#### Available online at www.joac.info

ISSN: 2278-1862



# Journal of Applicable Chemistry



2018, 7 (4): 1072-1083 (International Peer Reviewed Journal)

## Forced Degradation and Solution Stability Studies of Pheniramine API Drug

## Gulam Farooq<sup>1</sup>, Champa P. Maurya<sup>2</sup> and Manohar V. Lokhande<sup>3</sup>\*

Department of Chemistry, Sir Sayyad College, Aurangabad, 431002, Maharashtra, INDIA
 Department of Chemistry, JJT University, Jhunjhunu-333001, Rajasthan, INDIA
 Department of Chemistry, Sathaye College, Mumbai-400057, Maharashtra, INDIA
 Email: manohar2210@gmail.com

Accepted on 10<sup>th</sup> July, 2018

#### ABSTRACT

Pheniramine API drug were analyzed by forced degradation method using high performance liquid chromatography method was developed and validated. Two impurities in the Pheniramine API drug was identified. The separation was achieved on HPLC Columns (C-104) and (C-118) analytical column (250 mm × 4.6 mm i.d., 5.0 µm) using acetonitrile, methanol in the ratio 50:50 v/v as mobile phase and at a flow rate of 1.0 mL min<sup>-1</sup>. Acid degradation (5N HCl) RT was 31.943, base degradation (5N NaOH) for impurity RT was 30.813 and for drug it was 31.911. Peroxide degradation (30% H<sub>2</sub>O<sub>2</sub>) RT was 31.896, reduction degradation (10% Sodium bisulphate) for impurity RT was 30.846 and for drug it was 31.878. Hydrolysis degradation for impurity RT was 30.856 and for drug it was 31.901. Thermal degradation (105°C/72 h) for impurity RT was 30.611 and for drug it was 31.640. Photolytic degradation (1.2 Million lux hours) for impurity RT was 31.109 and for drug it was 32.262. The developed and validated method was successfully applied for the quantitative analysis Pheniramine API drug. The solution stability of spiked was studied.

#### **Graphical Abstract**



Chromatogram and Peak Purity of Peroxide degradation

**Keywords:** HPLC Techniques, Solubility Stability, Acid and Base Degradation, thermal, Peroxide Degradation.

### **INTRODUCTION**

Pheniramine (trade name Avil,) is an antihistamine [1] with anticholinergic [2] properties used to treat allergic conditions such as hay fever or urticaria [3]. It has relatively strong sedative effects, and may sometimes be used off-label as an over-the-counter sleeping pill in a similar manner to other sedating antihistamines such as diphenhydramine [4]. Pheniramine is also commonly found in eye drops used for the treatment of allergic conjunctivitis [5]. HPLC is an essential illustrative instrument in evaluating drug item control. HPLC policies must to have the capacity to independent, recognize, and evaluate the different drug related degradants that can shape on capacity or assembling, in addition to identify and evaluate any drug related degradations that might be presented among curve [6]. Constrained degradation contemplates (synthetic and physical anxiety testing) of new substance elements and drug items are basic to help create and exhibit the specificity of such steadiness demonstrating techniques. Notwithstanding showing specificity, constrained impurities studies can be utilized to decide the degradation pathways and degradation results of the APIs that could frame among capacity and encourage plan advancement, assembling and bundling. Methodology for the readiness of particular degradation items required for policy validation regularly rise up out of these examinations. For promoting applications, current FDA and ICH [7-8] direction prescribes incorporation of the outcomes, including chromatograms of focused on tests, demonstration of the dependability showing nature of the expository policies and the degradation pathways of the API in strong state, arrangement and drug item [9].

The compound structures of critical impurities items and the related methodology for their confinement and additionally portrayal are likewise anticipated that would be incorporated into the documenting. The test convention for performing constrained impurities studies will rely upon the normal fixings and definition included in light of the fact that the science of each compound is unique. When all is said in done an objective of roughly 10% degradation of the API among constrained impurities, or presentation to vitality in slight overabundance of what is ordinarily utilized as a part of quickened stockpiling is prescribed. Along these lines, the "thinking pessimistically" impurities items can be examined. The accompanying will give a few recommendations to performing constrained impurities consider are irreplaceable in the improvement of steadiness demonstrating and degradants checking techniques as a major aspect of validation convention.

