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Pareto optimality in  Omni_metrics (Om) 

  

Binary Hybrid Algorithms of Pareto Strategy  
 

Mathematical  Space  
 

PSO + Pareto  
 Multi-objective Particle Swarm Optimization Hybrid 
Algorithm:  An Application on Industrial Cracking 
Furnace 

Ind. Eng. Chem. Res., 2007, 46 (11), 3602–3609 
DOI: 10.1021/ie051084t  

  Task: [naphtha industrial cracking furnace] 
 MultiObjectFns: [yield rates [ethylene ; propylene]].  
 decision variables :[ratio of gas to hydrocarbon, coil outlet temperature (COT) of pyrolysis 

gas, outlet pressure]  
 Method : [multi-objective particle swarm optimization (MOPSO) + Pareteo] 
 Alg.: Calculate Pareto set as a repository of particles  
 use later by other particles to guide their own flight  
 MOPSO + ANN hybrid model  
  for operation optimization of a naphtha industrial cracking furnace 

 
Chengfei Li, Qunxiong Zhu, and Zhiqiang Geng  

Journal of Applicable Chemistry 
2018, 7 (4): 1084-1120 

(International Peer Reviewed Journal) 
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Multi-objective particle swarm optimization (MOPSO) procedure, 

 better convergence  
 diversity Pareto solutions than the NSGAII algorithm 

 
 Optimization of Adiabatic Styrene Reactor: A Hybrid 
Multiobjective Differential Evolution (H-MODE) 
Approach 

Ind. Eng. Chem. Res., 2009, 48 (24), 11115–11132 
DOI: 10.1021/ie901074k  

 Soln.Method: [global search: evolutionary algorithm + local search: deterministic alg.]  
 The proposed algorithm converges to a better set of nondominated solutions (possibly a 

Pareto front) as compared to the nondominated solutions obtained using NSGA and an 
improved strategy of MODE algorithm 

  
  benchmark test fn: (KUR) : compared algs in 

  
 Task2: [multiobjective optimization of an industrial adiabatic styrene reactor] 
  Soln: with prevalidated model using the hybrid-MODE algorithm and an improved strategy 

of MODE. 
  Four cases (three sets of two-objective optimization, cases 1−3, and one set of three-

objective optimization, case 4) are considered consisting of  
 

 Hybrid Artificial Neural Network−Genetic 
Algorithm Technique for Modeling and Optimization 
of Plasma Reactor 

Ind. Eng. Chem. Res., 2006, 45 (20), 6655–6664 
DOI: 10.1021/ie060562c  

  Task: [dielectric barrier discharge (DBD) plasma reactor without catalyst and heating] 
 Model: hybrid artificial neural network−genetic algorithm for simulation, and optimization  
 Effects of CH4/CO2 feed ratio, total feed flow rate, and discharge voltage on the 

performance of noncatalytic DBD plasma reactor were studied by an ANN-based simulation 
with a good fitting.  

 Tasks: CH4 conversion and C2+ selectivity, CH4 conversion and C2+ yield, CH4 
conversion and H2 selectivity 

 X: [feed flow rates of the three initiators and of the transfer agent, inlet temperature, inlet 
pressure, average temperatures of the fluids in the five jackets] 

 Constraints: [temperature of the reaction mass is constrained to lie below a safe value; 
equality constraint for the number-average molecular weight (Mn,f) of the product, to ensure 
product quality] 

 Pareto-optimal solutions are obtained. 
 Method: binary-coded NSGA-II-aJG and NSGA-II-JG  

 perform better than NSGA-II near the hard end-point constraints 
 

Istadi, and N. A. S. Amin  
 

 Jumping genes + Pareto 
 Multi-objective Optimization of the Operation of an 
Industrial Low-Density Polyethylene Tubular 
Reactor Using Genetic Algorithm and Its Jumping 
Gene Adaptations 

