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ABSTRACT 
A new cobalt complex of the [M(L1)2(L2)]n+ where M is a Cobalt metal ion and L1= phenanthroline/ 
bipyridine, L2= 5-methyl-1,3,4-thiadiazole-thiole, have been synthesized and characterized by 
elemental analysis(CHN), FT-IR and UV-visible(UV-Vis) spectroscopic techniques. The DNA-binding 
property of the complexes has been investigated employing absorption spectroscopy, viscosity 
measurements and thermal denaturation study. The DNA cleavage experiments were carried out by 
gel electrophoresis method using pUC19 DNA. The experimental results show that both complexes 
can bind to DNA in an intercalation mode.  
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 INTRODUCTION 
 

There has been significant interest in the synthesis of transition metal complexes that are suitable for 
binding and cleaving nucleic acids due to their various applications in nucleic acid chemistry, like 
foot-printing studies and sequence specific binding agents an also exists as anticancer drugs. Many 
transition metal complexes, copper, ruthenium, palladium, platinum, etc., are used now-a-days 
extensively to study metal complex-DNA interaction. 
 
      In recent studies reveals that, the interaction of DNA with cobalt complex has attracted much 
attention because cobalt was accepted as an essential metal element widely distributed in the 
biological systems such as cells and body [1-2]. Cobalt involves itself in the regulation of DNA 
synthesis indirectly and in cobalt-dependent proteins which make it an essential biological element 
[3]. Cobalt(III) complexes have been widely investigated in coordination chemistry and biochemistry 
[4] owing to their therapeutic activities [5]. 
 
      Deoxyribonucleic acid (DNA) plays a significant role in the life process because it carries the 
inheritance information and leads the biological synthesis of proteins and enzymes through the 
replication and transcription of genetic information in living cells. DNA is especially a good target for 
metal complexes as it gives a wide variety of potential metal binding sites [6-8]. For example, the rich 
DNA electron bases and phosphate groups are suitable for direct covalent coordination at the metal 
centre. There are noncovalent binding behaviors such as hydrogen bonding and electrostatic binding 
in the grooved regions of the DNA, along with the intercalation of planar aromatic ligands in the 
stacked base pairs [9–15]. The interaction of DNA with transition metal complexes has gotten 
intensive attention in the last few years in order to develop new novel nonradioactive probes of DNA 
structure [16, 17], new therapeutic agents that cleave DNA [18-20] and DNA-mediated electron 
transfer reactions [21]. 
 
      Metal complexes of S-, N-, and O chelating ligands have attracted considerable attention because 
of their interesting physicochemical properties, pronounced biological activities and their use as 
models for metalloenzymes active sites [22]. Thiadiazole is an important class of S, N-containing 
heterocycles and has been reported to be biologically active compound [23] 

 
      The increasing clinical importance of drug-resistant microbial pathogens has lent additional 
urgency in microbiological and antifungal research [24-26]. In this regard, thiadiazoles have occupied 
an important place in drug industry; in particular 1,3,4-thiadiazoles derivatives have been used widely 
in various fields. Earliest application was in the pharmaceutical area where sulfonamides antibacterial 
were used as drugs. Some of the later uses are as antitumor and anti-inflammatory agents, pesticides, 
dyes, lubricants and analytical reagents [27]. Interest in 1,3,4-thiadiazole and its derivatives also arises 
from the fact that they possess also cover a wide spectrum of therapeutic action liking used as 
anticonvulsant herbicidal, pesticidal, amoebicidal, CNS depressant, antibacterial, and antiviral drugs 
[28]. 

 
      Recently, binding of metal complexes with 1,10-phenanthroline or modified phenanthroline 
moieties to DNA has attracted much attention [29-31]. Synthesis of new cobalt(II) complexes enabled 
chemists to extensively study the ability of these complexes to act as probes in investigating the 
structure of DNA, when these metal complexes are incorporated with either 1,10-phenanthroline/2’2 
bipyridine or a modified phenanthroline/bipyridine moiety as one of the ligands.  
 
