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Conspectus 
 

Background:The models are precise expression of experimental results but not at all a substitute.On the 

other hand, data driven models do not start with any prefixed model, but at the end a model emerges.The 

linguistic models or automatic genetic algorithm/genetic programming generate a set of equivalent models 

and submerge most of earlier category although the mathematical/physical form is different for a naked 

eye. The regression models, self-organizing models, multiple-(constrained) optimization (with conflicting 

subgoal) models form major category in the bandwagon of computational tools. 

 

Purpose: The focus of the current research review is to start with simple as possible matrix formulae to 

estimate regression parameters of linear/polynomial models in one explanatory variable (x) and coding in 

Matlab illustrating the application for small number of (six to ten) noise free simulated data. The results 

can be arrived at without any gadget. The perturbation of statistics of model parameters with 

(homoscedastic) Gaussian noise is dilated. The effects of outliers are exemplified remedial measures viz. 

least median squares (LMS) and least trimmed squares (LTS) are illustrated. The exhaustive set of models 

in analyzing data from polynomial models is developed in polyLS2015. The method of least squares is 

derived for univariate replicate data adhering to mean model perturbed by Gaussian noise. MAD statistic, 

a robust measure of central tendency is used to detect outliers and probe into central tendency of data in 

their presence. Linear parametricRegression with Multiple-X variables (MLR) and single response, a hard 

model is considered. A function of two explanatory variables is coded in MLR2015.m and simulated data 

sets amply illustrate its utility.In this phase, only mathematical formulae, m-functions, simple-as-possible 

examples are narrated. Anobject with typical results of each method is invoked and tabular and graphic 

output programs are available.  

 

 In the second phase, the default datasets, autotest_$$$ for all possible testing of program 

capabilities are discussed. The knowledge-based approach for input checking, validating input 

data/intermediate results structure to process a mathematical task (set of formulae) are developed in the 

if-then-else numericalrules. The necessary conditions, failure flags, remedial measures for each type of 

analysis and textual summary of algorithm flow with Matlab functions used are narrated in the next phase. 

http://www.joac.info/
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Each of these modules run individually and a bunch of them form a combined solution.A template (GUI) 

mode for selection and transparent flow of the software is under development. 

 

Keywords:Cause-effect relationships, normal distribution, homoscedastic, heteroscedastic, residuals, 

absolute_residuals, squares of residuals, least_sum, regression parameters, linear, normal population, LLS, 

LAD, polyLS, LMS, MLR, statistics [residuals, parameters], ANOVA, information, KBs, NCs, failure 

conditions, Remedial measures, matlab_functions. 

______________________________________________________________________________ 
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INTRODUCTION 

 
Ever since the human being observed, remembered, expressed to himselfand/or to others, simple relations 

between repeated happenings were formulated at random. Over a period of time, the accumulated simple 

links were refined, contradictions were sorted out and evidences were preserved.From this era of dualism 

of optimism/skepticism, right/wrong, correct/incorrect, true/false, empiricism emerged with a hope of 

persistence and getting prepared to pessimistic band of surroundings/life processes and so on. The tools 

developed/evolved were mainly to hunt for food, adaptation for harsh environment and preserving their 

progeny/musings during stone and iron ages.  

 

1.1 Science i.e. Experiment, Third_eye and Computation (etc.): Ever since the measurement of time and 

distance started, precision/accuracy increased continuously in twentieth century. The repeatability of any 

observation in different trials under the same conditions (of experiment) gave birth to theories of 

determinism, probability, fuzziness and chaos.Now, even one failure in six sigma limits is a challenge in 

groundbreaking discoveries with experimental outcome. In this backdrop, theword scienceis familiar to 

everyone now in twenty first century, 'first century of the 3rd millennium', and all have a feel for it. But, 

what is science? It is mind-blowing enquiry if not impossible to define and dilate what all science is, even 

leaving aside what is not science. With growing collection of direct observables and indirect observations 

(response), cause-effect (or response as a function of explanatory variables) relationships evolved. In this 

decade, the experiments of CERN culminated into an unequivocal evidence for boson, opening a new era 

to probe into dark matter and dark energy, the light of future. The detection of gravitational waves and 

mass of neutrino are experiments of concerted efforts of tens of thousands of scientists for over two 

decades. The belief in the last century was gravitational waves cannot be detected and neutrino has no 

mass. 

But, any discipline starts with empiricism based on raw observations without (experimental, data 

collection) design and inferences with experience in some other field of their expertise or accumulated 

knowledge of experts. Theoretical postulates/typical solutions for mathematical formulation of the task is 

the brain storming activity of (applied) mathematicians with input from experimentalists or from published 

literature. The numerical methods for reliable solution of mathematical equations and computational 

details for parallel /high precision (32-bit/64-bit) hardware and scale up (number of data points and 

variables from tens to thousands) software vary from time to time with global necessity, transportability 

and interoperability requirements of experts and routine operations in the hands of scientific 

assistants/technicians/skilled personnel. 

 The transparency of the method, guidelines of Dos and Don'ts were implicit in the last century, but 

now explicit passive documentation and preferably integrated software modules for automatic 

rescheduling the workflow (method choice flow) with outputting along with results is indispensable.It is 

not an option, but of high priority workflow even at the moment. Moreover, whether the core of necessary 

conditions are satisfied for the current task and changes if any of preset computational strategy are 

recorded and vividly displayed.This helps the peer reviewers to endorse or seek alternate flow for the goal 

as well as sub-goals. 
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1.2 Data structure, computations and m-D visualization 

The progress of measurement, science and/or computational algorithms is interdependent.The physical 

(gravitational constant, electronic charge), chemical (atomic mass, radius of atom/ion, rate/equilibrium 

constant), and thermodynamic (G, H, S) constants are all single valued floating point scalar quantities.In 

matrix approach, each of them is an element of a matrix.In tensor notation a scalar is a zero order tensor. 

The UV-Vis, IR, spectrum is a vector of values equal to the number of wavelengths of measurements or in 

modern instrumentation sensors (like in diode array UV-VIS instrument). Considering full spectrum at 

different HPLC elution times, the measurement data is a matrix for each sample.The time delay-excitation-

emission fluorescence spectrum is a third order-tensor measurement of absorbance values.The theoretical 

quest on one side and processing of measurements on other side smoothly has progressive transition of 

vector algebra to (extended) matrix and tensor (multi-way) algebra theorems and algorithms implementing 

standard methods of optimization, solving simultaneous algebraic/differential/integral equations and 

function approximation etc. The ignored aspect of geometric visualization of computational jargon now 

occupies a niche and a value added piece of information to further probe into micro details and point of 

start for newer vision in the discovery domain.Chemical sciences are not an exception to reap the benefits 

of tensor algebra approach of real/complex/quaternion numerical values in multi- (4-way) response data 

with first-/second- and third- order advantages. 

 Most of neural network literature was developed with algebraic notation with a few 

exceptions.Some of the software packages made use of object oriented programing jargon and cells instead 

of dimensional arrays. The main focus was to improve training procedures and extend them to NP-hard 

problems and also with recurrent connections. We used tensor notation (CT.Lab) for Kalman filter, 

biochemical equilibria, multi_variate-multi_response calibration in our chemometric activity during last 

two decades. 

 

1.3 Regression (cause-response or effect relationships) 

It is a rigorous statistical approach based on sound theoretical basis and consists of several varieties (chart 

A0-1). The main categories are bivariate, multivariate in explanatory variables/response variables/both, 

additive/ multiplicative, linear/non-linear in variables/parameters etc.From the structure of data viz. 

numerical (real) and their distribution category, binary, attributes, logical and so on different heads like 

binary/logistic/ Poisson/Binomial regression are at the forefront of research tools. Fuzzy regression is 

coveted if the errors in response are not probabilistic but originate from fuzzy intervals. 

 

Computational TensorLab (CTLab), tensor laboratory for computations (TLC Thin layer 

chromatography, or laboratory for tensor computations (LTC) all mean transformation of data to 

knowledge. It is affected through display/ transformation (reduction, expanding) of data, formulae, 

equations, solution methods, parameters/ knowledge generation/ representation/ manipulationin algebraic, 

matrix and tensor (3-way, 4-way) modes. The two-way transformation of tensors into structure, objects 

(including classes) and solution by symbolic mathematics or simply 'evol' function of Matlab is now a 

trodden path with emerging tool-boxes.  

 

Scope of present review: To start with, linear regression [1-164] comprising of one response and one 

explanatory vector of real numerical data follows.The necessary conditions of noise in data, parameter 

behaviour, model equations and constrained approaches are detailed. The failure conditions and remedial 

measures are described with simulated datasets. Simple as possible (SAP) matlab functions reflecting the 

formula translation into software is a white box approach. The knowledge bases in the form of passive if-

then-rules of first order predicate logic and their implementation in m-programs and output is an expert 

system approach for numerical computations and generation of knowledge bits for conclusions, advices 

etc. The auto test modules take care of typical learnable data sets as ready reckoner for advanced training.  
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02. Linear Least Squares (LLS) 

In linear least squares, the model considered is linear in parameters and in 

also variables.The estimation of parameters was well nurtured in all 

disciplines of science, engineering and social sciences in early 1970s.The 

basis of least squares is minimization of sum of squares of Euclidian 

distance (deviations) between observed (y) and model calculated(ycal) 

response vectors.With increased information on data precision and 

accuracy, more and more cases of non-adherence of simple linear model 

sprouted and non-linear least squares came in to picture. The axioms, 

limitations and attempts of circumventing hurdles are presented under the 

heads cited in chart (chart 2-1).The necessary conditions for application 

of linear least squares are programmed in Matlab, The output in object 

format (chart 2-2) are edited in chart 2-2(b) for formal browsing. 

 

 

 

 

Chart 2-2: (a) Data structure  

Matrix   

Data structure 

 

1 1

2 2

3 3

; ;

   
    
   
      

x y

x x y y

x y

 

 

 

 

: ;

: 0 1 ;



T

Design matrix X one x

par a a
 

y : Response/ 

dependent variable 

X : Explanatory/  

causative /independent  

variable 

np : Number of points 

npar : No of regression 

parameters 
 

MODEL 

Algebraic notation Matrix form  

: _ 0 1*  Model yi normal noise a a xi
 

: _ * Model y normal noise X par  

1

2

1

3

1
0

_ 1 *

1

 
      
 

  

x
a

y normal noise x
a

x

 

 

 

  

Chart 2-1:Linear Least squares - 

essentials 

  Model 

 

  Necessary conditions 

  Assumptions  

  Mathematical form 

  Goal 

  Object Function 

  Method  

  Derivation 

  Solution 

  Formulas in  

matrix notation 

  Matlab code 

  SAP output 

  Failure conditions 

  Remedial methods 

  Limitations  
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2-2: (b) Method: 'Least Squares' 

 

 ( c): Matlab function 

 

Least Squares Method 

 ~~~~~~~~~~~~~~~~~~~~ 

----------------------------------------------- 

Necessary conditions  

noiseX: 'Absent OR noise << x magnitude' 

noisey: 'Normal distribution'     

        'Homosedastic' 

 

 outliersx: 'Absent' 

 outliersy: 'Absent' 

SystErrorx: 'Absent' 

 

SystErrory: 'Absent' 

 par: 'Adhere to normal distribution' 

 

DontCare: 'Don't careprofiles/ 

spacing of x or y' 

       x: 'non-stochastic or  

          deterministic' 

       y: 'stochastic'  

 

 

  

 % 

% NC_LeastSquares.m(R S Rao)20-10-

201230-5-91 

% 

clean 

Method = 'Least Squares Method';  

st = {'Necessary conditions ';'Failure 

conditions'; 

'Remedial Measures'}; 

dispst(Method),  

 

 

 %%  

 

 %% 

 

noiseX = 'Absent OR noise << x 

magnitude'; 

noisey = 'Normal distribution 

Homosedastic'; 

par='Adhere to normal distribution'; 

outliersx = 'Absent'; 

outliersy = 'Absent'; 

SystErrorx = 'Absent'; 

SystErrory = 'Absent'; 

MinorProcess = 'Absent'; 

DontCare = ['Don''','t 

careprofiles/spacing of x or y']; 

x= 'non-stochastic or deterministic'; 

y= 'stochastic' ; 

 

 

% NC.LS.Method = Method; 

NC.LS.noiseX = noiseX; 

NC.LS.noisey =noisey; 

NC.LS.outliersx = outliersx; 

NC.LS.outliersy = outliersy; 

NC.LS.SystErrorx = SystErrorx; 

NC.LS.SystErrory = SystErrory; 

NC.LS.par = par; 

NC.LS.DontCare= DontCare ; 

NC.LS.x= x ; 

NC.LS.y= y ; 

 

 

dash = '------------------------------

------------------------'; 

disp(dash),disp(st{1,:}); 

 

disp( NC.LS) 

 

disp(dash),disp(' ') 

 

 

 

 

Estimation of slope and intercept or regression parameters of a straight line: The formulas and 

corresponding MatLab code for slope and intercept of linear model in matrix notation is in Formulas 2.1. 

The derivation in algebraic notation and using differentiation of matrices/vectors are given appendix A1 

and A2. This method is more precisely called unit weight linear least squares. Formula.lls.1 is a general 

equation in matrix notation applicable to estimate mean of univariate data, slope and intercept of a straight 

line, multiple linear model and polynomial regression straight. Of course, the vectors (structure) of design 

matrix (X) changes with the model. The same solution procedure is used in soft regression (PCR, PLSR) 

wherein PCs and PLSCs replace x.  



R. Sambasiva Rao et al                           Journal of Applicable Chemistry, 2016, 5 (5):908-1033 

 

914 

www. joac.info 

 

Formulas 2.1:Parameters of bi linear least squares model   % 

%Formulas_LS.m (R S Rao) 12/05/91; 10-10-15 

% 

function [par] = Formulas_LS(X,x,y) 

% 

 

 
1

* * *T Tpar X X X y


  
Formula.lls.1 

 

 par = inv(X'*X)*X'*y;% Formula.lls.1 

 

DataSet 2.1: The simple as possible (SAP) data set simulated using y = 0 + 1 * x for six points is analysed 

with Formulas_LS.m. The intercept and slope obtained are 0 and 1.0. The residuals obviously are equal to 

zero. It is a deterministic model and not a stochastic one. 

DataSet 2.1: Command line execution  DataSet 2.2: y = 1 +2 *x 

+norm(mean,sdt) 

Simulated data set  

 for y = 0 + 1*x ; 

>>x = [1:6]'; y =x; 

>>X =[ones(6,1),x]; 

>> [par] =Formulas_LS(X,x,y) 

  

>>[x,y] 

 1 1 

 2 2 

 3 3 

 4 4 

 5 5 

 6 6 

             ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

            x          y            noisey               ysimul 

           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1       3.0634     0.063372            3 

            2       5.1069      0.10693            5 

            3        6.988    -0.012026            7 

            4       9.0117     0.011674            9 

            5       11.031     0.030924           11 

            6       12.949    -0.050633           13 
    -------------------------- 

 

>>% Calling matlab function Formulas_LS.m 

>>[par,ycal,resid] = Formulas_LS(X,x,y) 

 

  

par =            Expected  noisey 

 -0.0000          0.0        0.0 

1.0000          1.0 

 Par_LLS   Expected     noisey 

1.1025   1.00         0.05 

1.9779   2.00 

   

 No noise  

 Consequence: Regression parameters 
(slope and intercept are exactly 

equal to those used in model for 

simulation of data 

 

  Noise with sd of 0.05 

 Consequence: Regression 
parameters are reasonable 

Residuals in y (or response): The residual (residi) in y at ith point is the difference between measured 

response (yi) and that calculated (ycali) from the model.ycali is obtained from the estimated least squares 

parameters (a o , a i ) as 

 

ycali = a0 + a1 * Xi ;residyi = yi - ycali. 

 

This ordinary residual is a measure of unexplained variations in the response by the regression model. The 

standard deviation (scale parameter) and variance of sdy are calculated (Formulas-2.2). 

Formulas-2.2:  % 

%ordResid.m 

% 

function [ycal, resid,sdy] = 

ordResid(X,x,y) 

[par] = Formulas_LS(X,x,y) 
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*ycal X a  

The residuals for all points are calculated. 

residy ycal y  

 
2

1

2

1

*
vary

var



  

 



 




NP

Ti i

i

if np is small

df NP Npar

else

df NP Npar

ycal y
residy residy

df df

sdy y

 

 ycal = X * par ; 

 residy = y - ycal ; 

 

 [NP,Npar] = size(X); 

 vary = residy'*residy/(NP-Npar) 

 sdy = sqrt(vary); 

 

ycal  : Model calculated value of y 

vary : Variance in y  

residy : Residual (y-ycal) 

sdy : Standard deviation in y 
 

 
1

  * *


 TCovRsidy v Xy Xar  
varCovResidy = vary * inv(X'*X); 

 

 

 

DataSet 2.1(b): for y = 0 + 1*x  DataSet2.2: y = a0 +a1 *x +norm(mean,sdt) 

ycal = 

1.0000 

2.0000 

3.0000 

4.0000 

5.0000 

6.0000 

resid = 

 1.0e-14 * 

0.0666 

 0 

 -0.0444 

 -0.1776 

 -0.1776 

 -0.1776 

>> 

  

ycal = 

       3.0804 

       5.0582 

       7.0361 

        9.014 

       10.992 

12.97 

 ----------------------------- 

Residy      noise added 

 ------------------------------ 

    -0.016979     0.063372 

     0.048705      0.10693 

    -0.048129    -0.012026 

-0.0023041     0.011674 

0.03907     0.030924 

    -0.020363    -0.050633 

 No noise  

 Consequence: Residuals 
in y are zero (i.e. 

order of 10-
14
. 

 Is due to high 
floating point 

precision of matlab 

and hardware 

 

  The noise is homoscedastic Gaussian distribution 
of low standard deviation compared to range of 

y. 

+ Consequence: The sd, t values of regression 
coefficients and sdy are all very low. 

+ Least squares lowered the noise by minimising 
sum of squares of residuals in y 

+ Passes through statistical tests 

 

Standardized residuals: The ratio of residual in y to standard deviation is standardized residual (Formulas-

2.3). 

 

Formulas-2.3   

 

 

standResidy = residy./sdy; 

 

  

standResidy  
residy

sdy
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………………….................................................. 

            X                      

---------------------- 

        One        x            y         residystandRes 

.............................................................................. 

    1.0000    1.0000    2.0024   -0.0324   -1.0148 

    1.0000    2.0000    4.0800    0.0492    1.5402 

    1.0000    3.0000    6.0163   -0.0105   -0.3284 

    1.0000    4.0000    8.0312    0.0084    0.2627 

    1.0000    5.0000    9.9988   -0.0200   -0.6270 

    1.0000    6.0000  12.0202    0.0053    0.1673 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

Resid =  

                 vary: 0.0010 

                  sdy: 0.0319 

        scaleEstimate: 0.0319 

% 

%              standres.m 

%         Standardized residuals 

% 

function [standRes] = standres(X,x,y) 

if nargin < 2,  

            clean 

            data_xy 

end 

    [a,ycal,resid] = Formulas_LS(X,x,y); 

    [ycal,residy,sdy] = ordResid(X,x,y,a); 

% 

standResidy = residy./sdy; 

 

 

Parameter statistics: The estimated regression parameters are subjected to statistical tests to infer more 

about the success of regression for the analyzed dataset. The cumulated information by application of 

heuristic knowledge for statistics of parameters is of higher order compared to yester years' inspection of 

number with no recording of finer details. 
 

Standard deviation of regression parameters: In case of bivariate data following a straight line relationship, 

SD in intercept and slope (Formulas 2.4 ) reflect the reliability of regression parameters, their co-variation, 

and confidence intervals. 
Formulas-2.4 
Matrix form 

  
1

 sda = diag X * * var
  

    

Tsqrt X y Formula  

sda= 

sqrt(diag(inv(X' * 

X))) * vary; 

  

If npar ==2 

Then 

 

 
SDa

Y YCAL

NP NPAR X X

X

NP

i i

i

i

0

2

2

2
1




 






* *  

 

 
SDa

Y YCAL

NP NPAR X X

i i

i

1

2

2

1




 




* Formula 

Algebraic notation 
 

Standard error of regression coefficients: The quotient of standard deviation of regression coefficient to 

standard deviation in y is called standard error (Formulas-2.5). 

Formulas-2.5   

Formula Matlab code Knowledge bits 

 StandErra 
sda

sdy
 standErra = sda/sdy 

 

 standa = *
sda

a
sdy

 

 

standa = a.*sda/sdy; 

 

 

If npar ==2 

 

Then sda a sda sdy

sda a sda sdy

0 0 0

1 1 1





* /

* /
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Standardized regression coefficient:The numerical magnitudes of regression parameters do not reflect the 

relative importance of the explainable factors as they are scale dependent. But, the standardized regression 

coefficientsare scale independent.They are thus useful to interpret the relative importance of regression 

parameters (especially in multivariate X) in explaining the total variation in y. 

t-values of regression parameters: The “t” statistic is computed by dividing the estimated value of 

regression coefficient by its standard error. It is a likelihood measure that calculated value of the parameter 

is not zero. Thet-values calculated are used to test null hypothesis i.e. estimated regression parameters are 

significantly equal to a zero or any expected values at 100*(1-) % confidence level (for ex. 95% if 

=0.05).The testing of null hypothesis for the significance of slope and intercept of the straight line are 

performed parameter wise. 

Chart 2-3: Statistical hypothesis testing for slope and intercept  

 

 ta =
a

sda
 

ta = a./sda; 

ttable = t_table(alpha,NP-NPAR) 

 

Intercept (a0) 

H0_a0 :a0 =a0 expect 

HA_a0:a0a0expect 

 

Slope (a1) 

H0_a1: a1 =a1 expect 

HA_a0:a1a1 expect 

 

 

 

 

0 0

1 1

   

0
 t(df=NP-2)distribution

   

1

 




 


a a expect

SDa
follows

a a expect

SDa

 

 

H0 : Null hypothesis: parameter is same as expected value;  

HA: alternate hypothesis: parameter is significantly different 

from expected value 

 

 
 

a0expect : Expected value of a0 

a1expect : Expected value of a1 

   

 

If t < t-table(, DF) 

Then H0 accepted 

  

If absolute (t_cal) > t-table value larger 

Then 

it less likely thatestimated value of  

parameter could be zero 

i.e. reg_coe > 0 with 

 high probability [(1-alpha)*100%] 
 

 

DataSet2.2 
|||||||||||||||||  statistics of regress parameters 

     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

---------------------------------------------------------------------------- 

         a,         sda,        standErra,      standa,     ta      t_prob 

---------------------------------------------------------------------------- 

       1.1025      0.03873      0.93095       1.0263       28.465   9.0639e-06 

       1.9779     0.009945      0.23905       0.4728       198.88   3.8345e-09 

```````````````````````````````````````````````````````````````````````````` 

 

 

\\\\\\\\\\\\\\  t- statistics of regress parameters 

     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

............................................................................. ........ 

         a,              ta   t-crit      ta>tcrit       alpha  

............................................................................... ...... 

       1.1025       28.465        4.604            1         0.05 

       1.9779      198.88        4.604            1         0.05 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 Inferece: ta>tcrit  =1 indicates regression 

    KB for t-table analysis for regression parameters 

      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 If   abs(tvalue) < t_table value 

 Then H0 (: par = 0) is valid at alpha level 

       i.e. RegCoef is statistically insignificant 

 

 If   abs(tvalue) > t_table value 

 Then HA (: par > 0) is valid at alpha level 

       i.e. RegCoef is statistically significant 



R. Sambasiva Rao et al                           Journal of Applicable Chemistry, 2016, 5 (5):908-1033 

 

918 

www. joac.info 

 

coefficients are valid at 0.05 confidence level  

(for df_t = 4 ) 

DataSet 2-3:The t-statistic for a dataset of 18 data points shows that slope and intercept are significantly 

different from zero at 99.5% confidence level.  The last column infers the statistical validity of the null 

hypothesis. 

Reg 

par 
Value SD t t-table (, DF) t> t-table Inference (statistical) 

a0 1.415 0.218 6.47 1.75 
t(6.4) >t-table(1.75) is true  

H0 (a0 = zero) is False 

a0 (1.41) is significantly >0 

 

a1 0.6987 0.0089 7.78 1.75 
t(7.8) >t-table(1.75) is true  

H0 (a1 =zero) is False 
a1 (0.69) is significantly >0 

DF=NP-2=16, =0.05    

t-probability: The probability of t-values is computed using a two-sided distribution function (Formulas 2-

6). It corresponds to probability of obtaining the estimated value of the coefficient when the actual 

coefficient is zero (KB 2.1, chart 2-3). 

Thus, the derived statistics (t-values), table values/ probability throw light on inadequate/adequate 

and over ambitious models. 

 

Example 2.1:If estimated value of a parameter is 1.0 and its standard error is 0.7, then the t value is 1.43 (= 

1.0/0.7).If the computed Prob(t) value was 0.05, the inference isthat there is only a 0.05 (5%) chance that 

actual value of the parameter could be zero. 

 

Application:Beer's law is an extensively used univariate calibration model in chemistry, bio-chemistry and 

many other scientific disciplines. The basic principle is the absorbance of a colored compound with 

concentration of analyte is a straight line.It passes through the origin when the blank solution has no 

 KB 2.1:Significant Reg_parameters 

If Smaller the value of Prob(t) 

Then Coeficient is more significant  

 i.e.less likely that the actual value is zero 

  

 Probability of acceptance/rejection of Reg_parameters 

If Prob(t) = 0.001  

 

Then Inference is thatthere is only 1 chance in 1000 forparameter being 

zero. 

  

If Prob(t) = 0.92 

 

Then 92% probability that actual value of the parameter could be zero 

Elimination of term in regression function corresponding to this 

parameter does not significantly affect statistics  

  

 Redundant/correlated explanatory variables 

If Redundant parameters, artefact of correlated variable in x 

Then Prob(t) = 1.00 (or nearer to 1.00) 

  

If Several parameters have Prob(t) values of(or closer to) 1.00 

Then check X matrix and parameter vector & 

repeat regression analysis 
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absorbance or the absorbance is measured against the blank solution. However, in real life tasks the 

intercept is not exactly 0.000 but of small magnitude.In order to statistically establish that the intercept is 

not different from zero, point hypothesis testing is used.Similarly, the expected slope of the Hammett 

equation for variation of log k versus substituent constants is one.A large deviation is explained in terms of 

ortho-substitution.Here also, a regression parameter is to be tested against a fixed value.Further the 

regression model is valid only when the parameters are different from zero.  

 

Number of data points and structure: Least squares analysis was practiced in applied sciences in last 

century with single digit (<=9) and rarely with 30 to 100 points.Numerical analysis, simulation studies 

with different distributions were carried out with larger number of data. The concern with experimental 

design (D, A, E etc.) in distribution of data points is of recent concern (Chart 2-4) when the benefit of 

designed experiments in pure sciences and industry came to light and instrumental and sampling 

procedures have become cost effective.  

 

Failure conditions & Remedial measures:The variance at each point is generally not known as in many 

studies replicate measurements are not made in the entire range.Thus,Unit Weighted Linear Least Squares 

(UW LLS) is in routine practice.But, it is strictly applicable iff (if and only if) the normal noise in y is 

homoscedastic i.e. same variance for y values of all points in the data set. The non-homogeneous 

distribution of noise in y, outliers and/oranother process adhering to a linear model but with significantly 

different intercept and slope lead to unacceptable regression parameters (Chart 2-5).When it is diagnosed 

that derived data/parameters/sub-space is suffering with a mathematical ailment (artefact of sub-process, 

outliers, high noise), it is to be detected (diagnosed), reduce its effect by eliminating causes or bypassing 

the route (use of robust methods). 
 

Chart 2-4: Distribution of x points 

  

Equal interval  

Random  

ED A, D, …. 

  

D-optimal FD, FFD, 

CCD,…. 

Kateman 

design 

Lin, Quad 

  

 
 

Chart 2-5:Failure conditions of UWLLSand remedial methods 

LLS model   

Failure conditions ~~~~ Remedial Measures 

  Heterosedastic noise in 

y 

~~~~ Weighted LLS 

 

  Outliers in y ~~~~ Least Median 

squares 

  Non-normal noise in y ~~~~ MLE 

 

  Noise both x and y ~~~~ Orthogonal-LMS 

  Fuzzy errors ~~~~ Fuzzy Regression 

 

 

%% 

FC= {'Heterosedastic noise in y'; 

'Outliers in y'; 

'Non-normal noise in y'; 

'Noise both x and y '; 

'Fuzzy errors'}; 

 

 

 RM= {'Weighted LLS'; 

'Least Median squares (LMS)'; 

' MLE'; 

'Orthogonal-LMS'; 

'Fuzzy Regression'; 

 } ; 

 dash = '------------------------------------------------------'; 

disp(' '),disp(dash) 
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disp('Failure conditions Remedial Measure') 

disp(dash) 

[nFC,col] = size(FC); 

for i = 1:nFC 

 zFC= FC{i,:};zRM = RM{i,:}; 

 x=[zFC,' ',zRM]; 

 disp(x) 

end 

disp(dash) 

 

Errors in x and y: Sarabia et. al. proposed orthogonal least median squares regression (chart 2-6) to 

account for errors in both axes ( noise-in-x and noise-in-y) and also in presence of outliers.It results in 

better sdy in prediction compared to orthogonal least squares (LSOrtho). 

Chart 2-6: MODEL  

Algebraic notation Matrix form  

:

0

1*( )

  



i

i

Model

yi noiseY a

a xi noiseX

 

: _ * Model y normal noise X par  

1 1 1 1

2 2 2 2

1

3 3 3 3

1
0

1 *

1

    
           
 

       

y ny x nx
a

y ny x nx
a

y ny x nx

 

L A 

Sarabia, 

M C 

Ortiz, X 

Thomas 

Anal. Chim. 

Acta.348 

(2001)11-18 

Performance of the 

orthogonalLeast 

median squares 

regression 

 J Riu, F 

XRius 

J 

Chemomet., 

9(1995) 343 

Univariate regression 

models 
 

lspar2015.m: This m-function (chart 2-7) calculates the regression parameters, simple residuals and their 

statistics. ccangsvd.m outputs correlation, angles between each of vectors (X and y) and singular values/ 

percentage explainablity of X matrix. CondMat calculates determinant, various scalar condition numbers 

of X. It shows matrix conditions like near-singularity, singularity etc. and guides for the choice of adequate 

inversion procedures. The listings of tabular display and graphics routines are not given for paucity of 

space. 

Chart 2-7: Method flow and listings of m-files 

 

 

``````````````````````````````````````````````````````````````````````````` 

 MethodFlow --lls2015 m file 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 Calculation ofregression parameters by least Squareslls2015 

 

> Formulae for regression parametersFormulas_LS 

> Ordinary residualsordResid(X,x,y,a_LS) 

> Advanced residualsresidstat 

> regression parameter statistics regcoefstat 

> ANOVA Formulas_anova 

 % 

>> output: Tabular summary  

Graphic display 

---------------------------------------------------------------------------- 

% 

%lspar2015.m (R S Rao)4/13/93, 10/27/1997,10/21/2011 

% 
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 ccangsvd% correlationCoef; angles; SVD; 

 

[par] = Formulas_LS(X,x,y);% Reg parmaters 

[ycal, resid,sdy] = ordResid(X,x,y,par);% Residual &sd in y  

 

[sda,ta,standa] = regcoefstat(X,x,y);% Standar  

deviation, 

% t-value and 

% standardized  

reg parameters 

 

 

 
 

 

% 

%ordResid.m 

% 

function [ycal,residy,sdy] = ordResid(X,x,y,par) 

if nargin < 3  

clean 

 usage('[ycal, resid,sdy]', 'ordResid','(X,x,y,par'); 

data_xy 

y(6,1) = 10.; 

 [par,ycal,resid] = Formulas_LS(X,x,y ); 

 par 

end 

 [par,ycal,resid] = Formulas_LS(X,x,y); 

 ycal = X * par ; 

 residy = y - ycal ; 

 [NP,Npar] = size(X); 

 vary = residy'*residy/(NP-Npar) 

 sdy = sqrt(vary); 

 

 

 Resid.residy = residy; 

 Resid.vary = vary; 

 Resid.sdy = sdy; 

 

 Resid.varCovResid = vary * inv(X'*X); 

 Resid.scaleEstimate=sdy; 

 Resid 

 Resid.varCovResid 

 

 

% 

% regcoefstat.m (R S Rao) 30-8-1993, 10/21/2011 

% 

 

function [sda,ta,standa] = regcoefstat(X,x,y) 

% 

if nargin < 3,  

 clean 

 data_xy 

end 

zzz= []; 

[a,ycal,resid] = Formulas_LS(X,x,y ); 

[np,npar] = size(X);  

vary = resid'*resid/(np-npar); 

sdy = sqrt(vary);  

 

%  
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%Statistics of regression coefficients 

% 

sda= sqrt(diag(inv(X' * X))* vary) ; % Standard deviation, 

ta = a./sda;% tvalues, 

standa = a.*sda/sdy;% standardized 

standErra = sda/sdy% Standardised error 

 

format shortg 

 

 oo_regcoefstat 

 

 
% 

% oo_regpar.m 

% 

 disp('corrcoef([X,y])') 

 zcc{n,:}= corrcoef([X,y]); 

 zpar{n,:} = par; 

 zsda{n,:} = sda; 

 zta{n,:} = ta; 

 zstanda{n,:} = standa; 

 zresid{:,n} = resid; 

 zsdy{:,n} = sdy; 

 zycal{:,n}= ycal; 

 

 

Constrained Regression -straight line through origin 

In tasks like calibration, there is an apriori information that the intercept is zero.In linear least squares 

model of a straight line, the constraint (a0= 0) is implemented (chart 2-8).The point to be noted here is that 

the regression parameter is biased and is not BLUE (best linear unbiased estimate) in statistical sense, as 

the plot is forced through pass through zero on y axis.  

