PLS/RTL 
 Unfolded 

 
 Partial least squares with 

residual trilinearization 

 

PARAFAC.factors 

 Two fluoroquinolones in tap water   

 

Pesticides in water: Fuentes et al. [96] analyzedimidacloprid in water samples with second order advantage 

of calibrating other pesticides and unexpected fluorescent compounds (chart 3.10).  Imidacloprid is a 

neonicotinoid pesticides widely employed in the farming industry. 
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Chart3.10:  Chemometric estimation of pesticides in water with second order calibration advantage  

Instrument 

1) Excitation–emission spectrophotometer with 

photo-induced fluorescence (PIF-EEMs) 

 

Chemometric_methods 

PARAFAC   U-PLS/RBL  RBL: residual       
           bilinearization 

Chemometric_advantage 

 Second order advantage  of calibration and 

prediction in presence of unexpected photo-

induced fluorescent compounds 
 

 

Pesticides 
Imidacloprid 

 

Recovery  by 
PIF-EEMs +PARAFAC 

or 
PIF-EEMs + U-PLS/RBL 

101 + 10% 

 

Courtesy of  Ref 96 

 

 
IUPAC name_Imidacloprid: N-{1-[(6-Chloro-3-
pyridyl)methyl]-4,5-dihydroimidazol-2-yl}nitramide 

 

DOM in freshwater lake: Zhang et al. [112] found photochemical behavior of DOM was related to 

enhanced-duration of cyanobacterial blooms in fresh water aquatic pools.  The algal cells bind attached 
organic matter and this system is surrounded by DOM. Cyanobacterial blooms forming outer layer cause 

human health problems as well as ecological imbalance worldwide (chart 3.11).  

 

Chart 3.11:   2D-correlation spectroscopic analysis of DOM 

 

Instruments 

1) Synchronous fluorescence (SF (2DCOS)      

 

Chemometric_methods 

 PARAFAC 
 

 

https://en.wikipedia.org/wiki/Chemical_nomenclature
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Information.Bits. 
 High photodegradation rates  

DOM (k > 0.554) ; AOM  (k <0.519) 

PARAFAC factors for DOM and AOM 

Components # 

Tyrosine one 

Humic one 

Tryptophan-like  two 
 

 
 

 

 

Drinking water treatment:Shutova et al. [108] reported that 867 fluorescence spectroscopic data 
profilesmodeled by PARAFAC for predicting DOC removal is robust compared to UV spectral studies 

(Chart 3.12).  

 

Chart 3.12:   Dissolved organic carbon prediction by PARAFAC 

Samples  

 Drinking water treatment plants   

 Various water sources 

 Subtropical to temperate climate locations 
 

 

 

Courtesy of  Ref 108  

 

Information.Bits. 

 4-PARAFAC factors  OM concentration 

  treatability 

 

Water treatment processes: The correlations are reported between dissolved organic matter and water 

treatment processes by a combination of PARAFAC and SOM models for 3way fluorescence data (Chart 

3.13).   
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Chart 3.13 : SOM and PARAFAC for DOM 

 

Samples  
 9 Allochthonous DOM sources  

 

 Leaf leachates 

 Grass 

 Headwaters 
 

 
Courtesy of  Ref 88 

Fluorescence  

peaks  

Corresponds  

To 

 

Molecular 

 weights 

 

 B and T Protein/  
polyphenol-like  

0.5–1 kDa highest 

A + C humic-like   >1 kDa highest 
 

PC# Correlates with p < 
%Variance 

explained 
  Correlates with 

PC1 Sample MW (R2 = 0.63) 0.05  
42% (in 
 fluorescence 
properties) 

 PC1 

o Leachates of fresher leaves   

o Humified leaves  

o Headwaters 

PC2 

 Deciduous 

leachates/headwaters 

 Coniferous 

leachates/headwaters. 

--- 27   
Inference bits 

Structure of aged DOM arises through 
supramolecular assembly 

PC3 MW  0.005 13   

 

Tap water:  Alcaráz et al. [6] utilized the second-order advantage of PARAFAC model of ex-em-fl spectra 

of water samples containing uncalibrated interferent substances (chart 3.14). 
 

 
 

Chart 3.14: Second order advantage in modeling tap water pollutants with hyphenated instruments and 

PARAFAC/ U-PLS/RTL methods 

Instruments 

2)  Fast liquid chromatographic HPLC   

3) Ex-Em-fl 

 

Chemometric_methods 

PARAFAC  MCR-ALS  U-PLS/RTL 

 

Chemometric_advantage 

 Second order advantage for detection/ 

quantitation of /uncalibrated interferents 

 U-PLS/RTL and MCR-ALS  adapts to model 

third-order data 
 

 
Courtesy of  Ref 6 
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PARAFAC.factors 

 Two fluoroquinolones in tap water   MCR-ALS 

 Better exploits second-order 

advantage when no peak time 

shifts occurred among samples 
 

 

If Temporal shifts   in data 

Then Quadrilinearity is perturbed 

 

If Data does not adhere Quadrilinearity   

Then MCR-ALS furnished acceptable/better 
results 

 

 

Component 

Rel  

ErrPred 

% 

Analytical figures of 

merit 

Ofloxacin 9.9 Reduction of   70% in 
LODs from second- 

to third-order data Ciprofloxacin 14.0% 
 

 

U-PLS/RTL 
 Unfolded 

 PLS withresidual trilinearization 

 

Information.Bits. 

 U-PLS/RTL and MCR-ALS, the latter 

conveniently adapted to model third-order 

data 

 MCR-ALS, the latter conveniently adapted 

to model third-order data PARAFAC and 

MCR-ALS were the algorithms that  

 

Estuarine water quality:Osburn et al. [62] reported water quality of Neuse River Estuary (NRE) with 

PARAFAC model of excitation-emission fluorescence spectra of DOMs (Chart 3.15). 

Chart 3.15:Neuse River Estuary water quality 

model 

  

 Samples   Base-extracted organic 

matter (OM) 

  particulate _OM  

dissolved_OM)  

 Location  Neuse River Estuary 

(NRE), North Carolina,  

 Time 

period 

 before and after passage of 

Hurricane Irene in August 

2011 
 

 

 

Courtesy of  Ref 62  

 

Wastewater:Li et al. [119]   found that chromatographic studies are better than fluorescence spectroscopy 

in discriminating DOM in municipal wastewater (Chart3.16) samples. 
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Chart 3.16:  Comparative study of HPLC/HPSEC and EEM-PARAFAC for detection of humic substances in municipal 

waste water samples 

 

Limitation of EEM_PARAFAC 

 EEM-PARAFAC model could not reflect the variety of 

DOM species with similar fluorescence but different 

physicochemical properties 

 

 

 

 

 The chromatography results showed that the protein-like 

species were variable among different municipal 

wastewater treatment plants, some of which are in 

combination with humic-like species 

 

 

Courtesy of  Ref 119 

 

Instruments 

1) HPLC 2) Size exclusion 

chromatograp

hy 

3) Multi-

excitation/emissio

n fluorescence 

scan 
 

 
WWTP: Wang et al. [107] found from PARAFAC modeling thataromatic proteins are transformed into 

soluble microbial byproduct-like material when microorganisms were subjected to Cu (II) stress. The 

phosphorous removal efficiency deteriorated in presence of excess (3 mg/L) of divalent copper. The role of 
EPS (extracellular polymeric substances) in P removal is studied with 3D- excitation–emission 

fluorescence spectroscopic data modelled with PARAFAC. 

Coke wastewater (CWW) treatment plant: Ou et al. [56] made use of fluorescent characteristic variations 
in the study of contaminant removal efficiency in anoxic and aerobic processes(chart 3.17). 

Chart 3.17: PARAFAC for coke waste water treatment process 

 

PARAFAC  

# components 

Substances 

C1 and C3 2  Humic-
like 

C2 1  Protein-
like 

Correlation r P<  Correlation r P< 

C1    COD 0.782   0.01  C1    phenols 0.796   0.01 

C2 COD 0.921   0.01  C2 phenols 0.914   0.01 

 

 

Inference 
C1 and C2 might be associated with the predominating aromatic 
contaminants in CWW. 
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Courtesy of  Ref 56  

 

Waste Derived bio-based substances: Avetta et al. [37] proposed athree-component 

PARAFAC model for soluble bio-based (humic and fulvic) substances derived from 

waste. 
 

Dissolved organic carbon (DOC) in Aquaculture industry: Hambly et al. [106] used 

dissolved organic carbon (DOC) analysis by EEM-PARAFAC to characterise and 
understand the accumulated dissolved organic matter (DOM) in mature recirculating 

aquaculture systems (RASs) stocked with rainbow trout and operated at steady state at four feed loadings 

(chart 3.18). 
 

Chart 3.18:Dissolved organic carbon (DOC) analysis in recirculating aquaculture systems (RASs) 

 
Objective 

┴ Future RAS management strategies 

 

Chemometrics.Methods 

 PARAFAC  EEM toolbox 
 

 

 

 
Inf.Bits. 

 Positive correlations  

 Fluorescence components     

 DOC   

 

PARAFAC factors 

 Five components 

o Three sources 

 Feed  

 Influent tap water 

 Groundwater 

o Fish related processes    

o Water treatment system 

 

Courtesy of  Ref 106 

 

 
Literature.evidence 

 Previously identified four components  in 

 Fresh water 

 Coastal marine water 

 Wetlands  

 Drinking water 

  

 
Courtesy of   Ref 37 



R. Sambasiva Rao et al                       Journal of Applicable Chemistry, 2015, 4 (5): 1313-1428 

 

1331 

www. joac.info 

 

Drinking water treatment plant: Sanchezet al. [60]  reported 
along-Term composition of DOM in a two aluminum-based 

coagulants full scale drinking water treatment plant from 1000 

water samples collected before and after parallel coagulation 
treatment basins (chart  3.19).  Sanchez et al. [109]identifiedtwo 

humic-like and two protein like substances in raw and treated 

Northeast Ohio water from time series data for 32 months (chart 

3.19).   

Chart 3.19: PARAFAC model  in drinking water treatment process 

Chemometrics.Methods 

 PARAFAC 

 

o Water Samples 

o Raw  

o Treated 

 680 

o Duration  32  months 

o Location 
 Northeast 

Ohio 
 

 

 

 

  Inf.Bits. 

 Positive correlations  

 Fluorescence components     

 DOC   
 

PARAFAC factors 

 Four components 

o  Two humic-like  

o Two with protein nature 

 

 PARAFAC on combined raw and treated water 

to track DOM in a DWTP 

Inf.Bits. 
 Introduced coagulation assessment using ΔEEMs- 

PARAFAC and volumetric analysis  

 

Courtesy of  Ref 60,109 

Aerosols: Matos et al.investigated Water-soluble and Alkaline-soluble Organic Matter in aerosols in 

different seasons by PARAFAC-ALS models (chart 3.20).   

Chart 3.20:  PARAFAC model for soluble organic matter in aerosols   

Chemometrics.Methods 

 PARAFAC 

 

 
 

 Aerosol  Samples 

o Water-/ Alkaline-soluble 

Organic Matter  

o Seasons 

 Cold 

 Warm 

Aluminum-based coagulants drinking water 
treatment plant 

 Inf.Bits. 

 Positive correlations  

 Fluorescence components     

 DOC   
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  Inf.Bits. 

 fluorescence map 

 Different trends with 

seasonal change 

 
 

 

 

 

 

PAHs in coal-tar: Mooreet et al.[17]focused the attention on PAHs in coal tar samples by monitoring 

spectro-fluorimeter data (chart 3.21a).   

Chart 3.21a: PAHs in coal tar by Ex-Em-Fl tensorial data modeling   

 
 

 Coal-tar  Samples 

 Seven PAHs 
 

 

Chemometrics.Methods 

 PARAFAC 

 

cryogenics + fiber-optic probe 
 EEMs are recorded at 4.2 K  

 

Inf.Bits. 

 Environmentally friendly approach for   
routine analysis of large number of coal-
tar samples   

PAHs 

1) Benz[a]anthracene 

2) Benzo[k]-fluoranthene  

3) Benzo[b]fluoranthene 

4) Benzo[a]pyrene 

5) Chrysene  

6) dibenz[ah]anthracene  

7)  Indeno[123-cd]pyrene 
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Courtesy of  Ref 17 

 

PAHs in presence of interferences:  Cañas et al. [3] reported detection of 20–100 ng L
−1

of PAHs 

(benzo[a]pyrene, dibenz[a,h]anthracene, benz[a]anthracene, and chrysene) in presence of interferences 
with 5–7% of relative errors of prediction (Chart 3.21b). 

Chart 3.21b:   PARAFAC for PAHs in heavy fuel oil analysis 

1) GC × GC-TOFMS  APEQ (automated peak extraction 

and quantification) 

 PARAFAC 

 
 

Courtesy of  Ref 3 

Inf.Bits. 

 Green method  

PAHs in heavy Fuel Oil: Parastar,Tauleret al. [27] resolved pure component elution profiles in the two 

chromatographic dimensions as well as their pure mass spectra of PAHs in Heavy Fuel Oil using MCR-
ALS(Chart 3.22).  The relative errors in estimated samples are <6%. 

 
 

Chart 3.22:   PARAFAC for PAHs in heavy fuel oil analysis 

2) GC × GC-TOFMS  APEQ (automated peak extraction 

and quantification) 

 PARAFAC 
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Courtesy of  Ref  27 

 

Figure of merit in m-way calibration: The expressions in the closed-form for analyte sensitivities in one-, 

two-, and three way data (vectors, matrices, and three-dimensional arrays, respectively) built with data for 
a group of samplesfor calibration are available.   Allegrini and  Olivieri [21] put forward a new 

expression for figure of merit for the set multivariate calibration algorithms (MultiCalibAlg) based on 

PLSR combined with residual multilinearization (chart3.23). An extensive study with Monte Carlo noise 

addition simulations for a second-, third-, and fourth-order data showed a decrease in average prediction 
error with increase in the order of data. 

Chart 3.23: Figures of merit for different orders of instrumental data 

Second-order advantage 

o Number of analytes 

o Interfering agents  

o Different degrees of overlapping in component 

profiles  

o Different numbers of instrumental data modes 

per sample  

 

Figures of merit 

┴ Analytical sensitivity  

┴ Limit of detection 

┴ Limit of quantitation 

┴ Uncertainty in predicted 

concentration  

 

 

http://pubs.acs.org/action/doSearch?ContribStored=Allegrini%2C+F
http://pubs.acs.org/action/doSearch?ContribStored=Olivieri%2C+A+C
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Courtesy of  Ref 21  

 

Olivieri   and   Faber[22] derived equations for sensitivities (Alg. 3.1)of four-way data calibration using 
the quadrilinear PARAFAC model.  

Alg. 3.1:   Sensitivity of 4-way calibration data with quadrilinear PARAFAC model 

 
Basis Computation of the uncertainty in Jacobian matrix of fitted PARAFAC parameters  

 

Data Four-way tensor 

 
Method Four-way simulated data  +   Monte Carlo noise   

 

 Widely different overlapping situations 

 
Application Two experimental analytical data systems 

three- four-way data 
 

 
Graphical algorithm  [Graph_alg.]   Courtesy of  Ref 22 

 

 
Omidikia et al. [8] discussed selectivity and uniqueness characteristics of PARAFAC model (chart 3.24).  

The effect of selective windows of profiles on unique resolution of three-way data sets and selectivity 

constraint on the unique recovery of two-way data sets are reported. 

Chart 3.24 chromat-2: uniqueness and selectivity characteristics of  PARAFAC 

Inf.Bits. 

 PARAFAC is a trilinear model 

 promising exploratory tool for data analysis 

 Unambiguous recovery of profiles is a distinguishable advantage 

 Non-destructive methodology 

 Linear dependency in of three-way data profiles 

 Destroys trilinearity 

 Increases ambiguity in the curve resolution. 

 Linearly dependent loadings of PARAFAC  

 Deteriorates totally or partially uniqueness    

 Rank overlap   ---> Rank deficiency 

 Resolution of systems decreases 
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Courtesy of  Ref 8  

Automated peak extraction and quantification (APEQ) in chromatography 

Furbo and Christensen [23] proposeda multi-stage method to extract retention times (tR), spectra, and 

signal intensity from spectro-chromatographic tensorial  data (Alg. 3.2).   