Constrained impurities think about additionally give priceless understanding an investigative degradation items, pathways of drug substances and items. Despite the fact that the ICH and FDA direction archives require the consideration of these investigations in Phase-III of the administrative accommodation process, it is unequivocally prescribed these investigations be begun as right on time as conceivable to have the capacity to give important data that can be utilized to survey the characteristic solidness of a drug, and to enhance definitions and the assembling procedure. Given that no particular arrangement of conditions will be material to all drug substances and items, the pharmaceutical researcher must to guarantee the stretch conditions. Prescribed concern factors incorporate to low and high pH, raise temperature, photolysis and oxidation. Care must to be taken to stay away from under pushing or, then again unduly finished focusing on the drug substance or item, for this may prompt atypical and non-agent comes about. A degradation level of around 10% of the drug substance must to be ideal for policy enhancement. We are discussed the force degradation and solution stability studies of pharmaceutical drugs.

#### **MATERIALS AND METHODS**

The standard bulk drug (API) of Pheniramine was obtained from Supriya Lifescience Limited, Mumbai. The chemical was used for this research by HPLC grade, where other chemicals were high purity with analytical grades. All the chemicals were purchased from Sigma Aldrich.

S.No

Name

**R** Time

**Apparatus and Chromatographic Conditions:** Equipments were used for the validation studies such as HPLC System: SLL/QC/29, 57, Waters 2695 Separation Module, Waters UV and 996 PDA, Empower 2.0 and 3.0 Software, Balance (SLL/QC/50), HPLC Columns (C-104) and (C-118), Photo Stability Chamber (SLL/QC/74) and Hot air oven (SLL/QC/24).

#### **RESULTS AND DISCUSSION**

Acid Degradation (5N HCl): In 20 mL flask add pre-weighted 20 mg of sample was added then 5 mL of diluents and sonicated to dissolve. 5N HCl of 5 mL was heated at 70°C for three hours in water bath then flask was allowed to cool at room temperature. Then 5ml of 5N NaOH was added to neutralize solution.





Area

**Usp Plate count** 

Figure 1 Peak Result of Acid degradation



**Usp Tailing** 

**Base Degradation (5N NaOH):** Weighed accurately 20 mg of the sample in a 20 mL volumetric flask, added 5 mL of diluents and sonicated to dissolve. Further 5ml of 5N NaOH and heated at 70°C for 3 h on a water bath. Removed the flask from the water bath allowed the flask to cool to room temperature. Further 5mL of 5N HCl is add to neutralize the solution. Cooled to room temperature and diluted to volume with diluent and mixed [11].

Table 2. Peak Results of Alkali degradation

| S.No. | Name        | R Time | Area     | % Area | <b>Usp Resolution</b> | Usp Plate count | Usp Tailing |
|-------|-------------|--------|----------|--------|-----------------------|-----------------|-------------|
| 1     |             | 21.653 | 5232     | 0.03   |                       | 142859          | 1.149       |
| 2     | Impurity-B  | 30.813 | 1810     | 0.01   | 31.976                | 62811           | 1.454       |
| 3     | Pheniramine | 31.911 | 20306849 | 99.87  | 3.134                 | 129414          | 1.746       |
| 4     |             | 34.992 | 12751    | 0.06   | 10.237                | 362873          | 0.979       |
| 5     |             | 37.621 | 2298     | 0.01   | 10.616                | 386536          | 0.930       |
| 6     |             | 40.070 | 3725     | 0.02   | 9.900                 | 470503          | 1.020       |

| Table 3. | Peak | Results | Acid | degradation |
|----------|------|---------|------|-------------|
|----------|------|---------|------|-------------|

| S.No. | Name        | R Time | Area     | Usp Plate count | Usp Tailing |
|-------|-------------|--------|----------|-----------------|-------------|
| 1     | Pheniramine | 31.911 | 20306849 | 129414          | 1.746       |



Figure 3. Peak Results of Alkali degradation

Figure 4. Chromatogram of Alkali degradation



Figure 5. Chromatogram and Peak Purity of Alkali degradation.