      During our studies, it occurred to us that complexes of the type [M(L1)2(L2)]n+ where M is a 
transition metal ion and L1=phenanthroline/bipyridine, L2=5-methyl-1,3,4-thiadiazole-2-thiole, 
ligands containing N/S/O donor atoms are well-suited for this purpose. Although DNA interactions of 
a number of [M(L1)2(L2)]n+ type complexes have previously appeared in the literature, relatively less 
attention seems to have been paid to systematic investigations inquiring into the effects brought about 
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by changing M ion in such complexes. We have been interested to know the effect of variation of the 
metal ion on the ability to bind and photocleave DNA in mixed ligand complexes containing the 
phenanthroline/ bipyridine family of ligands. In this paper, we reported the synthesis, characterization, 
DNA binding and photocleavage studies of Cobalt complexes containing the same ligand (L2= 5-
methyl-1,3,4-thiadiazole-2-thiole) as in our previous article [32].Various physico-chemical and 
biochemical techniques including UV/Visible, viscometric titration, thermal denaturation, and gel 
electrophoresis have been utilized to probe the nature of interaction of these complexes with the 
duplex. Also reported in this paper is a detailed mechanistic investigation on the DNA photocleavage 
by [Co(phen/bpy)2(L2)]2+. 

 
MATERIALS AND METHODS 

 
All common chemicals, solvents as well as 2,2-bipyridine, 1,10-phenanthroline CoCl2.6H2O, 
ammonium hexaflurophosphate (NH4PF6) were purchased from Merck (India). All the solvents were 
purified before use as per the standard procedures. Deionised, triply distilled water was used for 
preparing various buffers. Highly polymerized calf thymus DNA (CT-DNA) and super coiled (SC) 
pUC19 DNA were purchased from Bangalore Genie (India).Tris-HCl buffer, Agarose (molecular 
biology grade) and ethidium bromide were purchased from Himedia. Solution of DNA in 5mM Tris-
HCl, 50 mM NaCl buffer (pH 7.2) gave a ratio of UV absorbance at 260 and 280 nm of 1.8-1.9:1, 
indicating that the DNA was sufficiently free of protein. The concentration of DNA was determined 
spectrophotometrically using molar absorptivity 6600-1 cm-1 at 260nm. The stock solutions were 
stored at 4C and used over no more than 4 days. 
 
Physical measurements: Micro analyses (C, H, and N) were performed in Carlo-Erba 1106-model 
240 Perkin-Elmer analyzer. Melting points were determined in open capillaries and are uncorrected 
IR spectra were recorded with Shimadzu model FT-IR spectrophotometer by using KBr pellets. 1H-
NMR spectra were recorded on a Bruker AC-P500 spectrometer (300 MHz) at 25°C in CDCl3 with 
TMS as the internal reference. UV visible absorption spectra were recorded using Shimadzu 1650 PC 
model UV spectrophotometer at room temperature. Viscosity measurements were carried out on 
Brookfield viscometer at room temperature. Thermal denaturation studies were carried out with a 
Perkin-Elmer Lambda 35 spectrophotometer equipped with a Peltier teyrrcontrolling programmer. 

 

DNA binding and cleavage experiments 
Absorption titration experiments: These experiments were performed by maintaining a constant 
concentration of the complex while varying the nucleic acid concentration. This was achieved by 
dissolving an appropriate amount of the metal complex in the DNA stock solution and by mixing 
various proportions of the metal complex and DNA stock solutions while maintaining the total 
volume constant (1 ml). This resulted in a series of solutions with varying concentrations of DNA but 
with a constant concentration of the complex. The absorbance (A) of the most red-shifted band of each 
investigated complex was recorded after successive additions of CT DNA. The intrinsic binding 
constant, Kb, was determined from the plot of [DNA]/(ea– ef) vs [DNA], where [DNA] is the 
concentration of DNA in base pairs, ea, the apparent extinction coefficient is obtained by calculating 
Aobsd/[complex] and ef corresponds to the extinction coefficient of the complex in its free form. The 
data were fitted to (1) where eb refers to the extinction coefficient of the complex in the fully bound 
form. 