Alg.3.2  Automated peak extraction and quantification from 

GC_MS with PARAFAC 

Data:  Full-scan chromatograms  
#samples :12, In each sample:  30 PAHs 

o Split chromatograms into sections.  

o Detect Peaks    

o Approximate elution profiles, spectra, and signal intensities 

o estimate number of important peaks in each section  

 For each section 
o Model peaks and background with PARAFAC 
o Develop models with a different number of 

factors   

 End for  
 

 For each section 
o select optimal model  

 end for  
 

Output: optimal model  

+ It detected all 30 PAHs and 14 compounds not intentionally 
added.  

+ Model is with lowest dimensionality in most cases  

+ One factor describes baseline 

+  extracted the tRs, mass spectra, and relative concentrations 

+ The quantification was compared to integration of extracted 

ion chromatograms. 

+  significantly better for peaks with overlap 

+ It had comparable quality for peaks with little or no overlap 

 
Nano_biological data: Akhlaghi etal.[24]made multiway investigation of interaction between Fluorescence 

Labeled DNA Strands and Unmodified Gold Nanoparticles.  PARAFACis successful in application of a 
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multiway chemometric toolbox (chart 25). The restricted Tucker3 model is better than PARAFAC to 
resolve multidimensional nano-biological data. 

 
Chart 25: Tucker-3 vs PARAFAC for nano biochemical data 

o PARAFAC 

o Tucker3  

 Unrestricted 

 Restricted  

 Limited rotational freedom  

 Unique results   

 Better interpretability results 

 Chemically more meaningful than PARAFAC 

 

Metabolic profiling: Yilmaz et al.  [26] reported mapping of correlated concentration variances of known 

and unknown secondary metabolites in extracts of natural products by J-resolved NMR spectra (chart 26). 

 
Chart 26:  2D-NMR spectral modeling of metabolites with PARAFAC model 

 

#2D-NMR spectra :  96 Compound : saffron 
samples extracted with 

(D4) methanol 

Preprocessing Spectra:  
Alignement 

Splitting into 0.04 ppm wide  (narrow) windows  
 

Features. PARAFAC 
 PARAFAC is a mathematical decomposition method of 3-way data tensors 

 Fits three-way experimental data to a model whose parameters 

 Concentrations / individual component spectra along the chemical shift axis  

  Spectral profiles along J-coupling axis 

 PARAFAC is an advanced preprocess tool 

+  Keeps  J-coupling information of 2D-NMR spectra  

 

 
Courtesy of  Ref: 26   

 

Pesticides estimation: Rubio et al. [97]reportedsimultaneous determination of two carbamate pesticides 
(carbaryl and carbendazim) and of the degradation product of carbaryl (1-naphthol) in iceberg lettuce by 

PARAFAC model (chart 3.27). The different dilutions of the extract from iceberg lettuce in the standard 

addition method forms 4
th
 way of data tensor. 
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Chart3.27: 4-way data analysis with PARAFAC 

Instruments 

Excitation–emission fluorescence 3-way data 

Expt.Methods 

Standard addition method 

Different dilutions ( with 3-Way data 
for each dilution) of the extract from 
iceberg lettuce 

4th-Way 

 

Algorithm for chemometric analysis of 4-way data 

Step: 0 Data:  4-way data tensor 

Step: 1 Four-way model ---> Identification of two fluorescent 
matrix constituents  ---> 
Matrix contribution in each dilution of the extract 

Step: 2 Subtraction of  this contribution was from the 
previous signals --> subsequent three-way data 
analysis on tensors corresponding to each dilution 

 

 

 

 
Courtesy of  Ref: 97 

 

 

Dietetometrics 

 

Courtesy of  Ref:2 

Simultaneous estimation of caffeic (CA) and vanillic (VA) acids: These are good model compounds for 
fruit juices samples. The severe concentration profile overlapping between CA and VA in β-cyclodextrin 

(CD) concentration dimension limits the application of PARAFAC model.  But, differences in the spectral 

absorbance changes of the β-CD complexes signals of the investigated analytes, opened a new approach 

for second-order data generation rendering resolution of the model compounds possible. The analysis 
showed that BLLS/RBL functions better than PARAFAC in this instance.  This approach of Khani  et al. 

[98]  is a promising tool in real samples with advantages like accuracy, sufficient spectral resolution and 



R. Sambasiva Rao et al                       Journal of Applicable Chemistry, 2015, 4 (5): 1313-1428 

 

1339 

www. joac.info 

 

concentration prediction even in the presence of unknown interferents (chart 3.28). The comparison with 

HPLC-photodiode array detection endorses this approach. 

Chart 3.28:  Complexes of in  β-cyclodextrin with model compounds of fruit juice samples 
 

Instruments DATA 

Excitation–emission 
fluorescence  

 

---> 3-way data     

Methods Calibration 

PARAFAC   Bilinear least 
squares/residual 
bilinearization 
(BLLS/RBL) 

Task 
Deconvolution of trilinear data --> 
spectral and concentration profiles of CA and VA as a 
function of β-CD concentrations 

 

 
Courtesy of  Ref: 98 

Fruits/ fruits juices contamination with Pesticides: Bortolato and Olivieri [4] estimated benzimidazolic and 

carbamate pesticides in fruits/juice and polycyclic aromatic hydrocarbons in the presence of potential 

interferents in water samples by hyphenated instrumental (LC-DAD,LC-fluorescence) techniques (Chart 

3.29). 

Chart 3.29: Pesticides in fruit juices with PARAFAC2 

 
Data : [Simulated; Experimental] 

Courtesy from Ref 4 

 
 

 Caution. Bits. 

If Interferents are  present 

Then Overall results favor MCR-ALS  over PARAFAC2 

 

 

 

Elution time profiles show changes from sample to sample 

Loss of trilinearity in data tensor

Perturbation/failure of factor methods 

based on internal implicit tri-linearity 




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Lime tree flowers : Rubio et al. [7] estimated carbaryl, carbendazim and 1-naphthol in dried lime tree 
flowers using experimental design for calibration samples, standard addition method, hyphenated 

instruments and advanced chemometric technique, PARAFAC (chart 3.30). 

 

Chart 3.30:   Chemometric estimation of carbaryl, carbendazim etc. in lime tree flowers 

 
 

Expt.Methods 

 Standard addition method  Analyte estimation 

 D-optimal design  Calibration standard 
 

 Adherence to trilinearity of   data tensor guarantees   

uniqueness of PARAFAC solution 

 Factors of decomposition match up with analytes 

 

 

Courtesy of  Ref 7 

 

 

 

Adulteration of artificial food colorants:  Masoum et al. [91] made a quality assessment of adulterated 

saffron samples with PARAFAC analysis of visible spectral data at different pHs(chart 3.31).  Saffron is 

costly ingredient with multifaceted applications in   culinary spice, dyes, cooking, and also medical 
purposes. The scarcity as well as price is a reason for rampant adulteration and thus detection is of prime 

concern to avoid health hazards. 

Chart 3.31:   PARAFAC in detection of Food adulteration  

 

 

 Analyte  

o Saffron 

 Adulterants  

 Tartrazin   

 Sunset yellow 

 

 

Courtesy of  Ref 91 

 

Instrument 

 Uv-Vis 

spectrophotometer 

 pH meter 

Data 
3way tensor 

 

Chemometrics.Methods 

 PARAFAC 

  

Remedy

 

Output  

o Extraction of extent reaction profile  

o Mixture reaction spectral profiles,  

o Relative concentrations of analytes 

Rank deficiency in concentration mode 

 impaired system



subtract  first pH spectrum from each spectrum at each pH

Three-way variation array V
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Sherry vinegar: Callejón et al. [99] employed a band of chemometric models to discriminate Sherry 

vinegars accordingly to their ageing (chart 3.32).   

Chart 3.32:   Age wise  discrimination of  Sherry vinegars  
 

Instruments 
Excitation–emission fluorescence spectrometer 
 

Chemomet_Methods 
Robust classification models 

PARAFAC   SVM PLS-DA 

 

Quality of $$$ 
vinegar 

 Ageing time 
in oak barrels 

Vinagre de Jerez minimum   6 months 

Reserva   at least  2 years 

Gran Reserva at least  10 years 
  

Courtesy of  Ref  99 

 
 

southwestern Spain 

Vinagre de Jerez 

Reserva   

Gran Reserva 

 

Objectives 

 Characterization of Sherry vinegar 

 Classification/  discrimination  of   Sherry vinegars based 

on ageing 

Goal achieved 

o Detection of fraudulent samples  

o Assessment of the quality of vinegars 

 

Luna et al. [12] reported limits of  detection (LOD) and limits of quantification (LOQ) for aflatoxins B2 

and G2 in peanuts using second order standard addition method and PARAFAC modeling (chart 3.33). 

Both naturally contaminatedand spiked   complex matrix of peanuts samples showed promising results at 

reduced cost. 

Chart 3.33:   Chemometric estimation of carbaryl, carbendazim etc. in lime tree flowers 

 

Instruments Chemomet_Methods 

excitation–emission 

fluorescence  
spectrometer 
 

PARAFAC,   

 

Expt.Methods Second order 

Standard addition 

method 

 

 

Courtesy of  Ref 12 

 

Compound 
μg kg−1 

LOD LOQ 

Aflatoxins B2 0.05 0.16 

Aflatoxins G2 0.04 0.12 
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Discrimination of white wines according grape variety: Azcarate et al. [64] found U-PLS-DA and SPA–
LDA have better discriminating power in assessing Argentinean white wine quality from fruits from 

different varieties (chart 3.34). 

Chart 3.34:  SPA_LDA for white wine discrimination  

based origin of grape furit 

Instruments 

4)   Ex-Em-Fl spectrophotometer 

 

Chemometric_methods 

PARAFAC  PCA DA  
 

SIMCA,    

 

N and 

U-PLS 
 

SPA–LDA 

 

 

 %Accuracy  

U-PLS-DA 76 

SPA–LDA 80  

 #Samples 

Training 21 

Test 

 

20 

 Kennard–
Stone 
algorithm 

 

Statistics  for model 

 

 Mean of 

accuracy,  

 Sensitivity 

 Specificity 
 

 

 
Courtesy of  Ref64  

 

Fluoroquinolones in urine samples: Vosough et al. [92] estimated Fluoroquinolones in urine samples by 

PARAFAC and U-PLS/RBL methods with acceptable accuracy (chart 3.35). 

Chart 3.35:    PARAFAC and U-PLS/RBL procedures for Clinical diagnostic analysis 

 

 

Instruments 
excitation–emission fluorescence  
spectrometer 
 

Chemomet_Methods 

Advantages of chemometric analysis 

 Elimination of  preliminary sample preparation    

 Simple experimental procedure   

 Desirable analytical performance 
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PARAFAC  
 

unfolded PLS    + 
residual 
bilinearization 
procedure ( RBL)   

self-weighted alternating trilinear 
decomposition (SWATLD) 

Utility of 
second-order advantage”      

 
Statistics 

 RMSEP  

 Recovery  

 Elliptica joint confidence region 

(EJCR) plots 
 

Courtesy of  Ref  ex-em-14 

 
Courtesy from Ref 92 

 

Biochemistry  

The spectroscopic, kinetic and molecular dynamic studies of enzyme structure and their activities was the 

core of bio-physical and bio-chemical research. The advances in analysis of 3-way/4-way data from 
hyphenated instruments opened new vistas in age old enzyme activity in vitro as well as in vivo.   

Enzyme activity: Baum et al. [10] [FT-IR-1] studied spectral profiles evolution in enzyme catalyzed 

reactions for preparation of pectin lyase, glucose oxidase, and a cellulose by PARAFAC using FTIR (chart 
3.36).   

Chart 3.36:  PARAFAC for FTIR data 

 

Instrument 

FT-IR 

 

Chemomet_Methods 

PARAFAC  
 

 

 

Experimental Procedure 

Spectral evolution for reaction 
 

 
Courtesy of  Ref 10 

 

Polymers in cyanobacterium:  Xu et al. [110] employed fractionation procedure and PARAFAC to explore 
into extracellular polymeric substances of cyanobacterium Microcystis aeruginosa (chart 3.37).   

 

Chart 3.37:    Protein like substances in  cyanobacterium Microcystis aeruginosa by 3way-modeling 
 

 

Instruments Chemomet_Methods 

 Excitation–

emission 

fluorescence  

spectrometer 
 

 PARAFAC 
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Component Ex Em substances 

#1 220 340 

Protein-

like  

#2 280 340 

#3 200 
220  

270 

296 

    

#4 250  
340 

438 Humic-like 

 

 
Courtesy of  Ref 110  

 

Enzyme activity in plants: Baum et al. [9] assessed simultaneous enzyme activities of  pectin lyase and 

pectin methyl esterase using multi-way chemometric methods (chart 3.38). 

 

Medical diagnosis 

Magneto encephalograms in Alzheimer's disease:  Acar, Bro et al. [120] performed PARAFAC analysis of 

resting state magnetoencephalograms of patients with Alzheimer's disease (chart 3.39). 

Chart 3.39: PARAFAC analysis of Magneto encephalograms  

 

Instrument 

Magnetoencephalogram 

 

Chemomet_Methods 

PARAFAC  
 

PARAFAC2 

 

 Subjects # 

Alzheimer 

patients  

36 

control 
subjects  

26 

 

Brain signal features 

 Entropy tensor between 

temporal scales and  
MEG channels 

 

Chart 3.38:   Enzyme activity of  pectin lyase and pectin methyl esterase 

 

Instrument 

FT-IR 

 

Chemomet_Methods 

 PARAFAC   N-

PLS 

 TUCKER3  
 

 

 
Courtesy of  Ref 9 
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Courtesy of  Ref  120 

 

Pharmaceutical formulation:  Hegazy et al.[93] reported estimation of Linezolid by chemometric 

procedure without separation of its degradation products (chart 3.40). 

Chart 3.40:   pKa values of Linezolid and its degradation products 

 

Instrument 

Spectrophotometer HPLC  

 

Chemomet_Methods 

PARAFAC  
 

PARAFAC2 

 

 RMSEP 

PCR,  0.058,  

PLS,  0.026,  

PARAFAC   0.101   

N-PLS 0.026 

 

Experimental design 
(Multilevel multifactor) 

 Conc range μg mL−1, 

LIN    12–18 

ALK  2.4–3.6 

OXD 1.2–1.8  

Zero order 
Response 

220-320 nm 

Inf.Bits. 

 The results obtained were statistically compared to that of a reported HPLC method, and there was no significant 

difference between the proposed methods and the reported method regarding both accuracy and precision 

pKa of Linezolid and its products 

 

Instrument 

Spectrophotometer pH 

 

Chemomet_Methods PARAFAC  
 

Task pKa 
 

 

Compound pKa  

LIN,  5.70 

ALK   8.90  

OXD 6.15 

OX : oxidative (OXD) degradation products of Linezolid 
ALK: Product in presence of alkaline solution 
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Courtesy of  Ref 93 

 

Chemical Kinetics by chemometric models of 5-way data:  Qing et al. [1] made a rigorous kinetic 
investigation of hydrolysis of naptalam (NAP) (chart 3.41). 

Chart 3.41:   5-way data in calibration and kinetic studies 
 

Instrument 

 HPLC-DAD pH 

 

5-way tensor 
 

4-way instrumental  

1) Elution time 2) Spectra 

3) kinetic time  4) pH 

  

5) Response 
 

Chemomet_Methods 

Factor  
 

PARAFAC 

Calibration 4th Order 
AQQLD 

Basis of  
alternating quinquelinear 
decomposition   

pseudo-fully stretched 
matrix forms of the 
quinquelinear model 

Inf.Bits. 

AQQLD    

 Faster convergence rate  

 Insensitive to the excess component number adopted in model 

 Resolution by Chemomet_method -->   Elution time, spectral, kinetic time and pH profiles  

 Good agreement with experimental observations    
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Courtesy of  Ref 1 

 

3-way (chromatography) data: Parastar and Akvan [5] compared chemometric algorithms for analysis of 
chromatographic 3-way data (chart3.42) of course exploiting second order advantage. 