**Peroxide Degradation (30% H\_2O\_2):** 20 mg of sample was dissolved in 20 mL volumetric flask then 5 mL of diluents was added to dissolve it. Further 5 mL of 30% v/v  $H_2O_2$  was added and heated at 70°C for 3 h on a water bath after three hours the flask was cooled to room temperature.

Table 4. Peak Results Peroxide degradation

| S.No. | Name        | R Time | Area    | % Area | Usp Resolution | Usp Plate count | Usp Tailing |
|-------|-------------|--------|---------|--------|----------------|-----------------|-------------|
| 1     | Pheniramine | 31.896 | 1707145 | 100    |                | 329906          | 1.163       |

0.08





Figure 6 Peak Results of Peroxide degradation





#### **Table 5.** Peak Results of Peroxide degradation

Figure 8. Chromatogram and Peak Purity of Peroxide degradation

**Reduction Degradation (10% Sodium Bisulphate):** 100 mg of sample was dissolved in 100 mL volumetric flask. Then 5 mL of 10% w/v sodium Bisulphate was added and heated at 70°C for 3 h on a water bath after completing three hours the flask was allowed to cool at room temperature [12].

Table 6. Peak Results Reduction degradation

| S.No. | Name        | <b>R</b> Time | Area     | % Area | <b>Usp Resolution</b> | Usp Plate count | Usp Tailing |
|-------|-------------|---------------|----------|--------|-----------------------|-----------------|-------------|
| 1     |             | 3.286         | 1734     | 0.01   |                       | 9577            | 1.147       |
| 2     |             | 21.734        | 4544     | 0.02   | 97.304                | 136250          | 0.996       |
| 3     | Impurity-B  | 30.846        | 2374     | 0.01   | 28.306                | 97774           | 0.963       |
| 4     | Pheniramine | 31.878        | 19120998 | 99.86  | 2.782                 | 140990          | 1.694       |
| 5     |             | 34.961        | 11748    | 0.06   | 10.608                | 353784          | 0.991       |
| 6     |             | 37.567        | 2221     | 0.01   | 9.777                 | 245630          | 1.042       |
| 7     |             | 39.987        | 3437     | 0.02   | 9.211                 | 500916          | 0.892       |





Figure 10. Chromatogram of Reduction degradation

Table 7. Peak Results of Reduction degradation

| S.No. | Name        | R Time | Area     | Usp Plate<br>count | Usp<br>Tailing |
|-------|-------------|--------|----------|--------------------|----------------|
| 1     | Pheniramine | 31.878 | 19120998 | 140990             | 1.694          |

www.joac.info



Figure 11. Chromatogram and Peak Purity of Reduction degradation.

**Hydrolysis Degradation:** Weighed accurately 20 mg of the sample in a 20 mL volumetric flask, further 10 mL of water and sonicated to disperse to dissolve and heated at 70°C for 3 h on a water bath. Removed flask from water bath, allowed flask to cool at room temperature and diluted to volume by diluent and mixed.

| S.No | Name        | RT     | Area     | % Area | Usp Resolution | Usp Plate count | Usp Tailing |
|------|-------------|--------|----------|--------|----------------|-----------------|-------------|
| 1    |             | 9.596  | 1408     | 1.01   |                | 90484           | 0.801       |
| 2    |             | 21.709 | 4483     | 0.02   | 65.929         | 146298          | 0.872       |
| 3    | Impurity-B  | 30.856 | 1850     | 0.01   | 30.986         | 190885          | 0.846       |
| 4    | Pheniramine | 31.901 | 19209012 | 99.88  | 2.950          | 136726          | 1.713       |
| 5    |             | 35.028 | 11769    | 0.06   | 10.601         | 357224          | 1.016       |
| 6    |             | 40.148 | 3627     | 0.02   | 21.076         | 461686          | 0.997       |