Chart 2-8: Constrained linear univariate model Constrained Regression  

Matrix  

Data structure 

 

1 1

2 2

3 3

; ;

   
    
   
      

x y

x x y y

x y

 

 

 

: ;

: 0 ;

Design matrix X x

par a
 

 

 Non-negative least squares 

  Regression passing through origin 

 Linear Regression with prefixed slope 

 

 

MODEL 

Algebraic notation Matrix form 

: _ 1*Model yi normal noise a xi 
 

: _ * Model y normal noise X par  

   1 2 3 1_ *y normal noise x x x a   

  

 

 

 

Y = a0 + a1*x + noise_n(mean,std) x; NP : 6 



R. Sambasiva Rao et al                           Journal of Applicable Chemistry, 2016, 5 (5):908-1033 

 

923 

www. joac.info 

 

 

Constrained LS 

x y resid 

0 -0.063814 -0.0096803 

0.1  0.15809  0.011325 

0.2   0.3563  0.0086491 

0.3   0.53891 -0.0096393 

0.4   0.74588  -0.0035655 

0.5   0.95325   0.0029115 

   

 sdy = 0.031637 

 

 

 Caution: 

sdy of contrained LS (0.031) >Unconstrained unit weighted (0.009) 

 It is valid if data acquisition system is more accurate than 0.002 
 

 

 
 

 

 

LS through origin Unconstrained LS  

Par sda 

 a11.86130.0016195 

 Parsda 

a0-0.0541347.4341e-05 
a12.00890.00024554 

mean(noise)  std(noise) 

------------------------ 

 -0.00189690.0092182     Obtained 

0.00.01Desired 

  Mean and std of noise desired and obtained are exact 
Since small number of noise points (NP =6) are simulated 

 Sdy of LS (0.0091) = sdy of added noise (0.0092)  

 i.e. LS almost extracts noise from data after modelling 

 

 

03.Univariate data 

A vector of numerical values of duplicate/repeated measurements of response or an explanatory variable is 

the simplest univariate real numbers in one dimension (Chart 3-1).If the number of values are very small 

(<9), sample wise inspection serves the purpose to understand the variation. If the number of exceeds two 

digits (>99), a mathematical parameter (average) or statistical (arithmetic/geometric/harmonic) mean 

throws light on central tendency property of data. If the data set is in thousands to millions (simulation 

studies), visual inspection (graph/image) on different ranges/scales is the first step of exploratory analysis. 

The titbits of classical statistics viz. mean, standard deviation, their breakdown point and robust category 

(median) follow. 
 

Mean 
Mean is calculated as the quotient of sum of numerical values and number of observations (Formulas 3-1). 

Within the matrix algebra frame, it is the least squares estimator.  
Chart 3-1:  Process 

Deterministic process 0y a  

  

Parametric models of univariate data from 

processes 

 

NC  

Random process(Normal, lognormal, 0 ( ) y a noise distribution  

0 0.1 0.2 0.3 0.4 0.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
St line through origin

0 0.1 0.2 0.3 0.4 0.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04
red*: residContrained

0 0.1 0.2 0.3 0.4 0.5
-0.01

-0.005

0

0.005

0.01

0.015
blue:residy 
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exponential)  

  

If Random process is normal 0 _y a normal noise   

  

  

x i = xMEAN + r i  + S i 
 

Where ri  and Si are normal and systematic errors.  

If Si is negligible,  X i = X MEAN + r i 

 

Ifr i follow normal distribution & 

     Homosedastic 

Then  
1

1
*

NP

i

i

par y mean or average
NP 

   

 
 

 

 

Least squares solution of  0 y a noise :It is a parametric model for estimation of mean of samples 

perturbed by only random noise of much lower magnitude than the measured value. The design matrix is 

column vector of ones and the response is y vector. The mean being a least squares solution, it is an 

unbiased estimator and confidence levels are calculable.The formulas in matrix and algebraic notations is 

in Formulae 3.1.  

Formulas 3-1 Mean of univariate data  

0

Proces

y

s

a
 

* _

Model

X par y normal noise 
 

Input data Design matrix Unknown perturbation To be estimated 

1

2

3

;

y

y y

y

 
 
 
  

 

1

1 ;

1

X

 
 
 
  

 

1

2

3

;

noise

noise noise

noise

 
 
 
  

 

 0 ;par a  

Theleast squares solution is   

 
1

* * *T Tpar X X X y


   
1

1
*

NP

i

i

par y mean or average
NP 

   

 

Scratch pad  

   

   
1 1

1

* 1 1 1 * 1 3

1

1
*

 

 
   
 
  

 

T

T

X X NP

X X NP
NP

 

 
1

1

1
, * * * *

NP
T T

i

i

So X X X y y average
NP





   

   
1

2 1 2 3

1

3

* 1 1 1 *


 
     
 
  


NP

T

i

i

y

X y y y y y y

y
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The basics of classical statistics postulates that population mean ()is obtained with infinite 

number of measurements.But, in practice, it means very large number.Coming to limits of experimental 

science,such a large number of experiments are cost and time prohibitive and small sample (NP<30) are in 

practice.  

 

Standard deviation (SD): The SD of univariate numerical data set is calculated as the moment of mean 

about mean. It is a measure of dispersion and thus reflects spread of (process in time/replicate 

experimental) measurements. In the case of univariate data, SD throws light on dispersion from central 

tendency.Mean is subtracted from each observation, squared and summed for over entire data set. It is 

divided by degrees of freedom.Since mean calculated is used, one degree of freedom is lost. Thus NP-1 

corresponds to DF of standard deviation. It inherits the positive features like confidence limits and at the 

same time the limitations viz. one outlier is the breakdown point of this statistic (KB 3-1, MatLabProg 3-

1). 

KB 3-1: Failure of mean  robust statistics  

   

If Noise is non-normal Or 

 Heteroscedastic Or 

 Outlier is present  

Then  Classical statistics fails  

 Remedy:Robust statistical methods  

   
 

If SEDA & 

 Non-parametric method  

Then 

Median 

Inter quartile range 

Spread 

 

   
 

  

  

  

Median  

+ 50% range of values are depleted of low/high 

numerical outliers 

+ Not inflated like mean 

+ Insensitiveto obliqueness of distribution 

+ Extreme values  
 

  Break down point (failure) 

  Outliers > 50% of observations 

 

 

For mean > = one point 
 

  

Central tendency and dispersion of univariate data 

 
0 _ (homose )y a Normal noise dastic   

Models --- Statistics  

Parametric non-parametric 

   

If  Noise follows normal distribution & 

 Ei independent(not autocorrelated) & 

 Homoscedastic (equal variance) & 

 No trend  

 No outliers  

Then 
Mean and standard deviation are 

unbiased estimators of central tendency 

 

 

If High quality data acquisition & 

 Normal distribution not verified  

Then Biweight method  
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If SEDA & 

 parametric method & 

Then 
 Mean 

SD 

 

   
 

 

If Normal distribution confirmed  

Then Mean is BLUE  

Else 

Analyse with otherdistributions 

Chaotic profiles 

Discipline & process specific known 

signal profiles 

 

   

If High quality data acquisition & 

 Process & sub-process knowledge  

Then 

Six-sigma limits 

Ex: CERN experiments & results & 

hypotheses 

 

   

   

   

   
 

 

MatLabProg 3-1 
% 

% stats_univariate.m (R S Rao)10-1-16; 

 19/12/05; 08/06/91  

% 

% Mean and SD 

% 

statsV.meanx = mean(x); 

statsV.stdx= std(x); 

 

% MAD 

statsV.medianx = median(x); 

 

%Range 

statsV.minx= min(x); 

statsV.maxx= max(x); 

statsV.rangex = (statsV.maxx-statsV.minx); 

statsV 

% 

figure,plot(111),subplot(221),stem(x),subplot(222),bo

xplot(x), subplot(223),hist(x), 

subplot(224),normplot(x) 

Example 3.1: A simulated data set of six points with random noise of unit mean and standard deviation 

of0.02 is generated. The output of stats_univariate (chart 3-2) shows mean and median are very nearer 

(1.0018, 1.002) and with a very low sd (0.018).This is what is expected in absence of very large noise or 

outliers. 

Chart 3-2: univariate data without outliers and low noise 

x = 

1.0259 

0.9868 

0.9967 

1.0175 

0.9762 

1.0077 

 

 

 

ans =  

meanx: 1.0018 

 stdx: 0.0188 

medianx: 1.0022 

 minx: 0.9762 

 maxx: 1.0259 

 rangex: 0.0497 
1 2 3 4 5 6

0
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1
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1
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Example 3.2: Here, nine points with mean 1 and high standard deviation (0.2) is analyzed. Box plot shows 

one of the points (1.72) different from others. The mean is 0.98 with sd of 0.32 (chart 3-3). 
Chart 3-3: univariate data without outliers and high noise 

Input is row vector!  

 It is transformed  

into column vector 

~~~~~~~~ 

x = 

0.8398 

0.6906 

1.0738 

0.8890 

1.0369 

1.7262 

0.6796 

1.0312 

0.8077 

 

 

statsV =  

meanx: 0.9750 

 stdx: 0.3168 

medianx: 0.8890 

 minx: 0.6796 

 maxx: 1.7262 

 rangex: 1.0465  

 

Outlier:An outlier is a datum very different in numerical magnitude from all other data points.If it is an 

artefact of transcription errors, it can be corrected.However many a time the outlier is the correct 

observation and the reasons are physicochemical in nature or instrumental spikes.A few instances in 

chemical science are logarithm of rate or equilibrium constants of ortho-substituted benzoic acids do not 

follow Hammett's straight line behaviour and exhibit an extremum in water and alcohol mixtures. The 

latter is due to predominant specific solute-solvent interactions. 

 

Breakdown point of mean:Even one outlier inflates the mean which breaks down statistical character.The 

break down point (BDP) corresponds to percentage of outliers in the data that will not vitiate trend 

significantly.So, the BDP is zero for mean. 

Remedy:Robust estimates of central tendency viz. median, S and Q measures have been put forward.  
 

Median 

Median is the second quartile or 50th percentile (Chart 3-4).For a (univariate) dataset is in ascending order, 

median is the middle value if number of points is odd while it is the mean of the middle two values for 

even number of observations.Thus, approximately 50% of elements lie below and the other 50% lie above 

the median.MAD is aimed at symmetric distributions. 

Chart 3-4: characteristics of median 

 Median detects outliers  

 MLE of centraltendency for Laplace distribution. 
 

(b) Positive features and limitations 

+ Robust to outliers 

  A biased estimator for normal distribution 

Failure of median 

If Area of the tail is large(or) 

 50% or more of the observations are outliers 

Then Median fails 
 

Remedy: Median absolute deviation 

  Low (37%) Gaussian efficiency 

 

Remedy Gaussian  

Efficienty 

S, = 1.1926 med 
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Q: 0.25 quantile of  

distances 

8290 
 

 

 

 

Median absolute deviation 

 

IfRes/Med(res) > 5.0 

ThenOutlier 

+ Breakdown point is 50% outliers 
 

Median absolute deviation (MAD): It is the median of all absolute deviations from the sample median. It is 

a powerful tool to detect outlying observations. In chemical analysis any method with BDP > 20% is 

adequate and thus MAD and its derived parameters are sought after exploratory analysis.Here (1.0/0.6745) 

is correction factor consistent with usual scale of Gaussian distribution. 

 

The program stats_univar.m (MatLabProg 3-2, chart 3-5) is useful for exploratory statistical 

analysis of univariate data.It calls many of the built in Matlab functions and robust method for central 

tendency in presence of outliers are incorporated.  

Chart 3-5: matlab calling sequence MAD2015.m 

 

..........Median statistic for detection of outliers in Univariate data with normal 

noise 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~ 

 

AaAaAaAaAaAaAaAaAaAaAa Calling MAD_stats.m AuAuAuAu 

 

``````````````````````````````````````````````````````````````````````` 

 Algorithmm file 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Repeat until no_outliers MAD_stats 

 Cal parametric univariate statistics stats_univariate 

 Sorts x into ascending order vector sortz 

 calculation of MAD statistic om_MAD 

 Detection of outliers through MAD 

 Deleting outliers from x vectoroutlierRemoval 

 New x vector generated excluding detected outliers 

End repeat 

------------------------------------------------------------------------ 

MmMmMmMmMmMmMmMmMmMmMmexit from MAD_stats.m AuAu 

 

MatLabProg 3-2: stats_univariate and MAD2015 

% 

% om_MAD.m(R S Rao 19/08/1991) 

% 

function [MedAbsDev_FromMed,ind] = om_MAD(x) 

[np,c]=size(x); one = ones(np,1); 

MAD_Limit = 5; 

% 

% calculation of MAD statistic 

xmed = median(x); 

DevFromMed = x-xmed*one ; 

absDevFromMed= abs(DevFromMed); 

Med_DevFromMed = median(absDevFromMed);  

MedAbsDev_FromMed = [abs(DevFromMed)]/Med_DevFromMed; 

% 

% Detection of outliers through MAD  

% 

index_outlier = (MedAbsDev_FromMed >MAD_Limit) ; 
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ind = (index_outlier)'; 

 

 

% 

% calculation of  

% 

mean_absOfresidFromMean = mean(abs(x-mean(x))); 

med_absOfresidFromMed = median(abs(x-median(x)));  

% For mean absolute deviation 

NormalScalePar_sigmaMean = 1.253*mean_absOfresidFromMean  

% For median absolute deviation 

NormalScalePar_sigmaMedian = 1.4826*med_absOfresidFromMed ;  

 

 

% 

% outlierRemoval.m 

%(R S Rao 19/08/1991) 

% 

function [xNoOutlier] = 

outlierRemoval(x,ind) 

% 

%Outlier removal 

% 

[np,c] = size(x); 

for i =1:np 

if ind(i) == 0 

ind2(i) = 1; 

elseif ind(i)==1 

ind2(i) = 0; 

end 

end 

x2 = x.*ind2'; 

k = 0; 

for i = 1: np 

if x2(i,1) < 1e-10 

else 

 k = k+1; 

 xNoOutlier(k,1)= x2(i,1); 

end 

end 

 

 

% 

% MAD2015.m(R S Rao 10-1-16; 19/12/05; 08/06/91) 

% 

function MAD2015(x0) 

 

if nargin ==0 

clean 

x0= [4.60 4.62 5.01 6.99 4.65 4.63 7.22]'; 

end 

StepByStep_MAD2015 

% 

 

% 

% column vector sorted in asceding order 

xsorted=sortz(x0); x = xsorted;  

disp(' ') 

center02('..........Median statistic for detection 

of outliers in Univariate data with normal noise'); 

% 

StepByStep_MAD2015 

% 

outlier = 1; 

 

% removal of outliers 

whileoutlier 

% 

 [statsV ] = stats_univariate( x ) 

%detection of outliers by MAD statistic 

[MedAbsDev_FromMed,ind] = om_MAD(x); 

if (any(ind)) 

 outlier = 1; 

 [xNoOutlier] = outlierRemoval(x,ind); 

disp([' >>>>>>>>>>>>>>>> Outliers removed; ', 

'&&&&&&&&&&&&&&& Median analysis repeated']) 

 

clear x 

x = xNoOutlier; 

% x vector (excluding detected outliers is again 

tested  

% to make sure of absence of masked outliers) 

else 

outlier = 0; 

disp([' >>>>>>>>>>>>>>>> No Outliers based MAD 

statistic'])  

center02(['!!!!!! Advice: Inspect precision and 
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accuracy of data acquisition in the experiment' ]); 

return 

end 

end 

 

Example 3.3: The first four points are replicate values without any type of error, an ideal data set. Two 

high influencing outliers are added at 5th and 6
th
 position of column vector. Obviously, mean and median 

differ (output 3-1).The deviation from mean show high values for fifth and sixth data points. But 

deviations from median are zero except for outliers. The MAD statistic clearly indicates them to be 

outliers.The LS solution gives a value of 2.3 for mean which is high. 

   In the next step,the function (removeOutliers.m) deletes these outliers. The program reanalyses for 

univariate statistics until no outliers (even masked ones) remain in the data vector. Now, the mean, median 

are exactly equal and deviations/standard deviation is zero. But, MAD is not a number (NaN) as the 

denominator of formula is zero. Here, box plot collapses to a straight line. 

Output 3-1:Results of x0.m 

 
Order : 0; NP :6  

 ||||||||||||||||||||||| Statistics-univariate data 

 

```````````````````````````````````````````````````````````` 

 Residuals from 

 ----------------- 

x MeanMedian Asc(abs(devMed))MADIndex 

```````````````````````````````````````````````````````````` 

1.0000 -1.3333 0 0 NaN 0 

1.0000 -1.3333 0 0 NaN 0 

1.0000 -1.3333 0 0 NaN 0 

1.0000 -1.3333 0 0 NaN 0 

4.00001.66673.0000  3.00  Inf1.0000 

6.00003.66675.00005.00Inf1.0000 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

 
Red: Mean line : Green: Median; o: Data points 

Box plot 

Data on a horizontal vector 

meanx: 2.3333 

medianx: 1 

 stdx: 2.1602 

 minx: 1 

 maxx: 6 

 rangex: 5 

 

Med_DevFromMed: 0 

indOutlier: [0 0 0 0 1 1] 

mean_absOfresidFromMean: 1.7778 

med_absOfresidFromMed: 1.7778 

 NormalScalePar_sigmaMean: 2.2276 

NormalScalePar_sigmaMedian: 0 

 

 

par = 

2.3333 

 

x xcalx-meanx  

 

1 -1.33332.3333 

1 -1.33332.3333 

1 -1.33332.3333 

1 -1.33332.3333 

41.66672.3333 

63.66672.3333 

 

~~~~ xOutliers detected with MAD statistic 

 

 

Xoutlier     4  6 

1:outlier 

0:not outlier 

0 0 0 0  1  1 

# 1  2 3 4  5 6 

MAD       

 

 

 

>>>>>>>>>>>>>>>> Outliers removed; &&&&&&&&&&&&&&& Median 

analysis repeated 
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||||||||||||||||||||||||||||||||||||Statistics-univariate  

`````````````````````````````````````````````````````````` 

 Residuals from 

 ----------------- 

 x MeanMedian Asc(abs(devMed))MADIndex 

```````````````````````````````````````````````````````````` 

 1 0 0 0 NaN 0 

 1 0 0 0 NaN 0 

 1 0 0 0 NaN 0 

 1 0 0 0 NaN 0 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

MAD : [abs(deviations from median)]/median Of(abs(dev from 

median)] 

 
 

Green: Mean & Median;all data points are at dot 

Box plot collapses to a mean line 
 

meanx: 1 

medianx: 1 

 stdx: 0 

 minx: 1 

 maxx: 1 

 rangex: 0 

Med_DevFromMed: 0 

 indOutlier: [0 0 0 0] 

 mean_absOfresidFromMean: 0 

 med_absOfresidFromMed: 0 

NormalScalePar_sigmaMean: 0 

NormalScalePar_sigmaMedian: 0 

 

>>>>>>>>>>>> No Outliers based MAD 

statistic 

 

!!!!!! Advice: Inspect precision and 

accuracy of data acquisition in the 

experiment 

 

Example 3.4: It is a small sample (NP: 11) data adhering to normal distribution (mean = 1.0 and sd = 0.01). 

The simulated data has a sample mean of 1.008 and sd of 0.0108 (output 3-2).  

Output 3-2 

||||||||||||||||||||||||||||||||||||Statistics-

univariate data 

 # x x-meanx x-medianXMAD 

1.00000.99650.01610.0285 

2.00001.05630.07590.0883 

3.00000.8943 -0.0861 -0.0737 

4.00001.07180.09140.1038 

5.00000.9038 -0.0766 -0.0642 

6.00000.8854 -0.0950 -0.0826 

7.00000.8967 -0.0837 -0.0713 

8.00000.9680 -0.0124 0 

9.00000.8480 -0.1324 -0.1200 

  10.000  1.17810.19770.2101 

 11.0001.08540.10500.1174 

 

Simulated noise_mean: 1; Std: 0.01; np:11 

Obtained 

 

 0.98040.10560.96800.0884 

~~~No Outliers detected with MAD statistic 

 

  

par = 

0.9804 

ans = 

0.99650.01610.9804 

1.05630.07590.9804 

0.8943-0.08610.9804 

1.07180.09140.9804 

0.9038-0.07660.9804 

0.8854-0.09500.9804 

0.8967-0.08370.9804 

0.9680-0.01240.9804 

0.8480-0.13240.9804 

1.17810.19770.9804 

1.08540.10500.9804 
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Example 3.5: It is a real life measured dataset, but 6
th
 and 7

th
 points being outliers and MAD statistics 

detected them (output 3-3). The program removed and reanalyzed the remaining points.The ordinary 

statistics now coincide with robust parameters. 

Output 3-3 

Input is real numeric data 

statsV =  

NP: 7 

meanx: 1.3114 

medianx: 1.1500 

 stdx: 0.3422 

 minx: 1.0500 

 maxx: 1.9000 

 rangex: 0.8500  

````````````````````````````````````````````````` 

Residuals from 

------------------- 

x Mean Median Asc 

 (abs(devMed)) MAD Index 

`````````````````````````````````````````````````` 

1.0500 -0.2614 -0.100001.4286 0 

1.0800 -0.2314 -0.07000.05001.0000 0 

1.1000 -0.2114 -0.05000.05000.7143 0 

1.1500 -0.161400.07000 0 

1.2000 -0.11140.05000.10000.7143 0 

1.70000.38860.55000.55007.85711.0000 

1.90000.58860.75000.7500 10.71431.0000 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

0.0700 

 MAD : [abs(deviations from median)]/median Of 

(abs(dev from median)] 

statsV =  

Med_DevFromMed: 0.0700 

indOutlier: [0 0 0 0 0 1 1] 

 mean_absOfresidFromMean: 0.2792 

 med_absOfresidFromMed: 0.2792 

NormalScalePar_sigmaMean: 0.3498 

NormalScalePar_sigmaMedian: 0.1038 

>>>>>>>>>>>>>>>> Outliers removed; &&&&&&&&&&&&&&& 

 Median analysis repeated 

 

 
 

 

 Input is real numeric data 

statsV =  

NP: 5 

meanx: 1.1160 

medianx: 1.1000 

 stdx: 0.0594 

 minx: 1.0500 

 maxx: 1.2000 

 rangex: 0.1500 

````````````````````````````````````````````````````````` 

Residuals from 

------------------- 

x MeanMedianAsc(abs(devMed)) MADIndex 

``````````````````````````````````````````````````````````` 

ans = 

1.0500 -0.0660 -0.050001.0000 0 

1.0800 -0.0360 -0.02000.02000.4000 0 

1.1000 -0.016000.050000 

1.15000.03400.05000.05001.0000 0 

1.20000.08400.10000.10002.0000 0 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

MAD : [abs(deviations from median)]/ 

 median Of(abs(dev from median)] 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

statsV =  

Med_DevFromMed: 0.0500 

indOutlier: [0 0 0 0 0] 

 mean_absOfresidFromMean: 0.0472 

 med_absOfresidFromMed: 0.0472 

NormalScalePar_sigmaMean: 0.0591 

NormalScalePar_sigmaMedian: 0.0741 

>>>>>>>>>>>>>>>> No Outliers based MAD 

statistic 

!!!!!! Advice: Inspect precision and accuracy 

of data  

acquisition in the experiment 

 

Applications:The outlier detection, adherence to normal noise, distribution free noise in chemical 

applications, graphics in hard/ soft regressions including inter-laboratory comparison studies will be the 

theme of a separate publication [164]. 
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Outliers (>50%NP)  

Example 3.6:A data set of five points with three outliers is an example of breakdown of MAD 

statistic(output 3-4). In the process of elimination of outliers, the analysis reaches a stage of two points. 
Output 3-4: Results of data with outliers 

 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 Median statistic for detection of outliers in  

Univariate data with normal noise 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Input is real numeric data 

Phase I; NP =5 

 

 
statsV =  

NP: 5 

meanx: 5.6480 

medianx: 5.0100 

 stdx: 1.2521 

 minx: 4.6000 

 maxx: 7.1200 

 rangex: 2.5200 

```````````````````````````````````````````````````` 

Residuals from 

------------------- 

x MeanMedianAsc(abs(devMed)) MADIndex 

`````````````````````````````````````````````````````` 

ans = 

4.6000 -1.0480 -0.410001.0000 0 

4.6200 -1.0280 -0.39000.39000.9512 0 

5.0100 -0.638000.41000 0 

6.89001.24201.88001.88004.5854 0 

7.12001.47202.11002.11005.14631.0000 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

ans = 

0.4100 

MAD : [abs(deviations from median)]/ 

median Of(abs(dev from median)] 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~      

statsV =  

Med_DevFromMed: 0.4100 

indOutlier: [0 0 0 0 1] 

 mean_absOfresidFromMean: 1.0856 

 med_absOfresidFromMed: 1.0856 

NormalScalePar_sigmaMean: 1.3603 

NormalScalePar_sigmaMedian: 0.6079 

>>>>>>>>>>>>>>>> Outliers removed; 

&&&&&&&&&&&&&&& Median analysis repeated 

1 2 3 4 5
4.5

5

5.5

6

6.5

7

7.5

3.5

4

4.5

5

5.5
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7

1
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par = 

5.6280 

ans = 

4.6200 -1.00805.6280 

4.6000 -1.02805.6280 

5.0100 -0.61805.6280 

6.89001.26205.6280 

7.02001.39205.6280 

 

~~~~~~~~~~~ Outliers removed & analysis repeated 

 

 

 

Phase II; NP =4 

 

Input is real numeric data 

 

statsV =  

NP: 4 

meanx: 5.2800 

medianx: 4.8150 

 stdx: 1.0898 

 minx: 4.6000 

 maxx: 6.8900 

 rangex: 2.2900 

`````````````````````````````````````````````````````````` 

Residuals from 

------------------- 

x MeanMedianAsc(abs(devMed)) MADIndex 

``````````````````````````````````````````````````````````` 

ans = 

4.6000 -0.6800 -0.21500.19501.0488 0 

4.6200 -0.6600 -0.19500.19500.9512 0 

5.0100 -0.27000.19500.21500.9512 0 

6.89001.61002.07502.0750 10.12201.0000 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

ans = 

0.2050 

MAD : [abs(deviations from median)]/ 

median Of(abs(dev from median)] 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

statsV =  

Med_DevFromMed: 0.2050 

indOutlier: [0 0 0 1] 

 mean_absOfresidFromMean: 0.8050 

 med_absOfresidFromMed: 0.8050 

NormalScalePar_sigmaMean: 1.0087 

NormalScalePar_sigmaMedian: 0.3039 

 

>>>>>>>>>>Outliers removed; & Median analysis repeated 

 

 

Phase III; NP =3 

Input is real numeric data 

 

statsV =  

NP: 3 

meanx: 4.7433 

medianx: 4.6200 

 stdx: 0.2312 

 minx: 4.6000 
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 maxx: 5.0100 

 rangex: 0.4100 

```````````````````````````````````````````````` 

Residuals from 

------------------- 

x MeanMedianAsc(abs(devMed)) MAD   Index 

`````````````````````````````````````````````````````` 

4.6000 -0.1433 -0.0200 01.0000 0 

4.6200 -0.123300.020000 

5.01000.26670.39000.3900 19.50001.0000 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

ans = 

0.0200 

MAD : [abs(deviations from median)]/ 

median Of(abs(dev from median)] 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

statsV =  

Med_DevFromMed: 0.0200 

indOutlier: [0 0 1] 

 mean_absOfresidFromMean: 0.1778 

 med_absOfresidFromMed: 0.1778 

NormalScalePar_sigmaMean: 0.2228 

NormalScalePar_sigmaMedian: 0.0297 

 

>>>>>>>>>Outliers removed; & 

Median analysis repeated 

 

 

Phase IV; NP =2 

Input is real numeric data 

 

statsV =  

 NP: 2 

meanx: 4.6100 

medianx: 4.6100 

 stdx: 0.0141 

 minx: 4.6000 

 maxx: 4.6200 

 rangex: 0.0200 

```````````````````````````````````````````````````````````````` 

Residuals from 

------------------- 

x MeanMedianAsc(abs(devMed)) MADIndex 

```````````````````````````````````````````````````````````````````` 

4.6000 -0.0100 -0.01000.01001.0000 0 

4.62000.01000.01000.01001.0000 0 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

ans = 

0.0100 

MAD : [abs(deviations from median)]/ 

median Of(abs(dev from median)] 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

statsV =  

Med_DevFromMed: 0.0100 

indOutlier: [0 0] 

 mean_absOfresidFromMean: 0.0100 

 med_absOfresidFromMed: 0.0100 

NormalScalePar_sigmaMean: 0.0125 

NormalScalePar_sigmaMedian: 0.0148 

 

>>>>>>>>>>>>>>>>No Outliers based MAD statistic 
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!!!!!! Advice: Inspect precision and accuracy 

 of data acquisition in the experiment 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

4. Regression robust to outliers 
The representation of large number of points in a bivariate dataset by a few numbers of parameters is the 

focus of regression. This enables the reproduction of dataset within noise limits with the estimated 

regression parameters.Thus, output information of lls2015.m reflects the trends of majority of data 

points.The statistical reliability of parameters are ensured, iff (if and only if) the data adheres to necessary 

conditions. But, in many real life tasks outliers though in small number (10-20%) vitiate the estimation of 

slope and intercept of even straight line, mean of univariate data or multi(x1,x2) variate vs y models.  

 

Outliers 

x-outliers:They are also called leverage points. X-outliers are those whose xi values are outlying i.e. The 

point (xi,yi) deviates from majority of x space covered by the data set(fig. 4-1).  

 

Good-x-outliers: A good leverage point is one that follows the linear pattern of majority (points 2,21). 

 

Bad-x-outliers: Bad leverage points are those which do not adhere to linear pattern of majority of points 

(points 4,7,12). 

 

y-outlier or vertical outlier: The observation whose xi belongs to majority of x-space but the point 

deviating from linear pattern in the vertical direction is called vertical outlier (points 6,13,17) 

 
Fig. 4-1: Leverage points and outliers  

 

 Observations with normal trend 

 Leverage points 

oo  Good 

oo  Bad 

 Outlier 

 Vertical 

  Horizontal 

 

Courtesy of Ref : 

Failure of standardized residuals:The trend line (or plane or hyperplane) is attracted more towards the 

outliers and thus unit-weighted LS analysis does not represent the majority of data points. With ordinary 
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least squares procedure, dataset even with outliers, the most of data points fall within -3 SD to +3SD 

horizontal cut off lines. The reason is SD is inflated by outliers.  

 

Remedial Measure:Thus, robust methods to the presence of outliers (chart 4-1, KB. 4-1)) circumvent this 

hurdle.Median, robust (up to 50%) for outliers in central tendency has been in use and procedures based on 

this statistic have become pivotal in arsenal of cause-effect relationship analysis 

 

Chart 4-1: Robust cause-effect 

methods 

  Single median method 

  Repeated median method 

 

  Least squares 

  Least median squares 

  Trimmed least squares 

 KB. 4-1: Effect of multiple outliers on function of 

 residuals in y 

  

If Multiple outliers in y direction 

Then Standardized residuals & 

MD do not detect outlers 

Expl: s and s(i) explode in presence of outlier 

  

If Multiple outliers in x direction 

Then Standardized residuals & 

Transformed residuals do not detect outliers 

Expl: ordinary Least squares pull LS fit more 

 towards them 

If  

Then  
 

 

4.1 Least Median Squares (LMS):The method flow and algorithm of LMS2015 are given chart 4-2. 

 

 