Chart 3.42: Analysis of 3-way chromatographic data with chemometric methods 

 

Instrument 

1) HPLC-DAD 

 

Chemometric_method 
 

1) MCR-COW-

PARAFAC 

2) PARAFAC,  

3) COW-

PARAFAC 

4) MCR-ALS   

5) MCR-

COW-MCR 

 

 

 

 

Statistics 
 

Lack of fit (LOF) 

Relative error (RE)  

Spectral correlation coefficients 

Inf.Bits. 
  MCR-COW 

 Correct elution time shifts are obtained for completely overlapped chromatographic data by coeluted interferences    

 PARAFAC analysis of aligned chromatographic data  

 Unique decomposition of overlapped chromatographic peaks even in presence of interferences 

 MCR-COW-PARAFAC compared with PARAFAC, COW-PARAFAC, multivariate curve resolution-alternating least 

squares (MCR-ALS), and MCR-COW-MCR 

 MCR-COW-PARAFAC is a better model in terms of statistics 

 

 
Courtesy of  Ref 5 

 

Outer sphere and inner sphere complexes of Eu
3+

: Ishida et al. [84] studied the complexes of Eu
3+

 with 

kaolinite with Time-resolved laser fluorescence spectral (TRLFS) data with PARAFAC model (chart3.43). 
The adsorption of metal ion is on ligand and gibbsite, a reference material.  

Chart 3.43: Complexes of Eu3+ with kaolinite 

Instrument 

1) Time-resolved laser 

 fluorescence 
spectrometer   

 

Inf.Bits. 
 

 Outer-sphere complex has rapid fluorescence decay compared to  Eu3+ aquo ion  

 Reason : Energy transfer to the surface.  

 Inner-sphere complex became dominant at relatively high pH, high salt concentration 
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Chemometric_method 

 
Factors Complex 

A Outer-sphere   

  

B and C   Inner-sphere  
 

C Inner-sphere  

&polynuclear    

and low Eu3+ concentration 
At relatively high Eu3+ concentrations,  poly-nuclear   complex of Eu3+ formed 

 

 

Spectro-electrochemistry 

Spectro-voltametry: Khoobi et al. [19]reported analytical voltammetric determination of dopamine (DA) 

in the presence of epinephrine (EP) with second order advantages (chart3.44). 

Chart 3.44: Voltametric determination of dopamine (DA) in presence of interferent epinephrine 

Instruments 

 
Courtesy of  Ref 19 

1) Voltammetry  
Electrode: gold nanoparticles chemically 
modified carbon paste electrode 
(AuNPs/CPE). 

3-way Data generation  

Various pulse heights in differential pulse 

voltammetry (DPV) technique 

Expt design 
Central composite rotatable design 

Models 

Response surface 

methodology   

Alternating least-

squares 

 

González-Diéguez et al. [25] tested dopamine oxidation at different concentrations by measuring 
spectroelectrochemical responses in the UV/visible range employing screen-printed electrodes 

(chart3.45)spectrophotometricand electrochemical methods measure the analyte indistinguishingly. 

 
Chart 3.45: Estimation of dopamine with spectroelectrochemistry 

 

If [dopamine] < 10–3 M 

Then higher generation of dopaminochrome and its derivatives& absorption band centered at 305 nm 

If [dopamine] > 10–3 M  

Then dopaminoquinone is stable &maximum of absorbance, 395 

 

Inf.Bits. 
Spectroelectrochemistry 

 Autovalidated technique 
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Courtesy of  Ref 25  

 

4. Function Base (fnBase) with numerical input (NI)            

Many of the 3D surfaces found in chemical experiments range from simple linear functions in two 

variables to combination of complicated functions in several variables.  The latter ones include 
polynomials up to third order, square root, trigonometric and exponential functions.  In general the 

algebraic sum or product of these individual functions is considered as the response.  In order to interpret 

the 3D surfaces and contour diagrams in any interdisciplinary task including basic chemistry, a systematic 

understanding of some of the mathematical functions in two variables is a prerequisite.  A discussion of the 
functions, 3D surfaces, contour diagrams and those reduced to equivalent univariate experiments follow.  

Some of them represent typical mathematical functions used to validate the numerical methods or to find 

the limitations of the algorithms. 

Three/higher dimensional response surface: Although 3D diagrams are described as fancy, they throw 
light on maxima, minima and saddle points.  Movement along 3D-surface is to probe into smoothness of 

surface, breaks, troughs, valleys, flat profile, multiple local/global extremes to understand/ control/ predict 

phenomenon through approximate models.  Hitherto, surfing in open oceans is an expert skill, but yet tense 

at least for spectators.  The recent revolution in science is creation of ocean waves in artificial pond and 
thus controllable.  This relieves the tension even for amateurs to surf phase wise to become expert surfers 

to do a great job even in rough seas.  This analogy is also inspiration for scientific pursuit from best to sets 

of best of bests. 

Contour/Iso-response diagrams:  Contour diagrams are described as 2D representation of 3D surface in 
variable axes at iso-response values.  Each iso-contour represents the lines of equal responses.  It gives 

quantitative information of the variation of the response with the simultaneous variation of the two 

variables, x and y. 

Plots of Resp with x and with y:  These are like conventional two dimensional plots.  Each curve (say 

Resp with x) is the change of response with x at constant y.  Thus any curve represents a univariate 
experiment at the specified value of y.  The quality and texture of the surfaces depend not only on the 

experimental design, accuracy of the data but also on the number of points and interpolation technique 

employed.  So, a systematic study of the factors affecting the response surfaces follows. 

 Linear Models : The most popular and widely researched and applied linear model is  with one  

error free explanatory, one random response variables and linear (normally distributed) parameters.  The 
advances were to tackle hetero-sedastic normal noise in y, outliers in x or y or both x and y, different 

scales of magnitudes of x and/or y, data structure (binary, floating point, symbolic etc.). Muti-linear 

models generally have more than one x- variable (i.e. second order X tensor), rarely multi-response (i.e. 
second order Y tensor) or both, but the parameters still are linear. Non-parametric regression does not have 



R. Sambasiva Rao et al                       Journal of Applicable Chemistry, 2015, 4 (5): 1313-1428 

 

1350 

www. joac.info 

 

the constraints about the statistical distribution of parameters. A multi-coloured canvas in MATLAB is 
spread for surfaces/contours of various types of linear and non-linear functions. 

 Continuous Functions 

Model with Linear variables and linear parameters: The equation of Response (Resp) for a linearfunction 

in x (factor 1) and y (factor 2) is in Eqn. 4.1.The coefficients can be represented in a tensor notation as lin
T
, 

a column vector. 

 Linearmodel 

Algebraic form 
Matrix notation  

 
 
 

1
   

2

Hessi

Gradient

g

an

0
H  =     =   

 

0

fn

ax

fn a

y

g

x

g

y

 
   
       
  

 
   
      
  

  

 

 

  0  1R  *   2p  e * s a a x a y   
Eqn. 4.1 

 

[x, y] 
Linear terms or  

(factor 1, factor 2) 

 a0  Intercept  

[a1, a2] 
Coefficients 
 of linear terms  

 
 

 

1
; ;

2

* 1 2 *

1 *   2

( )

 

0

 

*

*

Re

T

T

x a
x

a x

lin
y a

x
lin x a a

y

fn x z sp

a lin x

a y

   
    
   

 
  



 

 

 

  

Case 1:  The simplest case is fn(x) = 0, i.e. parameter vector     
T T

a0, a1, a2 is 0,0,0 .  The plot of RESP vs x 

and y is a horizontal plane passing through origin and the contour diagram is a set of points with zero 

magnitude.   A perusal of RESP vs y is a straight lines passing through zero.  Similarly Resp versus x is 

also a set of dots with zero magnitude parallel to horizontal axis. The surface has zero value at all grid 

points. The figure 4.1 is for fn(x) = 1; 

Case 2:  Resp = a1*x 

 = 0 + a1 * x + 0 * a2* y= [0] + [x y] * [a1 0]
T
 

Contour diagram is a set of lines parallel to Resp axis.  The response on each of the line equal and 

indicates the value of Resp at the corresponding coordinates of x and y. The gradient is towards positive 

side of axis.  The 3D surface is a plane inclined at an angle of tan
-1

 (a1) that is 45° when a1 =1.  Plots of 
Resp vs y are a set of parallel lines towards y axis.  When a1 is of negative sign (Fig. 4.1), the 3D surface 

is inclined in opposite and gradient is towards -ve side. 

Case 3 :  Resp= [0] + [0 a2] * [xy]T 

= 0+0 *a1 *x +a2 * y = a2 * y 

The contour in x, y space is a set of parallel lines with respect to x axis and the response surface is an 

inclined plane.  The figure mimics univariate experiments at constant values of x and y, respectively. The 

straight lines are along the diagonal.  The figure offers pictorial explanation that the response is 

independent of x  (straight lines, parallel to Resp axis) and increases with y(linear behaviour).   

When a2 is negative the inclination of figure is in opposite direction.  This model represents 

experiments wherein factor 1 has no influence while that of factor 2 produces a proportional change in 

response.  In such cases univariate experiments are adequate and there is no need for multivariate 

statistical experimental design.  However, in order to arrive at the best calibration model the distribution of 

the points should be chosen based on D-optimal design.   
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Case 4:  Resp = [a0] + [ a1 a2] * [xy]
T 

= a0 + a1 * x + * a2* y 

The contour diagram is a set of parallel lines, but is inclined towards diagonal.  The extent of inclination 
depends on the correlation of x with y.  The 3D surface is still a plane but is directed towards x or y space.  

Response vs y is at several values of x are a set of parallel straight lines.  The only difference in the Figure 

is that x contributes to Resp in the former case.  For a model with parameter vector [0 -1 -1], the figures 

are similar but differ in the direction of inclination.  When the sign of the coefficient of x is opposite to that 
of y, the sign of the response depends upon the relative magnitudes of the parameters and the range of x 

and y.  A perusal of gradient (g) for models these (vide supra) reveal that it is a constant (a) and Hessian is 

a zero vector.  There is no minimum or maximum except at infinity and that is the reason why the line or 
plane continuously increases or decreases.  It appears that a discussion of cases 1 to 4 is trivial.  But they 

are instrumental to develop an in-depth knowledge of gradient, Hessian of higher order polynomials in 

multivariate space.   

 The intercept a0 becomes zero for mean centred data.  The earlier practice of analysing mean 

entered data in statistics is as result of reduction of number of parameters by one.  However, in many 

chemical problems chemometricians discourage this approach as the information about the origin is lost. 

function om_xyz(range, eqn) 

      disp(range) 

      eval(range) 

      [r,c] = size(x); 

      one = ones(r,c); 

      disp(eqn) 

      eval(eqn) 

      xyz_plot(z,x,y) 

 

% 

% xyz_plot.m 

% 

function xyz_plot(z,x,y,titlez) 

if nargin <4, titlez= 'Contour diagram';end 

    ztitle = 'Z'; 

 %   

 figure  

% 

     subplot(221) 

     [DX,DY] = gradient(z,.2,.2); 

     [c,h]=contour(x,y,z); 

     h = clabel(c,h); 

     set(h,'BackgroundColor',[1 1 .6]) 

     axis equal,axis ('square'), 

     xlabel('X'),ylabel('Y'),zlabel(ztitle), 

     zz =0.4; 

     v = axis; axis([v(1)-zz,v(2)+zz,v(3)-zz,v(4)+zz]) 

       hold on 

      quiver(x,y,DX,DY), 

      title(titlez),hold off 

 

 

     subplot(222) 

     zz =1; 

     v = axis; axis([v(1)-zz,v(2)+zz,v(3)-zz,v(4)+zz]), surfl(x,y,z)   , 

plot3(x,y,z) 

 

     axis equal,axis ('square'), xlabel('X'),ylabel('Y'),zlabel(ztitle),view([0,0]) 
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     subplot(223) 

     zz =1; 

     v = axis; axis([v(1)-zz,v(2)+zz,v(3)-zz,v(4)+zz]), surfl(x,y,z) ,  

plot3(x,y,z) 

     axis equal,axis ('square'),     

xlabel('X'),ylabel('Y'),zlabel(ztitle),view([90,0]) 

     subplot(224) 

     surfl(x,y,z) 

 

     axis equal,axis ('square'), xlabel('X'),ylabel('Y'),zlabel(ztitle) 
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 % 

%   xyz_lin.m   R S Rao   14-7-15;  5/9/94 

% 

function  lit_lin 

    n = 99; 

while n >0 

    clear,clc  

 a=[ 0     0     0     %1 

     1     0     0     %2 

     0     1     0     %3 

     0    -1     0     %4 

     0     0     1     %5 

     0     0    -1     %6 

     1     1     1     %7 

     0    -1    -1     %8 

     0    -1     1     %9 

     0     1    -1     %10 

                          ]; 

 

     eq = ' z = a0 + a(1) * x + a(2) * y  '; 

     xyz_dis 

         lt= -1; inc = 0.2; ut=1; 

         rangexy= 'lt= -1; inc = 0.2; ut=1;[x,y] = meshgrid(lt:inc:ut,lt:inc:ut);'; 

 

        a(1) =a(n,2);a(2) = a(n,3);a0= a(n,1);  

a(n,:) 

        disp(eq) 

        disp([ a0 a(1) a(2)  n]) 

 



R. Sambasiva Rao et al                       Journal of Applicable Chemistry, 2015, 4 (5): 1313-1428 

 

1354 

www. joac.info 

 

         [x,y] = meshgrid(lt:inc:ut,lt:inc:ut);      

         z = a0 + a(1) * x + a(2) * y ; 

         eval(eq) 

           xyz_plot(z,x,y) 

           next(0) 

end 

 

Non-linear models: 

Binary cross product terms:  The simplest non-linear model is obtained by the product of two linear 

variables viz. Resp = a3 * x *y which is hyperbolic in nature.  The contours are curved in all four 

directions and contour diagram (Fig. 4. 2) passes through zero at [0 0 ]
T
.  A non-linearity in a model is 

introduced whenever a non-linear function or variable is added to any of the linear models.  The 3D 

surface non-linear depending upon the rotation about Resp axis and titling.  In univariate 

experiments,thefigure may be misleading as one may infer that the variation of Resp with y is linear.  In 

fact it is an artefact of reduction of equation Resp = a3 * x * y to Resp = a1 * y.  The figurecan be similarly 
explained based on the equation Resp = a3 *x at constant but different numerical values of y.  A negative 

value of the coefficient results in 3D surface opening upwards. 

 Cross productmodel 

Algebraic form 
Matrix notation  

 
 

[x*y] 
Cross product of 
linear terms --> 
nonlinear 

a0  Intercept  

[a12] 
Coefficient 
 of cross product  

 

 
 

  0  12 * 1 * Re 2sp a a x x  

 
 

   

   

* ; 12 ;

* 12 * *

( ) 0 *

T

T

xcp x y cp a

cp x a x y

fn x a cp xcp

 



 

 

 

 
 

% 

%      xyz_xy.m 4/10/94 

% 

function xyz_xy  

clean 
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llt = -1; ult=1; inc= 0.2; 

[x,y] = meshgrid(llt:inc:ult,llt:inc:ult); 

 

           disp(['   x*y  a0 # '])           

            b = [    1   0  1 

                     -1   0  2  

                    -0.1  0  3   ]          

            nn = input(' Give   n < 1 to 3> : '); 

if nn == 0, return, end 

a(1) = b(nn,1); a(2) = b(nn,2); 

 

         eq = 'z = a(1) *x.*y + a(2);'  ;  

         eval(eq); 

         disp(eq) 

         xyz_plot(z,x,y); 

 

Quadratic models: 

Case 1: The quadratic empirical models in one (x or y) or two variables are symmetric.  The contour 

diagram (Fig.4.3) for Resp = a3 *x
2
 is a set of unequidistant parallel lines and the response surface.   The 

figure isa bowl opening upwards.  Similarly the plots of response vs.y are also parallel lines with respect to 

y axis, when coefficient of x is negative the 3D surface opens downwards the contour diagram appears to 

be same but the magnitude of the response is opposite in sign. 