Table 8. Peak results hydrolysis degradation



Figure 12. Peak results hydrolysis degradation



Figure 13. Chromatogram of hydrolysis degradation

Table 9. Peak results hydrolysis degradation







www.joac.info

**Thermal Degradation (105°C/72 h):** Sample was exposed at 80°C for 72 h and analyzed to exposed sample[13].

| S.No. | Name        | R Time | Area     | %<br>Area | Usp<br>Resolution | Usp Plate<br>count | Usp<br>Tailing |
|-------|-------------|--------|----------|-----------|-------------------|--------------------|----------------|
| 1     |             | 9.600  | 1280     | 0.01      |                   | 99267              | 1.120          |
| 2     |             | 21.755 | 2169     | 0.01      | 72.435            | 178260             | 0.660          |
| 3     | Impurity-B  | 30.844 | 2352     | 0.01      | 31.767            | 135502             | 1.046          |
| 4     | Pheniramine | 31.969 | 18692314 | 99.86     | 3.151             | 133733             | 1.713          |
| 5     |             | 35.099 | 14432    | 0.08      | 10.558            | 366034             | 1.030          |
| 6     |             | 37.774 | 1723     | 0.01      | 9.299             | 301670             | 1.110          |
| 7     |             | 40.252 | 4078     | 0.02      | 8.563             | 438127             | 0.974          |







#### Figure 15. Peak Results Thermal degradation



Table 11. Peak Results Thermal degradation





Figure 17. Chromatogram and Peak Purity of Thermal degradation.

Humidity Degradation (25°C/ 92% RH for 72 h): Sample was exposed at 25°C /92% RH for 72 h and analyzed to exposed sample.

| Table | 12. | Peak | results | H | lumidity | degra | dation |
|-------|-----|------|---------|---|----------|-------|--------|
|-------|-----|------|---------|---|----------|-------|--------|

| S.No. | Name        | R Time | Area     | % Area | <b>Usp Resolution</b> | Usp Plate count | Usp Tailing |
|-------|-------------|--------|----------|--------|-----------------------|-----------------|-------------|
| 1     |             | 21.689 | 4577     | 0.02   |                       | 128171          | 0.793       |
| 2     | Impurity-B  | 30.611 | 1625     | 0.01   | 29.477                | 78603           | 0.890       |
| 3     | Pheniramine | 31.640 | 18979239 | 99.88  | 2.958                 | 143959          | 1.671       |
| 4     |             | 34.749 | 11440    | 0.06   | 10.800                | 362490          | 1.069       |
| 5     |             | 37.368 | 2037     | 0.01   | 9.911                 | 241199          | 1.052       |
| 6     |             | 39.835 | 3736     | 0.02   | 9.154                 | 436276          | 1.021       |



Figure 18. Peak results Humidity degradation

Pheniramine

1

Figure 19. Chromatogram of Humidity degradation

1.671



18979239

143959

31.640



Figure 20. Chromatogram and Peak Purity of Humidity degradation

**Photolytic Degradation (1.2 Million lux hours):** Sample was exposed to 1.2 Million lux hours of light and analyzed to exposed sample.

| S. No. | Name        | R Time | Area     | % Area | Usp<br>Resolution | Usp Plate<br>count | Usp<br>Tailing |
|--------|-------------|--------|----------|--------|-------------------|--------------------|----------------|
| 1      |             | 3.190  | 31247    | 0.23   |                   | 7904               | 1.210          |
| 2      |             | 9.803  | 1136     | 0.01   | 49.708            | 104479             | 0.972          |
| 3      |             | 21.057 | 3323     | 0.02   | 62.067            | 124135             | 0.959          |
| 4      |             | 22.004 | 1406     | 0.01   | 4.075             | 157371             | 0.898          |
| 5      | Impurity-B  | 30.065 | 7277     | 0.05   | 27.577            | 102851             | 0.956          |
| 6      | Pheniramine | 31.109 | 3009     | 0.02   | 2.597             | 86695              | 0.986          |
| 7      |             | 32.262 | 13721122 | 99.55  | 3.072             | 392337             | 1.558          |
| 8      |             | 35.282 | 10268    | 0.07   | 11.255            | 392337             | 1.053          |
| 9      |             | 37.863 | 1260     | 0.01   | 9.610             | 125364             | 0.766          |
| 10     |             | 40.309 | 1260     | 0.01   | 9.610             | 125364             | 0.766          |