`````````````````````````````````` `````````` 

Chart 4-2a: MethodFlow lms2015.m m file 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ 

Regression parameters by  

least Median Squares 

lms2015 

  

> Formulae for regression  

 parameters 

Formulas_lms 

> Ordinary residuals ordResid 

> Scaled LMS residuals scal_resid 

%  

>> output: Tabular summary tab_lms1 

2D-Graphic display gr_lms 

--------------------------------- ------------- 
 

MatLabProg 4-1 

lms2015.m (R S Rao 11/8/97, 

09/06/94) 

% 

function [a_LMS] = lms2015(X,x,y) 

 prin = 0 

% 

if nargin<4 

 clean 

 x = [1:4]'; y = 2*x; 

 X = [ones(length(x),1) x]; 

 y(3,1) = 3;prin = 0 

end 

% 

StepByStep_lms2015 

% 

[a_LMS] = 

Formulas_lms(X,x,y,prin); 

[ycal_LMS, resid_LMS,sdy_LMS] = 

ordResid(X,x,y,a_LMS); 

% 

[np,npar] =size(X); 

sc_LMSs = 1.4826*(1+5/(np-

npar))*sqrt(median(resid_LMS.^2)); 

sda_LMS = []; 

%  

 oo_lms2015  

 tab_lms1,gr_lms1 

% 

 

Chart 4-2b: Algorithm and m program of 

LMS2015.m 

MatLabProg 4-2 
Formulas_lms2015.m 
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For each set of points (NP_set = Npar) , regression 

parameters are calculated by solving deterministic 

equations 

cx = npar-1; 

for i = 1: np-cx 

for j = i+1 : np-cx 

if j> np 

else 

if x(i) ~= x(j)  

 X1 = [x1]; set = set +1; 

 
 

NPar =1    

-1

1
0 * 1

 
  
 

a y  

if npar-1 == 0 

       x1 = [1]; 

       y1 = [y(i);y(j)]; 

       zijk = [zijk;i ]; 

end 

  
 

NPar=2 

-1

0 1 11 1
*

1 1 21 2

     
     

     

a x y

a x y
 

if npar-1 == 1 

x1 = [X(i,:);X(j,:)]; 

 y1 = [y(i);y(j)]; 

 zijk = [zijk;i j ]; 

end 

  

In the case of bivariate-linear LS, slope and intercept are 

obtained from a pair points. 

NPar = 3 

0 1 11 12 1

1 1 21 22 * 2

2 1 31 32 3

     
     
     
          

a x x y

a x x y

a x x y

 

 

if npar-1 == 2 

x1 = [X(i,:);X(j,:); X(j+1,:)]; 

 y1 = [y(i);y(j); y(j+1)]; 

 zijk = [zijk;i j ]; 

 

end 

 

 
 

 

 

 

NPar =4 

0 1 11 12 1

1 1 21 22 2
*

2 1 31 32 3

3 1 41 42 4

     
     
     
     
     
     

a x x y

a x x y

a x x y

a x x y

 

if npar-1 == 3 

 x1 = [X(i,:);X(j,:); X(j+1,:);X(j+2,:)]; 

 y1 = [y(i);y(j); y(j+1,:);y(j+2,:)]; 

 zijk = [zijk;i j j+1]; 

end 

 

 

 

  

*ycal X a  Formula. Lms.2 

The residuals for all points are calculated. 

Re  sidy ycal y  Formula. Lms.3 

RESRESRES *.2  Formula. Lms.4 

The median of the squares of residuals is calculated. 

Med_Res2 (:,1)= Med(Res2) Formula. Lms.5 

a = X1\y1; %Formula lms.1 

 ycal = X * a; %Formula lms.2 

 resid = X* a - y; %Formula lms.3 

 res2 = resid.^2; %Formula lms.4 

 

 med_res2= median(res2); 

               %Formula lms.5 

 

 

ij = [i j]; 

 zij = [zij,[i;j]]; 

 za = [za;a']; 

% 

zssa = [zssa;med_res2 a']; 

 

end 

end 

end%j 

end% i 
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The minimum of medians of squares of residuals is found 

 

Parameters of LMS are those corresponding to 

Minimum(Med_Res2) 

 

zz2 = sortz(zssa);  %first row is minimum 

of med_res2 

 [r,c] = size(zz2); 

 

a_LMS = zz2(1,2:c)';  %Formula.lms.6 

 

Applications: LMS has been extensively used in chemistry, electrical engineering, process control, computer vision 

and finance over the last three decades. 
 

Example 4.1:A three point simulated data set of model y = 2*x with one y outlier is analyzed with 

lms2015.m. The estimated parameters (a0 = 0; a1=1) are exactly same as model ones even in presence of 

outlier. For the same data ordinary least squares (lls2015.m) outputs (a0 = 2; a1=0.5) which are wrong 

(output 4-1). It is consequence that least squares drag the regression line to minimize squares of Euclidian 

distances. But the parameters are unreliable as is evident from their standard deviations (sda0 = 2.2 and 

sda1=1.06). But sdy indicates LLS model (sdy_LLS: 1.2) is far less than that for LMS (3). A close 

examination shows that residual is (-3) for outlier (y= 3 for x = 3), while the residuals for the other two 

points are zero. It means that the procedure not only detects outlier, but also prevents its effect on slope 

and intercept of best straight line without eliminating it from dataset. It is all in considering median which 

is robust to 50% of outliers. The details of LMS calculation shown in Table 4-1. 

Output 4-1:Example 4.1 Outliers : 1; NP :3 
y = 2*x;NP:3; 

#outliers :1; no noise ; 

--------------------------------------- 

 a_lms a_lls sda_lls 

--------------------------------------- 

02 2.2913 

20.5 1.0607 

sdy_lms :3 sdy_lls : 1.2247 

k x        y   res_lms  res__lls 

  .................................. 

1120 -0.5 

22401 

333-3 -0.5 

    ................................ 

 

  33% outliers 

++  LMS finds correct solution 

 

Table 4-1:Details of parameter estimation with LMS 

 

i ,j X a0  a1 res2 zmed  a_lms  

1 2 

1 1 

1 2 
 

 

0 
 

2 

0 

0 

9 

0 

0 
0 

2 

1   3 
1 1 

1 3 
 

1.5 0.5 

0 

2.25 

0 

22.25 

1.125  

2 3 
 

1 2 

1 3 
 

6 
 

-1 

9 

0 

0 

36 

4.5  

Example4.2:It is similar to example 4.1, but with six data points (output 4-2). The y_outliers (also called 

vertical outliers) are in positions 3 and 6.The outliers are visually clear from scatter diagram. The bar 

diagram of experimental points, residuals by LMS and LLS represent functioning of two methods in 

presence of outliers. The residuals in y versus x and residuals versus y adds information of model fit. 

Output 4-2: Example 4.2 Outliers : 2; NP :6 

--------------------------------------- 

 a_lms a_lls sda_lls 

--------------------------------------- 

0 -0.13333 1.8929 

    ............................................... 

 kxy res_lmsres_lls 

............................................... 

11200.33333 
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21.80.48606 

sdy_lms :1.8028  

sdy_lls : 1.4259 

22400.53333 

333-3-2.2667 

44800.93333 

551001.1333 

6610 -2 -0.66667 

.......................... 

 

y = 2*x; NP:6; 

Noutliers :2; no noise: 
 

 

 

  

 
 

 

Features of LMS:The presence of outliers increases the magnitude of residuals of LLS model, but they are 

within 3SD limits. This is an artefact of increased standard deviation of residuals for entire data set.With 

LMS model, the residuals of outlying points are very high, but residuals for all other data are very low 

compared to LLS. But, when outliers are deleted, it is obvious that parameters and statistics are same or 

almost same for LMS and LLS.  

 The regression parameters of LLS adhering to necessary conditions are BLUE (best linear 

unbiased estimators). This combination of LMS to detect outliers and LLS to calculate parameters is a 

popular hybrid method (chart 4-3). 
Chart 4-3: LMS algorithm progress and implementation in commercial software packages 

1984 LMS algorithm  Rouaawwuw 
 

LMS 

h = NP+npar+1/2 

Highest possible breakdown =  

 {(NP- npar)/2 +1}/NP 

 

Software Program 

S-Plus  lmsreg 

SAS/IML LMS 

1987 Resampling alg 

(PROGRESS) 

Rouaawwuw 

1986 Cal of regression 

coefficients 

Steele and 

Steiger 

1993 Cal of regression 

coefficients 

Stromberg 

1997 Branch and bond alg 

in 

 selection of sub-sets 

of points 

Agykki 

Failure of LMS  

1 2 3 4 5 6
2

4

6

8

10

12
Scatter diagram

x

y

1 2 3 4 5 6
2

4

6

8

10

12
Scatter diagram

x

y

1 2 3 4 5 6
2

4

6

8

10

12
 LLS & LMS; * Expt points  

x

y

1 2 3 4 5 6
-5

0

5

10

15

No

y
- 

y
c
a

l

blue:Expt;  Resid. Green: LMS; Red: LLS; 

0 2 4 6
0

10

20
LMS line;  o:Expt points  

x

y
0 2 4 6

-10

0

10

x vs resid
l
ms(*)

x

y
 -

 y
c
a

l L
M

S

0 2 4 6
0

10

20
LLS line;  o:Expt points  

x

y

0 2 4 6
-10

0

10
LLS; Residual

x

y
 -

 y
c
a

l 
 L

L
S

0 5 10 15
-10

0

10
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l
ms(*)

y

y
 -

 y
c
a

l 
 L

M
S
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-10

0

10
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y

y
 -
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a
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Example 4.3:The data for model in example 4.1 (y = 2*x) is simulated but with outliers in different 

positions. LMS failed to find arrive at correct parameter values(output 4-3). This is an artefact of very 

small number of points (NP=3) although number outliers are 33%. 

Output 4-3: Example 4.3  NP : 3; #outliers :1; no noise: 

--------------------------------------- 

 a_lms a_lls sda_lls 

--------------------------------------- 

1 -0.33333 1.0184 

12 0.4714 

--------------------------------------- 

sdy_lms :2  

sdy_lls : 0.8165 

.......................... 

 kxy res_lmsres_lls 

.......................... 

11200.33333 

2230 -0.66667 

33620.33333 

.......................... 

sdy 

LMS fails to find correct solution 

 

Position of outlier has a role  

   

--------------------------------------- 

 a_lms a_lls sda_lls 

--------------------------------------- 

2 1.33330.25459 

11.50.11785 

---------------------------------------  

sdy_lms :1  

sdy_lls : 0.40825 

  .................................................. 

 kxyres_lmsres_lls 

  …............................................... 

11300.16667 

2240  -0.33333 

33610.16667 

................................................... 

 

LMS fails to find correct solution  

Position of outlier has a role 

4.2 Least Trimmed Squares (LTS) 

The dataset of NP points is divided into h subsets with coverage between NP/2 and NP. The LS parameters 

and residuals for each subset are calculated. The LTS parameters correspond to those of a subset (h) whose 

sum of squared residuals is minimum. However, CPU time grows with data size and number of 

subclasses.The sub-classification of outliers due to Rousseeuw consists of vertical/horizontal and leverage 

points. The leverage point is further divided into good and bad ones. In reality or even simulated datasets, 

all these types are not present in every case-study.The new algorithm is faster than other methods even for 

tens of thousands of points. Chart 4-4 describes the results of LTS for typical simulated and real life data 

sets.The algorithms, Matlab functions and KBs from pedagogic stand point will be reported [164] 

separately in hot-ice series. 
Chart 4-4: output of LTS analysis 

Simulated Data set 

 First 800 points are simulated randomly 
(Eqn. 3.2.1). The added noise is from 
standard normal variate. 

 The second set (801 to 1000) is from 
bivariate normal distribution  

 Now 1000 data points are divided into 501 
subsets. 

 LTS (Data) 
 

 

 

Inference 

  With initial h subsets bad leverage points 

influence regression. Wrong LTS line 

+ p-subsets yield correct LTS line with same reg 

coefficients 

 

1 ; 1000;   i i iy x nr NP Eqn. 3.2.1 

     1
 

2

1000 2 1
501

2

 


 
 

NP npar
h
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Courtesy ofP J Roussseeuw,K V Driessen, Data mining 

and knowledge discovery, 12(2006)29-45 
(0,100);

1: 800
(0,1) ;

bivariate

(50,0) 801:1000

1 0
25*

0 1











 


       

:

:

i

i

x norm
i

nr norm

normal distribution

mean i

sd

 

 

 

(b) Spectroscopic data on F band characteristics of  

56, 744 stars 

 

 

y: MAperF (Aperture magnitude, a brightness measure in 

F-band) 

x: scfF 

npar = 2 

 

Inference 

  ordinary LS fails - x-outliers makes LSline into 

parallel to x-axis 

+ LTS-line correctly shows decreasing trend of 

majority of starts -- The bunch of x-otliers 

appear as they are far away from LTS-fitted 

down ward trend line 

 

FAST_LTS algorithm  

 

standard datasets   

 NP Npar 

Heart 12 3 

phosphor 18 3 

Coleman 20 6 

wood 20 6 

salinity 28 4 

aircraft 23 5 

delivery 25 3 
 

 

large data sets 

#outliers (40%) 

NP Npar 

100  [2,3,5] 

  

500 [2,3,5] 

1000* [2,5,10] 

10,000 [2,5,10] 

50,000 [2,5] 

  

*: 35% outliers 
 

x-outliers 

(0,100);
1: 800

(0,1) ;

_






:

:

i

i

x norm
i

nr norm

x outliers

 

Residuals from LS and Robust regression 

Robust residuals versus robust distances:Van Zomeren (1990) proposed a graphic display of ratio of 

residuals to standard deviation versus robust distances (Fig. 4-2).The vertical and horizontal cutoff lines 

discriminate outliers as different categories 
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Standardized LTS distance versus robust distance: The second cluster corresponds to larger subset of 

observations with large robust residuals and also with large robust distances.In the accepted terminology, 

they are bad leverage points. But, the ground truth is that they correspond to giant stars which have 

altogether different behaviour from others. 

 

Thus, here the outliers correspond to another process/phenomenon and the lacuna lies in combing data sets 

belonging to different clusters, each of which are homogeneous with linear trend. The combination 

resulted in a heterogeneous outcome. 

 

 
Fig. 4-2: Residual analysis  

 

 

 

 

Least Absolute deviations (LAD) 

The minimization of sum of absolute of residuals (Eqn. 04.1) is referred as LAD. It is also called least 

absolute errors (LAE), least absolute value (LAV), least absolute residual (LAR), or sum of absolute 

deviations.In order words, it is finding L1-norm, remembering that least squares solution uses a L2-norm. 

The necessary conditions, data structure and model are same as that of LLS. There is no analytical solution 

for object function and thus no straight forward way to obtain optimum parameters of model.So, it is 

transformed into a linear programming format and solved with the iterative methods (table 4-2). The 

algorithm consists of addition of a pair of unknown (so called slack) variables. The features of LAD are 

compared with LLS in chart 4-5.Alternate ways of solving LAD are considering it as quantile regression 

and FMINUNC (Optimizaation toolbox) or ROBUSTFIT (statistics Toolbox). 

 

Chart 4-5: Object function and goal in LAD  
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 

  

1 1

1 1

_

_

( )

min

min ( ) min

NP NP

i i

NP NP

i i

i i i

i i i

objFn LAD

objFn LAD

min sum abs resid

y Fn x residy

Goal

y Fn x residy

y

 

 

 



   
     





 
 

  



 

 

 Eqn.04.1 

This had no direct solution 

 

Table 4-2: Iterative methods for 

LAD 

 Simplex-based methods  

 Barrodale-

Roberts algorithm  

 Iteratively re-weighted 

least squares 

 Wesolowsky’s direct 

descent method 

 Li-Arce’s maximum 

likelihood approach 

Constrained solution for LAD 

 

*y X par u v    

For single x variable  

0 1*i i i iy a a x u v     

 

1

2

3

0

u

u u

u

 
  
 
  

 

 

 

 

 

 

1

2

3

0

v

v v

v

 
  
 
  

 

 

 

 

Chart 4.5b: Features of LAD vs 

LLS 

LAD 

regression 

LLS 

+ Robust   Not 

very 

robust 

  Unstable 

solution 
+ Stable 

  Possibly 

multiple 

solutions 

+ Always 

one 

solution 

   

With these equality constraints , the object function becomes, the goal is 

 _ min( _ _ min ( ) ( )  Goal LAD objFn LAD Transfored sum u su v  

Eqn.04.2 

Total numbers of unknowns = regression parameters + u and v vectors 

                        = 2 + 2*NP 

Ref: Ref: Errico 

 

 

 

 

 
LAD2015.m calls matlab  

built-in functionlinprog.m 

LAD2015 

 

 

 

linprog 

MatlabProg 4-3 

% 

%LAD2015 

% 

%% 

function [coef_LAD,stats]= LAD2015(X,x,y) 

 %% 

 

 

if nargin < 3 

clean 

 

x = sort(rand(100,1));  

nr2 = rand(size(x))-.5; 

y = 1+2*x + nr2; 

X= x; 

 

x = [1:6]';[np,c] = size(x); 

 

nr2 = noise_n(np,0.,0.02); 

y = 2*x + nr2;X=x;[X,y,nr2] 

end 

[X,y] 
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%% 

(n,nvar) = size(x) 

 

% our objective sums both u and v, ignores the 

regression 

% coefficients themselves. 

[np,col] = size(x); 

nr2 = zeros(np,1); 

objFnLAD =[0;0; ones(2*np,1)];%f = [0 0 ones(1,2*n)]'; 

 

% a and b are unconstrained, u and v vectors must be 

positive. 

LowerBound = [-inf; -inf ; zeros(2*np,1)]'; %LB = [-inf 

-inf , zeros(1,2*n)]; 

% no upper bounds at all. 

UpperBound = []; 

 

% Build the regression problem as EQUALITY constraints, 

when 

% the slack variables are included in the problem. 

Aeqn = [ones(np,1), x, eye(np,np), -eye(np,np)];% Aeq = 

[ones(n,1), x, eye(n,n), -eye(n,n)]; 

beqn = y; 

 

% estimation using linprog 

par_LP = 

linprog(objFnLAD,[],[],Aeqn,beqn,LowerBound,UpperBound); 

 

% we can now drop the slack variables 

coef_LAD = par_LP(1:2); 

%out99 

gr_lad2015 

% 

oo_lad2015 

 

 

Dataset 4-1: A simulated linear data with added noise is used to calculate intercept and slope of the straight 

line with LAD (output 4-4). 

Output 4-4: DataSet 4-1 

 

 

 

------------------------- 

a_LAD    

------------------------- 

-0.0217  intercept 

2.0111  Slope 

 
 

 ..................................... 

     x         y     res_LAD     

 ..................................... 

1.00001.9893 -0.0000 

2.00004.05360.0531 

3.00006.02460.0130 

4.00008.0134 -0.0092 

5.0000  10.007   -0.0259 

6.0000  12.044    -0.0000 

 

Sdy_LAD 0.0268 

 
Blue: simulated data;  

Red:normal noise 

Green: LAD line;  

Blue: data with noise 

 

 

Typical literatue reports in development of robust regression methods and their applications are described 

in table 4-1. 

Table 4-1: Recent advances and applications of LAD 
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Data with Applied in 

  Heteroscedastic interval  

  Censoring left truncation 

 

  For longer-tailed error distributions and 

outliers 

 

 
  +Blind arma  

Data with Applied in 

  outliers such as deep valleys 

 

  Robust against outliers 

  large heterogeneous noise 

 

  Fundamental matrix: algebraic representation of epipolar geometry 

 

  Epipolar geometryis the intrinsic projective geometry between two views 

  Multiple change points occurring at 

unknown times 
  Estimation of multiple-regime regressions 

 
  semiparametric model with longitudinal data 

 
  Robust Binary regr 

 
  Linear inequalities 

  Inconsistent systems 

 
  linear and mixture linear errors-in-variables regression models 

 

  Autoregressive time series    

 
  Minimizing the maximum of a weighted sum of absolute deviations 

  Serial correlation 

  Nonnormal  

  Outliers 

  Autocorrelation 

  time series regression 

 
   

  Fuzzy input 

  Fuzzy output 

 

  Fuzzy multivariate regression models 

  outliers in the response variable   Inverse least absolute deviations regression 
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  MLR 

  Number of upper or lower outliers in 

normal sample 
  Parameters estimation in real time 

 
   

  Single time series 

 

 

  Box-Jenkins models 

  multiplicative seasonal moving average model  

  monthly rice sales data and to US airline passenger data 

 
  Limiting behavior of least absolute deviation estimators for threshold 

autoregressive models 

  Heavy-tailed innovation 

 

  ARCH-type model 

 
  Huber loss 

  Iteratively reweighted least squares algorithm 

  Tukey loss  

  Outliers   SVM model  

 
  Object tracking  

  Corruption modelled as a Laplacian distribution 

  LAD–Lasso optimisation model proposed based on Bayesian Maximum A 

Posteriori (MAP) estimation theory 

  Trapezoidal fuzzy number 

 

  Fuzzy regression model  

 
  Short term forecasting 

 
  Robust variable selection procedure  

 

 

Table 4-1b: Recent advances and applications of hybrid_LAD, LMS and LTS 

 Method Data with Applied in 

Fuzzy LAD  
  Linear problem 

Moving LAD   outliers 

 

  Weighted median problem 

  Global data approximation  
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Non-linear LAD   Unevenly distributed data errors 

about the function 
  Non-linear least absolute deviation 

Non-

parametric 

LAD   Regressor and error term are 

contemporaneously correlated 
  Nonparametric estimation in a nonlinear 

cointegration model 

Penalized LAD   Cauchy noise distributions  

 

 

  High dimensional sparse regression 

  Npar>Np 

  Does not need any knowledge of standard deviation of 

the noises or any moment assumptions of the noises. 

 

Stepwise 

penalized 

LAD   Outliers in the response variables  

  Heavy-tailed distributederror 
  asymptotic normality of the index parametric 

estimator  

  oracle property of the linear parametric estimator 

Orthogonal LMS   Outliers are at random   LS ortho_LS LMS ortho_LMS are compared  

Clipped  LASSO Lasso 

  Selects too many noisy 

variables. 

  Moderatly clipped (MC) LASSO 

 

  Deletes noisy variables successively without 

sacrificing prediction accuracy much 

Weighted WLAD   Asymptotic normality 

  Stationarity  

   Non-stationary 

 

  Wlad 

  Arfima 

 

Weighted WLAD   Heavy-tailed errors 

  Outliers in x 

 

  Adaptive least absolute shrinkage and selection 

operator (LASSO) 

  Simultaneous robust parameter estimation and variable 

selection in regression 

 

 

 

Table 4-1c: Recent advances and applications of LASSO, LMS 

LMS   Outliers with respect to the set of 

independent variables 
  \{SYSTAT\} 

LMS   non-Gaussian   Fractionally integrated autoregressive moving average 

LMS   Outliers 

  highly skewed or heavy tailed 

distributions 

 

  Robust fuzzy linear regression model based on the Least Median 

Squares 

LTS   Multicollinearity  

  Outlier 

  HeterosedasticNoise  

 

LMS  
  Outlier-free major region of the shape is extracted 
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LMS  
  Probabilistic algorithms for LMS 

LMS   Left-truncated  

  Right-censored 

 

LMS  
  A Microsoft Excel workbook developed 

  bivariateRegression through the origin 

LARE  
  Least absolute relative error (LARE) 

LASSO  
  Hydrophilic interaction liquid chromatography (HILIC) 

  QSRR 

  Nucleosides 

LASSO   Multiple-regimes  

  Unknown number of thresholds 
  Threshold autoregressive models (TAR)  

  Consistent location of the thresholds  

LASSO  
  Fault isolation  quadratic programming problem with a sparsity 

constraint  solved with LASSO 

 

05. Polynomial regression 

Polynomial models are invoked if the magnitudes of residuals in y for a linear model are far greater than 

the accuracy of the measurement/ reproducibility of the data and/or exhibit a trend at least for four to five 

successive points. A distinct case is when the scatter diagram of x vs y shows a parabolic trend or even 

residuals are not random. Such non-linear trends are common in univariate/multi-component calibration, 

variation of chemical parameters with dielectric constant, ionic strength or temperature.The procedure of 

moving towards cubic and quartic terms along with binary and higher order cross product terms is 

continued as per the need and prior literature reports for similar tasks.A full quadratic model is sought after 

in experimental design in many fields of research under the name 'Response surface methodology' and was 

discussed extensively in our earlier reviews [17-44 and references therein]. The advantage with RSM in 

full factorial, central composite designs is that design matrix is orthogonal and ordinary (unit weighted) 

multiple least squares method is adequate. In all other cases, values of x, x
2
, x

3
 etc. are correlated and thus 

MLR becomes unstable with number of terms of design matrix. However, its prevalence in yester years in 

applied sciences was with an implicit plea that it is used for finding trend (curve fitting) with minimum 

residuals and not as a technique for arriving at parameters of physico-bio-chemical parameters.In 

mathematical literature the more appropriate methods available are orthogonal-/ collocation/ rational 

polynomials with of course a few constraints on x-scale.The data input and least squares procedure are 

same as that for LLS except for the developed design matrix. 

Method flow of polyLS2015: This program uses design matrix function to calculate linear, quadratic, 

cubic, quartic vectors and also binary and ternary product terms for all x variables.Different models are 

generated with polyModels program. For each model, exploratory analysis including angle and correlation 

between all pairs of vectors and singular values of X matrix are inspected. The regression coefficient, their 

statics and ordinary residuals are outputted in tabular form and in graphic mode. The flow of m-functions 

is in chart 5-1. 