 Quadratic model  

Algebraic form 
Matrix notation  

 

 

2 2  0 11 Res *  *p 22  a a x a y   

2

2

11
;

22

( ) 0 *T

ax
xquad quad

ay

fn x a xquad quad

   
    

  

 

 

2

2

x

y

 
 
 

 Quadratic  terms --> nonlinear 

 a0  Intercept  

11

22

a

a

 
 
 

 
Coefficient 
 of quadratic terms  
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R. Sambasiva Rao et al                       Journal of Applicable Chemistry, 2015, 4 (5): 1313-1428 

 

1357 

www. joac.info 

 

 
 

 

%   xyz_quad.m   9-7-15; 5/9/94 

%   

function xyz_quad 

 clean 

         coe = [  

     0     1     0     1 

     0    -1     0     2 

     0     0     1     3 

     0     0    -1     4 

     0     1     1     5 

     0    -1    -1     6 

     0    -1     1     7 

     0     1    -1     8 

                       ]  

 

   om_3d2d(coe); 

 

function  om_3d2d(coe);                 

  n1 = -1; n2 = .2; n3= 1; n4 = -1; n5= .2; n6=1 ;  

 [x,y] = meshgrid(n1:n2:n3,n4:n5:n6);  

 [row,col] = size(coe); 

 

for i = 1: row         

           a(1) =coe(i,2);a(2) = coe(i,3);a0= coe(i,1);  

           eq = ' z = a0 + a(1) * x.^2 + a(2) * y.^2;  ';  

           disp(eq); 

           disp([ a0 a(1) a(2) coe(i,4)]) 

           eval(eq); 

           xyz_plot(z,x,y); 

% 

           next(0) 

end 
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Case 2:The contour diagram for z=   y
2
 is similar to z = a3 * x

2
, but parallel to x axis.  The response vs. y 

is a set of overlapping parabolic lines and those with respect to x are parallel lines to response axis.  It is as 

result of a fact that response does not depend upon x. 

Case 3:  The utmost important quadratic model in two variables is Resp = a0 + a1 +x
2
 +a2 *y

2
.  The sign/ 

magnitudes of coefficients of quadratic termsrange of x and y result in simple quadratic surfaces to those 

with saddle points.  It is also possible that some time any of the surfaces so far discussed (vide supra) may 
result.  The significance of this model is discussed under canonical transformation of the full quadratic 

model.   

The contour diagram  forz =  [x
2
+ y

2
] is a set a concentric circles and the response surface is a 

bowl opening upwards.  The projection, rotation about Resp axis and tilt will give rise to apparently 

different shapes of 3D surface.  If the range of the variable studied is limited, the profile appears to be 

linear or nonlinear with either increasing or decreasing slope.  Extrapolation of the result based on any of 
the rigorous modelling strategies predicts sometimes absurd results.  For example an increasing trend will 

be predicted as decreasing and vice versa.  When both coefficients a3, a4 are negative the response surface 

opens downwards and response vs. y are a set of non-overlapping parabolic curves.  Interesting cases arise 

when the coefficients a3 and a4 are of opposite sign and their magnitudes differ significantly.  The 
heuristics developed in this and in other laboratories are incorporated in the knowledge base of canonical 

analysis program.   For example when the parameter vector is [0 0 0 -1 1]
T
 zero crossing occurs as is 

evident in the knot in the response surface. 

 

Full second order model:  The literature on application of full second order model (fig. 4.5)finds a place 

in every sub-discipline of chemistry.  The reasons for not using higher order polynomials (except in rare 
instances) are 

o The higher order polynomials are sensitive even to small errors in data 

o The number of regression coefficients (basis functions) increase rapidly with order of the polynomial. 

 Full quadratic model 

Algebraic form 
Matrix notation  

 

2 2

  0  1 *   2 *  

12 *  *  

1

Resp

1 *  22 *  

a a x a y

a x y

a x a y





  

  2 2

0

1

2
Re 1 * *

12

11

22

a

a

a
sp x y x y x y

a

a

a

 
 
 
 

    
 
 
 
 

 

 

Fig 4.5 Full quadratic model 

 

%       xyz_fullquad.m    4/10/94 

% 

function xyz_fullquad 

 clc, n = 99; 

% 

while n ~= 0 

        clc  

%    a0    x     y     xx    yy    xy Number 

     a = [   
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     0     1     1     1     1     1     1 

     1     1     1     1     1     1     2 

     0     0     0     0     0     0     3 

     1     0     0     0     0     0     4 

     0     1     0     0     0     0     5 

     0    -1     0     0     0     0     6 

     0     0     1     0     0     0     7 

     0     0    -1     0     0     0     8 

     0     0     0     1     0     0     9 

     0     0     0    -1     0     0    10 

     0     0     0     0     1     0    11 

     0     0     0     0    -1     0    12 

     0     0     0     0     0     1    13 

     0     0     0     0     0    -1    14 

                             ]; 

                         [r,c] = size(a); 

 

      eq = 'z = a0 + a(1) * x + a(2) * y + a(3) *x.^2 + a(4) * y.^2 + a(5)*x.*y '; 

      rangexy = ' lt= -1; inc = 0.2; ut=1;[x,y] = meshgrid(lt:inc:ut,lt:inc:ut); ';    

% 

      xyz_dis  

      disp(rangexy) 

      eval(rangexy) 

a(n,:) 

% 

      [r,c] = size(x); 

      one = ones(r,c); 

       a0  = a(n,1) ;   

       a(1) = a(n,2);   

       a(2) = a(n,3);   

       a(3) = a(n,4);   

       a(4) = a(n,5); 

       a(5) = a(n,6); 

%  

      disp(eq ) 

      eval(eq ) 

% 

      xyz_plot(z,x,y)  

      next(0) 

end% while  
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Re
1 12* 11*2* 0

1

Re
2 12* 22*2* 0

2

sp
a a y a x

x

sp
a a x a y

x


   




   



 

 

Re
1

1 2* 11 12 0
*

Re 2 21 2* 22 0

sp

a a ax
x

sp a a a
y

y

 
                    
    

 

2* 11 12 1
*

12 2* 22 2

a a x a

a a y a

     
     

     
 

 

2* *

2*

Tg b c x

H c

 


 

 

Canonical analysis 

A perusal of chemometric literature reveals that most of the data sets in the experimental design to obtain 

optimum operating conditions are analysed by a full second order empirical model.  Further the 
magnitudes of the explanatory variables are coded (-1 to 1).  This has the advantage that the design matrix 

is orthogonal and thus MLR results in unbiased estimates of regression coefficients. The coded variables 

are easier for calculations without resort to computers and for general comprehension.  A close 
examination of the estimates of the parameters with coded and uncoded X variables are different, although 

the corresponding response surfaces are similar.  In order to automate the interpretation of full quadratic 

models with different magnitudes of coefficients, canonical analysis is useful.   

At the stationary point, the partial derivative of Resp with respect to x and y are individually equal 

to zero.  In canonical analysis, the stationary point (maximum) of the estimated response surface of full 
quadratic model is calculated by equating the partial derivatives to zero.  The origin of factor space is then 

translated (shifted) to the stationary point.  This operation removes first terms.  The new factor axes are 

then rotated such that they overlap with the principal axes second order model.  The interaction terms are 

absorbed during rotation.  The full quadratic model now reduces to canonical form.   

Canonical analysis of full quadratic model in algebraic and matrix notations 

2 2  11 * _Re  b22 *  y _sp b x can can  
2 2Re

11
  _ _ *

b
p

22
s

b
x can y can

 
   


 


 

 

Shifting of factor space to stationary point 

The coefficients of linear terms are reduced to zero by translation of the factor space to location of 
stationary point.  It is effected by adapting a coding scheme where Cx1 = s(1);  Cx2 = s(2);in the coded 

and uncoded form have the same magnitudes.  This S matrix looks as if unchanged  

 

 

_    - 1  *

_    - 2  *

x trans x s one

y trans y s one




 

Rotation of factor space axis 
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The result of rotation of the new factor axis can be obtained as the solution of Eigen value problem.  It is 
established that there exists a set of rotated factor axes such that the half diagonal terms of resulting matrix 

are equal to zero.  In other words the origin of the translated and rotated coordinate system is at the 

stationary point and model does not contain linear and interaction terms. 

The salient features of response surface like the presence of a ridge, saddle region, flattened region 
or normal parabolic profiles can be predicted from the signs and relative magnitudes of b11 and b22. The 

m file can_kb.m implements the KB in the form of if – then –else rules and is made an integral part of the 

number crunching program can.m (appendix A6). It is a tiny knowledge based system and appears to be 

first of its kind and is continuation of our earlier efforts in complex equilibria, neural nets, experimental 

design and modelling.    The above equations can be written in the matrix notation as described in Alg. 4.1.   

Alg. 4.1:  Algorithm for canonical analysis  
 

Function ( ) 0 * * *

2* *

2*

T T

T

fn x a b x x c x

g b c x

H c

  

 



 

S = [2*a11     a12 
      a12     2*a22]; 
 

 
 

Gradient  2* * 0Tg b c S    
f = [a1 a2     ]'; 
 
 

Solution    
1

*TS b c


   
s = - pinv(S) * f; 

Response _ 0 * * *T Tz start a b S S c S    
 

 Coordinate system is at the stationary point and model does 
not contain linear and interaction terms 

 

 

Interpretation of results of canonical analysis 

Canonical analysis reduces all non-degenerate two factor second order polynomial models.Thus the signs 
and magnitudes of the coefficients of the two quadratic terms reveal all the essential features of the 

response surface.The results (appendix-A6), anexcerpt of exhaustive test cases, in table4.1 testifies 

functioning of the program. 

Table 4.1: Shapes of 3D- surfaces based on signs and magnitudes 

                of Canonical regression coefficients 

      

+ +   2 21.00* 1.00 *z x y   
Parabolic bowl  
opening upwards 

a 

- -   2 21.00* 0.90 *z x y   
Parabolic b 

- -   2 21.0* 1.0 *z x y   
Flattened Parabolic  

opening downwards 

c 

- -   2 20.9* 0.02 *z x y   
Ridge d 

+ -   2 20.7* 1.00 *z x y   
Saddle region  e 

The knowledge base, Eigen value analysis and output along with m-files are given in appendix-6. 

Confidence intervals 

The uncertainty region of the response surface is calculated by the equation similar to that for a one factor 

least squares.  The only difference is that the design matrix X contains two columns corresponding to x, y 
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  
1

2 2 ' '* 1 0* * * 0rs s x x x x
  

  
 

 

Rosenbrock function 
It is one of the challenging functions in optimisation as a result of deep valley (Fig. 4.6, Fig 4.7) and many 

of gradientalgorithms fail.  The direct search methods including simplex procedure have been used.  The 

3D-surface for the function (Fig. 4.7) is with several optima but mostly looks like flat one with an 
inclination towards the diagonal of one of the factor axes.  

 

% 

%  xyz_rosenbrock.m   5/9/94 

% 

function  xyz_rosenbrock   

clean 

% 

%     xs = [1.05875 1.1848] 

%  
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rangexy = '[x,y] = meshgrid(-5:0.2:5,-5.:0.2:5); '; 

      eqn = 'z = 100*(-x.^2 + y).^2 + (one - x).^2 ;'; 

      om_xyz(rangexy, eqn)  

 

 

%   simplex/review 

%   range -25 to 25  

%   xs = [-0.548 0.251]    x0 = [-1 2]  

     range = '[x,y] = meshgrid(-25:1:25,-25.:1:25); ';  

     eqn = ' z = 100.* (x.^ 2 -y).^ 2 +(one-x).^2 ;'; 

     om_xyz(range, eqn)       

% 

% 

rangexy= '[x,y] = meshgrid(-4:0.2:4,-4.:0.2:4);';  

      eqn = 'z = -(100.* (x.^3 - y.^2) + (one-x).^ 2 );'; 

      om_xyz(rangexy, eqn) 

 

%  

%     xs = [1.56 3.17] 

 

range = '[x,y] = meshgrid(-2:0.2:5,-2.:0.2:6); ';  

      eqn= '  z = -[(x + 5 * y).^ 2 + ((x+y - 2.04*one ).^2).^(-1) + ((x + y -

one*2.19).^2).^(-1)]; '; 

      om_xyz(range, eqn) 

 

%      

% 

% 

range  ='[x,y] = meshgrid(-10:0.4:10,-10.:0.4:10); ';  

     eqn = 'z = -[one-(x - one *.9).^ 2 - (y - .8*one).^2] ;';  

     om_xyz(range, eqn)  

% 

%     simplex/review/  

 

range = '[x,y] = meshgrid(-5:0.2:5,-5.:0.2:5);';  

     eqn = 'z = (x.^2 + y -11.) + (x + y.^2-7) ;'; 

     om_xyz(range, eqn)  

% 

%     om_xyz.m  

% 

function om_xyz(range, eqn) 

      disp(range) 

      eval(range) 

      [r,c] = size(x); 

      one = ones(r,c); 

      disp(eqn) 

      eval(eqn) 

      xyz_plot(z,x,y) 

      next(0) 

 

 Polynomial function 

The third order and fourth order two variable polynomial profiles are incorporated in fig. 4.8 

 

Fig. 4.8: Matlab program and multi-dimensional graphics for third order and fourth order polynomials 

 % 

%     xyz_pol34.m  R S Rao 5/9/94 

% 
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clean 

 

nn = input(' Give   n < 1 to 8> : ');  

% 

% 

           lt = 1;inc=0.1; [x,y] = meshgrid(-lt: inc:lt ,-lt :inc:lt ); 

           disp('lt = 1 ,inc = 0.1, [x,y] = meshgrid(-lt :.05:lt ,-lt :.05:lt );') 

            par =[ 

%    x     y     x2    y2    x3    y3    x4    y4 #              

     0     0     0     0     1     0     0     0     1 

     0     0     0     0     0     1     0     0     2 

     0     0     0     0     0     0     1     0     3 

     0     0     0     0     0     0     0     1     4 

     0     0     0     0     1     1     0     0     5 

     0     0     0     0     0     0     1     1     6 

     0     0     0     0     0     0     1    -1     7 

     1     1     1     1     1     1     1     1     8 

     1    -1     1    -1     1    -1     1    -1     9 

        ] 

% 

% 

            Fn1 = ' z =  a(1) * x    + a(2) * y +   a(3) *x.^2 + a(4) * y.^2 + 

....'; 

            Fn2 = '      a(5) * x.^3 + a(6) * y.^3 + a(7)*x.^4 + a(8) * y.^4      

;'; 

            disp(Fn1), disp(Fn2) 

            a = par(nn,:) 

% 

            z =  a(1) * x + a(2) * y +        ... 

a(3)  *x.^2 + a(4) * y.^2 + .... 

a(5)  *x.^3 + a(6) * y.^3 +  .... 

                 a(7)  *x.^4 + a(8) * y.^4 ;  

% 

            xyz_plot(z,x,y)  
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Exponential function 

The exponential functions in two or multi-dimensional space are very important in error analysis, curve 
resolution, modelling by artificial neural networks and understanding the profiles of UV-VIS 

spectra/chromatograms. 

The response surface (Fig. 4. 9) of  

z = a1*exp (x) +a2* exp (y) 

is a widened bowl (lamp).  When either a1 or a2 is of negative sign the surface is twisted.  On the other 

hand when both a1 and a2 are negative the response surface is mostly a flat one with a twist at middle.  

The function  

z = - 0.1 * exp (x
2
 –y

2
) 

is exponential of quadratic in two dimensions and response surface is spectacular as it looks like a flat 
surface with a hole.  An in-depth study of multi-dimensional exponential functions is a thrust area of 

investigation even in twenty first century. 
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Sigmoid function  

Sigmoid, tanh, radial basis functions are extensively discussed with graphics output in our earlier papers 
on neural networks [68,69]. 

 

Trigonometric functions 
The number of optima in the response of this category of functions depend upon the range of x and y.  The 

response surface and contour diagram for Resp = sin (x)+sin (y) in the range 0 to pi (Fig. 4. 10) are similar 

to Resp = x
2
 +y

2
 as far as number of optima are concerned. With increase in range from 0-ᴨ to 0-2ᴨ two 

distinct optima with Resp = +2 and -2 appear.  The response vs.y  amply demonstrates this and the set of 
non-overlapping lines correspond to univariate experiments.  As range is further increased, multiple 

optima occur and it is what is usually observed in real life problems.  In fact after looking at the 

experimental contours, one tries to model the phenomena.  This is the inspiration behind hybrid models 
with polynomial terms and trigonometric/ exponential functions.Here, shape reproduction is prime goal 

and not mapping first principles of that disciplineinto mathematical frame. 