Ind. Eng. Chem. Res., 2006, 45 (9), 3182–3199 
DOI: 10.1021/ie050977i  
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  Task: [LDPE reactor ] 
 ConflObject: [max(monomer conversion ) ; min (sum of normalized concentrations of three 

important side products (methyl, vinyl, and vinylidene groups) ]  
 Methods: binary-coded non-dominated sorting genetic algorithm  

®  NSGA-II, 
® NSGA-II-JG,  
® NSGA-II-aJG  

Naveen Agrawal, G. P. Rangaiah, Ajay K. Ray, and Santosh K. Gupta  

 
SAA + Pareto 

 Development of a Robust Multiobjective 
Simulated Annealing Algorithm for Solving 
Multiobjective Optimization Problems 

Ind. Eng. Chem. Res., 2011, 50 (11), 6728–6742 
DOI: 10.1021/ie1016859  

 Task: [computationally intensive and simulation-intensive MOO problems in chemical 
technology/ engineering fields of  

 Robust multiobjective simulated annealing (rMOSA): rMOSA is a simulated annealing 
based multiobjective optimization algorithm 

  speeds up the process of convergence to attain Pareto front (or a set of 
nondominating solutions)  

 uniform non-dominating solutions along final Pareto front obtained 
 NSGA-II-JG and NSGA-II 
 best algorithm for solving  
+ rMOSA is proved to converge to Pareto sets in less number of simulations with well-

crowded uniform nondominating solutions in them 
B. Sankararao and Chang Kyoo Yoo  

 

DiffEvol + Pareto 

Optimization of Adiabatic Styrene Reactor: A 
Hybrid Multiobjective Differential Evolution (H-
MODE) Approach 

Ind. Eng. Chem. Res., 2009, 48 (24), pp 11115–11132 
DOI: 10.1021/ie901074k                 

 benchmark test fn: (KUR): 
compared algs in 

  
 Task2: [multiobjective 

optimization of an industrial 
adiabatic styrene reactor] 

  Soln: with prevalidated model 
using the hybrid-MODE 
algorithm and an improved 
strategy of MODE. 

 Four cases (three sets of two-objective 
optimization, cases 1−3, and one set of 
three-objective optimization, case 4) are 
considered consisting of 

 

Multi(m) 
ObjFns 

Test case 

two-  1−3 
Three-   4 

 

   Simultaneous maximization of styrene 
productivity, selectivity, yield  
 four decision variables  
  two constraints 

    hybrid strategy of MODE converges 
to the true Pareto front more rapidly 
(in fewer function evaluations)  
well-diversified Pareto front as 
compared to the stand-alone 
evolutionary approach 

Ashish M. Gujarathi and B. V. Babu 
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 Hybrid Modeling of Methane Reformers. 3. Optimal 
Geometries of Perforated Catalyst Pellets 

Ind. Eng. Chem. Res., 2009, 48 (23), 10277–10283 
DOI: 10.1021/ie9001662  

  ConflObject: [maximization (specific area); minimum (wall thickness of the pellet) 
simultaneous maximization (overall catalyst activity in the catalyst bed); minimum wall 
thickness of the pellet)] 

 Pareto filter: ObJFns evaluated for several catalyst geometries  
 The Pareto fronts obtained for the two analyzed cases are essentially the same 
 Inference: maximization of the specific area constitutes a useful criterion for design of 

perforated catalysts in diffusion-controlled systems 
André L. Alberton, Marcio Schwaab, Roberto Carlos Bittencourt, Martin Schmal and José Carlos Pinto  

 

Hierarchical Pareto 
 

 Hierarchical Pareto Optimization for the Sustainable 
Development of Industrial Ecosystems 

Ind. Eng. Chem. Res., 2006, 45 (9), 3265–3279 
DOI: 10.1021/ie050487q  

  Hierarchical Pareto Optimization Methodology  
 achieves most sustainable solution.  
 systematic and flexible framework 
 solves multiscale, multidimensional problems 
 provides guidance for improving sustainability.  