Chart 5-1: Program flow of polynomial regression 

 

```````````````````````````````````````````````````````````````````````````````` 

 Method flow polyLS2015m file 
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Cal linear, quadratic,cubic,quartic, binary/ternary cross products desmat2015 

Generate models with different combinationsPolyModels 

 

Repeat foreach model in the set 

 % 

 CalCorrelation coefficient, angle between vectorsccangsvd 

SVD analysis for each term in model 

 cal parameters, ycal and ordinary residualsFormulas_LS 

 cal standard deviation, t balues of regression coefficientsregcoefstat 

 

 Storing output in object modeoo_polyLS 

 Graphic output  

End repeat 

 % 

 Summary table  

-------------------------------------------------------------------------------- 

Design matrices for polynomials of second to fourth order: The m-functions for design matrix and models 

up to fourth degree polynomial are described inMatLabProg. 5-1. 

MatLabProg. 5-1: 

% 

%polyLS2015.m (R S Rao) 4/13/93, 10/27/1997,10/21/2011 

% 

 

% 

%Flow of Method base  

% 

StepByStep_polyLS2015 

 

 

%%Terms in Polynomial model 

 

[Models_] = polyModels ; 

% Design matrix 

[one,lin,quad,cube,quartic] = desmat2015(x);  

% 

 

%% 

 [Nmodels,columns] = size(Models_); 

M1 = 1; M2 = Nmodels; 

%% LLop for select polynomial models 

 

for n = M1:M2 

% 

clear X 

 

z = Models_{n,:}; dispst(['^^^^^^^^^^^^^^^^^^^^ Model : ', z]) 

X = [one eval(z)]; 

[X,y] 

% 

%% 

% Reg parameters, ord_residuals, par statitics 

% 

lspar2015 

% 

 %% 

 oo_regpar 

%gr_polLS99  
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DataSet 5.1: The response (y) data for a third order polynomial (y = 1 + fn(x),a: [1,1,0.2,0.8]) is simulated 

in the x range of -1 to +1 with 0.2 increments.The Gaussian noise generated with zero mean and 0.05 

standard deviation is added for the eleven y points. 

 

Results and knowledge bits: The contributions of individual components to fn(x) in numerical and 

graphical form follows (output 5-1).No noise is added to the data. 

 

Output 5-1: DataSet 5-1  

Simulated data of third order polynomial 

f1 x;  f2 0.2 * x.^2;   f3 .8*x.^3;  f4 ones(rx,1); 

 

fn = f1+f2+f3+f4; 

Order : 3; NP : 11 

 

  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

      x,     y       noiseRN,   fn,     f1,      f2,     f3,      f4      

------------------------------------------------------------------------- 

      -1    -0.6      0-0.6      -1     0.2     -0.8      1 

     -0.8   -0.0816      0   -0.0816     -0.8    0.128   -0.4096      1 

     -0.6    0.2992      0    0.2992     -0.6    0.072   -0.1728      1 

     -0.4    0.5808      0    0.5808     -0.4    0.032   -0.0512      1 

     -0.2    0.8016      0    0.8016     -0.2    0.008   -0.0064      1 

      0      1      01      0      0      0      1 

     0.2    1.2144      0    1.2144     0.2    0.008    0.0064      1 

     0.4    1.4832      0    1.4832     0.4    0.032    0.0512      1 

     0.6    1.8448      0    1.8448     0.6    0.072    0.1728      1 

     0.8    2.3376      0    2.3376     0.8    0.128    0.4096      1 

      1      3      03      1     0.2     0.8      1 

[Desired meanYnoise, stdYnoise] 

 

      0     0.00 

mean(nr),std(nr)obtained for NP: 11 

 

  0.0   0.0  

 

 

 

 

 

 

 

Fig 5-1shows individual contributions of fn, x, 0.2*x
2
, 0.8*x

3
. Fig.5-2(b) depicts function, noise and that 

with noise. Fig. 5-2 pictures the same information but on a single scale (-1 to +1). It enables visual picture 

of individual trends and on relative scale. 
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Fig. 5-1(a): Linear, quadratic and cubic Components of fn 

a) f1 :x; 

 

b) f2: 0.2 * x.^2; 

 

c) f3: .8*x.^3; 

 

d) f4: ones(rx,1); 

 

e) fn: f1+f2+f3+f4; 

 

( a) (b) 

 

( c) (d) 

 

 (b)( c) 

Noise : 0 

 

 
 

 
Fig. 5.2 

[Desired meanYnoise, stdYnoise] 

 

0 0.05 

mean(nr),std(nr)obtained for NP: 11 

 

-0.012372 0.032935 

 

  

 

Analysis with third order model 

 

Correlation coefficient, angles and singular values of design matrix: The pairs of vectors (x2,x3; x3 x4) are 

highly linearly correlated.From the profiles (Fig.5-3), it bears no meaning.The vector angles are also low 
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for pairs (c1 c3; ), but orthogonal for the pairs (c1 c2; c3 c2; c3 c4;c4 c1).The singular values and percent 

explainability show all the four functions significantly contribute to y response. 

 

Table 5-1: Correlation matrix, angles between vectors, singular values and their explainability 

Correlation matrix  

 

Angles between column vectors 

 

 

 

Singular values 
 

~~~~~~~~~~~~~~~~~~~~~~ 

x1x2x3x4y1 

------------------------------------ 

x1NaN 

x2NaN1.00 

x3NaN0.001.00 

x4NaN0.920.001.00 

y1NaN0.990.070.971.00 

 

--------------------------------------- 

c1c2c3c4c5 

--------------------------------------- 

c10.00 

c290.000.00 

c341.4590.000.00 

c490.0022.8390.000.00 

c542.9947.7554.5548.730.00 

c1c2c3c4c5 

 

 

 

   s           % expl 

---------------------- 

3.6012    46.234 

 2.6017    33.403 

 1.0791    13.854 

 0.5069    6.5086 

 

Explanation: First column of correlation matrix is NaN, since the first column of X is colum vector of ones 

>>one =ones(6,1) 

one = 

     1 

     1 

     1 

     1 

     1 

     1 

>>corrcoef([one ]) 

ans = 

   NaN 

 

>>corrcoef([one one ]) 

ans = 

   NaN   NaN 

   NaN   NaN 

 >>x = [1:6]' 

x = 

     1 

     2 

     3 

     4 

     5 

     6 

>> corrcoef([x]) 

ans = 

     1 

 

>> corrcoef([x x]) 

ans = 

     1     1 

     1     1 

 >>corrcoef([one x]) 

ans = 

   NaN   NaN 

   NaN     1 

 

>>corrcoef([one x x one]) 

ans = 

   NaN   NaN   NaN   NaN 

   NaN     1     1   NaN 

   NaN     1     1   NaN 

   NaN   NaN   NaN   NaN 

 

 

 

 
x: quad ; y: cube 

 
x: lin ; y: cube 

 
x: lin ; y: quad 

Fig. 5-3: Scatter profiles of pair wise component 

 

Regression coefficients and statistics for third order polynomial: The estimated regression coefficient from 

least squares analysis coincides with the values with which the function is generated. The standard 

deviations in par are of the order 10
-30

, as it is simulated data without noise. Standardized regression 

coefficients and t-values bear no relevance as no stochastic component is present in response. 

 

 

Table 5-2: Model No: 7 

y = Fn{[lin quad cube]} 

[zpar_poly{n,:} zsda{n,:} zstanda{n,:} zta{n,:}] 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Parsda       standa        

```````````````````````````````````````````` 

      1    5.151e-31   4.8437e-16             

11.3894e-30  1.3066e-15             

0.2 9.6521e-31  1.8153e-16             

0.81.7986e-30  1.353e-15       

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

 

Chart 5-2: 

ModelPoly =  

'[lin]' 

'[quad] ' 

'[cube] ' 

'[lin quad] ' 

'[lin cube ]' 

'[quad cube]' 

'[lin quad cube]' 

'[quartic]' 
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  This is an analysis of choice for curve fitting and not parametrization design. Another situation is 

when the SDs of regression coefficients are high and sdy is low which serves in curve fitting and 

interpolation.  

 

Statistical analysis of choice of best set of models: The program automatically tests eight models and 

outputs regression parameters and statistics.From a perusal of sdy, it is obvious, quad, quartic models are 

ruled out based on sdy (>1) as the y-data in the range of -1 to +1. Cubic as well asquad and qubic models 

are the next set to be investigated. The sdys are similar. Finally the two models viz. (i) linear & cubic 

(ii)lin quad & cubic are prospecting. At a glance model 7 gives an impression of over ambitious from the 

sdy magnitude of 1e-16. The further analysis will help to choose the correct model. 

 

Table 5-2(b): Model No: 7 

Sdy 
1 2 3 4 5 6 7 8 

[lin] 

 

[quad] 

 

[cube] 

 

[lin quad] 

 

[lin cube ] 

 
[quad cube] [lin quad cube] [quatric] 

0.17548 1.0532 0.26784 0.15907 0.074103 0.25739 8.7024e-16 
1.0534 

 

Valid if  

Sdy in y > 0.2 
invalid invalid 

Valid if  

Sdy in y > 0.2 
Acceptable invalid Overambitious invalid 

 

Sd in parameters: quad model is invalid as sda >500%. In the quatric model, sda of quatric term rules out 

its validity (sda>500%) and mean term also has sda >50% ruling out the model.All other models appear 

reasonable and cannot be rejected based on sda and obviously on t-values. 

 

Table 5-2(c): Model No: 7 

Sda 
[lin] 

 

[quad] 

 

[cube] 

 

[lin quad] 

 

[lin cube ] 

 
[quad cube] [lin quad cube] [quatric] 

OK Invalid 
OK OK OK OK OK invalid 

 

 

 

Table 5-2(d): Model No: 7 

#  
Parsd_par Standardized 

 par 

 

Parameterof 
 

1 
[lin] 

 

1.080.010317 0.060234 

1.5696 0.0163120.13841 

 

 

Linearinflated 

Quad, cube missing 

2 
[quad] 

 

10.56140.50567 

0.21.0520.18951 

 

quad exact 

 

Lin and cube missing 

3 
[cube] 

 

1.08 0.024033 0.091936 

1.993 0.0491890.34724 

 

Cubic inflated 

 

Lin quad missing 

4 
[lin quad] 

 

1 0.014406 0.08100 

1 0.014406 0.08100 

0.2 0.026995 0.030358 

 

Linear inflated 

Quad exact 

 

 

cube missing 

5 
[lin cube ] 

 

1.080.0020696 0.026978 

10.00843320.10179 

0.80.0109160.10541 

 

X exact 

cube exact 

 

 

 

Quad missing 
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6 [quad cube] 

10.0377180.13107 

0.20.070677 0.049121 

1.9930.0511020.35393 

 

Quad exact 

Cube inflated 

 

 

 

 

 

Linear missing 

     

7 
[lin quad cube] 

 

1      5.151   e-31    4.8437e-16 

1      1.3894e-30     1.3066e-15 

0.2   9.6521e-31    1.8153e-16  

0.8   1.7986e-30    1.353e-15 

 

 

All exact 

 

 

 

 

All terms upto cubic 

8 [Quatric] 
1.02710.470770.43545 

0.185741.01410.16963 

High standard  

deviation 
Model invalid 

 

Pointwise residuals: Ordinary residuals speak of the model if the precision and accuracy of y response is 

known apriori. Otherwise local heuristics based on discipline govern. A bird's eye view of residuals 

(numeric magnitude (table 5-2e, graphs to detect trends Fig. 5-4) yield the information bits vide infra. 

 

The magnitudes of residuals of models 1 and 3 infer that they are acceptable if data reproducibility 

is greater than 0.15. The trends in plot of residual vs x values, all models show a significant trend 

indicating inadequacy of models. Looking into magnitudes on plots indicate model 5 miss contribution to 

an extent of 0. 2 and similarly model 6. Models 1 and 8 miss a larger contribution of around 1.0. 

 

 It can be reconciled as model 1 does not contain most significant quadratic and cubic terms, while 

quartric model does contain any of the terns of simulated data. Another point to be noted is the range of x 

is -1 to +1 and hence the relative magnitudes of quadratic and cubic terns are less than linear one. Further, 

the coefficients 0.2 and 0.8 have diminishing effect. A perusal of data shows their relative significance. 

 

Table 5-2(e): Model No: 7 

Columns 1 through 9 

      1     -1      0-0.1104    -1.8   0.31303-0.2304     0.12   0.19303 

      2     -0.8      0   0.09408   -1.2096   -0.14117   0.04608    0.048   -0.18917 

      3     -0.6      0   0.16096   -0.7728   -0.35031   0.16896    -0.008   -0.34231 

      4     -0.4      0   0.12864   -0.4512   -0.37165   0.17664    -0.048   -0.32365 

      5     -0.2      0   0.03552   -0.2064   -0.26246   0.10752    -0.072   -0.19046 

      6      0      0-0.08      0    -0.08      0    -0.080 

      7     0.2      0  -0.17952    0.2064   0.11846  -0.10752    -0.072   0.19046 

      8     0.4      0  -0.22464    0.4512   0.27565  -0.17664    -0.048   0.32365 

      9     0.6      0  -0.17696    0.7728   0.33431  -0.16896    -0.008   0.34231 

      10     0.8      0  0.00192    1.2096   0.23717  -0.04608    0.048   0.18917 

      111      0  0.3504     1.8  -0.0730290.2304     0.12   -0.19303 

              x     nr     1           2     3           4      5           6 

 

 Columns 10 through 12 

  6.6613e-16   -1.8128     -0.6 

  1.2212e-15   -1.1848   -0.0816 

  1.2768e-15   -0.75197    0.2992 

  9.992e-16   -0.45106    0.5808 

  6.6613e-16   -0.2258    0.8016 

  2.2204e-16  -0.0271031 

 -2.2204e-16    0.187    1.2144 

 -8.8818e-16   0.45134    1.4832 

 -1.1102e-15   0.79363    1.8448 

 -8.8818e-16    1.2344    2.3376 

0    1.7872      3 

 

   7          8             y 
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Figure 5-4: Plots of residual for exhaustive model set[Models No: 1 to 8] 

Residuals 

1 2 3 4 5 6 7 8 

[lin] 

 

[quad] 

 

[cube] 

 

[lin quad] 

 

[lin cube ] 

 
[quad cube] 

[lin quad 

cube] 

[quatri

c] 

       

 

Cubic 
Linear& 

cubic 

Quadratic + 

?? 
Cubic Quadratic cubic 

Adequate or 

overambitio

us 

 

        

   Input noise     

   

 

    

Consolidation of model results: Table 5-3 incorporate picking up inadequate, adequate and overambitious 

models from the exhaustive model set. 

Table 5-3: Knowledge bits for picking up best model 

 Residuals 

 1 2 3 4 5 6 7 8 

 [lin] 

 

[quad] 

 

[cube] 

 

[lin quad] 

 

[lin cube ] 

 
[quad cube] [lin quad cube] 

[quatri

c] 

Resi
d 

       

 

Sdy Valid if  

Sdy in y > 0.2 
invalid invalid 

Valid if  

Sdy in y > 0.2 
Acceptable invalid Overambitious invalid 

         

sda 
 OK    Invalid    

OK OK OK OK OK invalid 
 

         

 

 

 Residuals 

 1  3 4 5 6 7  

 [lin] 

 
 

[cube] 

 

[lin quad] 

 

[lin cube ] 

 
[quad cube] [lin quad cube]  

Resid 
Cubic  

Quadratic + 

?? 
Cubic Quadratic cubic 

Adequate or 

overambitious 
 

         

Sdy Valid if  

Sdy in y > 

0.2 

 invalid 

Valid if  

Sdy in y > 

0.2 

Acceptable invalid Overambitious  

         

sda  OK     OK OK OK OK OK  
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 

 Residuals 

 1   4 5  7  

 [lin] 

 
  

[lin quad] 

 

[lin cube ] 

 
 [lin quad cube]  

Resid 
Cubic   Cubic Quadratic  

Adequate or 

overambitious 
 

         

Sdy Valid if  

Sdy in y > 

0.2 

  

Valid if  

Sdy in y > 

0.2 

Acceptable  Overambitious  

         

sda  OK      OK OK  OK  

         

 

 Since there is no noise 

 
 
since simulated data with zero noise even 0.07 

in sdy is intolerable. So, 

  

Model No 
 

5 7  5 7 
 

7 

Statistic [lin cube ] [lin quad cube]  [lin cube ] [lin quad cube]  [lin quad cube] 

Resid 
Quadratic 

Adequate or 

overambitious 
 Quadratic Adequate or overambitious 

 Adequate or 

overambitious 

        

Sdy Acceptable Overambitious  Acceptable Overambitious  Overambitious 

        

sda OK OK  OK OK  OK 

        

 

The acceptable one is model 7. It appears to be overambitious from analysis of noisy data.But it is fact of 

modeling that it is the acceptable model. The reproduction of regression coefficients and degree of 

polynomial with zero residuals is a worthy knowledge bit. 

 

6. Multi linear LEAST SQUARES (MLR) 

The variation of a response vector on more than one explanatory variable is modelled as  

y=a0 + a1* x1+ a2 * x2 +…. + aj * xj  +  

Here, the model is linear in variables as well as in parameters which are estimated by a regression 

procedure. The necessary conditions and consequences are same as for linear least squares with one 

explanatory variable.The additional constraint is that the two variables (x1 andx2) are orthogonal to each 

other.The holds in the experimental design task with factorial designs. In all other instances, the x 

variables are to be chosen such that their source is not only independent but also their numerical 

magnitudes are not statistically linearly correlated.Here, the number of variables is restricted to two in 

simulated sets while larger number of xs is considered for real life datasets.  

 

Linear model with two explanatory variables: The variation of rate constant or equilibrium constant of 

reactions of homologous organic moieties with macroscopic properties of the compounds (substituent 

effect, steric factor) is explained by linear model with two explainable parameters 

y = a0 + a1*x1+ a2 *x2 +  

 

Except additional tests for the relationship between x1 and x2, the functions developed for lls2015m are 

used in parameter estimation, residual analysis and regression coefficient statistics. Chart 6-1 incorporates 

the data structure,additional necessary conditions for multiple linear regression. 
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Chart 6-:1 Data structure  
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 
  

y

y y

y

 

 

 0 1 2

: ;

: ;



T

Design matrix X one x

par a a a
 

x : Explanatory/ 

independent variable 
 

 

MODEL 

Matrix form Algebraic notation 

: _ * Model y normal noise X par
 

Noise : iidnoise of normal distribution 

y=[123......NP ]T 

 

11 12 0

21 22 1

31 32 2

1

_ 1 *

1

   
    
   
      

x x a

y normal noise x x a

x x a
 

0 1 ,1 1 ,2

: _

* *

 

 i i

Model yi normal noise

a a x a x
 

 

Chart 6-1b: Multiple linear regression (MLR) 

     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

Necessary Conditions(NC)         

~~~~~~~~~~~~~~~~~~~~~~~~ 

oo   'Indepedent i.e. 

ang(x1,x2)= 90
o
' 

oo   ' cc(x1,x2)= 0' 

oo   ' + NCs of LLS' 

 

(single) Object Fn of MLR    

~~~~~~~~~~~~~~~~~~~~~~~~~ 

objFn: 'Sum of squares of 

residuals' 

Goal: 'Min(objFn)' 

SolutionMethod: 'Unit weighted 

Least Squares' 

 

*

:min( )

 TobjFn residy residy

Goal objFn
 

 
1

* * *T Tpar X X X y


  

 

 

 

------------------------------------------------------ 

Failure conditions      Remedial Measure 

------------------------------------------------------ 

'x1 and x2 correlated'  'Ridge Regression ;PCR' 

'Mixture constraints'   'PLSR' 

------------------------------------------------------ 

 

  

Chart 6-1c: 

````````````````````````````````````` 

  MLR2015.m      MethodBase    m file 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 Calculation of       % 

> Cal polynomial,  

   crossproducts vectors    desmat2015 

> Models developement      mlrModels 

 

% 

%       mlr2015.m  (R S Rao) 
8/10/92  9-11-15 

% 

function [LLS_stats] = 

mlr2015(X,x,y,prin) 

% 

% 

if nargin < 3,  
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  For each model 

> X matrix 

>  LLS procedure         lls2015 

  endFor 

 

>> output: Tabular summary  

 

     data_x1x2y_01 

end 

diary off 

!del mlr2015.txt 

diary mlr2015.txt 

% 

if nargin <3 | nargin ==3 

    prin = 0; 

end 

%  

stats_LLS = []; 

 

%           

%    Estimation of Slope,inter, ycal 

% 

StepByStep_MLR2015 

 

anova2015(X,x,y); 

[a_LLS,ycal,res2] = Formulas_LS(X,x,y);  

[sda_LLS,ta_LLS,standa_LLS] = regcoefstat(X,x,y); 

[ycal,residy,sdy] = ordResid(X,x,y,a_LLS); 

 diary off 

edit mlr2015.txt 

 

 

Analysis of Variance for regression 

`~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

          sum of    degrees of   mean F_Reg 

          squares   freedom    squares 

`~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Model      52.2337    2     26.1169    198303.6776 

Residualy   0.0001317 1    0.0001317 

Totaly     52.2338    4     17.4113 

`-------------------------------------------------- 

x = 

    1.983e+05 

Information: RegMod  is acceptable at 0.05 

significant level 

              since,Fcal:198303.6776 > F_table_value 

= 4999.5(with df.Residy=1,df.Model 2): 

Inference_ANOVA :Chance  occurance of RegMod < 

0.05(or <5%) probability  

              KB: F is scale independent  

 

np: 4 

                  npar: 3 

              ss_Model: 52.234 

             ss_Residy: 0.0001317 

               ss_Toty: 52.234 

              df_Model: 2 

             df_Residy: 1 

               df_Toty: 4 

           df_TotyCorr: 3 

          Meanss_Model: 26.117 

         Meanss_Residy: 0.0001317 

           Meanss_Toty: 17.411 

            F_RegModel: 1.983e+05 

    probFvalueRegModel: 5.0427e-

06 

             R_squared: 1 

     R_squared_adjsted: 0.99999 

            replicates: 'No' 

                   LOF: '' 

                    PE: '' 

 

  

|||||||||||||||||  statistics of regress parameters 

     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

---------------------------------------------------------------------------- 

         a,         sda,        standErra,      standa,     ta   ttable prob 

---------------------------------------------------------------------------- 

      0.99986    0.0057381          0.5      0.49993       174.25    0.0036534 

       1.9961    0.0057381          0.5      0.99806       347.88    0.00183 

       3.0123    0.0057381          0.5      1.5061       524.97    0.0012127 

```````````````````````````````````````````````````````````````````````````` 

 

\\\\\\\\\\\\\\  t- statistics of regress parameters 

     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

............................................................................. 
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          a,          ta   t-crit     ta>tcrit       alpha  

............................................................................... 

 0.99986      174.25       63.657            1         0.05 

       1.9961       347.88       63.657            1         0.05 

       3.0123       524.97       63.657            1         0.05 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

 

Resid =  

                 vary: 0.0001317 

                  sdy: 0.011476 

        scaleEstimate: 0.011476 

            R_squared: 1 

    R_squared_adjsted: 0.99999 

 

varCovResid:  

   3.2925e-05            0            0 

            0   3.2925e-05            0 

            0            0   3.2925e-05 

 

 

 

 

 

 

MatLabProg 6-1 

% 

% mlrLS2015.m  (R S Rao) 8/10/92 9-

11-15 

% 

% 

 

 

StepByStep_MLR2015 

 

 

%%Terms MLR model 

[Models_] = mlrModels ; 

% Design matrix 

[one,lin,quad,cube,quartic,cpb,cpt] 

= desmat2015(x);  

% 

%% 

 [Nmodels,columns] = size(Models_); 

M1 = 1; M2 = Nmodels; 

 

 

For each model 

> X matrix 

>LLS procedure lls2015 

endFor 

 

 

%% Loop for select MLR models 

for n = M1:M2 

% 

clear X 

 

z = Models_{n,:}; 

st = 'Cal Design matrix 

developement'; 

center02(st); 

dispst(['^^^^^^^^^^^^^^^^^^^^ 

Model__ : ', z]) 

 

X = [one eval(z)]; 

[X,y] 

% 

%% 

 

 

 

MLR2015 

InpCheck_LS 

 

Formulas_LS 

 

% Reg parameters, ord_residuals, par 

statitics 

% 

st = 'Cal of regression coe, sda, 

resid, sdy..'; 

dispst(st); 

lspar2015 
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ordResid 

 

Resid Analysis 

 

 

Autotest_mlr2015 

 

% 

 %% 

st = 'object form of regression coe, 

sda, resid, sdy..'; 

dispst(st); 

 oo_regpar 

end 

%% 

% 

 

>> output: Tabular summary 

----------------------------------- 

st= ' Display of summary of models'; 

dispst(st) 

disp_regpar 

%% 

 

6.1 Orthogonal (x1 and x2) & No noise in y 

 

Dataset.sim 6.1:The response data (y) is simulated from bilinear 

function (x1 + 2*x2) with orthogonal x1 and x2 column 

vectors (chart 6-2).No Gaussian noise is added and it is 

devoid of outliers or even minor processes. This dataset is 

designed to demonstrate the steps in MLR and can be 

implemented even with simple memory or at best with paper 

and pencil.  

Correlation coefficient, angles and singular values of design 

matrix: The angle between columns vectors (x1 and x2) or row vectors (x1
T
, x2

T
) are 90

o
. The linear 

correlation coefficient of x1 and x2 is 0. Thus, the dataset adheres to necessary conditions of MLR (output 

6-1). The magnitude of singular values show equal contribution of the two vectors each to an extent of 

50%. The columns of v matrix are represented in the figure 6-1. The response is correlated with 

explanatory factors to an extent of 0.45and 0.89. 

Output 6-1: Dataset.sim6.1  

Ysimul = x1 

+ 2*x2 
x1,x2 ; NP : 4 

 

 

~~~~~~~~~~ 
x1x2ysimul 

------------------ 

1 1 3 
 -1 1 1 

1-1-1 

 -1-1-3 
 

Angles between x1 and 

x2 

x1x2 

-------------------- 

x10.00 

x290.000.00 

x1x2 

---------------------- 

Angles between Row 

vectors 

r1r2 

-------------------- 

r10.00 

r290.000.00 

r1r2 

-------------------- 

 

correlation matrix  

x1x2y1 

-------------------------- 

x11.00 

x20.001.00 

y10.450.891.00 

   s   Var  totVar 

x1 3   50%  50% 

x2 3   50%  100% 

 V = [0 -1  

 -1 0] 

Fig. 6-1: V-matarix representation 

 

Regression coefficients and statistics: The estimated regression coefficients from 

MLR [0 1 2]
T
 are exactly equal to the values used in the simulation. The standard 

deviations in parameters are zero.  

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Chart 6-2: Data.Sim 6.1 

























































1

1

1

1

2;

1

1

1

1

1 xx  

Output 6-1b 
   Par sda sta  ta 

0 0 NaN 0 0 0 

 1 0 NaN 0 0 0 

 2 0 NaN 0 0 0 
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Residuals in y: The ycal values reproduce the simulated ones with zero residuals. The model is adequate. As 

it is a simulated one without noise, obviously no further statistical analysis. 

Output 6-1c 
 

 

X1x2yycal residy 

1 1 3 3 0 

-1 1 1 1 0 

 1-1-1-1 0 

-1-1-3-3 0 

 

Sdy0 

 

Expert' Inferences 

 

Ground truth; Data is noise free 

No need of statistical analysis 

 Cc (x1,x2) =0; angle(x1,x2) =90 

 MLR is apt 

 

 ResidY zero, 

 Sda in a is zero 

 

 

Model acceptable 

  Robust method Redundant 
o As it outputs same result 

 

  Orthogonalisation techniques for x is 
not necessary 

  No need of stochastic approach 
 

Deterministic mathematical model 

 Data isnoise free/of extremely small 

noise 

 

 

6.2 Non-orthogonal variables-- Failure of MLR 

If x matrix is significantly correlated (or nearly singular) 

the regression coefficients are of wrong sign/ with high 

standard deviation. The presence of outliers in y, or x or 

both attract the regression plane towards outliers and 

thus not reliable. The typical failure conditions and 

remedial measures are described in chart 6-3 

 Outlier in y   (wrong regression 

coefficients) 

Dataset.simul.6.2: The dataset with 8 data points includes one y outlier marked in red. To the simulated 

function values, normal noise of 0.0 is added. 

Output 6-2: Dataset.sim 6.2 
One outlier in y ` 

 
`````````````````````````````````````````````````````

```` 

     x1     x2      y     ycal    resid       nor 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~ 

 

Chart 6-3:Failure Conditions 

FC 

Remedial Measures 

RM 

'heterosedastic noise' 'WMLR' 

'Outliers in y ' 'LMS' 

 

x1 and x2 correlated 

 

Ridge Regression 

PCR 

 

Mixture constraints PLSR 
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      1      1      3    3.0701  -0.070139      0 

     -1      1      1    1.1824   -0.18236      0 

      1    -1     -1   -0.92986  -0.070139      0 

     -1     -1     -3   -2.8176   -0.18236      0 

0.5    0.51.5    1.5982  -0.098194      0 

-0.5    0.5    1.51   0.65431   0.85569      0  

1.5    1.54.5    4.5421  -0.042083      0 

     -1.5    1.51.5    1.7104   -0.21042      0 

sdy = 

0.37953 

 
 

parsdastandaexpected (par) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

0.12625 0.069294 0.0210420 

0.94389 0.0576170.130811 

20.0653310.314282 

 

 

Dataset.simul.6.3:This is also a data set of eight points but with two outliers (output 6-3).  

Output 6-3: Dataset.sim 6-3 
 

Two outliers in y 

 
``````````````````````````````````````````````````````````````````````` 

     x1     x2      y     ycal    resid       nor 

  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

       1      1      3    2.9399   0.060119      0 

      -1      1      1      1.2765   -0.27655  high 0 

1     -1    -2.01-1.493   -0.51702  Large    0 

      -1     -1     -3     -3.1563    0.15631  high0 

0.5   0.5    1.5    1.4158   0.084167      0 

-0.5    0.5    1.51   0.58417   0.92583  Large    0 

 1.5    1.5  4.5    4.4639   0.036071      0 

-1.5    1.5    1.5    1.9689   -0.46893   high    0 

 

                                 sdy = 0.49283 Not acceptable Expected :0.0 
 

parsdastanda expected (par) 

 

-0.10821 decreased  0.11684 ok -0.023421         0 

0.83167 decreased  0.097152 ok  0.14966         1 

 2.2164increased  0.11016  ok 0.45226          2 

 

 Parameters acceptable from Sda values 

 Two very high residuals in y … suspicious for trend 

 Sdy is very large 

Model fails 

  Remedy : Remove two outliers rerun 
Robust method (LMS) to know trend without removing 

outliers in data 

-2
0

2

-2

0

2
-5

0

5

-2
0

2

-2

0

2
-5

0

5

-2
0

2

-2

0

2
-5

0

5
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Output 6-3b: 
Two outliers in y  

 
a_LMS = 

 0 

 1 
 2 

 

a_LLS  
0.28571 

 1.1765 

 2.4286 
ans = 

 0 

 0 
 0 

 0 

-2 
-1 

 

 

Rerun deleting outliers 

 

```````````````````````` 

      [X] 

----------------- -----      
one  x1x2y 

~~~~~~~~~~ ~~ 

1 1 1 3 
 1-1 1 1 

 1 1-1-1 

 1-1-1-3 
`````````````````````````` 
 

a_LLS = 

 0 

 1 

 2 

a_LMS = 

 0 

 1 

 2 

Resid_LLS = 

 0 

 0 

 0 

 0 

Resid_LLS 

 0 

 0 

 0 

 0 

 

 LMS Parameters are correct 

 Residuals detected outliers (points: 5 and 6) 

 

 

 Correlated & non-orthogonal (x1 and x2) & No noise in y 

Dataset 6.3:This is a 11 point dataset with x1 and x2 vectors of explanatory variables correlated and angle 

between them is zero (output 6-4).  