 

Fig. 4.10: Trigonometric functions 
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% 

%      xyz_tri.m 

% 

function th_tri(nn) 

     clean,n = 99; 

 

 

while n >0     

if nargin <1 

      nn = input('give n < 1 to 17> [if n=0, exit]: '); 

end 

if nn == 0, return,end 

% 

if nn ==1 

range = '[x,y] = meshgrid(0:0.1:1,0.:0.1:1);'; 

          st = 'z =  sin(x*pi) + sin(y*pi) ;'; 

end 

% 

if nn ==2 

range = '[x,y] = meshgrid(-1:0.1:1,-1.:0.1:1);'; 

          st = 'z =  sin(x*pi) + sin(y*pi) ;'; 

end 

%  

if nn == 3 

range = '[x,y] = meshgrid(0:0.1:2,0.:0.1:2);'; 

          st = 'z =  sin(x*pi) + sin(y*pi) ; '; 

end 

% 

if nn == 4 

range = '[x,y] = meshgrid(0:0.1:6,0.:0.1:6);'; 

          st = ' z =  sin(x*pi) + sin(y*pi) ;'; 

end 

% 

if nn == 6 

range = '[x,y] = meshgrid(-10:0.4:10,-10.:0.4:10);'; 

          st = ' z =  sin(x).^2 + sin(y).^2 ;'; 

end 

% 

if nn == 7 

range = '[x,y] = meshgrid(0:0.1:1,0.:0.1:1);'; 

          st = ' z =  cos(x*pi) + cos(y*pi) ;'; 

end 

% 

if nn == 8 

range = '[x,y] = meshgrid(0:0.1:2,0.:0.1:2);'; 

          st = ' z =  cos(x*pi) + cos(y*pi) ;'; 

end 

if nn == 9 

range = '[x,y] = meshgrid(0:0.1:6,0.:0.1:6);'; 

          st = 'z =  cos(x*pi) + cos(y*pi) ;'; 

end 

% 

if nn == 10  

range = '[x,y] = meshgrid(-1:0.04:1,-1.:0.04:1);'; 

            st = 'z = cos(3*pi*x)+0.4*cos(4*pi*y);'; 

end 

%  

if nn == 11 

range = '[x,y] = meshgrid(0:0.1:1,0.:0.1:1);'; 

          st = ' z =  tan(x*pi) + tan(y*pi) ;'; 

end 

% 

if nn == 12 
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range = '[x,y] = meshgrid(0:0.1:2,0.:0.1:2);'; 

          st = 'z =  tan(x*pi) + tan(y*pi) ;'; 

end 

% 

if nn == 13 

range = '[x,y] = meshgrid(0:0.1:6,0.:0.1:6);'; 

          st = ' z =  tan(x*pi) + tan(y*pi) ;'; 

end 

% 

if nn == 14 

range = '[x,y] = meshgrid(0:0.1:6,0.:0.1:6);'; 

          st = ' z =  tanh(x*pi) + tanh(y*pi) ;'; 

end 

% 

if nn == 13 

range = ' [x,y] = meshgrid(-1:0.01:1,-1.:0.01:1);'; 

          st = ' z =  cosh(x*pi) + cosh(y*pi) ;'; 

end 

% 

if nn == 15 

range = ' [x,y] = meshgrid(-5:0.01:5,-5.:0.01:5);'; 

          st = ' z =  sinh(x*pi) + sinh(y*pi) ;'; 

end 

% 

if nn == 16  

          range = '[x,y] = meshgrid(-pi/2+0.01:0.05:pi/2-0.01,-pi/2:0.05:pi/2);'; 

          st = ' z =  sec(x*pi) + sec(y*pi) ;'; 

end 

% 

if nn == 17  

           range = '[x,y] = meshgrid(-pi/2+0.01:0.05:pi/2-0.01,-pi/2:0.05:pi/2);'; 

           st = ' z =  cot(x*pi) + cot(y*pi) ;'; 

end 

%  

       disp(range),disp(st) 

       eval(range),eval(st)  

       xyz_plot(z,x,y,st) 

end% end while 

 

Combination of functions from different paradigms             

The combinations of deterministic, stochastic, fuzzy and chaotic domains result in combinatorial number 

of functions with interesting properties.  The Hamilton's geometric algebra is unique and has potential 
applications in interdisciplinary research. The response surfaces for some of the typical non-linear 

functions are given in fig. 4.11.  As visual appreciation beyond 3D is difficult and impossible beyond fifth 

dimension, multivariate mathematical modelling is used.  

 

 

Fig. 4.11:    Hybrid functions 

 

Sphere 

clean 

[x,y,z] = sphere; 

axis square 

subplot(222),surf(x,y,z)  

subplot(221),contour(x,y,z) 

 



R. Sambasiva Rao et al                       Journal of Applicable Chemistry, 2015, 4 (5): 1313-1428 

 

1372 

www. joac.info 

 

 

 

 

Concentric circles 
 

Disk with a hole 

 

Cylinder 

 
 

Basket 

 

Stack of discs 
 

 

Glass 
 

Multiple optima 

 

 
 

(Courtesy of Matlab) 
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(Courtesy of Mathematica) 

 

5. Unfolding (decomposition) of m
th

order tensorial Data into lower order   
A 3-way-tensor can be decomposed into 2way-matrices and PCA is applied. It has the limitation that the 
results vitiated as compared to multi-way PCA of unfolded tensor. The complete description and 

mathematical implications [113] will be published separately  

 

6. MethodBasein Chemometrics 
We introduced method bases in optimization, complex equilibria and chemical kinetics under the head 

data-, knowledge and method bases in chemical sciences [120-123]. The necessary conditions, algorithms 

in matrix algebra, failure conditions and remedial measures for factor analysis, one of popular dimension 
reduction techniquesare introduced inAppendix A4.The recent developments in methods, algorithms of 

PCA, PLSC, factor analysis and their applications in chemical sciences will be reviewed separately. 

 

Modeling 
It is a well-known fact that the complex physico-chemical processes cannot be modelled from the first 

principles.  As such many simplifying assumptions are made in developing models.  It is a misconception 

that models are useless simply because they cannot explain the observed phenomena very closely or fail in 
prediction.  Respecting the proposition that all models are wrong but some are Useful, the activity of 

modelling continues to get better insight into the physic-chemical processes. 

 The variation of response or its function with the magnitudes of influencing physico-chemical 
factors can be represented precisely using the models.  The classification of models is based on several 

heads like theoretical and empirical models depending upon the existence of physic chemical theory.  The 

latter may be soft and hard models based on the type of statistical techniques employed.  

Theoretical Models:  The variation of absorption of a complex with its concentration, change of log k 

with substituent parameters etc. are expressed by Beer-Lambert’s law and Hammett equation, respectively.  
These being linear, the slope and intercept of the regression lines bear chemical significance.  The slope of 

the Beer-Lambert’s law is extinction coefficient. 

Empirical Models:  It is well known that the primary data (response), percentage yield etc depends upon 

influential factors, like Concentration of chromogenic reagent, temperature and ambient conditions.  The 
parameters like equilibrium/rate constant, Kovot index and dielectric constant vary with physic-chemical 

factors like mole fraction, pH, ratio of ingredients etc.  In most of the cases, it is not possible to derive 

theoretical models for the variations from the first principles.  Therefore, the variation is explained using 
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empirical models only.  Here, the regression coefficients are useful only to reproduce the data reasonably 
but do not have any physic-chemical significance.Recently, Kowalski proposed hybrid models called 

chemnets. Here, the experimental data is fitted into theoretical models.  If the trends in the residuals 

indicate the inadequacy of the theoretical model or violation of some of the assumptions, then the residuals 
are fitted into an empirical model. The availability of empirical models in abundance will result in 

modification of existing theoretical models/cropping up of new ones. 

7. Software 

Kriging interpolation algorithm is one of the popular numerical methods used to develop 3D-response 

surfaces/contour diagrams to represent Resp=f(x, y) (chart 7.1).  MATLAB   and SURFER   are widely 

employed to develop 3D surfaces and contour maps from data or in a user-chosen equation. 

Chart 7.1: Method – base for 3D surfaces 
Kriging Bi-variable polynomial interpolation 
B-splines Blending function 
Cubic splines Tensor product interpolation 
Bi-cubic splines Moving least squares 
Finite Element method  

Neural network  

 

MATLAB:  It is a high tech computational and visualization software tool implementing data display in 

multi-dimensional tables, 2D-, 3D- surfaces, traditional algebraic, matrix, tensor formats, structures (like 
relational data bases), object oriented format and cells. MATLAB is now one of the coveted high level 

computational paradigms serving as a language, white box mode tool boxes and also black-box inbuilt 

functions. MATLAB recognizes whether the variable is a scalar/vector/matrix and performs 
algebraic/trigonometric/exponential/logarithmic operations following the rules of matrix algebra.  Further, 

extended rules are invoked in order deal with element-wise algebraic/Boolean manipulations rending the 

programming nearer to the human conception. 

Tensor algebra and display is only part of its scope. It has symbolic algebra toolbox and modules 
can be developed in OOP and also in relational DB. Thus, TensorLab is more apt as it handles scalar to m-

way tensors. Thus, I preferred TensorLab in order to bring algebraic manipulations as well as matrix, 

extended-matrix and tensorial operations with paper and pencil as well as using MATLAB software and 
TENSLAB, its evolved form. 

In chemometric computations involve procedures dependent on chemical process, statistical 

methods and mathematical algorithms.  During the development of number crunching and heuristic 
programs for complex equilibria, chemical kinetics and quantitation in different languages and packages – 

FORTRAN, BASIC, TURBOPROLOG, MATLAB and dBase III+, it was recognized that many modules 

can be viewed as objects. However, Object Orientated Programs (OOP) can be developed in any 

programming language.  Here, many modules are separately developed in OOP and tested as separate 

objects.  The concept of OOP is achieved due to built – in features of MATLAB. 

PCA (Principal component analysis) 

The linear/ non-linear regressions belong to hard-modeling category.The objective of PCA was to 

surmount the difficulty of analysing data with statistically correlated variables.  But, if the errors in x or y 
are high or if there are outliers, again the difficulty arises. If the errors are high, more number of PCs than 

actual number results.  This is intelligently used by taking into consideration of PCs explaining the 

variances up to a pre-fixed limit (say 99%, 95%, 90% .... in different fields and tasks).  But, if outliers are 

present, the PCA collapses and it paved way in proposing robust_PC analysis. A list of multi-variate 
analysis software is given in Chart 7.2. 

 

Chart 7.2: Typical multi-variate software web sites 

Free software  

Parallel factor analysis, N-way partial least-squares and other multi-way methods  http://www.models.kvl.dk/algorithms 
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Multivariate curve resolution  http://www.ub.es/gesq/mcr/mcr.htm 

Multivariate curve resolution  http://personal.ecu.edu/gemperlinep 

Several first-order and multi-way methods  www.chemometry.com 

Generalized rank annihilation and direct trilinear decomposition http://www.cpac.washington.edu 

 

Chart 7.2b: Commercial software  

Software Company Website   

First-order partial least-squares GRAMS IQ  Thermo Scientific www.thermoscientific.com 

First-order partial least-squares PLS Toolbox  Eigenvector.com www.eigenvector.com 

First-order partial least-squares PLS Toolbox  The MathWorks www.mathworks.com 

First-order and N-way partial least-squares, and multivariate 
curve resolution  

UNSCRAMBLER Camo www.camo.com 

First-order partial least-squares and multivariate curve 
resolution  

PIROUETTE Infometrix 
Software 

www.infometrix.com 

First-order partial least-squares EZINFO  Umetrics www.umetrics.com 

PARAFAC and other multi-way methods 3 Way Pack  The Three-mode Company http://three-
mode.leidenuiv.nl 

 

XYZTOB:A software package, XYZTOB (Three Dimensional Tool Box) in the form of a tool box is 

developed in MATLAB (Version 3.5f).  It runs on any IBM micro-computer environment.  XYZTOB is 

modular and easily upgradable, as source files are available to the user.  All computations are performed in 
matrix notation.   In the data mode with several x and y variables, classical univariate scatter diagrams with 

simple statistics like variance, covariance is given.  This is useful to choose the interaction terms, detect 

collinearity between explanatory variables and approximately to predict order of polynomial.  The object 

oriented representation of functions is used to display as well as to execute by MATLAB is developed.  
They are under rigorous testing to include in HOT_XYZ at undergraduate level and also to non-majors of 

tensorial computations.  
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I was a classical chemist, four decades back, performing experiments with off-the shelf pure chemical 

compounds (pharmaceutical-drugs (anti-tubercular, antihypertensive, anticancer), amino acids, hydrazides, 
hydrazones etc.)  using classical pH meters, spectrophotometers under ambient conditions of one 

atmosphere and below 50
0 
C in 10 to 100 dm

3
 volumes. The purpose was to arrive at chemically significant 

parameters (equilibrium constants, rate constants, extinction coefficients and so on) to probe into binding 
characteristics, rate of formation, solute-solvent interactions in aqueous and aquo-organic mixtures (of 

varying dielectric constant, coordinating behavior, solvating capacity) with a goal of as accurate as 

possible estimation of analytes, control equilibrium and rate of chemical interactions to advantage. With 
time and nature’s course, we plunged into writing in-house FORTRAN code for relieving the drudgery of 

number crunching in the initial stage. Subsequently, we started using the then state-of-art-software 
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developed by expert chemists. The saga took a new direction in developing expert systems, databases, 
pedagogical MATLAB modules for Chemometrics.   We had the opportunity of calculating high end 

computations with supercomputers (Italy) and started calculating electron density, ESP, quantum chemical 

derived chemically significant parameters for small (20 to 30 atoms) molecules in gas phasefollowed in 
aqueous and water miscible solvents.  The application of evolutionary algorithms to chemical problems 

including SXR, quantitation from multi-sensor data broadened the perspective of inter-/intra-/cross cutting-

edge disciplines.  At this juncture of exploding literature reports, one should spare a moment to arrive at 

unbiased futuristic trend of human endeavors in science, just not be plugged with blur vision of truth as 
false and false as truth. 

The project on complex equilibria did not receives funds.  The unsuccessful fund attraction did not 

hamper upward trend in research outcome. The application of chemometric methods in complex equilibria 
resulted in many publications in international journals. The suggestion of applying Chemometrics in 

chromatography was not considered with a plea that instrument vendor supplies software.   The use of 

PLSR, PCR and NNs in NIR spectrophotometer was ignored by a national instrument manufacturer saying 
that the program can be directly given to them without exhaustivetesting on many synthetic/real life 

samples and simulation studies. The intelligent database for chemometric technique with KB was not 

understood by their workgroup. The application of NNs in nuclear based research was thought out-of-

focus of the program although extensive literature was available for nature inspired algorithms in reactor 
research. 

In 1992, extensive simulations of proton-ligand complexes (of overlapping and non-overlapping) with the 

effect of random noise of Gaussian and other distributions were carried out. This was in continuation of 
our studies on effects of pessimistic errors in concentrations of metal, ligand, acid, alkali etc. on betas of 

MLlHh type complexes. Our proposal of safe area diagrams in our PL studies and SITECON software were 

to caution the best use of approximate methods before using the then advanced algorithms like 

MARQUARDT, Eigen analysis etc. Our recent interest in applying nature inspired algorithms to the 
complex equilibria, SXR, kinetics and MVC are in the back-drop of the difficulties of optimization, 

solution methods practiced in the last century.   
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Appendix A2:  

Multichannel, hyphenated instruments of different orders 

 

The classification of instruments based on tensorial data output per one sample of analysis forms a 

common base data structures in terms of dimensions,  decomposability in to lower order ones and choice 
of multivariate algorithms for data processing for tasks viz.  Curveresolution, calibration, clustering, 

discrimination, classification etc.  Broadly, single sensor instruments of yesteryears have given birth to 

multi-sensor, hyphenated and higher order ones.  The iterative improvements in electronics of instruments, 
data processing algorithms and necessity in inter disciplinary research fields changed the facet of 

destructive/non-destructive chemical analysis.  It is no more confined to small quality control aloof 

laboratories, but plays a key role in all phases of life (cradle to post disposal environmental effects) cycle 

of each and every product in small as well as mega industrial scale. 
 

Order instruments 

The tensorial order of data per sample is called order of instrument. Chart 3.zz exemplifies a preliminary 
view of data structure of popular commercial instruments in vogue for chemometric research. 
 