 
 

 
Illustration of Pareto optimum points (design space). 

 

 
Pareto optimum (objective space 

Aditi Singh, and Helen H. Lou  
 

 
Parameters-- Precision & Correlation 

 
Multiobjective Framework for Model-based Design of Experiments 
to Improve Parameter Precision and Minimize Parameter Correlation 

Ind. Eng. Chem. Res., 2013, 52 (24), 8289–
8304 

DOI: 10.1021/ie400133m 



  

Advancement Application Announcement (AAA)                                                                          1088 

 

 Multiobjective optimization 
 Model based experimental design 
 Pareto-optimal front 

  trade-off between system information and correlation among parameters  
 

Vaibhav Maheshwari, Gade Pandu Rangaiah, and Lakshminarayanan Samavedham 
 

Data Driven modeling 
 

Data Driven Modeling Using an Optimal Principle Component 
Analysis Based Neural Network and Its Application to a Nonlinear 
Coke Furnace 

Ind. Eng. Chem. Res., 2018, 57 (18), 
6344–6352 

DOI: 10.1021/acs.iecr.8b00071 

 PCA; RBF-NN; 

 NSGA II 
Ridong Zhang , Qiang Lv, Jili Tao, and Furong Gao 

 
Optimum Pareto Front 

 
Application and Analysis of Methods for Selecting an Optimal 
Solution from the Pareto-Optimal Front obtained by Multiobjective 
Optimization 

 10 methods TO select optimal solution from the Pareto-
optimal front 

  MS Excel-based program.  

Ind. Eng. Chem. Res., 2017, 56 (2), 560–
574 

DOI: 10.1021/acs.iecr.6b03453 

Zhiyuan Wang and Gade Pandu Rangaiah 

 

Optima and extrema  
(Mathematical to physico-chemical-biological space) 

 
 Optimization of reacting systems to a 
 Unique single, set of equivalent multiple, Pareto optimal group or a single Pareto optimal (the 

best, nearer to true value if known) solution(s) also  
 evolved with human needs and progressive scientific pursuit.   

 
 The interactions are  
 physical, chemical and/or biological   

 in normal energy scale or very low/very high or even at extreme limits on planet earth or 
universe. 

  
 From another perspective, interactions are among  
 matter with matter and/or energy, or energy with energy.  

 Probing more and more is to  

 understand, control, alter the (natural/man made) phenomena for  
 befit of man- kind, other life forms and environment 
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Chemical  Space                                             Life is chemistry 
 

Chemisty for Life                                                              Drug research 
Virtual Screening Data Fusion Using Both Structure- and Ligand-
Based Methods 

J. Chem. Inf. Model., 2012, 52 (1), 225–232 
DOI: 10.1021/ci2004835 

 DataGeneration: [docking, pharmacophore search, shape similarity, electrostatic similarity, 
spanning both structure- and ligand-based procedures] 

 DataSets: 16 
  DataFusionAlg: [sum rank, rank vote, sum score, Pareto ranking, parallel selection] 

 

 
Fredrik Svensson, Anders Karlén, and Christian Sköld 

 
Development of a Comprehensive, Validated Pharmacophore 
Hypothesis for Anthrax Toxin Lethal Factor (LF) Inhibitors Using 
Genetic Algorithms, Pareto Scoring, and Structural Biology 

J. Chem. Inf. Model., 2012, 52 (7), 1886–
1897 

DOI: 10.1021/ci300121p 

  
Ting-Lan Chiu and Elizabeth A. Amin 

 
SAR 

Multiobjective Particle Swarm Optimization: Automated 
Identification of Structure–Activity Relationship-Informative 
Compounds with Favorable Physicochemical Property Distributions 

J. Chem. Inf. Model., 2012, 52 (11), 2848–
2855 
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 Pareto-Optim(multipleObjFns)  
 does not require subjective intervention. 
  automated and can be easily modified.  