Output 6-4:Dataset 7.3 

 

x1,x2 ; NP : 11 

 

 

 

x1    x2       yycal   resid 

     ```````````````````````````````````` 

      1      1      2    5.7578   -3.7578       

      2      2      4    11.516   -7.5156       

      3      3      6    17.273   -11.273       

      4      4      8    23.031   -15.031       

      5      5      10   28.789   -18.789 

      6      6      12   34.547  -22.547       

      7      7      14   40.305   -26.305       

      8      8      16   46.063   -30.063       

      9      9      18   51.82    -33.82       

     10     10      20   57.578   -37.578       

-2
0

2

-2

0

2
-5

0

5

-2
0

2

-2

0

2
-5

0

5

-2
0

2

-2

0

2
-5

0

5
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11     11      22   63.336   -41.336       

sdy = 

    28.177 

---------------------------------------------------------------    
      Par      sda         sta    

`````````````````````````````````` 

 -1.7764e-15    577.58  -3.433e-14 

2.9414  3.7462e+09  3.6871e+08 

2.8164  3.7462e+09  3.5304e+08 

correlation matrix  

x1x2y1 

-------------------------- 

x11.00 

x21.001.00 

y11.001.001.00 

  X1 and x2 highly correlated 

  Inverse should not be used, if so large variance 

  Parameters not acceptable ; sda suggests failure of inverse of X'X 

  Residy are extremely large 
 

 Model fails 

 

Remedy: PCA for X; regression of PCs with y 
 

 

Angles between x1 and x2 

x1x2 

-------------------- 

x10.00 

x20.000.00 

x1x2 

---------------------- 

 

Angles between Row vectors 

r1r2 

-------------------- 

r10.00 

r290.000.00 

r1r2 

-------------------- 

 

Dataset 6.4:In this dataset, x1 and x2 correlated (0.99) andnon-orthgonal (angx = 11.3). It is one instance of 

failure of the model (output 6-5). 

output 6-5:Dataset 

7.4 

x1,x2 ; NP : 4 

 

 

 Angles between x1 and 

x2 

x1x2 

-------------------- 

x10.00 

x2  11.380.00 

x1x2 

---------------------- 

Angles between Row 

vectors 

r1r2 

-------------------- 

r10.00 

r29.74  0.00 

r1r2 

-------------------- 

 

correlation matrix  

x1x2y1 

-------------------------- 

x11.00 

x20.991.00 

y11.00 0.991.00 

     s     Var  totVar 

x1 23.869 94.0594.05 

x2 1.510  5.949  99.999 
 

 

Model fails 
Remedy:PCA for X; 

regression of PCs with y 

 

 

V = [-0.94218   0.3351 

-0.3351 -0.94218 

 

 

6.3 Inadequate models: The response (y) of dataset 7.4 is simulated as ysimul = par1*x1 +par2*x2. But, it 

analysed neglecting x2 variable i.e. as ysimul3= par3*x1. The output is inoutput 6.6. 

output 6-6:Dataset 7.4 
Model analyzed as ysimul = par* x1; 

   i.e. x2 is ignored 

x1,x2 ; NP : 4 

 

 correlation matrix   

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4



R. Sambasiva Rao et al                           Journal of Applicable Chemistry, 2016, 5 (5):908-1033 

 

966 

www. joac.info 

 

 `````````````````````````````````` 

x y ycalresidnor 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 1 3 2 1 0 

 1 1 2-1 0 

-1-1-2 1 0 

-1-3-2-1 0 

 

 sdy = 1.1547 

 

x1y1 

-------------------- 

x11.00 

y10.891.00 

 

----------------------------- 

par sdaexpected (par) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

010 

211.41421 

 

 

  

Model analyzed as ysimul = par*x2;  

 i.e. x1 is ignored 

 

`````````````````````````````````` 

x1 y ycalresidnor 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

ans = 

 1 3 1 2 0 

-1 1-1 2 0 

 1-1 1-2 0 

-1-3-1-2 0 

sdy = 

 2.3094 

correlation matrix  

x1y1 

-------------------- 

x11.00 

y10.451.00 

 

par sda standaexpected (par) 

 

0400 

141.41421 

sda = 

 4 

 4 

standa = 

0 

 1.4142 

 

  

 

6.4 Realistic data: A four point data set with two orthogonal x1 and x2 and adding random normal noise. 

The statistics alomg with parameters are in output 6-7. 

Output 6-7: Dataset 7.5 

Ysimul = x1 + 2*x2 +noise_n(4,0.0,0.1) 

 

Model analyzed as ysimul = par0+ par1*x1+ 

par*x2;  

 

 

````````````````````````````````````````````` 

x1,x2,y,nor,      ysimul 

--------------------------------------------- 

      1      1    3.0875  0.087541      3 

     -1      1    1.109   0.10902      1 

      1     -1   -1.0218  -0.021825     -1 

     -1     -1   -3.0348  -0.034768     -3 

 

Mean(nor) = 0.0350 

Std(nor)  = 0.0738 

-------------------- 

correlation matrix  

x1x2y1 

-------------------- 

x11.00 

x20.001.00 

y10.440.901.00 

------------------------   

``````````````````````````````````````````` 

par      sda  standa  expected  

(par) 

```````````````````````````````````````````` 

 

 0.034991 0.00014808  0.00030108   0.0 

 0.99787  0.00014808  0.0085863 1.0 

 2.0633  0.00014808  0.017754  2.0 
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---------------------------------------------- 

 

  

 

 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

x1,x2,y,       ycal,    resid      noise added   

------------------------------------------------------------ 

11 3.0875 3.0961 -0.0086046 0.087541 

-111.1091.10040.00860460.10902 

1-1-1.0218-1.03040.0086046-0.021825 

-1-1-3.0348-3.0262 -0.0086046-0.034768 

sdy = 
 0.012169 

 

Model: y = Fn{[x1 x2];par} + 

noise_n(mean,std) 

  

Explanatory variable (x) Response (y)  

   

   

[x1 x2] y  

No noise Noise [no, small, large]  

No outlier [Outlier[no, few, many]  

 Subprocess [no, minor, major]   Non overlaping 

  Overlapping  [partial, 

complete[magnitude [small, 

large] 

Cc  [0, 0.5,1]   

Angle [90,45,0]   

 

7. Analysis of Variance (ANOVA) for regression 

In applied sciences, based on number of influential factors considered, ANOVA is popular under different 

names like one way (ANOVA I), two way (ANOVA II) and multiway (MANOVA) types. The variation in 

response can sometimes be ignored by inspecting the numbers at a glance.When it is difficult to decide that 

the variation in y is just due to ignorable random (normal distribution) noise or is a result of model, a fool 

proof and unbiased approach for accreditation purpose is ANOVA, a sound statistical procedure.It 

separates variation in y into explainable factors and random effects. 

 

KB for regression and parameter statistics: The first condition to be satisfied is number of data points is 

equal or more than number of regression parameters to obtain unique least squares solution (chart 7-1; 

MatLabProg 7-1). Otherwise, Simplex method in linear algebra is the choice. Even then uniqueness is 

sacrificed. The statistics for regression parameters and residual spread in y are calculable when NP > Npar. 

The kb_reg.m implements these heuristics rending a pure numerical algorithm into knowledge based one 

for proper choice of method, appropriate use of statistical procedures and avoiding software failurefor rare, 

but possible data sets.Similar add-ons of KBs at various levels of algorithm enhances power of software 

and also heart of fault-tracking, explanation of why it happened and why not that did not happen etc. 

 

Chart 7-1:KB of solution of regression 

equation 

MatLabProg 7-1: 

>>dem_kb_RegSoln 

X = 

1.00002.00003.0000 

1.00001.41421.7321 

ANOVA or Regression analysis not 

possible; No unique solution 

since np < npar 

function dem_kb_RegSoln 

 

v = [1 2 3]; 

X = [v; sqrt(v)],kb_RegSoln(X) 

X = [1 2; 3 5],kb_RegSoln(X) 

X = [v' v'.^2],kb_RegSoln(X) 
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NP =2; Npar = 3 

************* 

X = 

 1 2 

 3 5 

Deterministic task ; Solution of 

simultaneous equation or Regression; Cal 

ofstatistics (sdy, sda, t,.. not possible 

since np == npar 

NP =2; Npar = 2 

************* 

X = 

 1 1 

 2 4 

 3 9 

Over-determined task; Regression analysis 

since np > npar 

NP =3; Npar = 2 

************* 

XTX = 

1436 

3698 

 

% KB_RegSoln.m18/3/1997 ; 9/11/15 

% 

 

function kb_RegSoln(X) 

[np,npar] = size(X); 

 

conseq{:,1} = 'ANOVA or Regression analysis 

not possible; No unique solution'; 

conseq{:,2} = ['Deterministic task ; 

Solution of simultaneous equation or 

Regression'... 

'Calculation ofstatistics (sdy, sda, t,..) 

not possible']; 

conseq{:,3} = 'Over-determined task; 

Regression analysis'; 

 

 Ant{:,1} = 'np < npar'; 

 Ant{:,2} = 'np == npar '; 

 Ant{:,3} = 'np > npar'; 

 

for i = 1:3 

 

if eval(Ant{:,i}) 

disp(conseq{:,i}) 

disp(['since ',Ant{:,i}]) 

disp(['NP =',num2str(np), '; Npar = ', 

num2str(npar)]) 

end 

 end 

 

ANOVA for regression model: The partitioning of sum of squares of response (y) into explainable 

regression, residuals and mean sum of squares is in table 7-1. If replicate measurements are available, 

residual sum of squares can further be decomposed into SS due to pure error (PE) and lack of fit (LOF). 

The Matlab program for ANOVA is given in MatLabProg 7-2. 

Table 7-1: Decomposition of Total Sum of Squares of variance (SST) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

SST (np) 

                                  | 

                                  | 

                |---------------------------------------| 

                |                                       | 

                |                                       | 

            SS mean(1)                             SS corr (np-1) 

                                                        | 

                                                        | 

                                           |-----------------------| 

                                           |                       | 

                                         SS Fact                SS res 

                                         (npar-1)            (np - npar) 

                                                               | 

                                                               | 

                                                   |--------------------| 

                                                   |                    | 

                                                 SS LOF               SS PE 

                                                 (f -p)              (np - f) 
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   

Re ( )

* * *

 

   
TT T

Total Sumof squares in y Model SS sidual in y SS

y y ycal ycal ycal y ycal y
 

 

 

Table 7-1b: Formulae of ANOVA and Matlab code 

 

   

Source Sum of squares %% 

% ------------- ANOVA FORMULAE ------

-- 

% 

  ybar = one' * y/(one' * one); 

ymean= one * ybar; 

 

Mean Sum of 

Squares(SS): mean 

of sum of squares 

of response (y) 

*Ty y

NP

  
 

ssmean = ymean' * ymean; 

sscorr = (y-ymean)' * (y-ymean); 

 

 

 

Regression SS: SS 

explained by model 

minus meanSS 

*
* *

T
T T y y

A X y
NP

 
 

 
 

ssfact = (ycal -ymean)' * (ycal-

ymean); 

ResidualSS: SS of 

residuals in y 
* * *T T Ty y A X y    

ssr= resid' * resid; 

 ----------------------  

Total SS: SS ofy 
*Ty y    

sst= y' * y; 

 

Degrees of 

freedom: 

calculated from 

NP, npar and 

number of 

replicate 

measurements 

df_Model = npar-1; 

df_Residy = np-npar; 

df_Toty = np; 

df_TotyCorr = np-1; 

 

df = [np;1;np-1; npar-1;np-npar;]; 

   

Mean sum of 

squares 

  

 RegSS

1Npar 
 

ssz= [sst;ssmean; sscorr; ssfact; 

ssr]; 

mss = ssz./df; 
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 ResidSS

NP Npar
 

 

 TSS

NP
 

 

F RegSS

1

ResidSS

Npar

NP Npar





 

df1= npar;df2 = np-npar-1; 

 

  varExplained = ssfact/sscorr*100; 

 

  anova =  

 sst: 364.2808 
ssmean: 293.6949 

sscorr: 70.5859 

ssfact: 70.5836 
 ssr: 0.0023 

varExplained: 99.9968 

ybar: 6.9964 
 df1: 2 

 df2: 3 

 

 

Table 7-2: R-square and corrected R-square 

Statistic Formula Matlab code  

KB.1:  

   

If 2 1R  
 

Then Larger variance in 

y explained  

by regression 

 

   

If 2 0R  
 

Then X does not explain 

variation in y 

 

   

  
2R  increases with 

increase in number of x 

variables 

Remedy:
2

adjR  

   

Coefficient of determination (R-

squared): It is equal to the 

proportion of variance in response 

(y) explained by independent 

variables (of model) in linear 

regression. It is also referred 

ordinary (or unadjusted) R-square 

2_

1

 

 
  

R Sq R

SSModel

SSTotal

 

 
2: [0 1] Range R  

 

 

 

R_squared = 1-

ssr/sst; 
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Adjusted_R-square: 

R-Square is 

adjusted considering 

number of 

parameters  

2_ _

( )
1

( 1

_
 

_   

)

 
1



 
 

   
 

  

 

adj

Meanss

R Sq adj R

SSModel

np npa

Residy

Mea

r

S

nss Toty

STotal

np

 

dft = np-1;  

dfr = np-npar; 

 

R_squared_adjsted =  

1-(ssr/sst)*(dft/dfr); 

 

+ Models with different 

number of explanatory 

variables can be 

compared 
 

   +  

Anova2015: The methodFlow of m-function of MatLab software of anova2015 (MatLabProg 7-2) is briefed in chart 

7-2. 

Chart 7-2: 

``````````````````````````````````````````````````````````````````````````` 

 MethodFlow m file 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 Anova_regressionanova2015 

 Model definitionpolyModels 

 Development of design matrix (X)X2015 

 Characterstics of X Xcond 

 

 Knowledge bits Regression Feasibility kb_RegSoln  

> Formulae for ANOVAFormulas_anova2015 

 F testFtest 

 

 if eXpert systemInference_anova 

 if replicate measurements Inference_LOF 

 if novice inform_anova 

 if intelligent system Advice_anova 

 % 

>> output: Tabular summary  

---------------------------------------------------------------------------- 

 

Data(x,y)  ModelDef Design matrix Condition of X  Feasibility of ANOVA  

ANOVA.Reg [F-test, LOF-test] 

 

 

MatLabProg 7-2: 

 % 

% anova2015.m(30-7-97) 22-5-15 

% 

function [sig,Fcal,Ftable] = anova2015(X,x,y) 

 

%% 

%Called functions : R-Squared2015.mftest2015.m ;  

 %% 

 

%% 
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if nargin < 3 

 clean 

 data_xy 

end 

 

H0 = 'RegMod';alpha = 0.05; 

[a_LLS,ycal,residy] = Formulas_LS(X,x,y)  

%% 

 [np,npar]=size(X); one = ones(np,1); 

[np,npar] = size(X); 

sst= y' * y; 

ybar = one' * y/(one' * one); 

ymean= one * ybar; 

ssmean = ymean' * ymean; 

sscorr = (y-ymean)' * (y-ymean); 

% 

ss_Model = (ycal -ymean)' * (ycal-ymean); 

ss_Residy= residy' * residy; 

ss_Toty= (y-ymean)' * (y-ymean); 

% 

df_Model = npar-1; 

df_Residy = np-npar; 

df_Toty = np; 

df_TotyCorr = np-1; 

 

% 

Meanss_Model =ss_Model/df_Model; 

Meanss_Residy=ss_Residy/df_Residy; 

Meanss_Toty=ss_Toty/df_TotyCorr; 

% 

 

F_RegModel = Meanss_Model/Meanss_Residy;  

Fcal =F_RegModel; 

 

%  

%% 

R_Squared2015 

%% 

%% 

 

%% 

tab_anova2015 

ftest2015 

oo_anova2015 

 

MatLabProg 7-3: 

 

% 

%  R_squared2015.m  (R S Rao)   25/3/2K 16/3/97 ; 

10/04/93;  

%%  

  R_squared = 1- ss_Residy/ss_Toty; 

  R_squared_adjsted = 1-

(Meanss_Residy/Meanss_Toty) 

  %% 

 

F test:It is named in honor of Sir Ronald A. Fisher. He introduced in 1920 a new statistic as the ratio of 

two variances.F-statistic follows F-distribution under null hypothesis. In the context of regression, the 

gross statistical validity of a model (functional relationship between y and x) is assessed from comparison 

of the calculated value with table value and also from probability value. 



R. Sambasiva Rao et al                           Journal of Applicable Chemistry, 2016, 5 (5):908-1033 

 

973 

www. joac.info 

 

 F_statistic tests the null hypothesis that each of regression coefficients are equal to zero. In other 

words, the model is with only one independent variable which is the mean of values of dependent variable 

(y). If the null hypothesis (Ho) fails, the alternate one (HA) is true that the model with independent 

variables explain the variation in y (chart 7-3, output 7-1)).  

Chart 7-3: 'F_ratio test' 

 

 

------------------------------ 

Necessary conditions 

 

sums of 

squares: 
oo  'statistically independent' 

oo  'chi-squared distribution 
 

 
 

F_table value (also called critical value of 

F) 

with probability p lying to its right 

Ho :All of the regression coefficients are zero 

HA :All of the regression coefficients are not equal 

to zero 

 

 

 

   

If  data values are independent 

normally distributed 

common variance 

Then  Sum of squares follow chi-square 

distribution 

   

 

Example 7.1:critical value of F is 3.40 

F_cal from ANOVA > F_critical_Value  

Inference : F_Cal is acceptable as its 

chance occurance < (p = 0.05) 

 

Output 7-1  

----------------------------------------------------------------- 

 X,yysimul,y-ysimul 

----------------------------------------------------------------- 

1.00001.00002.04382.00000.0438 

1.00002.00004.05454.00000.0545 

1.00003.00005.98916.0000 -0.0109 

1.00004.00007.98268.0000 -0.0174 

1.00005.00009.975410.000 -0.0246 

1.00006.0000  12.011 12.00000.0113 

----------------------------------------------------------------- 

a_LLS = 

0.0501 

1.9884 

anova =  

np: 6 

npar: 2 

ss_Model: 69.19 

 ss_Residy: 0.0031464 

 ss_Toty: 69.193 

df_Model: 1 

 df_Residy: 4 

 df_Toty: 6 

 df_TotyCorr: 5 

Meanss_Model: 69.19 

 Meanss_Residy: 0.00078659 

 Meanss_Toty: 13.839 

F_RegModel: 87961 

probFvalueRegModel: 0.0025288 

 R_squared: 0.99995 

 R_squared_adjsted: 0.99994 

replicates: 'No' 

 LOF: '' 

PE: '' 

`~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

sum ofdegrees of mean F_Reg 

squares freedomsquares 

`~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Model69.18981 69.189887961.4062 

Residualy0.003146 4 40.00078659 

Totaly 69.1929 6 13.8386 

`---------------------------------------- 

 

Information: RegModis acceptable at 0.05 significant level 

since,Fcal:87961.4062 > F_table_value = 21.2(with 

df.Residy=4,df.Model 1): 

Inference_ANOVA :Chanceoccurance of RegMod < 0.05(or 

<5%) probability  

KB: F is scale independent  

 

https://en.wikipedia.org/wiki/Chi-squared_distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Variance
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Probability (F):It is calculated from CDF (cumulative distribution function) and the value corresponds to 

probability that Ho is true to an extent to (1-prob(F)) * 100 percent.  

 

Example 7.2: Ifprob(F) = 0.010, it means that there is 1chance in 100 that all regression coefficients are 

equal to zero. In other words, that at least some of regression parameters are non-zero and regression 

equation does have validity in explaining variation of y (chart 7-4, output 7-2). In statistical sense, 

independent variables are not pure random with respect to y. 

Chart 7-4  
 95% CI of a1(0.58) is in the range of 0.55 to 

0.62 is reasonable 

 

  95% CI of a0(-0.84) is in the range of -3.1 to 

1.4 is less reliable 

  Data is to be acquired with ED and with more 

number of points near origin. 
 

 Coefficient SE t_cal Prob(t) 95% CI  

a1 0.583884 0.016 36.40 <00001  

0.5508 

0.6169  

a0 -0.845346 1.106 -0.76 0.45203 -3.124 1.434  

 

 

MatLabProg 7-3b 

% 

% ftest2015.m(30-7-97) 22-5-15 

% 

%function ftest2015(Fcal) 

 

%% F probability 

% 

 x = F_RegModel  

% 

 

xunder = 1./max(0,F_RegModel); 

 xunder(isnan(F_RegModel)) = NaN; 

 probF = fcdf(xunder,df_Model,df_Residy); 

 [probFvalueRegModel]=probF; 

 

%% 

Ft_table; 

Ftable = F_TABLE01(df_Residy,df_Model); 

 

%% 

chr=' ';no =14;  

b10 = setstr(ones(1,no)*eval('chr')); 

alpha = 0.05; 

 atsiglevel = [' at ' num2str(alpha),' significant 

level']; 

 a1a =['Fcal:',num2str(Fcal)]; 

 a1b = ['F_table_value = ',num2str(Ftable),'(with 

df.Residy=',num2str(df_Residy),',df.Model 

',num2str(df_Model),'):',]; 

 inf2= ['Chanceoccurance of ',H0, ' < ', 

num2str(alpha),'(or <', num2str(alpha*100),'%) 

probability ']; 

if Fcal >Ftable 

 sig = 1; 

 disp(['Information: ',H0, 'is acceptable', 

atsiglevel]) 

 disp([b10,'since,',a1a, ' > ' , a1b])  

else 

 sig = 0; 

 disp(['Information:', H0, 'is not 

acceptable',atsiglevel]) 

 disp([b10,'since,'a1a, ' < ' , a1b]) 
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 inf2= ['Chanceoccurance of ', H0, '>', 

num2str(alpha),'(or >', num2str(alpha*100),'%) 

probability ']; 

end 

disp(['Inference_ANOVA :' , inf2]) 

disp([b10,'KB: F is scale independent ']) 

 

 

Output 7-2  

>> autotest_ftest  

H0 = 

Equal Variance 

SS1 = 

0.0019 

SS2 = 

0.0014 

df1 = 

15 

df2 = 

15 

H0 = 

Equal Variance 

Ftable = 

2.4000 

H0 : Equal Varianceis acceptable 

 since,Fcal:2.7632 > F_table_value (df1=15,df2= 4):2.4 

sig = 

 1 

Fcal = 

2.7632 

Ftable = 

2.4000 

 

SS1 = 

 5.1860e-06 

SS2 = 

 9.0600e-06 

df1 = 

 2 

df2 = 

 3 

H0 = 

Equal Variance 

H0 : Equal Varianceis not acceptable 

 since,Fcal:1.1647 < F_table_value (df1=2,df2= 3):19.16 

sig = 

 0 

Fcal = 

1.1647 

Ftable = 

 19.1600 

 

 

 

 

 

Lack of fit (LOF):The necessary conditions are same as those for LLS. Replicate response (y) values at 

one or more X values are needed. The Error sum of squares is decomposed into two components viz. Pure 

error and LOF. Then, F test is performed for inference (output 7-3). 

Output 7-3:   

 

LOF is insignificant as 

flof(6.5) < table value (8) 

 Advice : Accept the model  

 

LOF is highly significant as  

flof(14.14) > table value (8) 

 Model is not adequate 

 Remedy : Useanother model with more terms 

MatLabProg 7-4a 

% 

%dem_inference_LOF.m(R S Rao)1-11-96  

% 

table_lof=8; 

 flof = 6.5;  

inference_LOF 

 

flof = 14.14; 

inference_LOF 

 

 

MatLabProg 7-4b 

% 

%inference_LOF.m(R S Rao)1-11-96  

% 

 b20 = blanks(20);b40=blanks(40);b10=blanks(10);b5=blanks(5); 
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if flof > table_lof 

disp(['LOF is highly significant as ']) 

disp([b10,'flof(',num2str(flof),') > table value (',num2str(table_lof),')']) 

disp([b10,' Model is not adequate']) 

disp([b5,'Remedy : Useanother model with more terms ']) 

zlof = 1; 

end 

if flof <table_lof 

disp(['LOF is insignificant as']) 

disp([b10,'flof(',num2str(flof),') < table value (', .. 

num2str(table_lof),')']) 

 disp([b5,'Advice : Accept the model ']) 

 zlof = 0; 

end 

 

MatLabProg 7-4c 

% 

% LOF2015.m (R S Rao)25/3/2K16/3/97 ; 10/04/93; 

% 

function [zlof,sslof,sspe,unique] = LOF2015(X,x,y) 

% 

% LOF and PE 

% 

%jy:Mean replicate response 

%structured as y 

 

 %% 

%Called functions : jlof.m ;F_TABLE0.m ; oo_LOF.m 

% 

 %% 

if nargin == 0 

x = [1:6]';  

 x = [1:6 2 4 5 6 ]';  

% x = [1:6]';  

 [np,~] = size(x);one=ones(np,1); 

 y = one +2*x+1.01*randn(np,1);X= [one x]; 

end 

zlof = [];sslof = []; sspe=[]; unique=[]; 

% 

 [a,sda,r] =Formulas_LS(X,x,y); 

 [npar,ca] = size(a); 

 [np,cx] = size(x);  

 ycal = y - r; 

 [z] = sortz([x,y,ycal]); 

 x = z (:,1); y = z(:,2); ycal= z(:,3); 

% 

% 

 

 [np,npar] = size(X); 

 [jx,jy,unique] = jlof2015(x,y); 

 f = unique; 

% 

 

% 

% -------------------- KB(LOF) -------------- 

 disp(['np : ', sprintf('%2.2g',np)]) 

 disp(['unique : ', sprintf('%2.2g',unique)]) 

if unique == np 

disp(' ') 

disp(' No replicates __ LOF & PE calc. not possible') 

MatLabProg 7-4d 

 

% 

%jlof2015.m (R S 

Rao)25/3/2K16/3/97 ; 1-11-96 

; 10/04/93; 

% 

function [jx,jy,unique] = 

jlof(x,y) 

if nargin == 0 

x = [1:6 2 4 ]'; 

% x = [1:6]';  

y = 2*x; 

end 

 

 tol = 1e-12 ; 

zx=x;zy=y; 

% 

%% 

 [x,y]= xysort([zx,zy]); 

 [x y] 

jy = [];jx = []; 

% 

%check unique 

 tocontinue = 1; unique = 1; 

 %% 

% 

 %% 

while tocontinue  

unique = unique + 1; 

 xrep=[];yrep=[]; 

 [rx,cx] = size(x); 

xrep = [xrep;x(1,:)]; 

yrep = [yrep;y(1)]; 

n = 1; 

next = 1; j = 1; z =1; 

% 

while next 

%  

j = j +1; [rx1,cx1] = 

size(x); 

if j<= rx 

z= abs(x(j)-x(j-1)) ; 

else 

unique = unique -1; 
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return 

elseif np > unique 

 disp([sprintf('%2.2g',np-unique),' Replicates___ LOF & 

Pure ErroR calculated']) 

end 

% ----------------------------------------------- 

 

if unique < np  

% 

if any(abs(jy-y) > eps) 

 sslof = (jy-ycal)' * (jy-ycal);  

 sspe= (y-jy)' * (y-jy);  

 flof = (sslof/(f-npar))/(sspe/(np-f)); 

% 

 df_lof = unique-npar;  

 df_pe = np-unique;  

end 

end 

 xunder = 1./max(0,flof); 

 xunder(isnan(flof)) = NaN; 

 probF = fcdf(xunder,df_lof,df_pe); 

 [probFvalueLOF]=probF;  

% 

Ft_table; 

table_lof = F_TABLE01(df_lof,df_pe); 

% 

disp(['probF_LOF = ',num2str(probFvalueLOF)]) 

%% 

%----------KB_LOF -------------------  

 inference_LOF 

%% 

 oo_LOF 

 %%  

% In Designed Expts df_PE is nearly =df_LOF 

% IfF_LOF > F_Table value 

% ThenReject regression model 

% IfF_LOF < F_Table value 

% ThenAccept regression model 

 

 

z = -1; 

end 

 rep = 1; 

if z < tol  

if z ~= -1 

n = n+1; 

xrep = [xrep;x(j,:)]; 

yrep= [yrep ;y(j,:)]; 

end 

else 

rj = j; 

 rep = 0 ; 

 next = 0; 

end 

if z == -1 

 rep = 0; 

 next= 0;tocontinue = 0; 

end 

 

if rep ==0 

 xtemp = x(rj:rx); 

 ytemp = y(rj:rx); 

end 

end% whilenext 

% 

 [m,n] = size(yrep); 

avey = sum(yrep)/m; 

% 

for i = 1:m 

jy = [jy;avey]; 

jx = [jx;xrep(i)];  

end% for i 

% 

x = xtemp; 

y = ytemp; 

 [mx,nx]=size(x); 

% 

if mx == 1& z ~= -1  

 jx = [jx;xtemp]; 

 jy = [jy;ytemp]; 

 tocontinue = 0;  

end 

% 

end% while continue 

%% 

 

  

 

 

>> [zlof,sslof,sspe,unique] = 

LOF2015 

 

1 3.9283 

2 5.4098 

2 5.2019 

 

 probF_LOF = 0.19365 

LOF is insignificant as 

flof(2.5468) < table value (15.98) 

 Advice : Accept the model  
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3 8.9353 

4 6.5198 

4 7.9513 

5 10.908 

5 11.535 

6 12.975 

6 10.761 

np : 10; unique :6 

 

4 Replicates___LOF & Pure ErroR 

calculated 

 

LOF =  

 flof: 2.5468 

probFvalueLOF: 0.19365 

LOF: 0 

Ftablevalue: 15.98 

sslof: 9.4086 

 sspe: 3.6943 

 df_lof: 4 

df_pe: 4 

sslof : 9.4086sspe: 3.6943 

 LOF : variation of group means about the line  

 PE: Variation within the groups  

 

zlof = 0 

 

  

 ans = 

1 3.1085 

2 5.4433 

3 6.9586 

49.368 

5 10.229 

6 13.555 

np :6 ;unique :6 

 

 No replicates __(np-unique) =0 

LOF & PE calc. not possible 

 

 zlof = 

 [] 

sslof = 

 [] 

sspe = 

 [] 

unique = 

 6 

 

 

8. Advanced residuals and  regression coefficients   
The standard deviation and t-values of regression coefficient, and 

standardized regression coefficient are used in least squares analysis. The 

advanced statistics like confidence intervals, joint confidence contours 

follow now (chart 8-1). Theslopeandintercept in linear regression are 

estimated simultaneously satisfying the condition of minimization of sum 

of squares of residuals in y.The magnitude of correlation coefficient of 

regression parameters throws light on the elliptical contour of any two 

values. 
 

Formulae 8-1: MatLabProg 8-1  

 

 

 
 T

TT
T

TT

xNPAR

TT

h
XXinvhparr

XXinvdiagh

XXinvH

1
*)*(*_

)*(

)*(

1







 

Formula 

h = diag(inv(X'*X)); 

rab = h.^(1/2)' * inv(X'*X) * h.^(-1/2) 

 

 

 

 

Example 8.1 

 

 

~~~~~~~~~~~~~~~~~|~~~~~~~~|~~~~~~~~~|~~~~~~~~~~~~~~~~ 

 X,|ysimul |randNoise|   y(=ysimul+  

   one    x      |        |         |    randNoise) 

-----------------|--------|---------|---------------- 

1.00001.00005.0000 -0.02284.9772 

1.00002.00009.00000.24689.2468 

rab = 0.0936 

 

infMat = 

 621 

2191 

invInfMat = 

Chart 8-1: parameter statistics 

  of regression coefficients 

sda : Standard deviation 

ta : Student t values 

standa : Standardized 

ccpar :  Correlation coefficient  

CIpar : Confidence Interval 

JCIpar : Joint CI 
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1.00003.000013.00000.003413.0034 

1.00004.000017.00000.151017.1510 

1.00005.0000 21.0000 -0.111120.8889 

1.00006.0000 25.00000.127625.1276 

0.8667 -0.2000 

 -0.20000.0571 

 

Confidence Intervals (CI) ofslope and intercept:  If slope and intercept are not linearly correlated based on 

Pearson correlation coefficient, their confidence contours adhere to t- and z-distributions for small and 

large samples respectively (KB.8-1). This also holds good when two successive regression parameters are 

not significantly correlated, individual confidence intervals are calculated pairwise. 

 

KB. 8-1: confidence interval (CI)of slope and 

intercept of a straight line 

If Corrcoef(a0,a1) < small 

Then Confidence interval (CI) of parameter 

  

If 
Confidence interval & 

NP > 30 

Then 

LU_a0 = a0 Z (CL) * 

SDa0LU_a1= a1 Z (CL) * SDa1 
 

  

If 
Confidence interval & 

NP <= 30 

Then 
LU_a0=a0 t (CL,Z) * SDa0 

LU a1 =a1 t (CL,Z) * SDa1 
 

 

If Corrcoef(a0,a1) > significant 

Then Joint Confidence interval (JCIP) 
 

 

Joint confidence (JC) contours ofparameters (CP): If two successive regression parameters are 

significantly correlated, joint confidence contours/surfaces are appropriate (chart zz). The JCCP is an 

ellipse for two parametric regressions. The profile is an ellipsoid/hyper-ellipsoid for multi (3 and higher)-

parametric regression analysis. 
Formulae 8-2: MatLabProg 8-2 

 

 

 

 

 

 

    
2

2

 *  
 1      

*    

1 ^ 2 * 2* ^ 2
*

 


  


  

rab sb
b slope

sa a int

rab f a int
sb

sa

 

Formula 

 

 

    
2

2

 *  
 1     

*    

1 ^ 2 * 2* ^ 2
*

  


   
 

rab sb
b slope

sa a int

rab f a int
sb

sa

 

Formula 

% 

% ellipConfConta0a1.m 

% 

x = []; 

y = []; 

for a = -0.03 :0.005:0.07 

x = [x;a]; 

b1 = slope + rab * sb/sa* 

(a - int) + sb*sqrt((1-

rab^2)*(2*f-(a-

int)^2/sa^2)); 

b2 = slope + rab * sb/sa* 

(a - int) - sb*sqrt((1-

rab^2)*(2*f-(a-

int)^2/sa^2)); 

y = [y;b1,b2]; 

end 
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 1 2  [b1,b2]b b Formula 

% 

% Formulas_ellipConfCont.m (R S Rao) 30-8-1993 

% 

 

function [x,y] = Formulas_ellipConfCont(X,x,y) 

if nargin <3 

int = 0.02; 

slope = 1.002; 

sa = 1.13e-2; 

sb= 1.91e-3; 

rab = -0.85; 

f = 4.46; 

usage('[x,y]', 'Formula_ellipConfCont','(X,x,y)') 

end 

% 

ellipConfConta0a1 

% 

figure, 

[x,y],plot(x,y,'*',x,y),grid,hold on 

plot(int,slope,'bo') 

 

 

 

 

 

Example 8.2 

int = 0.02; 

slope = 1.002; 

sa = 1.13e-2; 

sb= 1.91e-3; 

rab = -0.85; 

f = 4.46; 

 

 

 

Advanced residuals: In linear least squares, ordinary residuals, variance and sdy are illustrated. Here, 

advanced residuals viz. studentized, Jack-knife, PRESS etc. are described. DFBETAS, likelihood/Cook 

distances etc. also derived from residuals.  