| Table 14.   | Peak resul   | ts Photolytic  | degradation |
|-------------|--------------|----------------|-------------|
| 1 4010 1 11 | i cun i coui | is i notorytic | acgiaaation |



Figure 21. Peak results Photolytic degradation

Figure 22. Chromatogram of Photolytic degradation

Table 15. Peak Results Photolytic degradation



Figure 23. Chromatogram and Peak Purity of Photolytic degradation.

 Table 16.
 Forced degradation studies (Pheniramine)

| S. No. | Experiment             | <b>Degradation Condition</b>         | Purity Angle | Purity 'Threshold' |
|--------|------------------------|--------------------------------------|--------------|--------------------|
| 1      | Control                |                                      | 0.298        | 1.028              |
| 2      | Acid Degradation       | 5mL, 5N HCl/ 70°C/3h                 | 0.283        | 1.024              |
| 3      | Base Degradation       | 5mL, 5N NaOH/70°C/ 3h                | 0.284        | 1.018              |
| 4      | Peroxide Degradation   | 5mL, 30% v/v/ 70°C/3h                | 0.046        | 1.117              |
| 5      | Reduction Degradation  | 5mL,10% NaHSO <sub>4</sub> / 70°C/3h | 0.261        | 1.021              |
| 6      | Hydrolysis Degradation | 5mL, Water/ 70° C/3h                 | 0.276        | 1.022              |
| 7      | Thermal Degradation    | 105 ° C/72 h                         | 0.242        | 1.020              |
| 8      | Humidity Degradation   | 25° C /92% RH/72 h                   | 0.261        | 1.027              |
| 9      | Photolytic Degradation | 1.2 million lux hours                | 0.168        | 1.046              |

Acceptance Criteria: Pheniramine Peak is homogeneous; it does not show co- eluting peaks. The Peak purity for pheniramine peak and known Impurity Peaks must be good and it is validated. From the peak data of Pheniramine in every degradation sample shows that, the Pheniramine and all known impurities are homogeneous and it does not shows co-eluting peaks which indicating that, the method is validated and specific.

| S.No | Experiment       | Degradation Condition    | %<br>Impurity-A | %<br>Impurity-B | % highest<br>Unspecified | %<br>Total |
|------|------------------|--------------------------|-----------------|-----------------|--------------------------|------------|
| 1    | Control          |                          | ND              | ND              | 0.06                     | 0.06       |
| 2    | Acid Degradation | 5mL, 5N HCl/ 70°C / 3h   | 0.01            | ND              | 0.55                     | 0.61       |
| 3    | Base Degradation | 5mL, 5N NaOH/ 70° C / 3h | 0.01            | ND              | 0.06                     | 0.06       |
| 4    | Peroxide         | 5mL, 30% v/v/ 70° C / 3h | 0.04            | ND              | 4.33                     | 12.5       |
|      | Degradation      |                          |                 |                 |                          |            |
| 5    | Reduction        | 5mL,10%NaHSO4/70°C/      | 0.01            | ND              | 0.06                     | 0.06       |
|      | Degradation      | 3h                       |                 |                 |                          |            |
| 6    | Hydrolysis       | 5mL, Water/ 70° C / 3h   | 0.01            | ND              | 0.06                     | 0.06       |
|      | Degradation      |                          |                 |                 |                          |            |
| 7    | Thermal          | 105 ° C / 72 h           | 0.01            | ND              | 0.08                     | 0.08       |
|      | Degradation      |                          |                 |                 |                          |            |
| 8    | Humidity         | 25° C /92% RH/ 72 h      | 0.01            | ND              | 0.06                     | 0.06       |
|      | Degradation      |                          |                 |                 |                          |            |
| 9    | Photolytic       | 1.2 million lux hours    | 0.02            | ND              | 0.23                     | 0.35       |
|      | Degradation      |                          |                 |                 |                          |            |

| Table 17  | Impurities | in Forced  | degradation | studies |
|-----------|------------|------------|-------------|---------|
| Table 17. | impunics   | III FOICCU | ucgrauation | studies |