[DNA]/(ea– ef) = [DNA]/(eb– ef) + 1/Kb(eb– ef). (1) 
  

Each set of data, when fitted to the above equation, gave a straight line with a slope of 1/(eb– ef) and a 
y-intercept of 1/Kb(eb– ef). Kb was determined from the ratio of the slope to intercept. An in-house 
nonlinear least square analysis program or the MicroCal Origin software package run on an IBM-
compatible Pentium 166 computer was used for curve-fitting the data. 
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Viscometric studies: Viscosity measurements were carried out at 251C by using semimicro 
dilution capillary viscometer at room temperature. The DNA concentration was fixed at 5x10-5 M and 
flow time was measured with a digital stopwatch. The mean values of three replicated measurements 
were used to evaluate specific viscosity  of the samples. The values for relative specific viscosity 
(/o)1/3, where o and  are the specific viscosity contributions of DNA in the absence (o) and in the 
presence of the Co(II) complex (), were plotted against 1/R. 

 
Thermal denaturation studies: DNA melting experiments were carried out by monitoring the 
absorption (260 nm) of CT DNA (160 mM) at various temperatures, in both the absence and the 
presence (0–10 mM) of each investigated complex. The melting temperature (Tm) and the curve width 
sT (= temperature range in between 10% to 90% of the absorption increase occurred) were calculated 
as described [30]. The shape of the melting curves, Tm and sT values for CT-DNA and for CT-DNA in 
the presence of [Ru(phen)3]2+ were consistent with the literature data [33]. Some of the metal 
complexes were seen to absorb at 260 nm, but control experiments suggested that this absorption is 
independent of temperature. 
 
Gel Electrophoresis: Electrophoresis through Agarose is the standard method used to separate, 
identify or purify DNA fragments. This technique is useful for identifying bands containing as little as 
1-10 ng of DNA can be detected by direct examination of the Agarose gel (stained with ethidium 
bromide) in the UV light. When an electric field is applied across the gel, DNA, which is negatively 
charged at neutral pH, migrates toward the anode. The intact supercoiled (Form I) DNA migrates 
faster than the single nicked (Form II) in the gel. This technique has been employed to identify the 
product/s of the DNA photocleavage, which was carried out in this work.  
 
Preparation 
Synthesis of ligand: Ligand 1,10-phenanthroline(L1), bipyridine (L1) and 5-methyl-1,3,4-thiadia- 
zole-2-thiole (L2) were purchased from Sigma Aldrich (Bangalore). 
 
Synthesis of Complexes: The complexes [Co(phen)2Cl2]/[Co(bpy)2Cl2]   were prepared by literature 
method [34]. Solution containing [Co(phen)2Cl2]/[Co(bpy)2Cl2] (0.49 g, 1 mmol) and 5-methyl-1,3,4-
thiadiazole-2-thiole (L2) (0.1322g, 1 mmol)  (50 mL)  in ethanol was refluxed for 1h with stirring and 
further stirred for 4-5 h under nitrogen. Then it was filtered and the crude complex was precipitated 
upon addition of saturated ethanolic solution of ammonium hexaflurophosphate. The complex was 
filtered and recrystallized (acetone-ether). The elemental analysis data of the ligand and its complexes 
are summarized in the table1. 
 