Order_of_ instrument 
Data tensor per 

Advantage.chemometric Instance  
Sample # Samples 

     

Zeroth 0 1 0 pH meter 

First 1 2 1 DAD spectrophotometer 

Second 2 3 2 HPLC-DAD 

Third 3 4 3 Ex-EM-Fl-Time decay 

Fourth 4 5 4  

mth order   Infinite   

 

Zero order instruments (OI: 1): The single sensor instruments like pH meter, dissolved oxygen meter  

produce a single datum (zero-order tensor) per sample. 

 

OI : 0 Data 
1-way  
Zero order tensor 

  

Instrument Response Probe 
 

 Yesteryears 

 Under utilized 

 Now 

 First order instrument used as default 

 

Conductometer Conductance Pair of Pt plates 

pH meter pH Glass electrode 

Ion-selecto meter pX X : Cu, F- , CN- Selectode 

Piezo-electric crystal Volatage Crystal 

 

First order instruments (OI: 1) :   UV-Vis spectrophotometer, chromatographs, NMR instruments  measure 

response at a series of so called channel values resulting in a vector of responses for each sample.   A 

vector, first order tensor or 1-way data is produced per sample, the order of these instruments is one. The 
data is thus a matrix of dimensions nchannel x 2. The chemometricians found a new outcome of detecting 

an unknown interferent in the sample and named it as first order advantage.However, the limitation is first 

order instruments cannot quantify the interferents. 
 

 

OI : 1 Data  
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Matrix -> string mat2str  str = mat2str(A, n, 'class') 
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2-way  
First order tensor 

Instrument X-axis Response 

UV-Vis Wave-length Absorbance 

IR Wave number  % 
transmittance 

LC Elution time Detector 

response 
viz. absorance 

NMR Chemical shift Intensity 

MS m/e  Intensity 

 

NC. Concentration  in test sample 
Calibration set is necessary for first order instrument 

+ Detection of interferent  compounds 

 Analysis of interferents which are not present in  

calibration set is not possible 

 Remedy : II order instruments 

 
 

GC TOFMS 

GC 

NMR 

1H, 13C, 
15N, 31P, 
18O, 19F 

HPLC Fluorescence 

Tetra Hertz 
spectroscopy 

IR 

NIR 
MIR 
FIR 

 

 

Two-component chromatograph 

 

 

Challenges in chromatography 

 

  Baseline 

  Background contributions  

  Retention time shifts  

  Peak shape changes  

  Coelution or  

  peak overlap (overlapped and 
embedded peaks). 

 

(a) baseline drift, (b) low S/N ratio, (c) RT shift, (d) coleution,  (e) 

combination of all chromatographic challenges 

 

 

Hyphenated instruments:  Herfschfeld reported around sixty viable combinationsof instruments 

commercially available in 1980.  The viable list is long, but now the focus is around attaining lower limits 
of determination with high accuracy/ reproducibility from instrument point of view.The combination of pH 

meter, conductometer, DO etc. are routine and they produce a pool of scalar values, but obviously do not 

have any first order advantage.  Further, combination of UV spectrum and IR spectrum also only two 
matrices of different sizes and can be stored in cell structure. Each profile has its first order advantage 

alone, but the combination does not produce second order advantage.  
 

Hyphenated (Two) instruments 

 

GC-MS 
2D-NMR 
J-coupling NMR 

LC-MS  

LC-DAD LC-LC 

LC-NMR LC-CE 

2D-LC-Resp CE-CE 
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HPLC-DAD LC-CG 

LV-FTIR GC-GC 

 

 

Hyphenated (Three) instruments 

LCxLC-DAD GCxGC-FID 

GC×GC-MS GCxGC-ECD 

LCxLC-MS LCxLC-UV 

GC×GC-TOFMS  

LCxLC-TOFMS  

  
 

 
 

 

Higher(>1) order instruments 

Chemical analysis entered a new era with higher (especially second and third) order instruments.  Not only 

S/N ratio dramatically improved, but also estimation of multiple analytes in presence of uncalibrated 
interferents and matrices.What was not possible with classical destructive separation techniques, has 

become a child play in different dimensions of hyphenated instruments. 

 
Second order instruments (OI: 2):   If HPLC is hyphenated with DAD spectrophotometer, first order full 

spectrum is obtained at each elution time. The output is a matrix for a sample and it is an example of 

second order instrument. 
 

Second order Instruments X  Data tensor per  

y(Response) Sample #Sample 

 

advantage 

Ex-Em-Fluorescence Excitation-wave  
length 

Emission-wave  
length 

Absorbance 3 4 Second 

       

 

OI=2  #samples with Multi-channel  
DO = IO +NVar = 2+1 =3 

 
 

Matrix  
Size: [RT, #wavelengths] 

 

 
Set of matrices or Tensor of third order 
Size: [RT, #wavelengths, #samples] 

   

 
Matrix 
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Size: [RT(1), RT(1)] 

 
Set of matrices or Tensor of third order 
Size: [RT(1), RT(1), #samples] 
 

 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 

LC-MS PARAFAC model 

 

 

 

 
 

Excitation-emission-fluorescence data matrix  
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Courtesy of Ref: Fxyz-22 

 

 

 

 
Assumption : If  Resp = LinFn(C,S) 

 
 

 

 

 
 

 
 

 

Third order instruments (OI: 3)   
 

Third order Instruments X  Data tensor per  

y(Response) Sample #Sample 

 

advantage 

Ex-Em- Time delay 
Fluorescence 
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Emission-
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Phosphorescence EEM- 
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length length 

 

OI=3  #samples with Multi-channel 
DO = IO +NVar = 3+1 =4 

 
Tensor of third order 
Size: [RT(1), RT(1), #wavelengths #] 
 

  

 
Tensor of Fourth order 
Size: [RT(1), RT(1), #wavelengths #samples] 
 

 
Assumption : If  Resp = LinFn(C,S) 

 
 

 

  

 

 

Fourth order instruments (OI: 4)   
 

Fourth order Instruments X  Data tensor per 

y(Response) Sample #Sample 

 

Second-order liquid 
chromatographic data with UV–
vis fluorescence 
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Elution-1 

Elution-
2 

UV–
vis- 

Fluorescence Absorbance 5 6 

        

        

 

Concatenation of instrumental data 
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The concatenation  of instrumental data for  a number of samples (from different sites, time period, 
manufacturers),  different experimental influential factors (concentration, compounds, pH)  or physico-

chemical variables (Temp., ionic strength, dielectric constant)  results in multi-way tensorial data.  
 

Order of instruments Concatenation Data   

Zero Zero Vertical   Horizontal    

pH meter Conductometer  [1; 
 2] 

 [1,2]   No 
advantage 

First First Vertical   horizontal    

DAT IR [DAD; 

IR] 

 [DAD, IR] *Matrix not 

possible ,as 
vector sizes 
are different 
Cell 
structure 

 No 

advantage 

 

Data fusion:  Borràs et al. [2] reviewedthe advantages of populardata fusion strategies that are in practice 

in authentication, calibration, quality assessment and adulteration probing of food and beverages. 

 Fusion of Data, information, parameters and knowledge 

 

  Hyphenated 

 instruments 

Hyp.Inst   

      

 HPLC-DAD EEM 
1
H-NMR   

      

Primary 

data 

 

 
 

Data Fusion 

EDA   

CDA 

 

Modeling 

Validation 

Prediction 

 

Ensemble 

Forest  

 

     

     

Models 

 
  

 

 

   

 

     

     

Parameters  Parameter fusion 

     

  Information Information fusion 

     

     

     

Knowledge  Knowledge Fusion 

      

      



R. Sambasiva Rao et al                       Journal of Applicable Chemistry, 2015, 4 (5): 1313-1428 

 

1394 

www. joac.info 

 

  

 

  

 

Experimental influencing Variables 
 

Causative/influencing/independent  Experimental variables 

Spectrophotometry pH, Reaction time, concentration of ingredients 

Flow injection analysis Solvent flow rate, length, diameter of tube 

Chromatography Columns, Oven temperature, carrier gas concentration 

  

Equilibrium constant/  
Rate constant 

Concentration ofmetal, ligand, mineral acid,  
co-solvents, micelle, concentration, Temperature 

 Discipline wise 
log K  
log k 

Temperature, ionic strength, dielectric constant, 
 hydro phobicity, molecular  descriptors 

Kovat index 
Log Capacity factor 

Molecular refractivity, dipole moment,  
hydrogen bond capacity, basicity of solute,  

molecular descriptors 

Environment Sites, Compound 

 

 

OI  
 

Primary. 
Inst.Data 

 m-way if Expt.variables 

    

0 1 if A 2-way if A1 3-way if A2 

1 2 if A 3way if A1 4-way if A2 

2 3 if A 4way if A1 5-way if A2 

3 4 if A 5way if A1 6-way if A2 

4 5if A 6way if A1 7-way if A2 

    
 

A if different samples  

A1 
if 

different samples  & 
    [one] Exp_var 

[pH] 

A2 
if 

different samples  & 
    [Two] Exp_var 

[pH; dielectric 
constant ] 

A3 
if 

different samples  & 

    [Three] Exp_var 

[pH; dielectric 
constant;  ionic 
strength ] 

 

 
 

m
th

 order tensorial Data generation 

Scalar: [Tensor0:  data(1,1,1), or  zero-way] data 
Physico-chemical-biological constants 

The gravitational constant,  Avogadro number, Plank's constant, atomic number of a 

chemical element or Boltzmann constant, is  a single real numerical value; may be 
integer or floating point number. Each value is unique and they are examples of 

scalars. In the tensorial notation a scalar is a zero order tensor.  In data processing 

terminology of applied sciences a scalar is a zero-way data.  
 
Development of higher order tensors from X and/or Y 

If Sizes of column vectors are same size 

Then Folding (horizontal fusion) into a 
matrix or arrays 

  

Scalar 

 

 1.1  
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If Sizes of column vectors are of 
different sizes 

Then No folding     & 

 Stored in a cell 

  

If Data types are of different  

Then structure 

  

 
 

Development of higher order tensors from X and/or Y 

Scalars --> Vector 

 

 1.1  

+ 
 

 1.2  

+ 
 

 1.3  

...  = 

 

 1.1 1.2 1.3  

   

1.1

1.1 1.2 1.3 2.1

3.1

T

 
 
 
  

 

 
 

 

 

1-way tensor: 

Vector: [row: Tensor1:   data (:, 1,1) or col:Tensor1: data(1,:,1)] 
 

% 
% vecdev.m 
% Development of vectors from scalars  
% i.e. first order tensor from zero 
% order tensor 
 
clean 
 a = 1,b=2,c=3 
vecrow = [a b c] 

veccol= [a;b;c;] 
 
 pause 
a(1) = 1; 
 a(2) = 2; 
 a(3) = 3; 
 a(1)   
 a(2)   

 a(3)   
vecrow = [a(1) a(2) a(3)] 
veccol= [a(1); a(2); a(3)] 
 pause 
fori = 1:3 
     a(i,1) = i; 
end 
 a(1)   

a = 
     1 
b = 
     2 
c = 
     3 
vecrow = 
     1     2     3 
veccol = 

     1 
     2 
     3 
 
ans = 
     1 
ans = 
     2 

ans = 
     3 
vecrow = 
     1     2     3 
veccol = 
     1 
     2 
     3 
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 a(2)   
 a(3)   
vecrow = [a(1) a(2) a(3)] 
veccol= [a(1); a(2); a(3)] 

 

 
ans = 
     1 
ans = 

     2 
ans = 
     3 
vecrow = 
     1     2     3 
veccol = 
     1 
     2 

     3 

 

2-way tensor 

 

The variation of the response (dependent variable) as a function of 

only one explanatory/causative (independent) variable is described by 

a conventional two dimensional figure.  Here the two basis vectors 
are orthogonal.  In the case of a function with several variables, 

experiments are performed wherein one variables, experiments are 

performed wherein one variable is varied keeping all the others at 
fixed (optimum or non-optimum) values.  These are called one 

variable at a time (OVAT) experiments. 

If IR spectrum & DAD spectrum 

Then Matrices of different sizes& 

 No 3-way structure & 
Cell structure 
[At each wave number of IR, no 
possibility for a UV spectrum] 

  

If HPLC & DAD spectrum 

Then 2way- instrumental data 
[Explanation: At each elution time, a 
DAD spectrum is available] 

 

  

If HPLC & DAD spectrum & 
Number of samples (ns) 

Then k- number of 2way-data structure & 
fold into 3-way data structure 

[Explanation:  horizontal or vertical 
fusion is not more informative] 

  

 

 Colum Vectors --> 
matrix 

 

KB. Zz:  
If Sizes of column vectors are 

same size 
Then Folding (horizontal fusion) into 

a matrix or arrays 
  
If Sizes of column vectors are of 

different sizes 
Then No folding     & 
 Stored in a cell 
  
If Data types are of different  

Then Structure or cell 
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1.1

2.1

 
 
 

 

 
+  

1.2

2.2

 
 
 

 

 
+ 

 

 

1.3

2.3

 
 
 

 

 
...  = 

 

  

Row concatenation (fusion)    

 

1.1 1.2 1.3

2.1 2.2 2.3

 
 
 

 

 

 Transpose 

 

1.1 1.2

2.1 2.2

3.1 3.2

 
 
 
  

 

 

 
 
 
 

  
Colum 
concatenation 

Transpose 
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1.1

2.1

3.1

4.1

5.1

6.1

 
 
 
 
 
 
 
 
 

  

 

 

 1.1 1.2 1.3 1.4 1.5 1.6  

 

Row Vectors --> matrix 
 
 

      Column  concatenation   

 

 1.1 1.2  

+ 

 

 2.1 2.2  

+ 

 

 3.1 3.2  

...  
= 

 

1.1 1.2

2.1 2.2

3.1 3.2

 
 
 
  

 

Row concatenation (fusion) 

 

 1.1 1.2 1.3 1.4 1.5 1.6  

Transpose  Transpose 
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1.1

2.1

3.1

4.1

5.1

6.1

 
 
 
 
 
 
 
 
 

 

 

 

1.1 1.2

2.1 2.2

3.1 3.2

 
 
 
  

 

 

Examples 

 

y = fnLin(x;par)       Resp *one x par Eqn. z.xx 

 x y 

Univariate calibration Concentration of analyte Absorbance at landamax 

Vant Hoff equation Temperature (oK) log(rate constant) 
log(equilibrium constant)  

 

 X (:,2) [x1,x2] 

 

 x1 x2 

Two explanatory variables   

 Temperature Dielectric constant 

 Ionic strength Dielectric constant 

 

Y (:,2) [y1, y2] 

Two responses y1 y2 

 Reaction time for maximum rate Maximum yield 

 

3-way tensor: 

If Ex-Em-TimeDelay fluorescence 

Then 3-way instrumental data 

  

If Ex-Em-TimeDelay fluorescence & 
Number of samples (ns) 

Then 4-way data 

  

 

Matrices --> 3-way tensor 
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1.1.1 1.2.1 1.3.1

2.1.1 2.2.1 2.3.1

3.1.1 3.2.1 3.3.1

 
 
 
  

 

+ 
 

1.1.2 1.2.2 1.3.2

2.1.2 2.2.2 2.3.2

3.1.2 3.2.2 3.3.2

 
 
 
  

 

+ 
 

1.1.3 1.2.3 1.3.3

2.1.3 2.2.3 2.3.3

3.1.3 3.2.3 3.3.3

 
 
 
  

 

 

 Vertical cancatenation 

3-way tensor 
 

 
 

   

 

 
Horizontalcancatenation 
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% 
% threeway.m        R Naga satish (09/14/2013  03:25 AM; 
%                                  05/19/2001  08:38 PM) 

%      HOT(Hands on tutorial) version   
%      not optimum code, No_ knowledge_ base 
 
%  Housekeeping 
clean 
cla 
   grid off, box off 
 

 
  %% display of elements of matrix  
%    Layer 1  
 
   subplot(221),axis([0 1 0 1]);,  
    text(0.05,0.46,  '111  121   131  ') , 
    text(0.05,0.38, '211  221   231  ', 'color','b'); 
    text(0.05,0.3,  '311  321   331  ','color','r'); 

    hold on 
    plot([0.03 0.03 0.25   0.25 0.03],[0.25 0.51 0.51 0.25 0.25] ,'k-') 
    pause,  
 