**Stability in Analytical Solution:** The solution stability is strength of standard and separated specimen arrangement (prepared to impart) from the example or lattice and dissected according to determined plan, and it must to be put away legitimately in room temperature and cooled condition contingent on dependability and standard arrangement [14-15]. The solution stability of the reference solution-B, the cumulative % RSD average value 3.19 for the Pheniramine and average value for Area 27491 and mean are 27539.

| Table 18. Solution | on Stability of | Reference so | lution B |
|--------------------|-----------------|--------------|----------|
|--------------------|-----------------|--------------|----------|

| Reference Solution-B |             |            |       |  |  |  |  |  |  |
|----------------------|-------------|------------|-------|--|--|--|--|--|--|
|                      | Pheniramine |            |       |  |  |  |  |  |  |
| Time                 | Area        | Cumulative |       |  |  |  |  |  |  |
|                      |             |            | % RSD |  |  |  |  |  |  |
| Initial              | 27167       |            |       |  |  |  |  |  |  |
| 1 h                  | 27826       | 27497      | 1.69  |  |  |  |  |  |  |
| 2 h                  | 28959       | 27984      | 3.24  |  |  |  |  |  |  |
| 8 h                  | 27808       | 27940      | 2.67  |  |  |  |  |  |  |
| 11 h                 | 25694       | 27491      | 4.34  |  |  |  |  |  |  |
| 14 h                 | 27128       | 27430      | 3.93  |  |  |  |  |  |  |
| 17 h                 | 27337       | 27417      | 3.59  |  |  |  |  |  |  |
| 20 h                 | 27445       | 27421      | 3.33  |  |  |  |  |  |  |
| 23 h                 | 26911       | 27364      | 3.18  |  |  |  |  |  |  |
| 26 h                 | 27590       | 27387      | 3.01  |  |  |  |  |  |  |
| 29 h                 | 28216       | 27462      | 2.99  |  |  |  |  |  |  |

| Table 19. Solution Stability of Reference solution | С |
|----------------------------------------------------|---|
|----------------------------------------------------|---|

| <b>Reference solution -</b> C |        |        |                    |      |       |       |                    |
|-------------------------------|--------|--------|--------------------|------|-------|-------|--------------------|
|                               |        |        |                    |      |       |       |                    |
| Time                          | Area   | Mean   | Cumulative<br>%RSD | Time | Area  | Mean  | Cumulative<br>%RSD |
| Initial                       | 117767 |        |                    | 1 h  | 30972 | 30715 | 1.19               |
| 1 h                           | 114680 | 116224 | 1.88               | 2 h  | 30457 | 30578 | 1.14               |
| 2 h                           | 117147 | 116531 | 1.40               | 6 h  | 30304 | 30570 | 0.94               |
| 6 h                           | 119188 | 117196 | 1.61               | 9 h  | 30545 | 30656 | 1.03               |
| 9 h                           | 115384 | 116833 | 1.56               | 12 h | 31004 | 30654 | 0.92               |
| 12 h                          | 114452 | 116436 | 1.63               | 15 h | 30644 | 30833 | 1.74               |
| 15h                           | 115378 | 116285 | 1.53               | 18 h | 30903 | 30816 | 1.62               |
| 18 h                          | 113948 | 115993 | 1.59               | 21 h | 30695 | 30906 | 1.75               |
| 21 h                          | 118213 | 116240 | 1.61               | 24 h | 31628 | 31076 | 2.39               |
| 24 h                          | 118303 | 116446 | 1.62               | 27 h | 32609 | 31223 | 2.74               |
| 27 h                          | 112677 | 116103 | 1.82               | -    | -     | -     | -                  |