 

 

 

 

 

 

 

 

Scheme 1. Structure of [Co(phen)2(L2)](PF6)2 .2H2O [1].        Scheme 2. Structure of [Co(bpy)2(L2)](PF6)2 .2H2O [2]. 
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Table 1. Analytical and physical properties of  mixed ligand Co(III) complexes 

 

Compound Yield 
% Mol.wt Found (Cal.)% 

C H N Co(III) 
 

[Co(phen)
2
(L2)](PF6)3 79 822 39.91 

(40.87) 
2.42 

(2.55) 
10.32 

(10.21) 
7.05 

(7.17) 
 

[Co(bpy)
2
(L2)] (PF6)3 82 774 37.45 

(37.20) 
2.68 

(2.71) 
10.89 

(10.85) 
7.56 

(7.62) 

 
RESULTS AND DISCUSSION 

Characterization of complexes 
IR-Spectra: The ligand 5-methyl-1,3,4-thiadiazole-2-thiol shows absorption bands at 2868 and 1590 
cm−1 due to ν(SH) and ν(C=N), respectively. The ν(C=N) band shifted to 1580 cm−1 for complexes (1) 
and (2), respectively. This indicate that the nitrogen atom is involved in coordination to the Co(II) ion. 
Besides, the complexes show low frequency in the region 410–415 cm−1 are assigned to (Co-N) bands 
[35-39]. In addition the IR spectrum of the PF6 salt of each complex showed a strong band in the 
region 843–847 cm−1 ascribable to the counter anion and this band was absent for the corresponding 
chloride salts [40]. 

 
UV-visible spectra: The absorption spectra of the ligand L2 and these complexes with ligand L2 were 
recorded in DMSO solvent in the range of 200-800 nm. The UV-visible spectra of this ligand 5-
methyl-1,3,4-thiadiazole-2-thiole (L2) was characterized by prominent bands at 300 nm due to intra 
ligand transition π- π* transition. The electronic spectrum of the Co(III) complexes shows 2 bands 
around 229-345 nm, which may be assigned to 4T1g(F)→4T1g(P) and 4T1g(F)→4A2g(F) transition. 
There are absorptions around 230-255 nm, which are ascribed to metal-to-ligand charge transfer [41]. 
The UV-visible peaks corresponding to the π → π∗ and n→ π∗ transitions in these ligands, and these 
were observed around 270-305 nm. The peaks belonging to the π → π∗ transitions are shifted to a 
longer wavelength as a consequence of coordination and this confirms the formation of Co(III) 
complexes [42]. Magnetic measurements were recorded at room temperature. Magnetic susceptibility 
measurements provide sufficient information to characterize the structures as shown in (Table 2). The 
Co(III) complexes are paramagnetic, and their magnetic susceptibility values are around 4.40-4.80 
B.M. The values indicated are in good agreement with the literature [43]. These results indicate an 
octahedral geometry for the Co(III) complexes. The suggested structures of the complexes are shown 
in the Scheme. 
 

Table 2. Electronic spectra, Molar conductance and magnetic moment data of ligands and Co(III) complexes 
 

Compound  λmax, nm (log ε)  M mohs 
cm2 mol-1 

Magnetic moment 
eff BM 

L1=phen 226 (4. 54), 264 (4. 23) -- -- 

L1=bpy 246 (4. 48), 278 (4. 39) -- -- 
L2=5-methyl-1,3,4-
thiadiazole-2-thiol 222 (4.45), 246(4.72), 297(4.35), 315(3.63) -- -- 

 
[Co(phen)

2
(L2)](PF6)3 229 (5.25), 279(5.29), 364 (4.47), 342 (4. 42) 24.2 4.46 

 
[Co(bpy)