 

PRESS (predicted residual error sum of squares: The least squares parameters are calculated by excluding 

ith point. Then, ycali and residyi are calculated for excluded point. The process is repeated for all (NP) 

data points. The studentized version of PRESS is not discussed here. 

Formulae 8-3: MatLabProg 8-3  

 

 

 
0.5

* 1




ei
ti

i vii
 

ti follows Student t-distribution with df = NP-

par -1 

 

 Valid only if residuals are 

% 

% studres.m  

% 

function [studentizedResiduals ] = (X,x,y) 

%  

prin = 0; 

if nargin < 3 

clean 

usage('[studentizedResiduals]', 

-0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0.994

0.996

0.998

1

1.002

1.004

1.006

1.008

1.01

1.012
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homosedastic 'studres','(X,x,y)'); 

data_xy  

end 

 

% 

 [a,ycal,resid] = Formulas_LS(X,x,y); 

 [sda,ycal,resid,vary,sdy] = Formulas_Resid( 

X,x,y,a,prin); 

 

[Catcher,hat,diagHat,cutoff_h]=Formulas_hat(X,x,y); 

% 

% Studentised Residual 

% 

 [xr,xc] = size(x); 

 

 sde = (ones(xr,1)-diagHat) * vary; 

 studentizedResiduals = resid./sde; 

 

 

Cook's Distance 

.......................................... 

Xyresidy standRes  

............................................ 

1.00001.00001.9762 -0.0418-1.1409 

1.00002.00004.03880.02140.5829 

1.00003.00006.03400.01720.4693 

1.00004.00008.06090.04461.2178 

1.00005.00009.9984-0.0173 -0.4709 

1.00006.000011.990  -0.0241 -0.6583 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

................................. 

 #CookDista0a1 

................................. 

1.00000.11020.07711.9869 

2.00000.00740.00452.0020 

3.00000.00220.01302.0000 

4.00000.01470.01501.9979 

5.00000.00480.01532.0015 

6.00000.03670.00172.0066 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

% 

% cook.m (R S Rao) 30/04/93 

% 

function [cookDist]=cook(X,x,y) 

% 

if nargin < 3,  

 clean 

 data_xy  

end 

prin = 0 

% 

%inf_cook 

% 

%one point leave out 

% 

n = length(x); 

zd= []; 

za1 = []; 

[a,ycal,resid] = Formulas_LS(X,x,y ); 

[ycal,residy,sdy] = ordResid(X,x,y,a) 

 

[mx,nx] = size(x); 

for i = 1 : n 

tx = [X(1:i-1,:);X(i+1:n,:)]; 

ty = [y(1:i-1,:);y(i+1:n,:)]; 

 b = tx\ty; 

 

d= (a -b)' * X' * X * (a -b)/(nx*sdy); 

zd =[zd;d]; 

za1 = [za1,b]; 

cookDist = zd; 

end 

 

 

Mahalanobis distance (Mah_Dist) 

 

-------------------------------------------- 

 X,yysimul,y-ysimul 

-------------------------------------------- 

1.00001.00001.91712.0000 -0.0829 

1.00002.00003.97414.0000 -0.0259 

1.00003.00005.96746.0000 -0.0326 

1.00004.00007.94348.0000 -0.0566 

% 

%MD.m (R S Rao) 30/04/93 

% 

function [Mah_Dist] = MahDist( X,x,y ) 

% 

if nargin < 3,  

 clean 

 data_xy 

end 
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1.00005.000010.0090 10.00000.0090 

1.00006.000012.0313 12.00000.0313 

------------------------------------------------- 

 

Mah_Dist = 

1.7857 

0.6429 

0.0714 

0.0714 

0.6429 

1.7857 

[Catcher,hat,diagHat,cutoff_h]=Formulas_hat(X); 

 [np,npar] = size(X); 

 one = ones(np,1); 

 Mah_Dist =(np -1)* (diagHat-one./np); 

 NO = [1:np]';  

 

  

 

9. State-of-knowledge and Future scope of regression 
The exemplary datasets from basic chemistry are analysed in out text book 'computer applications in 

chemistry'. In this review, simulated data sets with very small number of points (4-10) are chosen to lessen 

number churning jugglery, to be independent of discipline, easy to remember, to appreciate 

expected/normally unexpected results, visualize the smooth transition of deterministic to fuzzy through 

probabilistic paradigms and to develop confidence to analyse large complicated experimental data not only 

for regression but many other computations (dimension reduction, clustering, classification/ pattern 

recognition).  

 Anhouse dataset achieve from select monographs have been in use in peer 

learning/training programs for post graduates/researchers in chemistry and imparting hands on experience 

in interdisciplinary workshops since 1990s. The earlier FORTRAN, Dbase-III-Plus and Turbo-prolog 

programs from this laboratory have been rewritten in MATLAB during the first few years of acquisition of 

MATLAB (early version in 1991). Additional data files from recent editions/versions of these research 

compendia are under the processing of culmination into dataset bases. The formats chosen are excel/mat 

(of Matlab), capsules of objects with interfaces rendering them readable in MATLAB software for 

calculation with m-function. The sub-task wise exerts of results and full datasets (on DVD) for practice 

will be discussed separately [164]. The programs with MATLAB specific matrix/tensor, object oriented, 

Boolean patterns, 2D-/3D-graphics/surfaces were developed with computational and scale up perspective. 

Since, FORTRAN was in the core in many earlier packages GAMESS, GAUSSIAN etc. and is used in 

pedagogic training here in post-graduation in chemistry, FORTRAN flavour/style may be found here and 

there.  Mere algorithmic approach and algebraic solution was translated into programing language in last 

century. Still, it is the core of training for joining the high way of computations through the lanes of theory, 

derivations, and solution methods to arrive at result at ease. The input output stylish formats, GUI, pull-

down/popup context sensitive menus etc. are the realm of package developers and not the prime focus of 

computational/ pedagogic world.  

 The yester years' practice was analysing a piece of data of individual's interest with a 

complete trust on the jargon and call it a day. It is no doubt coveted and continues with most end users of 

inter disciplinary/sometimes core science groups. The computational intelligence is at high end, while 

knowledge based systems for input check have been in routine practice now. The choices of methods have 

been smartly implemented in Berny algorithm of GAUSSIAN, Jaguar of Schrodinger, tool-boxes of 

MATLAB to name a few intelligent software categories. Yet, the check for suitability from necessary 

conditions and resorting to remedial measures is scarce. In fact, more important aspect is paradigm shift to 

imparting this culture in learning process through teaching/research pedagogy with simple as possible 

simulated (noise free and real life like) datasets from bottom of methods in 

mathematics/statistics/nature_inspired_procedures.  

The modular approach of weighted regressions, support vectorregressions and advances in tests for 

normality with critical case studies from chemometrics/chemical biology literature in this decade will be 

reported [164]. 
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Knowledge based numerical computation 

LLS2015 is designed for paired real variables (x and y vectors).  

Input check: InpChk2015 validates input vectors by checking for real numerical numbers. It generates 

error message even if one value is a character, imaginary value or string. Also, it also verifies the 

equivalency of number of data points in X and y tensors with appropriate messages.This approach amply 

demonstrates development of automatic modules with auto-check, correction, adaptive machine learning 

software. 

Autotest_chkInpVec: The input for univariate statistical analysis described here is confined to real 

numerical values. The input checking program is developed to be sure of it to calculate statistics. The built 

in functions in matlab 'isnumeric' and 'isreal' and logical operators ( 'not' (~) , 'and' (&) ) are used in 

chkInpVec.m. The default option in matrix algebra is to use column vector and it is included to convert a 

row vector into column with the appropriate message. A knowledge based program (can also be called 

expert system) inferring whether given data is scalar, vector (row/column), matrix (rectangular, square 

[skew, symmetric, upper or lower triangular]) is also incorporated. It also detects it to be a numerical or 

non-numerical for proceeding to inversion process. Further details of knowledge about integer/floating 

point/real/imaginary/quaternion elements in numerical and binary/Boolean/characters/strings of non-

numerical elements in tensors is available. These tiny bits are useful in development of automatic/adaptive 

features in program module fabrication. Here, transparency, clarity of program steps in expert system 

mode is the motivation and not memory/speed etc.   

 

 

Autotest_chkInpVec 

Input 

~~~~~ 

x = 

0.9990 

0.8880 

0.7770 

0.4440 

Input isvector of real numeric data 

 It is column vector 

 ~~~~~~~~~~~~~~~~~~~ 

Input 

~~~~~ 

x = 

 1 2 3 4 5 6 

Input isvector of real numeric data 

It is row vector & hence converted into a column  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

x = 

 1 

 2 

 3 

 4 

 5 

 6 

Input 

~~~~~ 

x = 

a, b, c,  

 !Invalid input -- Non-numeric data  

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

% 

% chkInpVec.m(R S Rao20-2-1991); 2-7-15 

% 

function [x]= chkInpVec(x) 

 

if nargin ==0 

 x = [1:6]; 

end 

% 

xbak = x; 

dispst('Input') 

x 

[np,r] = size(x); 

for k = 1: np 

valid(k,1) = [isnumeric(x(k))& 

isreal(x(k))]; 

end 

if any(~valid)  

 dispst( '!Invalid input -- Non-numeric 

data '); 

return 

else 

 disp('Input isvector of real numeric 

data') 

end 

% 

% 

[r,c] = size(x); 

 

if c>1 & r==1 

 dispst('It is row vector & hence converted 

into a column vector') 

 x = x' 

return 

end 

if c==1 & r>1  

 dispst('It is column vector') 

end 
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% Autoest_chkInpVec.m 

% 

 

for ii = 1:3 

zz = ii ; 

 

switch zz 

case 1  

x = [1:6]; [x]= chkInpVec(x); 

case 2 

x =['a, ','b, ','c, '];[x]= chkInpVec(x); 

case 3 

x =[0.999 0.888 0.777 0.444]';[x]= chkInpVec(x); 

otherwise 

disp('test') 

end 

end 

 

 

 

Future scope 

Good computational laboratory practice (GCLP):Good laboratory practice (GLP) and good manufacturing 

practice (GMP) protocols are continual upgradation in different countries and in national quality 

maintenance/control organizations. The stipulations for QSAR models are published for righteous use in 

medical/pharma/food industries. However, software availability/popularity is one driving force in choice 

of a method in computational world. It is the need of hour to promote good computational laboratory 

practice (GCLP) stipulationsto enhance reliability and state-of-knowledge information for the data 

acquired with high effort/cost targeting high-focussed-precise-end-goals. The first step in computational 

data (CD) analysis is to look into primary data if already procured.But, it is preferable to design data 

acquisition schedule based on specific goals in a discipline.This step gives primary information about 

quality of data, its sufficiency and holes still present in data acquisition schedules, instruments, limitations 

in experimental design etc. Our in-house programs check for adequacy of data on hand for reasonable 

proposal of a hypothesis or endorsing/ refuting the earlier reports. It also includes limitations as well as 

failure conditions and remedial measures with next level/ alternate methodology. The next step is applying 

higher order computational techniques to infer from derived parameters, adhering to optimal path 

considering CPU time and accuracy demand. When data is inadequate to cope up with high end 

technology, lower order methods are preferred with a caution of its conclusion domain and also leaving 

room for upgrading experiments and data acquisition schedules to suit to high-end computations.  

The concept of fit-for-task has gained popularity and it is a conglomeration of statistical test, international 

protocols, dynamic requirements in real life tasks and experts' propositions.It will document in detail the 

scope of use and also limits beyond which the current protocol is invalid or fails. 

Scatter diagrams, regression lines/surfaces/Kohonen-maps for spacio-temporal data/information/ numerical 

knowledge evolved over last half a century enhancing the scope of inferencing tools beyond a host of 

calculated parameters. They are instrumental inexploratory statistical data analysis, transformation of data 

or projection tools are start-ups in understanding data. The (non-) parametrization, orthogonalization and 

projection pursuit methods are simple way of reducing the size of data tensor (number of points, 

dimensions in each way of multi (three-six and higher) way data). The confirmatory 

statistical/fuzzy/possibility analysis, checking with well tested knowledge bits of the task/discipline 

follows. One should conceive visualization is more than just a “pretty picture”. Visualisation is a third-eye 

probe of experimental-simulated-computed-output of terabytes to exabytes. These sizes are beyond datum-

by-datum inspection/ identifying trends which was a coveted torch and respected in the beginning of 20
th
 

century for tens to hundreds of data points. Effective visual data analysis must be based on strong 

mathematical foundations to reliably characterize salient features and generate new scientific knowledge. 

The focus of basic research should be round developing fundamental mathematical methods such as 

topology, statistics, high-order tensors, uncertainty, and feature extraction in tensor notation, Clifford 

(geometric algebra) and real-time true-color-multidimensional display. These pave an alternate route, 
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subsuming earlier theories in to a unified one, opening a new widow, refuting earlier well accepted 

proposal(s). But, they are the signal posts at the cross-high ways or light-houses in the ocean of knowledge 

to avoid the consequences of accidents resulting in wreckage of the precious material. But, they remain as 

a test bed for long for unstinted six sigma limits validity for the prosperity and upholding the truth value of 

the proposed truth. 

 

Regression 2016 

 

%      DataAnalysis2016.m  (9-11-15 25/1/97, 7/10/92 R S Rao)  

%      (Beta version 9.6, 9-8-16 under rigorous testing)   

% 

    clean 

    diary off 

!del output2016.txt 

    diary output2016.txt 

 

    %% 

    Task = 0;hardModel= 0; SoftModel =0; CauseEffect = 0; DataDriven = 0; ModelFree=0; 

    DistributionFree = 0;DimensionReduction = 0; MappingToHigherDimensions=0; 

NoVariables_GT_NoPoints =0; 

    NoPoints_GT_No_Variables=0;NatureInspingAlg=0; EnvlopEst =0; 

%     

    %% 

    linearModel=0; replicateMeasurementsAreThere=0; ANOVA_required=0; 

    advancedResid = 0; 

%     

    %% 

    InformKBaseIntBits = 0; 

    ExpertSystemAdvice=0; 

    supportRefute = 0; 

    CaseBase =0; 

    Simul = 0; 

    RealLife =0;  

    State_of_Knowledge=0; 

%     

    %%  

    UserChoice = 0; 

    prin =0; graph=0; 

%                % 

    %% 

if Task  

      Tasks = {'Response_Analysis';'Cause_effect relation';  

'Classification/Distrimination';'Clustering'; 

'Pattern Recognition'} 

end%% 

%    

    %%  

if hardModel & CauseEffect  

      Model_Hard = {'LLS';'LAD'; 'LMS';'PolyLS';'MLR';'EnvlopEst'} 

end 

if SoftModel & CauseEffect  

      Model_Soft = {'PCR';'PLSR'; 'CR';} 

end%% 

%     

    %%  

    data_xy 

    InpCheck_lls2015(X,x,y); 

    [np,npar] = size(X); 

    [np,xvariables] = size(x) 
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if xvariables > 1 

     mlr2015 

end 

 

if xvariables ==1 

     anova2015(X,x,y) 

      lls2015 

      LAD2015 

      lms2015 

      polyLS2015 

end 

 

if np < npar  

     disp('No Least squares solution -Resor to Linear algebra Simplex') 

return 

end 

 

if np > npar | np == npar 

     [a,ycal,res] = Formulas_LS(X,x,y );  

end 

 

if np > npar  

     [sda,ycal,resid,vary,sdy] = Formulas_Resid( X,x,y,a,prin ) 

end 

 

if linearModel  

%[linear] = kb_lr1(X,x,res); 

end%%  

%     

    %% 

if ANOVA_required 

      [sst,ssfact,ssr] = formulas_anova(X,x,y,prin); 

      Ftest2015 

end 

 

if replicateMeasurementsAreThere 

      LOF_PE 

end 

% 

if advancedResid 

      [Catcher,hat,diagHat,cutoff_h]=Formulas_hat(X,x,y); 

%      

%  Regression parameterstatistics 

% 

      [stats] = regcoefstat(X,x,y); 

      LLS_stats.regcoef= stats 

%      

%  Residual statistics 

% 

      [stats] = residstat(X,x,y) 

      LLS_stats.res = stats; 

%      

%  statistical tests  

% 

      statTests 

end%% 

 

 

   %% 

 

if ExpertSystemAdvice 

      KBReport 
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end 

if prin == 1 

% tab_lr1(np,npar,a,sda,sdy,ta,standa,linear,prin) 

end 

if graph ==1 

%graph 

end 

 

 

    %%  

if supportRefute  

     support_KB 

     Refute_KB 

end 

 

if CaseBase 

if Simul  

        simul_CaseBase 

end 

if Reallife 

        RealLife_CaseBase 

end 

end 

if State_of_Knowledge  

      State_of_Knowledge_MethodBase 

end 

 

   diary off 

   edit output2016.txt 

 

10.  Knowledge based output for typical datasets 

The statistical parametric estimation and residual analysis of simulated and typical data sets are reported 

with the suit of programs developed in this laboratory for regression analysis.  The additional features are 

knowledge based inferences through IF-Then first order logic, a key of numerical as well as literal expert 

systems. The stepwise pedagogical approach adapted through sections 2 to 8 is to introduce calculation of 

parameters of simple straight line to multi-dimensional surfaces in cause-effect models. The derivations 

are separated (appendix), while Matlab functions implementing formulas are described side by side. This 

enables one to have at the first sight the titbits and later to focus on either on mathematical jargon or 

programing skills in matrix (tensor) notation. The simple as possible data sets with and without noise 

impart a smooth transition of utopian to real world noisy data.  This throws light on behaviour of the 

methods of increasing care taking protection and robust procedure to combat when datasets do not adhere 

to the necessary conditions implied in any mathematical solution.  

 

Dataset SI-1: It is a simple simulated data set without noise with knowledge based inferences. 

Dataset: 1: for y = 0 + 1*x  
ycal = 

    1.0000 

    2.0000 

    3.0000 

    4.0000 

    5.0000 

    6.0000 

resid = 

   1.0e-14 * 

    0.0666 

         0 

   -0.0444 

   -0.1776 

 No noise  

 Regression parameters 
(slope and intercept are 

exactly equal to those 

used in model for 

simulation of data 

 Residuals in y are zero 
(i.e. order of 10-

14 
) 

 stand_a, t-values 
 F regression < 
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   -0.1776 

   -0.1776 

>> 

 No minor/major process 
 Analysis is adquate 

 

 

  No replicates  

  NO PE, LOF 

  Obtain data with 

replicates 

+ No heteroscedastic noise 

 WLS not necessary 
+ No outliers 

 LMS, TLS, not necessary  
 

 

 

Dataset SI-2: Calibration of labetalolHcl:Kateman D-optimal design is used in choosing concentrations of 

analyte. It is clear that the points are equally distributed over concentration range and there more points in 

the beginning and end of study region.  

 

labetalolHcl  NP : 

 2.8        0.127    0.0025093 

            4        0.179    0.0009969 

            4        0.174   -0.0040031 

            4        0.201     0.022997 

          4.8         0.22     0.006322 

          5.6        0.261     0.011647 

          6.4        0.226    -0.059028 

          6.4        0.317     0.031972 

          7.6        0.349      0.01046 

          8.8        0.366    -0.026053 

           12        0.559     0.024247 

           14        0.596     -0.02794 

         14.8         0.66   0.00038518 

           16        0.679    -0.034127 

           16        0.672    -0.041127 

         16.8        0.778     0.029198 

         18.4        0.843     0.022848 

         18.4        0.845     0.024848 

         18.4        0.824    0.0038479 

sdy = 

     0.026848 

 

 

 D-optimal experimental 

(Kateman) design for 

concentrations of analytes 

 Repition of select points 

 NP  = 19 ; LMS, LLS, MLP_NN 

 

`````````````````````````````````````````````````````````````````````````````````````````````` 

       Par                               sd                     ta                                          stda 

``````````````````````````````````````````````````````````````````````````````````````````````` 

-0.00037161   0.00034829  -4.8206e-06       -1.067              
 0.044594     2.9237e-05   4.8561e-05       128.04 

------------------------------------------------------------------------------ 

 
Ref : [164] 

Dataset SI-3: Data with fuzzy errors 
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# x y Resid  

# x y LMS  LLS Fuzzy 

Reg 

1   1    1.1    0 0.32 0.02 

2   2    2      0         -0.04 -0.04 

3  3    3.1      0.2 -0.2 0.14 

4   4   3.8         0         -0.76 -0.08 

5    5   6.5        1.8          0.68 1.70 

      

   sdy_lms 

:1.0456  

sdy_lls : 

0.62823 

---- 

 

  Data with fuzzy errors 

  Small set of data point NP =8 ; yrange very 

large : [8 to 800] 

++  Regression Coeffient (slope) is similar to 

LLS  

  bur SD in LLS Slope is high 

+ Residual range [1 to 30] 

+ Difference in magnitudes of residuals for 

LMS and LLS is marginal compared to y 

values 

 

 

--------------------------------------- 

a_lms       a_lls         sda_lls 

--------------------------------------- 

0.2        -0.48      0.41393 

0.9         1.26      0.1248 

--------------------------------------- 

 

 NP : 8 

 

------------------------------------------------------------------------------ 

     a_LMS       a_LLS         sda_LLS        LAD          Fuzzy Reg 

------------------------------------------------------------------------------ 

8.19       -3.083       170.34              12.1       10.63 

       802.51      814.5       297.36             802.5     802.8 

 

        ………………........................................ 
k            x            y         res_LMS      res_LLS 

         …………………..................................................... 

            1            0         8.19            0       11.273 

            2            0           16         7.81      19.083 
            3         0.25        171.9      -36.917      -28.642 

            4         0.25        180.6      -28.218      -19.942 

            5          0.5         406       -3.445       1.8324 
            6          0.5        414.5        5.055       10.332 

            7            1        810.7            0     -0.71814 

            8            1          818.2        7.5       6.7819 
.................................................... 

sdy_LMS :19.6375 sdy_LLS : 17.6349 
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Dataset SI-4:  The experimental Dielectric constant data versus DMSO content of aquo-DMSO mixtures is 

fitted into a athird order polynomial by least squares. The desired dielectric constant at desired DMSO 

content was calculated from parameters.  

 

 

Dataset SI-5: A small dataset, but  with typical characteristics is presented in chartzz. A simple MLR 

model show the results to be normal at first sight. 

 

Phase 1 
................................................................... 

#------x---- y     res_LLS     hatMat(i,i) 

.................................................................... 

 

1            1            1            3     -0.12857      0.47143 

2            1            2            4     -0.14286      0.28571 

3            1            3            5     -0.15714      0.18571 

4            1            4            7      0.82857      0.17143 

5            1            5            7     -0.18571      0.24286 

6            0            6            8  -1.4211e-14            1 

7            1            7            9     -0.21429      0.64286 

sdy: 0.45513 ; vary = 0.2071 

 

 

correlation matrix  

        x1    x2    y 

-------------------------- 

x1    1.00   

x2    -0.41  1.00   

y    -0.37  0.99  1.00   

        x1    x2    y 

 

 

Angles between column vectors 

        x1    x2    y 

-------------------------- 

x1    0.00   

x2    40.62  0.00   

y    33.41  9.07  0.00   

x1   x2y 

svd(x):11.98 

        1.575 

 

 

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

         a,         sda,        standErra,      standa,     ta    

      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

       1.9143      0.72576       1.5946      3.0526       2.6376 

          0.2      0.53852       1.1832      0.23664      0.37139 

       1.0143     0.094221      0.20702      0.20998       10.765 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Df = 4 

Data: Courtesy from  

 y = a0 + a1 * x + a2 *x2 + 

a3*x3 

a0 a1 a2 a3 

79.264 -0.136 0.003 728 0.000 052 45 
 

 Method: orthogonal 

polynomials  
 

y = a0 + a1 * x + a2 *x2 + a3*x3 

    

10.00  78.20   78.22 -0.0243 

18.58  77.90 77.82 -0.0873 

20.00 77.50 77.61 -0.0150 

32.56 76.90 76.98 -0.0776 

40.00 76.40 76.43 -0.0322 

52.01 74.90 74.90  0.0033 

60.00 73.30 73.20  0.1031 

65.01 71.7 71.77 -0.0693 
 

Inference  

  Very low residuals indicate the interpolation at intermediate of x is statistically 

valid.  

  Measurement of dielectric constants of aquo-organic mixtures not more accurate 

than 0.1 under normal set of conditions and instruments 

Data: Courtesy of Ref:  [40] 
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 R D Cook, S Weisber, Residuals and influence in regression, Chapman and 

Hall, New York(1982) 
 

Phase 2: 
  

 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

         a,         sda,        standErra,      standa,     ta    

         -1.5   3.1364e+08   6.7109e+07  -1.0066e+08  -4.7825e-09 

0   3.1364e+08   6.7109e+07            0            0 

       1.1058      0.88747      0.18989      0.20997        1.246 

 

   ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

                               

correlation matrix  

        x1    x2    x3     

-------------------------- 

x1    NaN   

x2    NaN  1.00   

x3    NaN  0.98  1.00   

        x1    x2    x3     

-------------------------- 

................................................................... 

                      #------x---- y     res_LLS     hatMat(i,i) 

.................................................................... 

 

1            1            1            3       3.3942      0.28606 

            2            1            2            4       3.2885      0.14423 

            3            1            3            5       3.1827     0.074519 

            4            1            4            7       4.0769     0.076923 

            5            1            5            7       2.9712      0.15144 

            6            1            7            9       2.7596      0.51683 

                      ```````````````````````````````````````````````````````````````````` 

 

 

 

Dataset SI-6: The x variable is age of a child in months at first word and y is Gesell adaptive score of 21 children 

with cyanotic heart disease. This study was carried out at University of California at Los Angeles.  Mickey, Dunn and 

Clark analyzed this data in 1967 and have been reanalyzed extensively. 

  

       ~~~~~~~~~~~~~~~~~~    

            #       h(i,i) 

      --------------------------- 

            1     0.047922 

2      0.15451 

            3     0.062816 

            4     0.070545 

            5     0.047922 

            6     0.072619 

            7      0.05799 

            8      0.05667 

            9     0.079858 

           10     0.072619 

           11     0.090755 

           12     0.070545 

           13     0.062816 

           14      0.05667 

           15      0.05667 

           16     0.062816 

           17     0.052108 

18      0.65161 

           19      0.05305 

           20      0.05667 

           21     0.062816 

%     

%       hat.M 22/05/1995 (R S Rao)  

% 

function [h]=hat(X,x,y) 

if nargin <3  

           inf_hat 

       load cookb_03.dat 

       x = cookb_03(:,1); 

       y = cookb_03(:,2); 

      [r,c] = size(x); 

        one = ones(r,1); 

        X =  [one x];  

end 

       [r,c] = size(x); 

        one = ones(r,1); 

       hat2 = X * inv(X'*X) * X' ; 

       h = diag(hat2) 

        ycal = hat2 * y; 

        res = ycal -y; 

        pred_res = res./(one - h) 

        press = pred_res'*pred_res 

       [r,c]= size(hat2); 

        b3 = blanks(1);    

 

for i = 1 : r 

           z = int2str(i); 

for j = 1 : i 

           z = [ z,b3,sprintf('%.2f',hat2(i,j))]; 

end 

          disp([z]) 

end 

       number = [1:r]'; 

       [number, h] 



R. Sambasiva Rao et al                           Journal of Applicable Chemistry, 2016, 5 (5):908-1033 

 

992 

www. joac.info 

 

 

Phase 1:Hat matrix is a square symmetric matrix of size equal to NP and not calculated routine. The lower 

triangular matrix shows that hat (2,2) and hat(18,18) have large numerical values 0.15 and 0.65, while the 

range of all other elements is  0.05 to 0.09. That is why sum(diag(hat)) is 2.0 
1 0.05 

2 0.05 0.15 

3 0.05 0.01 0.06 

4 0.04 -0.00 0.07 0.07 

5 0.05 0.05 0.05 0.04 0.05 

6 0.05 0.10 0.03 0.02 0.05 0.07 

7 0.05 0.08 0.04 0.03 0.05 0.06 0.06 

8 0.05 0.02 0.06 0.06 0.05 0.03 0.04 0.06 

9 0.04 -0.01 0.07 0.07 0.04 0.02 0.03 0.06 0.08 

10 0.05 0.10 0.03 0.02 0.05 0.07 0.06 0.03 0.02 0.07 

11 0.04 -0.02 0.07 0.08 0.04 0.01 0.03 0.07 0.08 0.01 0.09 

12 0.04 -0.00 0.07 0.07 0.04 0.02 0.03 0.06 0.07 0.02 0.08 0.07 

13 0.05 0.01 0.06 0.07 0.05 0.03 0.04 0.06 0.07 0.03 0.07 0.07 0.06 

14 0.05 0.02 0.06 0.06 0.05 0.03 0.04 0.06 0.06 0.03 0.07 0.06 0.06 0.06 

15 0.05 0.02 0.06 0.06 0.05 0.03 0.04 0.06 0.06 0.03 0.07 0.06 0.06 0.06 0.06 

16 0.05 0.01 0.06 0.07 0.05 0.03 0.04 0.06 0.07 0.03 0.07 0.07 0.06 0.06 0.06 0.06 

17 0.05 0.03 0.06 0.06 0.05 0.04 0.04 0.05 0.06 0.04 0.06 0.06 0.06 0.05 0.05 0.06 0.05 

18 0.06 0.30 -0.05 -0.07 0.06 0.17 0.13 -0.03 -0.09 0.17 -0.11 -0.07 -0.05 -0.03 -0.03 -0.05 -0.00 

0.65 

19 0.05 0.07 0.04 0.04 0.05 0.06 0.06 0.04 0.03 0.06 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.10 0.05 

20 0.05 0.02 0.06 0.06 0.05 0.03 0.04 0.06 0.06 0.03 0.07 0.06 0.06 0.06 0.06 0.06 0.05 -0.03 0.04 

0.06 

21 0.05 0.01 0.06 0.07 0.05 0.03 0.04 0.06 0.07 0.03 0.07 0.07 0.06 0.06 0.06 0.06 0.06 -0.05 0.04 

0.06 0.06 

 

Phase 2:Full set analysis: Least squares show that point 19 has high residual (30.2) while all others are 

spread between -15 to +15. This point is removed and the analysis is repeated.   (Rous4/p49) 
Full Data 

-----------------------------------

---- 

a_LMS       a_LLS      sda_LLS 

sda_LLS/sdy 

-----------------------------------

---- 

120       109.87       55.862     

5.06 

 -1.5      -1.127       3.419     

0.31 

-----------------------------------

---- 

 

 

sdy_LMS :12.4826 sdy_LLS : 11.0229 

var_LMS : 155.8         var_LMS : 

121.5 

 

df = 21-2 =19 

 

 

 ......................................................... 

k            x            y         res_LMS      res_LLS 

.......................................................... 