%    Layer 2     
     st4 = '112  122   132'; 
    st5 = '212  222   232  '; 
    st6 = '312  322   332  '; 

   subplot(222),axis([0 1 0 1]);,  
    text(0.16,0.66,st4); 
    text(0.16,0.58,st5,'color','b') 
    text(0.16,0.5,st6,'color','r'); 
    hold on 
    plot([0.14 0.14 0.4 0.4 0.18],[0.51 0.71 0.71 0.45 0.45],'b-') 
    pause,  
 

%    Layer 3  
    st7 = '113  123   133'; 
    st8 = '213  223   233  '; 
    st9 = '313  323   333  '; 
    subplot(223),axis([0 1 0 1]); 
    text(0.27,0.86,st7) 
    text(0.27,0.78,st8,'color','b') 
    text(0.27,0.7,st9,'color','r') 
    hold on 

     plot([0.25 0.25 0.5 0.5 0.29],[0.71 0.91 0.91 0.65 0.65],'m-') 
    pause 
                                                                   %% 
%%  
% Drawing boxes 
   subplot(224),  axis([0 1 0 1]);hold on, 
   plot([0.03 0.25],[0.51 0.91],'k--'),pause 
   plot([0.3 0.5],[0.51 0.91],'m--'),pause 

   plot([0.3 0.5],[0.25 0.65],'b--'),pause 
 
% Housekeeping 
   clean 
cla 
   grid off, box off 
   axis([0 1 0 1]); 
 

  %% display of elements of matrix  
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%    Layer 1  
   hold on 
    text(0.05,0.46,  '111  121   131  ') , 
    text(0.05,0.38, '211  221   231  ', 'color','b'); 

    text(0.05,0.3,  '311  321   331  ','color','r'); 
pause,plot([0.03 0.03 0.3   0.3 0.03],[0.25 0.51 0.51 0.25 0.25] ,'k-') 
 
%    Layer 2     
    st4 = '112  122   132'; 
    st5 = '212  222   232  '; 
    st6 = '312  322   332  '; 
pause,text(0.16,0.66,st4); 

    text(0.16,0.58,st5,'color','b') 
    text(0.16,0.5,st6,'color','r'); 
    pause, plot([0.14 0.14 0.4 0.4 0.18],[0.51 0.71 0.71 0.45 0.45],'b-') 
 
%    Layer 3  
    st7 = '113  123   133'; 
    st8 = '213  223   233  '; 
    st9 = '313  323   333  '; 

   pause, text(0.27,0.86,st7) 
    text(0.27,0.78,st8,'color','b') 
    text(0.27,0.7,st9,'color','r') 
pause,plot([0.25 0.25 0.5 0.5 0.29],[0.71 0.91 0.91 0.65 0.65],'m-') 
                                   %% 
% Connecting three matrices into 3-way-tube   
 
  pause, plot([0.03 0.25],[0.51 0.91],'k--') 

  pause, plot([0.3 0.5],[0.51 0.91],'m--') 
  pause, plot([0.3 0.5],[0.25 0.65],'b--') 
      axis off 
% plot([0.03 0.25],[0.51 0.91],'k--') 
% pause, plot([0.25 0.45],[0.51 0.91],'m--') 
 
% pause, plot([0.25 0.45],[0.25 0.65],'b--')                                                                      
 

    axis off 
 
                                                %%   
% Interactive position setting of titles of layers 
break 
gtext('Layer I') 
gtext('Layer II') 
gtext('Layer III'), 
gtext('Rows'),gtext('Colums'),gtext('Tube') 

         %%  
   hold off 
 

 

X = tensor(A,SIZ)  
 

creates a tensor from the multidimensional 
array A. The SIZ argument specifies the desired shape 
of A. 

Ex.: 
Z = tensor(rand(a*b*c,1),[a b c]) 
Z is a tensor of size 3 x 2 x 2 
  

Z(:,:,1) =  
     0.8173    0.3998 
     0.8687    0.2599 
     0.0844    0.8001 
 Z(:,:,2) =  
     0.4314    0.2638 
     0.9106    0.1455 
     0.1818    0.1361 
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 X = tensor(rand(3,4,2)) X is a tensor of size 3 x 4 x 2 
 X(:,:,1) =  
     0.8147    0.9134    0.2785    0.9649 
     0.9058    0.6324    0.5469    0.1576 
     0.1270    0.0975    0.9575    0.9706 
 X(:,:,2) =  
     0.9572    0.1419    0.7922    0.0357 

     0.4854    0.4218    0.9595    0.8491 
     0.8003    0.9157    0.6557    0.9340 

 n = 4; 
Y = tensor(rand(n,1),n) 
 

Y is a tensor of size 4 
 Y(:) =  
     0.0318 
     0.2769 
     0.0462 
     0.0971 

 row=12; w1= 2;w2=3;w3=2;  
Z = tensor(rand(row,1),[w1 w2 
w3]) 

Z is a tensor of size 2 x 3 x 2 
 Z(:,:,1) =  
     0.8235    0.3171    0.0344 
     0.6948    0.9502    0.4387 
 Z(:,:,2) =  
     0.3816    0.7952    0.4898 
     0.7655    0.1869    0.4456 

   

 

Four-way data are created by joining the set of third-order data arrays for the calibration samples and for 

each of the analyzed test samples. Application of the PARAFAC model to the latter four-way data arrays 
requires fitting the following expression: 

 

3-way tensor--> 4way tensors 

3-way tensor 
 

 

 

3-way tensor 

 

 

3-way tensor 
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a(:,:,1,1) = 
     4     5     6 
     5     6     7 
     6     7     8 

     7     8     9 
a(:,:,2,1) = 

     5     6     7 
     6     7     8 
     7     8     9 
     8     9    10 

a(:,:,1,2) = 
     5     6     7 

     6     7     8 
     7     8     9 
     8     9    10 

a(:,:,2,2) = 
     6     7     8 
     7     8     9 
     8     9    10 
     9    10    11 

 

4-way tensors --> 5way tensors 

 

+ 

 

+ 

 

 
 

 
a(:,:,1,1,1) = 
     5     6     7 
     6     7     8 

     7     8     9 
     8     9    10 
a(:,:,2,1,1) = 
     6     7     8 
     7     8     9 
     8     9    10 
     9    10    11 
a(:,:,1,2,1) = 

     6     7     8 
     7     8     9 
     8     9    10 
     9    10    11 
 

a(:,:,2,2,1) = 
     7     8     9 
     8     9    10 
     9    10    11 
    10    11    12 
a(:,:,1,1,2) = 
     6     7     8 
     7     8     9 

     8     9    10 
     9    10    11 
a(:,:,2,1,2) = 
     7     8     9 
     8     9    10 
     9    10    11 
    10    11    12 
 

a(:,:,1,2,2) = 
     7     8     9 
     8     9    10 
     9    10    11 
    10    11    12 

a(:,:,2,2,2) = 
     8     9    10 
     9    10    11 
    10    11    12 
    11    12    13 
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a(1,1,1) = 1.1.1 
a(1,1,2) = 1.1.2 
a(1,2,1) = 1.2.1 
a(1,2,2) = 1.2.2 

a(1,3,1) = 1.3.1 
a(1,3,2) = 1.3.2 
 
 
 

a(2,1,1) = 2.1.1 
a(2,1,2) = 2.1.2 
a(2,2,1) = 2.2.1 

a(2,2,2) = 2.2.2 
a(2,3,1) = 2.3.1 
a(2,3,2) = 2.3.2 
 

a(3,1,1) = 3.1.1 
a(3,1,2) = 3.1.2 
a(3,2,1) = 3.2.1 
a(3,2,2) = 3.2.2 
a(3,3,1) = 3.3.1 
a(3,3,2) = 3.3.2 
 

 

a(4,1,1) = 4.1.1 
a(4,1,2) = 4.1.2 
a(4,2,1) = 4.2.1 
a(4,2,2) = 4.2.2 
a(4,3,1) = 4.3.1 
a(4,3,2) = 4.3.2 

 

 

 m-way tensor       

 Variables 

NV 

--> 
1 2 3 4 5 

OI=0 

 

 

 

 

 

 

 

 

 

 

m-

way 

Data 

OI+N

V 

1 2 3 4 5 

 

NV--

> 

1 2 3 4 5 

OI=1 

 

 

 

 

 

  

OI+N

V-1  

1-way 2-way 3-way 4-way 5-way 
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NV--> 1 2 3 4 5 

OI=2 

 
 

 

  

 

5
-

wa

y 

OI+N

V-1 
2-way 3-way 4-way 5-way 

6-

wa

y 

 

NV--> 1 2 3 4 5 

OI=3 

 

 

  

5
-

wa

y 

6-

wa

y 

OI+NV

-1 

3-way 4-way 5-way 6-

wa

y 

7-

wa

y   

 

NV--> 1 2  3 4 5 

OI=4 

 

  

6 7 8 

OI+NV-1 4-way 5-way 6-way 7-way   8-way 

 
 

NV--> 1 2 3 4 5 

OI=5 

  

6-way 7-way 8-way   9-way   

OI+NV-1 5-way 6-way 7-way 8-way   9-way   

 

      

NV--> 1 2 3 4 5 

OI=6 6 7 8 9-way 10way 

OI+NV 6 7 8 9-way 10way 
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Powerful information extraction from instruments + experimental variables + chemometric methods 

Data Higher order instrumental data + Number of experimental 
 variables 

+ Chemometric methods 

      

 GC-GC-MS  N- samples  Multivariate curve resolution methods 

      

     Multivariate calibration methods 

 LC-LC-MS  N- samples   

      

m-Way 3  1 4 Second order advantage 
Third order advantage 

 

Appendix A3:  

3D-surfaces and 2D-contours of 3-way data-tensors from hyphenated instruments 

 
              Chromatographic-wavelength landscape 

 

Courtesy of Ref: 44 

Non-trilinear background 

 

Courtesy of Ref: 43 

HPLC–DAD for five selected pharmaceuticals30.0 ng mL−1
 

 

Courtesy of Ref: 42 
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Protein prediction with NIR 

 

Courtesy of Ref: 41 

Ion chromatograms of urine samples 

black line: first day; blue line: second day; red line: third day 

 

Courtesy of Ref: 47 

 

 
3D- hydrodynamic chromatogram 

gold nanoparticles 

 

Courtesy of Ref: 18 

GC × GC-TOFMS  tensor for North Sea oil 

MCR-ALS 

 

Courtesy of Ref: 19 

 
Variable importance (influence) in projection 

 

Courtesy of Ref: 44 
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Courtesy of Ref: 46 

 

Courtesy of Ref: 46 

 
PLS-DA model for fused dataset 

Scores plot 

 

Courtesy of Ref 44 

weights plot 

 

Courtesy of Ref 44 
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Serum 

 

Yeast supernatant 

 

 
Loadings of the first (samples) mode of the PARAFAC model for  EEM dataset 

(a) [water percentage in daily solution, pH] (b)[water percentage in daily solution, flowrate of loading step] 

(c) [elution volume, pH] (d) [pH, flowrate of loading step] 
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 CV error surfaces for (a) KPLS, (b) LW-PLS, (c) SLT-PLS and (d) PLS-SLT 

 

 

 

Appendix A4: 

m-way Models 
 

Models for m-way (1-way-, 2-way, 3way- and 4-way)datamodeling 
The preliminary step is to look at the scatter diagrams in 1-D, 2D- and 3-dimensions (appendix A5).  The 

next leap is exploratory data analysis using ANOVA, linear correlation and (multi-) linear cause-effect 

models.  In case of multiple X- and/or Y- tensors both unsupervised and super-vised model strategies are 

employed.  Here is the jump to probe into appropriate set of model paradigms in data-space, transformed- 
(FT), orthogonalized, projected spaces and/or filtering (Kalman) methods to land on near appropriate cost-

effective models for the task on hand. This it point, where a decision to probe into CPU- and expert-time 

intensive exhaustive iterative cycle of modeling/simulation and data collection again with ED and so on.   
The subtle goals in mathematical parlance are classification/discrimination, minimum of number 

of factors, curve resolution, calibration, prediction etc.  The curve resolution consists of arriving at 

spectra/chromatogram/time evolution of pure compounds or component (with large number of 
compounds).  The multi-component calibration in presence of un-calibrated interferents/matrices is 

achieved through second order advantage of hyphenated instrumental data. 
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Discipline Task Methods 

   

Environment Pollution concentration = 

fn([Var]) 

Scatter profiles 

Kinetics Evolution, extent of reaction 

product conc. = fn(.) 

Scatter profiles 

Detection of number of clusters of 

species/compounds/routes  

Response = fn(.) m-way clustering  

   

Multivariate Calibration in presence of 

inference's, background, masking agents, 

matrices 

 m-way calibration methods 

   

Complex equilibria PL or ML stability constant  

 

Calibration 
Complicating 
factors 

- Single 
analyte 

- Multiple 

analytes 
 

Chemical system 

- Overlap of 

response 
profiles 

- Interferents 

- Matrices 

 
Instrument 

- Noise 

- Weak signal 

- Drift 
 

Simulation -
Complex equilibria 

kinetics  

Effect of errors in 
instrument readings 
Ingredient 

concentrations  

Log betas 

% species 

Max error in 

y 

Safe area 

limits 

 

   

Ingredient conc % species 

(major/minor) 

 

 

 
 

Mathematical tasks 
Sub_goals 

Primary_goals 
Mathematical 

- Curve resolution 

- Clustering 

- Classification 

- Discrimination 

- Pattern recognition 

- Calibration (cause effect 

Model) 

 Curve fitting 

 Model 

 Mathematical 

 Physico-chemical  
 
 
 

 Understanding 
 Control 
 Prediction 
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Calibration  Billinear 

Non-bilinear 

 

Inverse calibration    

    

Factor analysis 2-way Varimax rotation,  

Target factor, Evolving_FA, RAFA, 

 

   

3-way PARAFAC  

    

Orthogonalization 2-way PCA,PLS  

Elimination of collinearity 3-way PCA,PLS Set of 2-way matrices 

2-way PCA,PLS 

    

 4-way PARAFAC Quadrilinear 

 

Typical dimension reduction techniques Input:Data Tensor (Xtensor or Ytensor) 

 

Abbreviation $$$Factor Analysis  

(FA) 

   

Lin_FA Linear 

FA 

NL_FA Non-linear 

AFA Abstract 

Varimax_FA Rotation 

TFA Target 

EFA Evolving 

RAFA Rank 

annihilation 

PARAFAC Parallel 

 

 
 

PCA PLSC 

  

PC_X PLSC_XY 

PC_Y PLSC_YX 

PC_XY  
 

Principal component 

Analysis  (PCA) 

 

  

Linear 

PCA 
Non-linear 

 

Robust 

 

 

Eigen vector (EV) 

 

  

 Row wise 

EV  Column wise  

 

 

Singular value  

decomposition 

(SVD) 
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Principal component 

Analysis  (PCA) 

 

  

Linear 

PCA 
Non-linear 

 

Robust 

Recursive hierarchical adaptive PCA 

(RecHier.Adap.PCA) algorithm  

 

S. Rännar, J.F. MacGregor, S. Wold,   

Chemom. Intell. Lab. Syst. 41 (1) (1998) 73–

81. Adaptive batch monitoring using 

hierarchical 

PCA 

  

  Chemical 

Rank 

 

Rank Instrument  

1 
UV-Vis 

Rank-1 
analyte 

1 to 
5 

NMR 
Medium 
rank 

>5 
MS-MS 

High 
rank 

   

   

 Residual 
nonbilinear 

 

 

   

Linear  Bi-linear  

 Tri-linear 

 Quadru-linear 

NL Non-bilinear 

  

Residual Residual 
bilinear 

 Residual 

nonbilinear 

 

 Just-in time learning  

 

 

Partial least squares analysis (PLSA) 
Input: Both X and y data  

 

 Linear and non-linear PLSA 

 Hot hierarchically ordered taxonomic  

Hot_PLSA 

 Employs hierarchical structure  

 Models linear or non-linear  subtle details,  

 Uses extra information 

 

Translation of a task in a discipline into mathematical parlance 

Discipline Task Methods 

   

Cause-effect relationships Analytical chemistry  Calibration 

  Inverse calibration 

 Physical chemistry/biochemistry, Pharmacy SXR 

 

 

Criteria for optimized models 

 

  

Normal distribution 

Base 

 Errors in y 

Least squares Homo sedastic 

Weighed LS Hetero sedastic 

  

Robust To Outliers 

Least median squares 

Double median 

Least absolute deviation 
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Bayesian concept 

Deviations and residuals are used rather as 
synonyms.   