2
(L2)] (PF6)3 227(5. 08), 263 (5. 18), 287 (4. 62), 305 (4. 24) 34.5 4.80 

Error limits: λ
max, 

± 1 nm; log ε, ± 10% 

DNA binding Studies  
Absorption spectra: Addition of increasing amounts of CT-DNA resulted in a decrease of 
absorbance for each investigated complex and also that of [Co(phen)2(L2)](PF6)3 and [Co(bpy)2 (L2)] 
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(PF6)3 Representative spectra illustrating this hypochromicity and the presence of isosbestic points 
observed for the interaction of [Co(phen)2(L2)](PF6)3 with CT-DNA are given in figure 1a and 1b. 
Change in absorbance at the peak maximum of the most red-shifted band of each complex with 
increasing concentration of DNA has been monitored for an evaluation of the intrinsic binding 
constant using (1) (see figure 1a and 1b inset, for the plot using(1)); the binding constants thus 
obtained are given in table 2. The observed Kb values also support the intercalative binding. In the 
present study as observed Kb values (given values) for Co(III) and Ni(II) complexes are  equal to the 
Kb values observed for  classical intercalators such as EthBr, Kb, 1.8x106 M-1 in 25 mM Tris-HCl/40 
mM NaCl buffer, pH 7.9)  and partial intercalating metal complex [Ru(phen)2(dppz)]2+, dppz = 
dipyrido-[3,2-d: 2,3-f]-phenazine, [Kb106 M-1] bound to CT-DNA. So, it is obvious that the present 
complexes are involved in intercalative interactions with CT-DNA. 

 

 

 

 

 

 

 
 

Figure 1(a). Absorption spectra of complex (1) in Tris-HCl 
buffer upon addition of DNA. [Co] = 0.5 M, [DNA] = 0.1 
M. Arrow shows the absorbance changing upon the 
increase of DNA concentration. 
The Inner plot of [DNA]/ (a-f) vs[DNA] for the titration of 
DNA with Co(III) complex (1). 

Figure 1(b). Absorption spectra of complex (2) in Tris-
HCl buffer upon addition of DNA.[Co] = 0.5M, [DNA] 
= 0.1M. Arrow shows the absorbance changing upon the 
increase of DNA concentration. 
The inner plot of [DNA]/ (a-f) vs[DNA] for the titration 
of DNA with Co(III) complex (2). 

 
Viscosity measurements: Intercalation of a ligand to DNA is known to cause a significant increase in 
the viscosity of a DNA solution due to an increase in the separation of the base pairs at the 
intercalation site and, hence, an increase in the overall DNA molecular length. In contrast, a ligand 
that binds in the DNA grooves causes either a less pronounced change (positive or negative) or no 
change in the viscosity of a DNA solution [44]. The effect of each investigated complex on the 
viscosity of CT-DNA solution was studied in order to assess the binding mode and strength of these 
complexes with DNA. Representative plots of /o vs [drug]/[DNA] are shown in figure 2 for the 
cobalt(III) complexes. As seen in this figure, positive and negative changes of viscosity with 
increasing addition of the complex are seen for [Co(phen)2(L2)](PF6)3 and [Co(bpy)2(L2)] (PF6)3 
suggesting an intercalative mode of binding by the Co(III) mixed ligand complex [45]. 

 
Thermal denaturation studies: Thermal denaturation curves for DNA in the presence and absence 
of a representative complex are given in figure 3 and the relevant data for all the complexes 
investigated in this study are summarized in table 3. In the present study the Tm DNA was found to be 
601C under experimental conditions.  

 
       Addition of complex [Co(phen)2(L2)](PF6)3

 and [Co(bpy)2(L2)](PF6)2 increased Tm (1C) by 6C 
and 4C, respectively, which indicates that these complexes stabilize the double helix of DNA 
As shown in figure 3. The increased Tm value of the latter is comparable to that of the Tm value of 
classical intercalators [46]. So, from the above data it is concluded that the new Co(III) mixed ligand 
complex act as a new class of DNA intercalators. 
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Figure. 2. Effect of increasing amounts of the 
complex [Co(Phen)2(L2)](PF6)3 [------●-----] and 
[Co(bpy)2(L2)](PF6)2[----◄----] on the relative 
viscosities of CT-DNA at 25 (0.1)°C. 

 
Figure 3.  Melting curves of CT-DNA in the 
absence and presence of complexes 
[Co(phen)2 (L2)]3+ and [Co(bpy)2(L2)]2+. 