 

19           17          121         26.5       30.285 

````````````````````````````````````````````````````````` 

 

Phase 3:  The all residuals now are in the range to -14 to +14 and sdy reduced to 8.6 from 11.02. LMS 

parameters remained same. 
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19
th
 Point deleted 

------------------------------------

-- 

a_LMS   a_LLS  sda_LLS sda_LLS/sdy 

------------------------------------

--- 

120      109.3    34.254    3.97 

-1.5      -1.192.1008    0.24 

------------------------------------

--- 

sdy_LMS :11.2008 sdy_LLS : 8.6282 

var_LMS :125.46  var_LLS : 74.446 

 

 

 

Data: Courtesy from  

 

 M R Mickey, O J Dunn, V Clark, 

Computers and Biomedical research 1 

(1967)105-9 

Note on use of stepwise regression in 

detecting outliers. 

 

 R D Cook, S Weisber, Residuals and 

influence in regression, Chapman and Hall, 

New York(1982) 
 

 

 

 

.................................................... 

         k            x            y         res_LMS      res_LLS 

.................................................... 

            1           15           95         -2.5        2.031 

            2           26           71          -10      -9.5721 

            3           10           83          -22      -15.604 

            4            9           91        -15.5      -8.7309 

            5           15          102          4.5        9.031 

            6           20           87           -3     -0.33406 

            7           18           93            0        3.412 

            8           11          100         -3.5        2.523 

            9            8          104           -4       3.1421 

           10           20           94            4       6.6659 

           11            7          113          3.5       11.015 

           12            9           96        -10.5      -3.7309 

           13           10           83          -22      -15.604 

           14           11           84        -19.5      -13.477 

           15           11          102         -1.5        4.523 

           16           10          100           -5        1.396 

           17           12          105            3         8.65 

           18           42           57            0      -5.5403 

           19           17          121         26.5       30.285 

           20           11           86        -17.5      -11.477 

           21           10          100           -5        1.396 

.................................................... 

 

%cook03.m 

 clean 

       load cookb_03.dat 

 

       x = cookb_03(:,1); 

       y = cookb_03(:,2); 

      [r,c] = size(x); 

        one = ones(r,1); 

        X =  [one x];  

       hat2 = X * inv(X'*X) * X' ;  

 

       [a,ycal,residy] = Formulas_LS(X,x,y); 

0 5 10 15 20
-20
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       figure,plot(residy,'r*'),hold on, plot(residy),hold off 

       title('#vs residy') 

       [a_LMS] = lms2015(X,x,y) 

 

plot(x,y,'x'),title('x vs y')  

 

 

figure,plot(ycal,residy,'r*'), title('ycal vs residy') 

figure,line_gr2(residy) 

 

 

% 19 point deleted 

x2 = [x(1:18,1);x(20:21,1)]; 

y2 = [y(1:18,1);y(20:21,1)]; 

[r2,c2] = size(x2); 

        one = ones(r2,1); 

        X2 =  [one x2];  

 

        [a_LMS] = lms2015(X2,x2,y2) 

         [a2,ycal2,residy2] = Formulas_LS(X2,x2,y2); 

 

        figure,line_gr2(residy2)  

       title('#vs residy2') 

 

 

Dataset  7:  The measured height, diameter and volume  of  31 black cherry trees in Allegheny National 

Forest, Pennsylvania are analysed with MLR.   

Phase 1: 

 

|||||||||||||||||  statistics of regress parameters 

     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

         a,         sda,        standErra,      standa,     ta  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

      -57.988       33.532       8.6382      -500.91      -1.7293 

D     4.7082       1.0258      0.26426        1.2442     4.5896 

H 0.33925      0.505230.13015     0.044154   0.67149 

 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

 

 

 

 

|||||||||||||||||  statistics of regress parameters 

     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

0 20 40 60 80
-10

-5

0

5

10
y vs residuals red x: 3-Par ; blue o : 5-par
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

         a,         sda,        standErra,      standa,     ta  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

       65.567       332.32       124.72       8177.3       0.1973 

D      -21.464       13.495       5.0647      -108.71      -1.5904 

H      -1.7574        24.95       9.3635      -16.455    -0.070436 

D*log(D)7.2037         3.71       1.3943       10.044        1.939 

D*log(D)0.40494        4.69       1.7621      0.71354     0.086244 

 

            ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

  

 

 

8.3           70         10.3       5.4623      -1.0626 

          8.6           65         10.3       5.7461      0.36894 

          8.8           63         10.2        5.383      0.66745 

         10.5           72         16.4      0.52588      0.18685 

         10.7           81         18.8       -1.069      -1.5956 

         10.8           83         19.7      -1.3183      -1.8445 

           11           66         15.6     -0.59269      0.13503 

           11           75         18.2      -1.0459     -0.60002 

         11.1           80         22.6        1.187       1.4498 

         11.2           75         19.9     -0.28758      0.48418 

         11.3           79         24.2       2.1846       2.8406 

         11.4           76           21     -0.46846      0.54408 

         11.4           76         21.4    -0.068465      0.94408 

         11.7           69         21.3      0.79385       2.5086 

           12           75         19.1      -4.8541      -3.0319 

         12.9           74         22.2      -5.6522      -3.0526 

         12.9           85         33.8        2.216       3.9366 

         13.3           86         27.4      -6.4065      -4.6212 

         13.7           71         25.7       -4.901      -1.9107 

         13.8           64         24.9       -3.797     -0.70148 

           14           78         34.5      0.11182       2.7361 

         14.2           80         31.7      -4.3083      -1.8582 

         14.5           74         36.3      0.91474       3.7018 

           16           72         38.3       -3.469      -1.5749 

         16.3           77         42.6      -2.2777      -0.9745 

         17.3           81         55.4       4.4571       4.0944 

         17.5           82         55.7       3.4762       2.7014 

         17.9           80         58.3       4.8715       3.5794 

           18           80         51.5      -2.3993      -3.8748 

           18           80           51      -2.8993      -4.3748 

         20.6           87           77       8.4847      0.19849 

Angles between column 

vectors 

 

        c1    c2    c3     

-------------------------- 

c1    0.00   

c2    11.39  0.00   

c3    15.83  25.63  0.00   

        c1    c2    c3     

-------------------------- 

 

correlation matrix  

        x1    x2    x3     

-------------------------- 

x1    1.00   

x2    0.52  1.00   

x3    0.97  0.60  1.00   

        x1    x2    x3     

-------------------------- 

svd(x) 

ans = 

       431.04 

       14.736 

 

 

 

 

Dataset  SI-8: 
 

 

|||||||||||||||||  statistics of regress parameters 

 

       ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

a,         sda,        standErra,      standa,     ta    

 

  6.7988     1.2353         2.19       14.889        5.504 

-0.41474    0.28597      0.50698     -0.21027      -1.4503 

 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

sdy_LMS :1.5087 sdy_LLS : 0.56405 
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~     

           #     diagHat,StandRes,MD, studendizedResid 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1     0.022202     0.042564      0.43189     -0.43676 

            2     0.037341      0.73896       1.4758      -1.5041 

            3     0.021919     0.029558     -0.18086      0.18287 

            4     0.037341      0.73896       1.4758      -1.5041 

            5     0.021302    0.0011823       0.3095     -0.31285 

            6      0.02706      0.26603      0.90583     -0.91834 

            7     0.078054       2.6118     -0.98609        1.027 

            8     0.038652      0.79926      0.64986      -0.6628 

            9     0.021919     0.029558      0.95378     -0.96441 

           10     0.022202     0.042564      0.23687     -0.23954 

           11       0.1941         7.95      0.67127     -0.74775 

           12     0.024978      0.17026      0.86604     -0.87706 

           13     0.028705       0.3417      0.84962     -0.86208 

           14     0.044409       1.0641      -1.9248        1.969 

           15     0.021379    0.0047293      -1.3466       1.3613 

           16     0.024387      0.14306     -0.68372      0.69221 

           17     0.022922      0.07567      -1.9581       1.9809 

           18     0.024387      0.14306      -1.3929       1.4102 

           19     0.022922      0.07567      -1.5326       1.5504 

           20       0.1941         7.95      0.95493      -1.0637 

           21     0.021379    0.0047293      -1.1339       1.1462 

           22     0.021379    0.0047293      -1.4175       1.4329 

           23     0.024387      0.14306     -0.96738       0.9794 

           24     0.029604      0.38308     -0.15357       0.1559 

           25     0.022536     0.057935     0.066936    -0.067703 

           26     0.024387      0.14306     -0.54189      0.54862 

           27     0.021379    0.0047293     -0.63748       0.6444 

           28     0.022536     0.057935     -0.14581      0.14748 

           29     0.023359     0.095769      -1.1676       1.1815 

           30      0.19834       8.1451       1.2312      -1.3751 

           31     0.022536     0.057935     -0.99679       1.0082 

           32     0.037341      0.73896      0.34112     -0.34767 

           33     0.026314      0.23174      0.47298     -0.47933 

           34       0.1941         7.95       1.6641      -1.8537 

           35     0.022922      0.07567      -1.2489       1.2635 

           36     0.045977       1.1362       1.3071      -1.3383 

           37     0.033717      0.57225      0.31906     -0.32458 

           38     0.026314      0.23174      0.47298     -0.47933 
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           39     0.033717      0.57225      0.46089     -0.46886 

           40     0.024978      0.17026       1.0788      -1.0925 

           41     0.022536     0.057935     -0.64222      0.64958 

           42     0.026314      0.23174      0.18932     -0.19186 

           43     0.030555      0.42682      0.72249     -0.73379 

           44     0.026314      0.23174      0.61481     -0.62306 

           45     0.036082      0.68103       1.1138      -1.1345 

           46     0.026314      0.23174     0.047491    -0.048128 

           47     0.024387      0.14306     -0.82555       0.8358 

        ----------------------------------------------------------- 

 

................................................................... 

         k            x            y         res_LMS      res_LLS 

.................................................................. 

            1         4.37         5.23         0.49      0.24361 

            2         4.56         5.74         0.24      0.83241 

            3         4.26         4.93         0.63     -0.10201 

            4         4.56         5.74         0.24      0.83241 

            5          4.3         5.19         0.73      0.17458 

            6         4.46         5.46         0.36      0.51093 

            7         3.84         4.65         2.03     -0.55621 

            8         4.57         5.27        -0.27      0.36656 

            9         4.26         5.57         1.27      0.53799 

           10         4.37         5.12         0.38      0.13361 

           11         3.49         5.73         4.51      0.37863 

           12         4.43         5.45         0.47      0.48849 

           13         4.48         5.42         0.24      0.47923 

           14         4.01         4.05         0.75      -1.0857 

           15         4.29         4.26        -0.16     -0.75957 

           16         4.42         4.58        -0.36     -0.38565 

           17         4.23         3.94        -0.24      -1.1045 

           18         4.42         4.18        -0.76     -0.78565 

           19         4.23         4.18            0     -0.86446 

           20         3.49         5.89         4.67      0.53863 

           21         4.29         4.38        -0.04     -0.63957 

           22         4.29         4.22         -0.2     -0.79957 

           23         4.42         4.42        -0.52     -0.54565 

           24         4.49         4.85        -0.37    -0.086623 

           25         4.38         5.02         0.24     0.037755 

           26         4.42         4.66        -0.28     -0.30565 

           27         4.29         4.66         0.24     -0.35957 

           28         4.38          4.9         0.12    -0.082245 

           29         4.22         4.39         0.25      -0.6586 

           30         3.48         6.05         4.87      0.69449 

           31         4.38         4.42        -0.36     -0.56224 

           32         4.56          5.1         -0.4      0.19241 

           33         4.45         5.22         0.16      0.26679 

           34         3.49         6.29         5.07      0.93863 

           35         4.23         4.34         0.16     -0.70446 

           36         4.62         5.62        -0.12      0.73729 

           37         4.53          5.1        -0.28      0.17997 

           38         4.45         5.22         0.16      0.26679 

           39         4.53         5.18         -0.2      0.25997 

           40         4.43         5.57         0.59      0.60849 

           41         4.38         4.62        -0.16     -0.36224 

           42         4.45         5.06  -2.6645e-15      0.10679 

           43          4.5         5.34         0.08      0.40752 

           44         4.45          5.3         0.24      0.34679 

           45         4.55         5.54         0.08      0.62826 

           46         4.45         4.98        -0.08     0.026787 

           47         4.42          4.5        -0.44     -0.46565 

.................................................... 
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During my Ph. D program, I (RSR) tried Facit calculator (adding machine) to calculate secondary formation 

function values of proton-ligand and metal ligand complexes instead of using four figure logarithms; but 
found it not a good approach. I went for Casio FX-8 calculator (costing 400 rupees around 1974-1975), which 

does not have provision for logarithm function against today's Casio Scientific Graphic Calculator FX CG20 (with 

2900 functions for 10K INR).  I calculated slope and intercept of dozens of data sets to arrive at stability constants 

of proton-ligand and metal ligand complexes (as simple as ML,ML2) spending long hours of clock time for 

several days with the help of  co-researcher (K V Bapanaiah). This is preceded by drawing graphs, jotting down 

interpolated values etc.   In a nut shell, calculation even for a simple system required more time than performing 

experiment with 20 data points. Around the year 1977, A. Satyanarayana, in the research school of our 

teacher P V Krishna Rao, asked me to help in computerizing calculations on IBM 1130 computer with 

punch card and line printer available on our campus.  DR A Sitapathi of applied mathematics who promised to be 

with us left to Nuzvid on promotion.  With several ups and downs, we continued FORTRAN-IV and developed 

several number crunching programs for in house use. Then the venture to use state-of-art software (SCOGS, POT-

3, and MINIQUAD-74) in complex equilibria changed the facet our computational approach and in turn 

experimental plans. This continued over the last three decades using  MINIQUAD-75, SUPERQUAD and 

HYPERQUAD, Hyss and our software Simulation of pH metric data (SoPhD), GHS, CEES, SiteCon etc.  In 

1978, I brought Randu program running on DEC 10, available at I I Sc. from Bangalore for random number 

generation to simulate noise. But, we could not implement here as it is requires some machine dependent 

modules. In Pune, we had the opportunity of visiting to PDP-11, mini computer and other high end hardware. But, 

we have no choice than to continue with Fortran_IV and IBM 1130 until 1985, when ICIM and OMC computers 

were procured by our university. At about the same time, a single piece of IBM compatible PC with GWbasic was 

available for users. An expert system for acido basic equilibria was developed in GWBASIC with heuristic rules 

and GAUSS_NEWTON numerical optimization technique. I tried promoting calculations in chemistry with TI-66 

programmable calculator, a gift from USA,  for a brief period around 1986. I had the opportunity of using   PC 

(8086 + 8087 coprocessor) with 10MB hard disc by 1987 to develop CEES expert system in TURBOPROLOG-2, 

an AI language along with tiny user interfaces in BASICA and GWBasic.  In 1989, with financial assistance to 

conduct international workshop on 'expert systems and numerical methods in chemistry', I purchased a PC with 

two floppy drives (one 1.2MB and other 640KB) for my laboratory. In 1990, I used Macintosh computer in Prof 

Braibanti's lab in Univ of Parma, Italy. I was thrilled to transfer data on floppies between two different hardware 

machines viz. Apple Macintosh and IBM.  Also, I performed equilibrium calculations on a super computer at 

Bologna, 100 km from Univ of Parma through a terminal.  On return, S V V Satyanarayana, my former research 

student gave me IBM-PC (386) with windows operating system to switch over from chiwriter to WORD. This 

was a requirementfor manuscript preparation to send to Prof. Braibanti. We continued publishing with changing 

standards of Word and hardware. In 1999, our lab got Pentium-2 machine, internet with dial up modem in a major 

project on 'predictive modeling in fisheries with neural networks'.  From 2006, I started using laptops with dual 

processors, quad and eight processors. In 2012, dell system with i7 processor and a terabyte hard disc backup 

memory was purchased and multiple processing became routine. Now, we are going in for a 6
th
 generation i7 

system.  The development and application of regression analysis in our laboratory for research and pedagogy over 

these four decades closely followed our house programs and trend in hardware, commercial/ academic software 

and most importantly the advances in chemometric/ technometric research.   
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AppendixA0:Research Algorithms in Regression Evolution (Rare) 

In 1992, we proposed a general program strategy for complex equilibria by pH metric data based on 

different object functions, calculation methods for equilibrium concentrations/stability constants, 

optimization procedures, statistical tests for validation etc. This strategy could emulate most of the 

programs in vogue viz. SCOGS-X, POT-3, MINIQUAD-X, SCPHD, SOPHD, ESAB, BEST etc.  In 

computational quantum chemistry, G09 and Schrodinger suit adapt work flow concept for multi-purpose 

computations. Recently flow representation and execution ($$$-flow, $$$: [data, Method, algorithm, 

knowledge]) gained popularity in statistical packages and in discipline specific softwares. The work flow 

approach for regression follows here. It is not in a rigid framework, but with a target of stability/plasticity 

compromise, embedding detection of conflicts/updated-remedial solutions and evolving features for 

eventual integration with time.  

 Chart A0.1:  Workflow of regression (Broad level) 

 

Scatter diagram 

 

 

 

Model 

 

 

 

Method 

 

 

 

Stats 

 

       

 

ES 

 

 

 

Noise injection 

 

 

 

Ensemble 

 

 

 

Conscientious 

Intelligent 

System advice 

(CiSa) 
 

 

  Workflow of linear regression(Method level) -- 

 

  ("low-hanging fruit" approach) 
 

 



R. Sambasiva Rao et al                           Journal of Applicable Chemistry, 2016, 5 (5):908-1033 

 

1008 

www. joac.info 

 

 

Scatter 

diagram 

 

 Data 

 

Residuals 

 
 

 

Model 

 

Mean 

Lin 

(x,y) 

MLR 

poly 
 

Method 

 

LS 

LAD 

LMS 

LTS 

   

 

Stats  

  

 Reg 

Coe 

Residy 

 Standardize 

 SD studentized 

 

Noise 

injection 

 

 

Influence 

 

 

Monte 

carlo 

 

 ES 

 

Parametrization 

Curve fitting 

 

Categories of regression Typical KBs for .RegMethods  

Regression 

 

 

  

Binary  

Bionomial  

Poisson  

Logistic  

  

Probit  

 ordinary 

 Mutlinomial 

 Ordered 

  

Logit  

 Mutlinomial 

 Ordered 

  

LASSO  

Least Angle  

  

Symbolic  
 

 

if numerical data & 

real 

Then Numerical regression 

  

if numerical data & 

binary 

Then Binary regression 

  

if y follows Poisson distribution 

Then Poisson regression 

  

if y  is an outcome  of two 

possible disjoint  states 

(traditionally denoted 

"success" or 1, and "failure" 

or 0) 

Then binomial distribution 
 

 

 

   

Regression 

Statistical 

 

Linear in parameters 

 

Ordinary 

LAD 

 

Multiple linear in X 

 

Polynomial in x 

 

Regression 

Statistical 

 

 

Unit weighted 

Weighted 

Maximum Likelihood 

Iterative 

 

Insensitive to outliers 

 

Homosedastic & 

Normal    

Noise in y UWLS 

Heteroscedastic normal Noise in y WLS 

Non-normal Noise in y MLE 

Normal Noise in x and y  

Fuzzy Noise in y Fuzzy reg 

#Outliers  Outliers in  

 A few y only 

Cluster  xolnly 

 Both in xand y  



R. Sambasiva Rao et al                           Journal of Applicable Chemistry, 2016, 5 (5):908-1033 

 

1009 

www. joac.info 

 

 

Regression -Fuzzy sets      

 

Fuzzy regression  

Envelop estimators 

Robust  

 

 

 
 

 

  

 

 

 

 
 

 

 

Ordinary LS (OLS) 

Vertical (OLS) 

Horizontal OLS 

 

Bivariate LS   

 

Geometric Mean Reg. 

Orthogonal Reg. 

Deming Reg. 

  

   

 

  Chart A0.2: State-of-knowledge-research modules of regression analysis 
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Chart A0.3: Expert system driven method flow of Reg2015 
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Chart A0.5: Output of model 
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Advances in regression methods from intelligent computational evolution perspective 

Although computational intelligence, nature inspired algorithms, artificial intelligence are sparkles recent 

time in  regression methods, there is a natural evolution just need based in solving real life tasks which 

mirrors ICE.  

The regression spread its wings into neural networks, support vector machines, nature inspired algorithm, 

fuzzy/rough sets and so on.  Probabilistic NNs, regression NNs etc. were discussed in our earlier reviews 

on mathematical NNs (MNNs) [$$$]. The intelligent computational features of support vector-, Genetic-, 

fuzzy-, interval-, non-linear- regressions will be reported separately [$$$]. 

 

Appendix A1: Symbolic differentiation of matrices 

In linear algebra, the product of vectors, matrices and /or their products have a key role. The rules of 

differentiation of algebraic and transcendental functions when applied to matrices, they are of not only 

extended interest, but derivations are simple and elegant. Top down and bottom up complexity (scalar to 

matrix through vectors) becomes trivial. In recent years, all most all engineering/applied 

sciences/commerce employ 3way-/4way tensors and datasets up to six-way are predominant/prevalent. The 

differential operators for tri- and quadri-linear cause-effect models and matlab with tensor algebra tool 

boxes have opened new computational jargon.  The symbolic mathematical tool box mostly relieves the 

drudgery of expansions of polynomial equations, differentiation/integration etc. These will be described in 

a separate context ($$$) 

 In linear least squares task with two regression parameters ( viz. slope and intercept 

[a1,a0]), the design matrix (X) is a rectangular one of size [NP x 2] and response (y) is a column vector 

(NP x 1). The partial derivatives of product of matrices of interest here with respect to parameters (a) are 

collected in table A1-1. The details of steps of expansion of products, differentiation and end result are 

demonstrated considering three data points and two LLS parameters to be estimated statistically. 

Table A1-1: Partial derivatives of matrices  

with respect to vectors 

y *yT

a

   


 

0  
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y * *T X a

a

   


 

*TX y  

* *T Ta X y

a

   


 

*TX y  

* * *T Ta X X a

a

   


 

 2* * *TX X a  

 

Table A1-1b: Details of partial derivatives of matrices  
with respect to vectors with NP = 3 

y *yT

a

   


 

y is not a function of a; Thus, its derivative wrt to a is zero 0  

y * *T X a

a

   


 

 

 

   

2

11
3 0

1 2 3 21
12

33

1

2 0

1 2 3 1 1 2 2 3 31
12

1

0 1 2 3 1 1 1 2 2 3 31

1

* 1 *

1

* * * *

* * * * *

x
a

y y y x
a

x

a
y y y x y x y x y

a

a y y y a x y x y x y

 
     
 

  

 
      

 

       

 

 

 

1 2 3

0

1 1 2 2 3 3

1

y * *
0

y * *
0 * * *

T

T

X a
y y y

a

X a
x y x y x y

a

       


       


 

 

 
1 2 3

1 1 2 2 3 3

1

2

1 2 3

3

y * *
*

* * *

1 1 1
*

T

T
X a y y y

X y
x y x y x ya

y

y
x x x

y

        
   

 
       
 

  

*TX y  
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* *T Ta X y

a

   


 

 *TX y  

* * *T Ta X X a

a

   


 

  2* * *TX X a

 

 

Appendix A2: Derivation of Linear least squares (LLS) in matrix notation 

 

Probability theory for estimation of regression parameters 

The probability of observing a datum (yi) from normal distribution is described in chart A2-1. 

Chart A2-1: probability application in regression 

 

 

 
2

2

*

2*1
( ) *e

* 2*

yi xi

iprob y

  




 




 

 

 

1

* 2 *
Let k 


 

 

 
2

2

*

2*( ) *e

yi xi

iprob y k

  



 


 

 

For  instance in the case of  points (1,2, 

and NP) 

 

 

 

 

2
1 1

2

2
2 2

2

2

2

*

2*

1

*

2*

2

*

2*

( ) *e

( ) *e

....

( ) *e

NP NP

y x

y x

y x

NP

prob y k

prob y k

prob y k

  

  

  







 



 



 



 

 

The simultaneous occurrence of these probabilities happens  

when their product is considered 

 

 

     

 

2 2 2
1 1 2 2

2 2 2

2

1
2

* * *

2* 2* 2*

*

2*

( 1: )

*e * *e * *e

*e

     

  

 





        

  

 

     
     
     
     





NP NP

NP

i i

i

i

y x y x y x

y x

NP

prob y i NP

k k k

k

 

 

If prob(.) is maximum, the regression line is best representation 

of data points. It happens when  and   are such that  

sum of squares term  
2

1

*
NP

i i

i

SSR y x


      is minimum. 

 

Parameters 

Population  Sample  
  a0  

  a1 

If 
 

2

1

min( ) min *
NP

i i

i

SSR y x


 
   

 
   is 

achieved 
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  mean  

  std 

 

Then ( 1: ) maximumiprob y i NP is  

 

Chart A2-1b: object functions and goals in regression  

Method norm objFn Goal 

least-absolute-

deviation 

(LAD) 

l1 Sum(abs(devy))  *Tone abs resid      * y- *
T

one abs X a  
Min(objFn1) 

Least squares l2 Sum(abs(devy.^2)) *Tresid resid      y- * * y- *
T

X a X a  
Min(objFn2) 

minimax  l∞    Minmax(objFn3) 

least-deviation 

(LD) 

….. Sum(devy) *Tone resid      * y- *
T

one X a  
Min(objFn0) 

 

and  are called population parameters in statistical theory and applicable for a large number of 

measurements ( infinity ideally; in realistic sense since a century NP>30, and recently million in rare 

experiments of CERN). Small samples correspond to (NP <30, but many times NP<20; many studies 

involved 4 to 10 data points with special modified statistics).   In experimental studies sample parameters 

a0,a1 correspond to intercept and slope of straight line, mean and standard deviation to and  .  

 

2 1:

( ; )





Derivation A Least squares solution

of y fn X a
 

 

 
1

* * *


  T Ta par X X X y  

 

   

       

SSResid *

* * *

expanding RHS

= y *y- y * * * * * * *

T

T

T TT T

resid resid

y X a y X a

X a X a y X a X a



  

 

 

 

 since, * *

= y *y - y * * * * * * *

T T T

T T T T T T

X a a X

X a a X y a X X a



   

 

….. contd  

 

 

*
0 * * 2* * *

0

2* * 2* * * 0


   





   

T
T T T

T T

resid resid
X y X y X X a

a

X y X X a

 

 

 

 

 

     

 

 

1

1 1

1

1

2* * * 2* *

* * *

Prem *

* * * * * * *

* * * *

* * *

T T

T T

T

T T T T

T T

T T

X X a X y

X X a X y

ultiplying by X X

X X X X a X X X y

I a X X X y

a X X X y



 





 

 

 

 

 

 

 

 

 

 
1

* * *T Ta X X X y


   
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*
0

y *y - y * * * * * * *
= 0

y *y y * * * *

* * *






     


               
  

   



T

T T T T T T

T T T T

T T

resid resid

a

X a a X y a X X a

a

X a a X y

a a a

a X X a

a

 

contd ….. 

 

 

SSResid: Sumof squaresof residuals

    
 

 

Since  *TX X  is a square symmetric, many of methods available for inverse are applicable iff X is full 

rank. In linear least squares solution of a straight line, there is only one x variable and thus X is of rank 2. 

 
Appendix A3: Design matrix 

 

DesignMatrix for explanatory variables: The matlab program desmat2015.m outputs numerical vectors 

for given x-matrix of npar variables (colums).  PolyModel.m has built set of models up to quartic and cross 

product terms. The outputs (chart A3-1) of autotest_desmat2015.m and X2015.m demonstrate typical 

models popular over half a century. 

Chart A3-1: Different models generated for given x vectors  

x = 

[] 

 

x = 

1 

2 

3 

4 

5 

6 

 

 x2 = 

1     1 

2     2 

3     3 

4     4 

5     5 

6     6 

 

ModelPoly 

=  

    'one' 

ModelPoly =  

    '[one]          ' 

    '[lin]          ' 

    '[quad]         ' 

    '[cube]         ' 

    '[quartic]      ' 

    '[lin quad]     ' 

    '[lin cube ]    ' 

    '[lin quartic ] ' 

    '[quad cube]    ' 

    '[quad quartic]' 

    '[cube quartic]' 

    '[lin quad cube]   

' 

    '[lin quad 

quartic]' 

   '[quad cube 

quartic]' 

'[lin quad cube 

quartic]' 

 ModelPoly =  

    '[one]          ' 

    '[lin]          ' 

 

    '[quad]         ' 

    '[cpb]          ' 

 

    '[lin quad]     ' 

    '[lin cpb]      ' 

    '[quad cpb]     ' 

 

    '[lin quad cpb ]' 

 

 

Full quadratic 
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   x2 = 

1     1 

2     2 

3     3 

4     4 

5     5 

6     6 

 

  

 

 ModelPoly =  

    '[one]          ' 

    '[lin]          ' 

    '[quad]         ' 

    '[cube]         ' 

    '[quartic]      ' 

    '[lin quad]     ' 

    '[lin cube ]    ' 

    '[lin quartic ] ' 

    '[quad cube]    ' 

    '[quad quartic]' 

    '[cube quartic]' 

    '[lin quad cube]   

' 

    '[lin quad 

quartic]' 

    '[quad cube 

quartic]' 

 '[lin quad cube 

quartic]' 

 

    '[lin cpb]          ' 

    '[quad cpb]         ' 

    '[cube cpb]         ' 

    '[quartic cpb]      ' 

    '[lin quad cpb]     ' 

    '[lin cube cpb]    ' 

    '[lin quartic cpb] ' 

    '[quad cubecpb]    ' 

    '[quad quartic cpb]' 

    '[cube quartic cpb]' 

    '[lin quad cube cpb]   

' 

    '[lin quad quartic 

cpb]' 

    '[quad cube quartic 

cpb]' 

    '[lin quad cube 

quartic cpb]' 

     

     

 x3 = 

     1     1     1 

     2     2     2 

     3     3     3 

     4     4     4 

     5     5     5 

     6     6     6 

' 

 x4 = 

     1     1     1     

1 

     2     2     2     

2 

     3     3     3     

3 

     4     4     4     

4 

     5     5     5     

5 

     6     6     6     

6 

 

 

 ModelPoly =  

    '[cpb cpt]      

 ModelPoly =  

    '[cpb cpt cpq] 

 

     

 

MethodBase_Reg A3-1: Components of Design matrix      12-8-16 desmat2015.m 

%  

%                  desmat2015.m   (R S Rao) 26/9/93, 9/5/15 

%                Design matrix for Regression, Experimental Design 

% 

function [one,lin,quad,cube,quartic,cpb,cpt,cpq]  = desmat2015(f) 

% 
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if nargin == 0 

             clean 

            disp(['[one,lin,quad,cube,quartic,cpb,cpt,cpq]  = desmat(f)']) 

            f = [1 2 3; 2 3 4; 3 4 5;]   

end 

 

         %% 

         lin = [];quad = [];cube= [];quartic =[]; 

         cpb = [];cpt = [];cpq = []; 

% 

         [rf,cf ] = size(f); 

if rf ==0, one = [];end 

         one = ones(rf,1);  

if rf ==0, one = [];end 

         %% 

for i = 1:cf 

% 

%           linear, quadratic, cubic and quartic vectors 

% 

             lin = [lin, f(:,i)]; 

             quad = [quad,f(:,i).^2]; 

             cube = [cube,f(:,i).^3]; 

             quartic= [quartic, f(:,i).^4]; 

end 

         %% 

% 

%              Cross product (cp) terms 

%           

for i = 1:cf 

%_ 

% Binary (cpb)  if cf = 2 

% 

if cf > 1 

for j = i+1:cf 

                   cpb = [cpb, f(:,i).* f(:,j)]; 

end 

end 

% 

%  ternary (cpt) if cf = 3 

%    

if cf > 2 

for j = i+2:cf           

                    cpt =  [cpt,f(:,i).* f(:,i+1).* f(:,j)]; 

end 

end 

% 

%  quaternary (qpt) if cf = 4 

%    

if cf > 3 

for j = i+3:cf           

                    cpq =  [cpq,f(:,i).* f(:,i+1).* f(:,i+2).* f(:,j)]; 

end 

end 

end%  i loop   

 

         %% 

 

 

MethodBase_Reg A3-2: Components of Design matrix        polyModels.m 
% 

% polyModels.m   (R S Rao) 4/13/93, 10/27/1997,10/21/2011 
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% 

 

function [ModelPoly] = polyModels(x) 

 

if nargin == 0 

    npar = 1; 

else 

    [np,npar]= size(x); 

end 

% 

 

if npar == 0  

   ModelPoly = {'one'};  

end 

if npar == 1 

   ModelPoly = {'[one]          '%1 

'[lin]          '%2 

'[quad]         '%3         

'[cube]         '%4 

'[quartic]      '%5 

% 

'[lin quad]     '%6 

'[lin cube ]    '%7 

'[lin quartic ] '%8' 

'[quad cube]    '%9 

'[quad quartic]'%10 

'[cube quartic]'%11 

%  

'[lin quad cube]   '%12 

'[lin quad quartic]'%13 

'[quad cube quartic]'%14 

% 

'[lin quad cube quartic]'%15  

                }; 

end 

 

if npar == 2 

   ModelPoly = {'[one]          '%1 

'[lin]          '%2 

'[quad]         '%3         

'[cube]         '%4 

'[quartic]      '%5 

% 

'[lin quad]     '%6 

'[lin cube ]    '%7 

'[lin quartic ] '%8' 

'[quad cube]    '%9 

'[quad quartic]'%10 

'[cube quartic]'%11 

%  

'[lin quad cube]   '%12 

'[lin quad quartic]'%13 

'[quad cube quartic]'%14 

% 

'[lin quad cube quartic]'%15  

% 

'[lin cpb]          '%16 

'[quad cpb]         '%17         

'[cube cpb]         '%18 

'[quartic cpb]      '%19 

% 

'[lin quad cpb]     '%20 

'[lin cube cpb]    '%21 
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'[lin quartic cpb] '%22 

'[quad cubecpb]    '%23 

'[quad quartic cpb]'%24 

'[cube quartic cpb]'%25 

%  

'[lin quad cube cpb]   '%27 

'[lin quad quartic cpb]'%28 

'[quad cube quartic cpb]'%29 

% 

'[lin quad cube quartic cpb]'%30  

 

 

                }; 

end 

 

if npar == 3  

% 

    ModelPoly =            { '[cpb cpt]     '} ; %36 

end 

 

if npar == 4  

% 

    ModelPoly =            { '[cpb cpt cpq]     '} ; %36 

end 

 

 

 

 

Data(x,y)  ModelDef   Design matrix   Condition of X  

 

 

First order lin X1 

X2 

X3 

 

   

Second order  Quad 

 

 

 

 

 

X1.^2 

X2^2 

X3.^2 

 

 Cpb X1* X2*  

 

   

Third order  Cube X1.^3 

X2.^3 

X3.^3 

 

 Cpt X1* X2* 

X3*  
 

 (xi)
2 *(xj)   

i=1,2, …,npar-1; j = 1,2, …, npar  
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Models using designMatrix program: The models considered in polyModel.m are pure, 

linear/quadratic/cubic/quartric with one (univariate) or more number of (multi-variate in) x variables.  

Further a combination of them with and without cross products in second and third order are also 

generated. The output of autotest_desmat2015 amply demonstrates the vectors for different number of X 

columns ranging from 0 to 3. 
 

MatLabProg A3-1 

% 

%  autotest_desmat2015.m   (R S Rao) 10-11-15,(11/8/97, 09/06/94 Univ of Parma, Italy) 

%           

 

f = [1 2]'; 

            [one,lin,quad,cube,quartic,cpb,cpt,qpt]  = desmat2015(f) 

f = [1 2 ; 2 3]; 

            [one,lin,quad,cube,quartic,cpb,cpt,qpt]  = desmat2015(f) 

f = [1 2 3; 2 3 4; ];  

[one,lin,quad,cube,quartic,cpb,cpt,qpt]  = desmat2015(f) 

f = [1 2 3 4; 2 3 4 5; ];  

[one,lin,quad,cube,quartic,cpb,cpt,qpt]  = desmat2015(f) 

 

 f = []; 

            [one,lin,quad,cube,quartic,cpb,cpt,qpt]  = desmat2015(f) 

 

 

 

>> autotest_desmat2015 

 

 

#colums 

1 2 3 4 0 

f = 

     1 

     2 

one = 

     1 

     1 

lin = 

     1 

     2 

quad = 

     1 

     4 

cube = 

     1 

     8 

quartic 

= 

     1 

    16 

cpb = 

     [] 

cpt = 

     [] 

qpt = 

     [] 

 

f = 

     1     

2 

     2     

3 

one = 

     1 

     1 

lin = 

     1     

2 

     2     

3 

quad = 

     1     

4 

     4     

9 

cube = 

     1     

8 

     8    

27 

quartic = 

     1    

16 

    16    

81 

cpb = 

f = 

     1     2     

3 

     2     3     

4 

one = 

     1 

     1 

lin = 

     1     2     

3 

     2     3     

4 

quad = 

     1     4     

9 

     4     9    

16 

cube = 

     1     8    

27 

     8    27    

64 

quartic = 

     1    16    

81 

    16    81   

256 

cpb = 

f = 

     1     2     3     4 

     2     3     4     5 

one = 

     1 

     1 

lin = 

     1     2     3     4 

     2     3     4     5 

quad = 

     1     4     9    16 

     4     9    16    25 

cube = 

     1     8    27    64 

     8    27    64   125 

quartic = 

     1    16    81   256 

    16    81   256   625 

cpb = 

     2     3     4     6     8    12 

     6     8    10    12    15    20 

cpt = 

     6     8    24 

    24    30    60 

qpt = 

    24 

   120 

f =[] 

one =[] 

lin =[] 

quad =[] 

cube =[] 

quartic= 

     [] 

cpb = [] 

cpt = [] 

qpt = [] 
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     2 

     6 

cpt = 

     [] 

qpt = 

     [] 

 

     2     3     

6 

     6     8    

12 

cpt = 

     6 

    24 

qpt = 

     [] 

 

 

The vectors (lin, quad etc.)  are components in generating X matrix. The numerical values for varying 

number of columns (1 to 3) are given in table (table A3-1) 
 

Numerical X matrix for typical Models using designMatrix matlab function 

MatLabProg A3-2: 

% 

% X2015.m   (R S Rao) 4/13/93, 10/27/1997,10/21/2011 

% 

 

function X2015(x) 

 

[one,lin,quad,cube,quartic,cpb,cpt,qpt]  = desmat2015(x); 

[ModelPoly] = polyModels;  

% 

% y = mean(y) 

X_y   = [one] 

format shortg 

% 

% y = f(x)  

z1 =  ModelPoly{1,:} 

X_xy =  [one eval(z1)]  

% 

%  y = a0 + [lin quad cpb]* par 

z9 =  ModelPoly{9,:} 

X_fullQuad = [one  eval(z9)]  

 

oo  Any desired can be picked up from ModelPoly(i,) vector.  X matrix can also be generated using eval 

function. 

oo  Ex.:  

 X_9 = [one eval(z9)] 

 X_1 = [one eval(z1)] 
 

 

Table A3-1: X-matrices for different number of columns 

x X  

oo  x is a vector of six points  

oo  X is a column vector of ones (size  6x1) for 

mean model. 

oo  X matrix for linear model contains 

intercept term (col 1) and x-data points (col 

2).  For quadratic model, the third vector 

(col 3) is squares of elements of x. 

 Model 

:Mean 

 [lin] 
 

 Model : [lin quad cpb]  

 

     

1 

     

2 

     

3 

     1 

     1 

     1 

     1 

     1 

     1 

     1     1 

     1     2 

     1     3 

     1     4 

     1     5 

     1     6 

     1     1     1 

     1     2     4 

     1     3     9 

     1     4    16 

     1     5    25 

     1     6    36  
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4 

     

5 

     

6 

   oo  Since there is one x,   binary product terms 

are not there (or null []) 

Col  

1     

     1      1     2      1     2     3  

 

x X  

oo  x matrix contains two 

variables  

oo  Second variable (col. 2) 

incidentally is square root 

of col 1. 

oo  X matrix for lin model has 

three vectors corresponding 

to regression parameters 

(a0,a1,a2) 

 Model 

:Mean 

 [lin] 
 

1            

1 

2       1.414 

3       

1.7321 

4            

2 

5       

2.2361 

6       

2.4495      

 

     1 

     1 

     1 

     1 

     1 

     1 
 

            1            1            

1 

            1            2       

1.4142 

            1            3       

1.7321 

            1            4            

2 

            1            5       

2.2361 

            1            6       

2.4495       

Col     1          1                       1                        2                 3  

 

Model : [lin quad cpb] 

            1            1            1            1            1            1 

            1            2       1.4142            4            2       2.8284 

            1            3       1.7321            9            3       5.1962 

            1            4            2           16            4            8 

            1            5       2.2361           25            5        11.18 

            1            6       2.4495           36            6       14.697    
 

Col              1                        2                 3                            4                        5                  6 

        one         lin   -><-   quad  ->        cpb 

 

oo  This is a full quadratic model containing linear (col. 2,3) 
Quadratic (col. 4,5)and binary cross product term (col 6)in X matrix 

 

Information, dispersion, hat matrices   

From design(X) matrix, information/dispersion/catcher and hat matrices are calculated which shed 

information on special distribution of x space, condition of matrix regarding orthogonality, inter column 

(variable) correlation etc. before response measurements (y) are made. The use of experimental design in 

enhancing the information content can also be assessed. Thus, examples chosen are simple numerical 

vectors to matrices to enhance the comprehension of numerical computation, matrix implementation 

through software without any advanced tools. 

 MethodBase.Reg A3-3  

% 

%    infmat.m (R S Rao) 20/02/1993; 22-5-15 

% 

  

function yy = infmat(z) 

if nargin <1 

             x = [1:9]'; 

             z= [ones(9,1),x] 
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end 

 

 

Elimination of unit vector from X:For 

regression models with intercept term, X marix 

contains 'one' vector. It is eliminated in probing 

into characteristics of design matrix.  Of course 

in mean centered models, this term does not 

exist in X, but this routine does not have any ill 

effect. 
 
 

 Input output 

Ex. 

 

 

 

 

1            1 

2       1.4142 

3       1.7321 

4            2 

 

1 

2 

3 

4 

 

%         Elimination of one vector from X 

%   ------------------------------------------ 

         [rz,cz] = size(z); 

         ione = 0; 

for i = 1:cz 

           colum = z(:,i:i); 

if all(colum == 1) 

             ione = i; 

end 

end 

if ione ==1 

           z = z(:,2:cz); 

end 

if ione == cz 

           z = z(:,1:cz-1); 

end 

 

 Formula Matlab code size 

$$$matrix X  Np x 

npar 

Information matrix 

(infMat):  The design 

matrix (X) premultiplied 

by its transpose (X
t
) 

results in a square matrix 

called information matrix 

of size (npar x napr). 
 

X
T
 * X %          infMat 

%        ---------- 

         XtX   = X' * X   %infMat 

 

 

npar x 

npar 

 

 

 

Inverse of information 

matrix:  The inverse of 

information matrix [ 

(XtX)
-1

] is known as 

dispersion matrix of same 

size as that of infMat. 

(X
T
 * X)

-1 %        Dispersion Matrix (inverse of 

infMat) 

%        ---------------------------------

----         

         iXtX  = inv(XtX)  %invInfMat or 

DispersionMat 

 

 

npar x 

npar 

 

Catcher matrix:  The post 

multiplication of 

transpose of design 

matrix with inverse of 

information matrix is 

called catcher matrix 

 
 

DispMat* X' 

 

 %        Catcher Matrix (inverse of 

infMat * Xt) 

%        ---------------------------------

------- 

         CatcherMat = inv(X'*X) * X' 

 

 

 

 

Npar x np 

 

Hat matrix:The pre-

muliplication of X with 

catcher matrix is the 

popular hat matrix. H is 

invariant under non 

singular transformation 

i.e. Collinearity bet 

columns of H is irrevelent 

to understand behaviour 

X*catcherMat 

 

%        Hat Matrix (X * CatcherMat) 

%        ----------------------------       

         Hat = X * CatcherMat  

 

Np x np 
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of H . 

It indicates the extent of 

leverage.     

 

 

Diagonal of hat 

matrix:The diagonal 

elements of hat matrix 

diag(hatMat) 

 

%        Diagonal of Hat Matrix (diagHat) 

%        --------------------------------    

      diagHat = diag(Hat), h = diagHat;   

 

Npar x 1 

Cut-off of diagonal 

values of hat matrix:It  is 

a function of number of 

observations and number 

of model  parameters 

(npar) 

2*npar/np % 

%        Cut off value for h 

%        ------------------- 

         cutoff_h = 2*npar/np, 

 

1 x 1 

    

Determinant:  The 

determinant of a well-

conditioned matrix is 

non-zero and has a 

positive value. 

Det(.)  %        determinant 

%        ``````````` 

 det_XtX  = det(XtX); 

 det_iXtX = det(iXtX); 

 

 

 

 

1 x 1 

 

 

 

 

SVD : singular value 

decomposition of  a matrix 

(square or rectangular) 

 % 

%   SVD 

%   --- 

[U s V] = svd(X), 

 

 

Diagonal elements of hat matrix:Their magnitudes throw light on spacing of x values and regarding outliers. 

KB. A3-1: KBs for diagonal elements of hatMat  

   

If wide variation in h(i,i)  

Then non homogenous spacing of rows of X  

   

If max [h(i,i)] is not considerably smaller than 1  

Then outlier goes undetected when residuals are observed  

If max [h(i,i)] is close to 1  

Then robust regreession does not work  

   

Properties of hat matrix:The numerical characteristics of transpose, square and rank of hat matrix, their 

Matlab code with examples follow (MatLabProg A3-3). 

 

Exam 7.1: For the x vector is [1;2;3], the design and other matrices are calculated. 

Table A3-2: Hat matrix 

 

X = 

1 

2 

3 

X = 

     1     1 

     1     2 

     1     3 

 

 infMat = 

     3     6 

     6    14 

invInfMat = 

    2.3333   -1.0000 

   -1.0000    0.5000 

 

 catcherMat = 

    1.3333    0.3333   -0.6667 

   -0.5000    0.0000    0.5000 

Hat = 

    0.8333    0.3333   -0.1667 

    0.3333    0.3333    0.3333 

   -0.1667    0.3333    0.8333 
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 Table A3-2b: Hat matrix properties 

 

HatMat = X *inv(X'*X) *X' HatMat = 

    0.8333    0.3333   -0.1667 

    0.3333    0.3333    0.3333 

   -0.1667    0.3333    0.8333 

 

  

Properties Example 

  HatMat and its trace are equal transposeHat = Hat'  

transposeHat-Hat =0 

 

transposeHat = 

    0.8333    0.3333   -0.1667 

    0.3333    0.3333    0.3333 

   -0.1667    0.3333    0.8333 

transposeHat-Hat = 

   1.0e-15 * 

         0    0.1110    0.3331 

   -0.1110         0    0.1110 

   -0.3331   -0.1110         0 

 

   

  HatMat and its square are 

equal 

hatSquare = Hat*Hat 

hatSquare-Hat =0 

 

hatSquare = 

    0.8333    0.3333   -0.1667 

    0.3333    0.3333    0.3333 

   -0.1667    0.3333    0.8333 

hatSquare-Hat= 

   1.0e-15 * 

   -0.3331   -0.1110    0.2220 

         0    0.1665    0.2220 

    0.4996    0.3331    0.2220 

Is a zero matrix 

   

  trace and rank of hat matrix  

are equal 

traceHat = trace(Hat) 

rankHat = rank(Hat) 

rankHat-traceHat =0 

 

traceHat = 

     2 

rankHat = 

     2 

rankHat-traceHat = 0 

 

Applications of Hat matrix: some of typical applications of hat matrix are 

 Calculation of ycal of regression model 

 Studentized residuals  

 Cut-off values of h 

 Predictive residuals and press 

 Detecting outlying observations with regard to x-values i.e. Those excessively influencing 

regression parameters and other statistics 

 Hat matrix is also called projection matrix as it projects vector of observed y onto vector of ycal. 

In yesteryears, ycal was also called yhat 
^ 

 
 

y  

 

 

Press 

 

 

 

Function [Press] = press2015(X,x,y) 

         [resy] = ordResid(X,x,y) 

         [diaghat] = hatMat(X) 

pred_res = resy./(one - diagHat) 

 press = pred_res'*pred_res 

 

 

Studendized residual  
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Appendix A4: Inverse of a matrix 

 

Solution of linear algebraic equations: In regression analysis, least squares estimates of parameters of 

model are estimated by solving * X par y .  The solution is  
1

* *


 Tpar X X y .   

 

Inverse of matrix:  Assuming that X (or *TX X ) is well conditioned , ordinary inverse is used for LSS 

 . * * Tpar inv inv X X y  

Matlab built in function: At the command line or in a function . \par Xbyy X y is par vector  

Pseudo inverse:  If  *TX X is ill conditioned (i.e. singular/nearly singular) simple inverse fails or results 

in wrong values of parameters and/or inflated standard deviations of parameters.  In such cases, pseudo 

inverse (pinv in Matlab software) gives optimal values.  

 . * * Tpar pinv pinv X X y  

 par   

*TX X   . * * Tpar inv inv X X y  . \par Xbyy X y   . * * Tpar pinv pinv X X y  

 

Appendix A5 :Condition of X matrix 

 

The design matrix X is mostly rectangular. To assess characteristics (determinant, inverse etc.), it is 

converted into a square matrix by pre- or post- multiplication with X
T  

(MethodBase.X A5-1).The 

numerical examples using identity/singular/partially correlated matrices and KB are described in Output 

A5-1. 

 

MethodBase.X A5-1 

% 

%         KB_Xcond.m  18/3/1997 ; 9/11/15 

% 

 

function kb_xcond(X) 

    dispst('X matrix') 

 

    [r,c]=size(X); 

if r ~=c 

dispst(['????????? Rectangular matrix, 

 X','''*X calculated']) 

        X = X'*X 

end 

 

 

 

 

Output A5-1: om999.m 

 

X = 

     1     0 

     0     1 

 

X matrix 