 

 

AppendixA5:  
Graphic Display of Data and its products 

 

 

 

Scatter Graphic Display diagram 

 Data 

 Primary 

 Transformed 

 

 Parameters 

 Residuals 

 

 Effect of errors on 

 Data 

 Primary 

 Transformed 

 

 Parameters 

 Residuals 

 
 

 

 
 

Histograms in Polar Coordinates 

  1

  2

  3

  4

30

210

60

240

90

270

120

300

150

330

180 0
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Histogram of matrices 
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0
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0
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0
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X = meshgrid(1:5) 

X = X + normrnd(0,1,5,5) 

p = anova1(X) 

 

 

 

 

clean 

Y = [1, 5, 3; 

 3, 2, 7; 

 1, 5, 3; 

 2, 6, 1]; 

area(Y) 

grid on 

colormapsummer 

set(gca,'Layer','top') 

title ('Stacked Area Plot') 

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

-160 -140 -120 -100 -80 -60 -40 -20 0 20 40
0

20

40
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100

0 20 40 60 80 100 120
-150

-100

-50

0

50

0

1

2

3

4

5
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11%

33%

6%

28%
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28%

6%

22%
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%Slice in the pie chart 

%Assign corresponding 

explode element to 1: 

x = [1 3 0.5 2.5 2]; 

explode = [0 1 0 0 0]; 

pie3(x,explode) 

colormaphsv 

 

clean 

x = [1 3 0.5 2.5 2]; 

explode = [0 1 0 0 0]; 

pie(x,explode) 

colormapjet 

 

 

 

 

Clean 

r = normrnd(10,1,100,1); 

subplot(221),histfit(r) 

h = get(gca,'Children'); 

set(h(2),'FaceColor',[.8 .8 1]) 

subplot(222),x = normrnd(10,1,25,1); 

 

normplot(x) 

 

 

Boxplot 

clean 

x1 = normrnd(5,1,100,1); 

x2 = normrnd(6,1,100,1); 

boxplot([x1,x2],'notch','on') 

 

 
qqplot 

clean 

x = poissrnd(10,50,1); 

y = poissrnd(5,100,1); 

qqplot(x,y); 

 

Violin plot  

Stacked Area Plot
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0
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Y{:,1}=rand(10,1); 

Y{:,2}=rand(1000,1) 

 violin(Y,2) 

 

 

 

 

 

 

rn = randn(1000,1)*0.38+0.5;  

        rn2 = 

[randn(500,1)*0.1+0.27;randn(500,1)*0.1+0.73]

;  

        rn2=min(rn2,1);rn2=max(rn2,0);  

 violin(rn2,2) 

 

 

 

 

 Y{:,1} = rand(2 ,1); Y{:,2} = rand(6,1);  

 Y{:,3} = rand(10,1); Y{:,4} = rand(50,1);  

 Y{:,5} = rand(10000 ,1); Y{:,6} = 

rand(100000,1);  

% Y{:,7} = rand(1e6 ,1); Y{:,8} = 

rand(1e7,1); 

 violin(Y,6) 

 

 

 

 

 
 

 

 

 n =10000; 

 Y{:,1} = randn(n,1); Y{:,2} = randn(n,1);  

 Y{:,3} = randn(n,1); Y{:,4} = randn(n,1);  

 Y{:,5} = randn(n ,1); Y{:,6} = randn(n,1);  

 

 

 

n =1e6 

 Y{:,1} = randn(n,1); Y{:,2} = randn(n,1);  

 Y{:,3} = randn(n,1); Y{:,4} = randn(n,1);  

 Y{:,5} = randn(n ,1); Y{:,6} = randn(n,1);  

 violin(Y,6) 
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mean(Y) 

-0.0003   -0.0015    0.0008    0.0010   -0.0005    

0.0007 

std(Y) 

0.9997    1.0003    0.9994    0.9990    0.9999    

1.0004 

 

 

clean 

x = gallery('uniformdata',[1 10],0); 

y = gallery('uniformdata',[1 10],1); 

voronoi(x,y) 

 

 

x = gallery('uniformdata',[10 2],5); 

[v,c]=voronoin(x);  

fori = 1:length(c)  

if all(c{i}~=1)   % If at least one of 

the indices is 1,  

% then it is an open region and we 

can't  

% patch that. 

patch(v(c{i},1),v(c{i},2),i); % use 

color i. 

end 

end 
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[y,[X2]] Response in [probe1-probe2] instruments  

Fn(Conc) vs variables in Env (sites, ..) 

Response,Fn(ED_design matrix) 

After model build up 

2D-contour Y vs (parameters) 

Y vs(residuals) 
 

 

 

 

 

Appendix A6:  

Output and matlab programs for Canonical analysis 
 

   Knowledge Based System for Canonical analysis 

                 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 --> Inference based on sign disc (=4) 

contours are concentric parabolic 

          since disc > 0 

 

 --> Inference based on sign canonical coefficients 

     1     0     1 

ellipses 

          since a12 == 0 & a22 >0 & a11 >0 

 

 

                 Knowledge Based System for Canonical analysis 

                 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 --> Inference based on sign disc (=4) 

-1

-0.5

0

0.5

1 -1

-0.5

0

0.5

1-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1
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contours are concentric parabolic 

          since disc > 0 

 

 --> Inference based on sign canonical coefficients 

    -1     0    -1 

ellipses 

          since a12 == 0 & a22 <0 & a11 <0 

 

                 Knowledge Based System for Canonical analysis 

                 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 --> Inference based on sign disc (=-4) 

contours are hyperbolic 

          since disc < 0 

 

 --> Inference based on sign canonical coefficients 

    -1     0     1 

 hyperbolic 

          since a12 == 0 & a22 <0 & a11 <0 

 

                  Knowledge Based System for Canonical analysis 

                 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 --> Inference based on sign disc (=-4) 

contours are hyperbolic 

          since disc < 0 

 

 --> Inference based on sign canonical coefficients 

     1     0    -1 

 hyperbolic 

          since a12 == 0 & a22 <0 & a11 <0 

 

 % 

%    dem_kbcan.m    R S Rao 4/9/95 

% 

  clean 

kb_can(1,0,1) 

kb_can(-1,0,-1) 

kb_can(-1,0,1) 

kb_can(1,0,-1) 

 

 

%          

%             kb_can   R S Rao  12-8-15;  4/9/95 

%          

 

functionkb_can(a11,a12,a22)     

 

     heading = 'Knowledge Based System for Canonical analysis'; 

     center02(heading);  

% 

          ant11 = 'disc < 0'; 

          conseq11 = 'contours are hyperbolic'; 

% 

          ant12 = 'disc > 0'; 

          conseq12 = 'contours are concentric parabolic';  

% 

st   = [blanks(10) 'since ']; 

%   

 %%      KB based on sign disc 

% 

          disc = 4 * a22 * a11 - a12 * a12; 

 

disp([' --> Inference based on sign disc (=', num2str(disc),')']) 

ifeval(ant11) 
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disp(conseq11),disp([st ant11]) 

end 

ifeval(ant12) 

disp(conseq12),disp([st ant12]) 

end%% 

%%       

 

% 

    %%          KB based on sign canonical coefficients 

% 

disp(' '),disp(' --> Inference based on sign canonical coefficients') 

disp( [a11 a12 a22]) 

% 

         ant1 = 'a12 == 0 & a22 >0 & a11 >0'; conseq1 =  'ellipses'; 

ifeval(ant1) 

disp(conseq1), disp([st ant1]) 

end 

% 

         ant2 = 'a12 == 0 & a22 <0 & a11 <0';conseq2 =  'ellipses'; 

ifeval(ant2)  

disp(conseq2), disp([st ant2]) 

end 

% 

         ant3 = 'a12 == 0 & a22 >0 & a11 <0'; conseq3 =  ' hyperbolic'; 

ifeval(ant3) 

disp(conseq3),disp([st ant2]) 

end 

% 

         ant4 = 'a12 == 0 & a22 <0 & a11 >0'; conseq4 =  ' hyperbolic'; 

ifeval(ant4) 

disp(conseq4),disp([st ant2]) 

end 

disp(' ')    

 

           %%  

 

 

 

 % 

%    kb_landa.m  4/9/97 

% 

functionkb_landa(landa)  

     %%  

if any(landa<0) 

disp([' - Chemically invalid values']) 

disp(['   Remedy : repeat expt with -ve values making zero']) 

end 

     %%     

% 

       conseq1 = 'Parabolic bowl opening upwards'; 

       conseq2 = 'Parabolic bowl opening downwards'; 

       conseq3 = 'Flattened parabolic bowl opening downwards'; 

       conseq4 = 'Ridge'; 

       conseq5 = 'Saddle region'; 

 

       ant1 = 'landa(1) > eps &landa(2) > eps'; 

       ant2 = 'landa(1) < eps &landa(2) < eps'; 

       ant3 = 'landa(1) < eps &landa(2) > eps'; 

       ant4 = 'landa(1) > eps &landa(2) < eps'; 

 

st   = [blanks(10) 'since ']; 

      %% 
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ifeval([ant1])  

disp ([conseq1]), disp ([st ant1]) 

end 

ifeval(ant2) 

disp ([conseq2]),disp ([st ant2])  

end 

ifeval(ant3) 

disp ([conseq4]),disp ([st ant3]) 

end 

ifeval(ant4) 

disp ([conseq5]),disp ([st ant4]) 

end 

      ant6 = 'landa(1) == 0'; 

ifeval(ant6) 

disp ([ant6]),disp ([landa(2)]) 

end 

      ant7 = 'landa(2) == 0'; 

ifeval(ant7) 

disp ([ant7]),disp ([landa(1)]) 

end 

      eps 

    %% 

 

% 

%  dem_landa.m      R S Rao 24-8-15; 4/9/97 

% 

clean 

landa  = [4;2];    kb_landa(landa) 

landa  = [-4;-2];  kb_landa(landa) 

landa  = [-4;2];   kb_landa(landa) 

landa  = [4;-2];   kb_landa(landa) 

 

               Knowledge Based System based on Eigen analysis 

               ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

landa = [4,2]                 

Parabolic bowl opening upwards 

          since landa(1) > eps &landa(2) > eps 

 

landa = [-4,-2]  

 - Chemically invalid values 

   Remedy : repeat expt with -ve values making zero 

 

Parabolic bowl opening downwards 

          since landa(1) < eps &landa(2) < eps 

 

 

landa = [-4, 2]   

 - Chemically invalid values 

   Remedy : repeat expt with -ve values making zero 

Ridge 

          since landa(1) < eps &landa(2) > eps  

landa = [4, -2]         

 - Chemically invalid values 

   Remedy : repeat expt with -ve values making zero 

Saddle region 

          since landa(1) > eps &landa(2) < eps 

 

eps = 2.2204e-16 
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1 1

2 2

s x
Let

s x

   
   

   
 

s corresponds to co-ordinates of stationary 

point.   

 

[ , ] ( )e l eig s  

 [ _ , ] Teig vec landa eig e  

1_ * (1,1) 2 _ * (2,1)

1_ * (1,2) 2 _ * (2,2)

Xcan x tran e x tran e

Xcan y tran e y tran e

 

 
 

_ *x trans x one S   

_ _ * _x can eig vec x tran  

2 2

2 2

0 (1,1)* _ (2,2)* _

0 (1,1)* _ (2,2)* _

zcan a l x can l y can

zcan a l x can l y can

  

  
 

_ * _Tz can landa x tran  

 

The response at the stationary pint is 

calculated as 

2 2

0  1 * 1  2 *  2

  12 * 1 *  2

11 * 1  22

Res

 *  2

  

       

p

 

a a s a s

a s s

a s a s

   
 

 
  



 

Negative Eigen values are made zero 

Response with only positive and zero Eigen 

values 

 

% 

%    eigenAnal.m     24-8-15; 4/9/97 

%      

functioneigenAnalysis(range,a0,a1,a2,a11, a22,a12)     

     S = [2*a11     a12 

          a12     2*a22]; 

     f = [a1 a2     ]'; 

     s = - pinv(S) * f; 
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     heading = 'Knowledge Based System based on Eigen analysis'; 

     center02(heading);  

 

disp('  Eigen values &eigen vectors')  

     [e,l] =eig(S),landa =diag(l); 

 

kb_landa(landa); 

 

%  Coordinates of Stationary points 

 

disp([' Coordinates of Stationary points : ']) 

xopt = s;disp([s']) 

z_sta = a0 + a1 * s(1) + a2 * s(2) + a11 * s(1).^2 + a22 *s(2).^2 ... 

                 + a12*s(1).*s(2); 

 

disp([' Response at Stationary Point : ',num2str(z_sta)]) 

 

fori = 1:length(s) 

if s(i) < 0 

          s(i) = 0; 

end 

end 

z_sta_ = a0 + a1 * s(1) + a2 * s(2) + a11 * s(1).^2 + a22 *s(2).^2 ... 

                 + a12*s(1).*s(2); 

disp([' Response at all s positive/zero  : ',num2str(z_sta_)]) 

 

  %%    

 

     n1 = range(1);     n2 = range(2);     n3 = range(3); 

     n4 = range(4);     n5 = range(5);     n6 = range(6); 

     [x,y] = meshgrid(n1:n2:n3,n4:n5:n6); 

     [rx,cx] = size(x);onex = ones(rx,cx); 

     [ry,cy] = size(y);oney = ones(ry,cy); 

     x1 =   (x - s(1) *onex); 

     y1 =   (y - s(2) *onex) ;   

%clear onexoney 

xcan =x1*e(1,1) + y1 *e(2,1); 

ycan =x1*e(1,2) + y1 *e(2,2); 

% clear x1 y1  

     z = a0 + l(1,1) * xcan.^2 + l(2,2) * ycan.^2; 

     figure, plot_can(z,xcan,ycan) 

 

 

 

 

 

 

% 

%  dem_can.m      R S Rao 24-8-15; 4/9/97 

% 

clean 

range = [-6 1 6 -6 1 6]'; range' 

 

par = [0 1 0.  0 0 0]';can(par,range) 

par = [0 0 1.  0 0 0]';can(par,range) 

 

par = [0 0 0.  0 1 0]';can(par,range) 

par = [0 0 0.  0 0 1]';can(par,range) 

par = [0 0 0.  1 0 0]';can(par,range) 

par = [0 0 0.  0 1 1]';can(par,range) 

par = [1 1 1.  1 1 1]';can(par,range) 
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par = [0 0 0.  0 1 1]';can(par,range) 

par = [0 0 0.  0 -1 -0.9]';can(par,range) 

par = [0 0 0.  0 -1 -1]';can(par,range) 

par = [0 0 0.  0 -0.91 -0.02]';can(par,range) 

par = [1 1 1.  0 0.7 -1]';can(par,range) 

 

par = [0 1 1. 0 0 0 0]';can(par,range) 

 

par = [3.264 1.537 0.5664 -0.05875 -0.1505 -0.0273]'; 

range = [0 1 10 0 1 10]' 

can(par,range) 

 

 

 

 

 

a0     x     y   x*y    x^2   y^2   Coef of full quadratic model 

  0     0     1     0       0       0 

 !!! Error: Canonical Analysis is not possible 

            since coefiicients of second order terms are all zero 

               So, Run aborted 

 

************ Canonical analysis ********* 

                   ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    a0     x     y   x*y    x^2   y^2   Coef of full quadratic model 

     0     0     0       0     0     1 

 NC_Canonical Analysis: Coefficients of second order terms <> 0 is satisfied 

 

 

 

    Knowledge Based System based on Eigen 

analysis 

                

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Eigen values & eigen vectors 

e = eigen vectors 

   -0.7071    0.7071 

    0.7071    0.7071 

 

l = eigen values 

    -1     0 

     0     1 

-Chemically invalid values 

   Remedy : repeat expt with -ve values making 

zero 

 

Ridge 

since landa(1) < eps & landa(2) > eps 

 

Coordinates of Stationary points : 0     0 

Response at Stationary Point : 0 

Response at all s positive/zero  : 0 

 

 

 
 

 

 

 

Canonical analysis
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