 
 

Table 3. Results of Absorption titration and Thermal melting experiments 
 

Compound Kb (M-1) TmC (T) 
DNA -- 60 (20) 

[Co(phen)
2
(L2)](PF6)3 2.4x103 66 (21) 

[Co(bpy)
2
(L2)] (PF6)3 1.3x103 64 (25) 

 

DNA photocleavage studies: The photocleavage of super coiled (SC) pUC19 DNA (0.1 μL (0.2 μg)) 
to its nicked circular (NC) form was determined by Agarose gel electrophoresis in Tris-HCl buffer (50 
mM, pH 7.2) containing NaCl (50 mM). The cleavage reactions mixture containing, 0.53 μM, 1.06μM 
and 2.12 μM complex (1) and (2) in 20µL buffer were photo irradiated using monochromatic UV or 
visible light. The samples were then incubated for 1 h at 37°C followed by addition to the loading 
buffer containing 25%bromophenolblue, 0.25% xylene cyanol, 30% glycerol (3 μL) and finally loaded 
on 0.8% Agarose gel containing 1.0 μg mL-1 ethidium bromide. Electrophoresis was carried out at 50 
V for 2 h in Tris-borate EDTA (TBE) buffer. Bands were visualized by UV light and photographed to 
determine the extent of DNA cleavage from the intensities of the bands using syngene Gel 
Documentation System.  
 
       

 

  

 

 

 

 
(a)                                                                                             (b) 

 
Figure 4. (a) DNA cleavage activity of the complex 1. Lane 1: Control, Lane 2-4: complex (1) with increasing 

concentration 0.17*10-3, 0.34*10-3 and 0.51*10-3 µg, (b) DNA cleavage activity of the complex 2 Lane 1: 
 Control, Lane 2-4: Complex (2) with increasing concentration 0.17*10-3, 0.34*10-3 and 0.51*10-3 µg. 

 
      Figure 4 (a) shows that the complex (1) at lower concentration of   (0.53 μM, 1.06 μM) show 
lower cleavage activity (Lane 2 and 3) compared to higher concentration of (2.12 μM), in which super 

 Form I  

Lane:  1        2 3       4 

 Form II  
 Form I  

Form II  

 Form III 

    Lane:  1        2     3        4 
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coiled (Form-I) DNA cleaved. This supercoiled relaxed and produced a slower moving nicked 
circular form (Form-II) (Lane 4).  
 
      Figure 4(b) in the case of complex (2), at lower concentration (0.53 μM, 1.06μM) the DNA 
cleaved from supercoiled (Form-I) to nicked circular form (Form-II) (Lane 2 and 3), but at higher 
concentration (2.12 μM) the super coiled plasmid DNA would cleaved to linear form (Form III) which 
is in between Form I and Form II.) From these results we infer that cobalt(III) complex (1) and (2) act 
as a potent cleaving agent. The wavelength used for the photo-induced DNA cleavage experiments 
were 365 nm. 

 
APPLICATION 

 
this study demonstrate that substitution by different metal ions in metallo–intercalators of the type 
[M(phen/bpy)2L2]n+ can bring about subtle modulation in the properties of this class of mixed-ligand 
complexes and, consequently, in their interactions with DNA. 

 
CONCLUSIONS 

 
A novel Co(III) complexes [Co(phen)2(L2)](PF6)3(1) and [Co(bpy)2(L2)] (PF6)3(2) have been 
synthesized and characterized. The experimental results indicate that the complexes bind to DNA via 
an intercalative mode of binding. By comparison with previous studies, probably the most striking 
result emerging from this study is a quantitative evaluation of the contribution of Cobalt metal ion to 
the DNA binding affinity. In summary, the results described in this study demonstrate that 
substitution by different metal ions in metallo–intercalators of the type [M(phen/bpy)2L2]n+ can bring 
about subtle modulation in the properties of this class of mixed-ligand complexes and, consequently, 
in their interactions with DNA. 
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