| m              | Impurity-A |        |      | Impurity-B |       |      | Unspecified |       |      |
|----------------|------------|--------|------|------------|-------|------|-------------|-------|------|
| I ime in hours | Area       | Mean   | RSD* | Area       | Mean  | RSD* | Area        | Mean  | RSD* |
| Initial        | 153827     |        |      | 53620      |       |      | 13137       |       |      |
| 1              | 153511     | 153669 | 0.15 | 53380      | 53500 | 0.32 | 13011       | 13074 | 0.68 |
| 2              | 154139     | 153826 | 0.20 | 55016      | 54005 | 1.64 | 13492       | 13123 | 1.54 |
| 3              | 154534     | 154003 | 0.28 | 48577      | 52648 | 5.33 | 13642       | 13215 | 1.95 |
| 4              | 152186     | 153639 | 0.38 | 48792      | 51877 | 5.75 | 13841       | 13301 | 1.99 |
| 5              | 154055     | 153709 | 0.53 | 48469      | 51309 | 5.86 | 13736       | 13353 | 2.27 |
| 6              | 153348     | 153657 | 0.49 | 49054      | 50987 | 5.64 | 14541       | 13422 | 2.25 |
| 7              | 154377     | 153747 | 0.49 | 49639      | 50818 | 5.32 | 13875       | 13462 | 3.37 |
| 8              | 154661     | 153849 | 0.50 | 48579      | 50570 | 5.22 | 14212       | 13582 | 3.24 |
| 9              | 155184     | 153982 | 0.54 | 49930      | 50506 | 4.94 | 14270       | 13611 | 3.34 |
| 10             | 155340     | 154109 | 0.58 | 49660      | 50429 | 4.72 | 13989       | 13666 | 3.42 |
| 11             | 155133     | 154195 | 0.59 | 50059      | 50398 | 4.51 | 14138       | 13916 | 3.31 |
| 12             | 154852     | 154245 | 0.57 | 50169      | 50380 | 4.32 | 14024       | 13737 | 3.27 |
| 13             | 154871     | 154290 | 0.56 | 50167      | 50384 | 4.15 | 13879       | 13766 | 3.08 |
| 14             | 155949     | 154400 | 0.61 | 50431      | 50378 | 4.00 | 14199       | 13783 | 3.00 |
| 15             | 156803     | 154551 | 0.79 | 50304      | 50450 | 3.91 | 13514       | 13789 | 3.16 |
| 16             | 156531     | 154667 | 0.82 | 51671      | 50451 | 3.79 | 14489       | 13813 | 3.17 |
| 17             | 157179     | 154806 | 0.83 | 50232      | 50475 | 3.68 | 14102       | 13842 | 3.21 |

| Table 20. Solution Stability of | f Spiked Solution |
|---------------------------------|-------------------|
|---------------------------------|-------------------|

\*Cumulative % RSD

Acceptance Criteria: Cumulative % RSD values rare not more than 10%. The % Cumulative RSD is within limits. Therefore Impurities in sample solutions was stable for 47 h at room temperature.

#### APPLICATION

HPLC Method for the determination of related substances of pheniramine was accurate, simple, it is useful for the determination of pharmaceutical formulations.

#### CONCLUSIONS

The HPLC methods for the determination of pheniramine API drug, two unknown impurities were identified. The drug is validating by Force degradation method and solution stability. The Mean recovery for known Impurities is within limits. Therefore, the HPLC Method for the determination of related substances of pheniramine was accurate. Impurities in sample solutions are stable for 24 h at room temperature. Reference Solutions are stable up to 47 h. Pheniramine peak is homogeneous, it does not show co- eluting peaks. The peak purity for pheniramine peak and known Impurity Peaks must be good and it is validated. The peak data of Pheniramine in every degradation sample shows that, the pheniramine and all known impurities are homogeneous and it does not show co-eluting peaks which indicating that, the method is validated and specific

### ACKNOWLEDGEMENTS

The authors wish to special thanks, Satish Wagh, Saloni Wagh, Shivani Wagh, Prashant Zate, Supriya Lifescience limited, Mumbai for providing necessary facilities for research work. We are Thanks to M. K. Gupta, Nitin G. Rathod and Shwetali Churi for their co-operation and help.