~~~~~~~~ 

svd eig invX 

                         

~~~~~~~~~~~~ 

eigX = 

     1 

     1 

U = 

     1     0 

     0     1 

s = 

     1     0 

     0     1 

V = 

     1     0 

     0     1 

invX = 

     1     0 

     0     1 
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pinvX = 

     1     0 

     0     1 

Matrix condition characteristics 

detX = 

     1 

 

%     Condition number of x' *x and inv(x' * x) 

%     ''''''''''''''''''''''''''''''''''''''''' 

      condX= cond(XtX); 

 

      rankX = rank(XtX); 

 

CondX_eig= condeig(X),  

% 

    CondX_est=condest(X);CondX_r=rcond(X); 

% 

    CondX_1=cond(X,1);CondX_2=cond(X,2); 

CondX_Fro=cond(X,'fro');CondX_inf=cond(X,'inf'); 

 

condX = 

     1 

rankX = 

     2 

CondX_eig = 

     1 

     1 

CondX_est = 

     1 

CondX_r = 

     1 

CondX_1 = 

     1 

CondX_2 = 

     1 

CondX_Fro = 

    2.0000 

CondX_inf = 

     1 

 

 

function om999 

clean 

  v = [ 1 2 3]; 

   X = eye(2,2),kb_xcond(X) 

    X = ones(2,2),kb_xcond(X) 

    X = ones(1,1),kb_xcond(X) 

    X = zeros(1,1),kb_xcond(X) 

    X = zeros(2,2),kb_xcond(X) 

  X = [v; sqrt(v)],kb_xcond(X) 

  X = [ 1 2; 3 5],kb_xcond(X) 

  X = [v' v'.^2],kb_xcond(X) 

 

 

 

A5-1b: om999.m 

 

 A5-1c: om999.m 

 

 A5-1d: om999.m 

 

 A5-1e: om999.m 

 

X = 

     1     1 

     1     1 
                           X matrix 

 

X = 

     1 

                           X matrix 
 

X = 

     0 

                           X matrix 
 

X = 

     0     0 

     0     0 
                           X matrix 
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~~~~~~~~ 

                         svd eig invX 

                         
~~~~~~~~~~~~ 

eigX = 

     0 
     2 

U = 

   -0.7071   -0.7071 
   -0.7071    0.7071 

s = 

     2     0 
     0     0 

V = 

   -0.7071   -0.7071 
   -0.7071    0.7071 

invX = 

   Inf   Inf 
   Inf   Inf 

pinvX = 

    0.2500    0.2500 
    0.2500    0.2500 

Matrix condition 

characteristics 
detX = 

     0 

condX = 
   Inf 

rankX = 
     1 

CondX_eig = 

    1.0000 
    1.0000 

CondX_est = 

   Inf 
CondX_r = 

     0 

CondX_1 = 

   Inf 

CondX_2 = 

   Inf 
CondX_Fro = 

   Inf 

CondX_inf = 
   Inf 

  ~~~~~~~~ 

                         svd eig invX 

                         ~~~~~~~~~~~~ 
eigX = 

     1 

U = 
     1 

s = 

     1 
V = 

     1 

invX = 
     1 

pinvX = 

     1 
Matrix condition  

detX = 

     1 
condX = 

     1 

rankX = 
     1 

CondX_eig = 

     1 
CondX_est = 

     1 

CondX_r = 
     1 

CondX_1 = 
     1 

CondX_2 = 

     1 
CondX_Fro = 

     1 

CondX_inf = 
     1 

                         ~~~~~~~~ 

svd eig invX 

                         ~~~~~~~~~~~~ 
eigX = 

     0 

U = 
     1 

s = 

     0 
V = 

     1 

invX = 
   Inf 

pinvX = 

     0 
            Matrix condition 

detX = 

     0 
condX = 

   Inf 

rankX = 
     0 

CondX_eig = 

     1 
CondX_est = 

   Inf 

CondX_r = 
     0 

CondX_1 = 
   NaN 

CondX_2 = 

   Inf 
CondX_Fro = 

   NaN 

CondX_inf = 
   NaN 

  ~~~~~~~~ 

                         svd eig invX 

                         ~~~~~~~~~~~~ 
eigX = 

     0 

     0 
U = 

     1     0 

     0     1 
s = 

     0     0 

     0     0 
V = 

     1     0 

     0     1 
invX = 

   Inf   Inf 

   Inf   Inf 
pinvX = 

     0     0 

     0     0 
            Matrix condition  

detX = 

     0 
condX = 

   Inf 

rankX = 
     0 

CondX_eig = 
     1 

     1 

CondX_est = 
   Inf 

CondX_r = 

     0 
CondX_1 = 

   NaN 

CondX_2 = 

   Inf 

CondX_Fro = 

   NaN 
CondX_inf = 

   NaN 

 

Output A5-1f  

X = 

    1.0000    2.0000    3.0000 

    1.0000    1.4142    1.7321 

                           X matrix 

                           ~~~~~~~~ 

        ????????? Rectangular matrix, X'*X calculated 

        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

X = 

    2.0000    3.4142    4.7321 

    3.4142    6.0000    8.4495 

    4.7321    8.4495   12.0000 

                         svd eig invX 

                         ~~~~~~~~~~~~ 

eigX = 

   -0.0000 

    0.1287 

   19.8713 

U = 

X = 

     1     2 

     3     5 

                           

X matrix 

                           

~~~~~~~~ 

                         

svd eig invX 

                         

~~~~~~~~~~~~ 

eigX = 

   -0.1623 

    6.1623 

U = 

   -0.3574   -0.9340 

   -0.9340    0.3574 

s = 

    6.2429         0 

         0    0.1602 
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   -0.3104    0.8165    0.4869 

   -0.5491    0.2641   -0.7929 

   -0.7760   -0.5134    0.3663 

s = 

   19.8713         0         0 

         0    0.1287         0 

         0         0    0.0000 

V = 

   -0.3104    0.8165    0.4869 

   -0.5491    0.2641   -0.7929 

   -0.7760   -0.5134    0.3663 

invX = 

   1.0e+15 * 

   -1.6979    2.7653   -1.2775 

    2.7653   -4.5036    2.0806 

   -1.2775    2.0806   -0.9612 

pinvX = 

    5.1855    1.6844   -3.2457 

    1.6844    0.5573   -1.0324 

   -3.2457   -1.0324    2.0790 

            Matrix condition   

detX = 

  -7.6277e-16 

condX = 

   1.6672e+18 

rankX = 

     2 

CondX_eig = 

    1.0000 

    1.0000 

    1.0000 

CondX_est = 

   1.1018e+17 

CondX_r = 

   9.0757e-18 

CondX_1 = 

   2.3544e+17 

CondX_2 = 

   1.6672e+18 

CondX_Fro = 

   1.4234e+17 

CondX_inf = 

   2.3544e+17 

V = 

   -0.5061    0.8625 

   -0.8625   -0.5061 

invX = 

   -5.0000    2.0000 

    3.0000   -1.0000 

pinvX = 

   -5.0000    2.0000 

    3.0000   -1.0000 

            Matrix 

condition characteristics 

detX = 

   -1.0000 

condX = 

   38.9743 

rankX = 

     2 

CondX_eig = 

    1.0124 

    1.0124 

CondX_est = 

   56.0000 

CondX_r = 

    0.0179 

CondX_1 = 

   56.0000 

CondX_2 = 

   38.9743 

CondX_Fro = 

   39.0000 

CondX_inf = 

   56.0000 

  

 

 

 

X = 

     1     1 

     2     4 

     3     9 

                           X matrix 

                           ~~~~~~~~ 

        ????????? Rectangular matrix, X'*X calculated 

        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

X = 

    14    36 

    36    98 

                         svd eig invX 

                         ~~~~~~~~~~~~ 

eigX = 

    0.6827 

  111.3173 

U = 
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   -0.3469   -0.9379 

   -0.9379    0.3469 

s = 

  111.3173         0 

         0    0.6827 

V = 

   -0.3469   -0.9379 

   -0.9379    0.3469 

invX = 

    1.2895   -0.4737 

   -0.4737    0.1842 

pinvX = 

    1.2895   -0.4737 

   -0.4737    0.1842 

            Matrix condition  

detX = 

   76.0000 

condX = 

  163.0465 

rankX = 

     2 

CondX_eig = 

     1 

     1 

CondX_est = 

  236.2632 

CondX_r = 

    0.0042 

CondX_1 = 

  236.2632 

CondX_2 = 

  163.0465 

CondX_Fro = 

  163.0526 

CondX_inf = 

  236.2632 

 

 

 

Supplementary information  

SI-1: Typical statistical packages 

Name Promotor  Language 

Maple Maplesoft 
 

Mathematica  Wolfram Research 
 

MATLAB  MathWorks 
C++ 

Java 

Minitab  Minitab Inc. 
 

Origin  OriginLab C++ 

R  R Foundation 

C  

Fortran  

R 

SAS  SAS Institute  

 
SPlus  Insightful Inc. 

 
SPSS IBM Java 

Stata  StataCorp LP  C  

Statgraphics  Statpoint Tech. C++ 

 

 

Name Promotor  Language 

BMDP Statistical Solutions 
 

Epi Info 
Centers for Disease  

Control and Prevention 
Microsoft C# 

MedCalc MedCalc Software bvba  

NLOGIT 
Econometric Software, Inc. 

 William Greene 

Fortran 

C++ 

Orange 

Bioinformatics Laboratory,  

Faculty of Computer and  

Information Science, 

University of Ljubljana 

Python 

 Cython 

 

https://en.wikipedia.org/wiki/Maple_(software)
https://en.wikipedia.org/wiki/Mathematica
https://en.wikipedia.org/wiki/MATLAB
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Minitab
https://en.wikipedia.org/wiki/Origin_(software)
https://en.wikipedia.org/wiki/R_programming_language
https://en.wikipedia.org/wiki/SAS_System
https://en.wikipedia.org/wiki/SAS_Institute
https://en.wikipedia.org/wiki/SPlus
https://en.wikipedia.org/wiki/SPSS
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/Stata
https://en.wikipedia.org/w/index.php?title=StataCorp_LP&action=edit&redlink=1
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Statgraphics
https://en.wikipedia.org/wiki/BMDP
https://en.wikipedia.org/wiki/Epi_Info
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/MedCalc
https://en.wikipedia.org/wiki/NLOGIT
https://en.wikipedia.org/wiki/Orange_(software)
https://en.wikipedia.org/wiki/University_of_Ljubljana
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 Inc. 

Statistica  Dell Software C++ 

StatPlus  AnalystSoft 
 

Statsmodels  

Statsmodels  

Developers 

Python 

 C 

Statwing Statwing Inc. 
 

SYSTAT  Systat Software Inc. 
 

TSP TSP International Fortran 

UNISTAT  Unistat Ltd 
 

WINKS TexaSoft 
Fortran  

Visual Basic 
 

 

SI 2: Toolboxes of MATLAB 

oo  Optimization  

oo  Neural Network  

oo  Partial Differential  

Equation 

oo  Statistics and  

Machine Learning 

oo  Wavelet  

oo  Global Optimization  

oo  Fuzzy Logic 

oo  Curve Fitting  
 

 

 

 

SI 3: Statistics Toolbox of MATLAB  

Statistics Toolbox 

Getting started 

Fx: Functions 

File I/O 

Parametric Regression Analysis 

Linear  

https://en.wikipedia.org/wiki/Statistica
https://en.wikipedia.org/wiki/StatPlus
https://en.wikipedia.org/wiki/Statsmodels
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/SYSTAT_(statistics)
https://en.wikipedia.org/wiki/TSP_(econometrics_software)
https://en.wikipedia.org/wiki/UNISTAT
https://en.wikipedia.org/wiki/WINdows_KwikStat
http://in.mathworks.com/products/optimization/
http://in.mathworks.com/products/neural-network/
http://in.mathworks.com/products/pde/
http://in.mathworks.com/products/statistics/
http://in.mathworks.com/products/wavelet/
http://in.mathworks.com/products/global-optimization/
http://in.mathworks.com/products/curvefitting/
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User's Guide 
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Parametric Regression Analysis 

Multivariate Methods 
 

Generalized Linear Regression 

Nonlinear Regression 

 

 

 

 

 

  

SKI4:Typicalm (function) files for regression in Statistics Toolboxe of MATLAB 

Linear Regression 

anova Analysis of variance for linear model 

lasso 
Regularized least-squares regression using  

lasso or elastic net algorithm 

mnrfit Multinomial logistic regression 

mvregress Multivariate linear regression 

plsregress Partial least-squares regression 

regress Multiple linear regression 

robustfit Robust regression 

stepwisefit Stepwise regression 
 

Generalized Linear Regression 

glmfit Generalized linear model regression 

Lassoglm 
Lasso or elastic net regularization  

for generalized linear model regression 

  

 

Nonlinear Regression 

Nlinfit Nonlinear regression 
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