#### REFERENCES

- [1]. F. V. Bruchhausen, G. Dannhardt, S. Ebel, A. W. Frahm, E. Hackenthal, Hager's Handbook of Pharmaceutical Chemistry, Band 9: Stoffe P-Z, *Springer Verlag, Berlin*, **2014**, 5, 121.
- [2]. P. Panula, P. L.Chazot, M. Cowar, International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors, *Pharmacol. Rev.*, **2015**, 67 (3), 601–655.

- [3]. A. W. Jones, Perspectives in Drug Development and Clinical Pharmacology: The Discovery of Histamine H-1 and H-2 Antagonists, *Cli. Pharma. Drug develop.*, **2016**, 5 (1), 5–12.
- [4]. F. S. Bersani, O. Corazza, P. Simonato, A.Mylokosta, E. Levari, R. Lovaste, F. Schifano, Drops of madness? Recreational misuse of tropicamide collyrium; early warning alerts from Russia and Italy, *Gen. Hosp. Psychiatry.*, 2013, 35 (5), 571–573.
- [5]. N. G. Rathod, M. V. Lokhande, Development and characterization of process related impurity in Hydralazine Hydrochloride by some analytical *technique J. Applicable Chem.*, 2014, 3(5), 2011-2019.
- [6]. M. V. Lokhande, N. G. Rathod, M. K.Gupta, Identification and structural elucidation of process related impurities in duloxetine .HCl, Inter. J. Chem. Pharm. Sci., 2013, 4 (2), 34-43.
- [7]. International Conference on Harmonization, Guideline on Validation of Analytical Procedure-Methodology, Geneva, Switzerland, **1996**.
- [8]. ICH, Q2 (A). Validation of analytical procedures: text and methodology International Conference on Harmonization. Geneva, 2005, 1-13. Guidelines on General Principles of Process Validation, CDER, US-FDA 1987.
- [9]. Z. P. Zancy, Characterizing the subjective, psychomotor and physiological effects of a hydrocodone combination product in non-drug-abusing volunteers. Psychopharmacology, 2008, 165, 146-156.
- [10]. International Conference on Harmonization ICH Topic Q 3 A (R2) Impurities in new Drug Substances. June **2017**.
- [11]. P. B. Zate, S. Kothari, M.V. Lokhande, Confirmation and Quantification of Genotoxic Impurity 2-Dimethylaminoethyl chloride hydrochloride by GCMS in Chlorpheniramine /Chlorphenamine Maleate, J. Applied Chem., 2017,10(7), 21-26.
- [12]. N. G. Rathod, M. V. Lokhande, Characterisation and Identification of Process Related Impurity in Amodiaquine HCl by Using Some Analytical Techniques: A Review, Amer. J. f Adv. Drug Delivery, 2015, 3(5), 264-284.
- S. S. Wagh, S. Kothari, M. V. Lokhande, Quantification Of (4-Bromophenyl) {Pyridine-2-Yl} Acetonitrile Impurity (4-BPPA) By HPLC In Bromopheniramine Maleate Active Pharmaceutical Ingredient, J. Applied Chem., 2017, 10(6), 26-31.
- [14]. S. K. Churi, M. V. Lokhande, Identification and impurity profiling of process related impurities in DTPEE, *Eur. J. Biomed.Pharm.Sci*, **2017**, 4(9), 617-623.
- [15]. S. R. Ambadekar, I. Balakrishnan , M. V. Lokhande, Validation of Pharmaceutical (API) Bulk Drug by HPLC Methods, *J. Applicable Chem.*, 2018, 11(2), 01-20