 Case Study: screen 10 compound data sets of different composition and global SAR phenotypes 
 

 
Vigneshwaran Namasivayam and Jürgen Bajorath 

 
 

 SPR  SVR Descriptors 
Quantitative Structure–Property Relationship 
Predictions of Critical Properties and Acentric Factors 
for Pure Compounds 

J. Chem. Eng. Data, 2015, 60 (5), 1377–1387 
DOI: 10.1021/je501093v 

 900 Compounds ; #Descp : 500;  

 #Descip_final model for Tc::33;  

 #Descip_final model for Pr::30; 
Wendy Hawley Carande, Andrei Kazakov, Chris Muzny, and Michael Frenkel 

 
Phospholipids FFD MALDI-TOF_MS 

Fractional Factorial Design (FrFD) of MALDI-TOF-MS Sample 
Preparations for the Optimized Detection of Phospholipids and 
Acylglycerols 

Anal. Chem., 2016, 88 (12), 6301–6308 
DOI: 10.1021/acs.analchem.6b00512 

 Computational-analytical optimization  
 Analysis  five lipids (4 phospholipids + 

1 acylglycerol) 
 Pareto optimality of experimental 

factors (FrFD) 
  Matrices,  

matrix preparations, matrix additives, additive 
concentrations, and deposition methods  
  8064 possible analyses 720 identified 

:  

 
 

Najla AlMasoud, Elon Correa, Drupad K. Trivedi, and Royston Goodacre 
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 Sampling Multiple Scoring Functions 
Can Improve Protein Loop Structure 
Prediction Accuracy 

J. Chem. Inf. Model., 2011, 51 (7), 1656–1666 
DOI: 10.1021/ci200143u  

 prediction of loop structures of 
proteins 
  Pareto optimal sampling: to sample 

the function space of multiple scoring 
functions 

 tolerates insensitivity and 
inaccuracy in individual 
scoring functions  lead to 
significant accuracy 
improvement in loop structure 
prediction 
 Output: ensemble of diversified 

structures yielding Pareto optimality to 
all sampled conformations.  

 

 

 Application: POS method applied to a set of 4–12-residue loop targets using a function space 
composed of backbone-only Rosetta and distance-scale finite ideal-gas reference (DFIRE). 501 
out of 502 targets, the model sets generated by POS contain structure models are within 
subangstrom resolution. 

 developed Pareto optimal consensus (POC) method 
 

Yaohang Li, Ionel Rata, and Eric Jakobsson  
 

Clustering and Rule-Based Classifications of 
Chemical Structures Evaluated in the Biological 
Activity Space 

J. Chem. Inf. Model., 2007, 47 (2), 325–336 
DOI: 10.1021/ci6004004  

 

® No classification method is overall superior to all others 
 Natural Way out: rule-based, scaffold-oriented methods are the better  
 If classes with homogeneous biological activity are required,  
 Then large number of clusters should be tolerated.  
 If fewer and larger classes are required, and some loss of homogeneity in biological activity is 

acceptable 
 Then clustering based on chemical fingerprints is superior 

 

 
 

Ansgar Schuffenhauer, Nathan Brown, Peter Ertl, Jeremy L. Jenkins, Paul Selzer, and Jacques Hamon  
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Improving predicted protein loop structure ranking using a 
Pareto-optimality consensus method 

BMC Structural Biology 2010, 10:22, 2-14  

 Integrating multiple knowledge- and physics-based scoring functions  
 Pareto Optimality Consensus (POC) Method 

 Basis:  Pareto optimality + fuzzy dominance 
 Jacobson's loop decoy sets, membrane protein loop decoy sets 

 selection accuracy: rank-by-vote, rank-by-number, rank-by-rank, and regression- 
  Distinguishing the best loop models from others within a loop model set. 

 
Yaohang Li, Ionel Rata, See-wing Chiu and Eric Jakobsson   

 
 

Instrumental Probes 
 

Liquid Chromatography 
 Comprehensive Study on the Optimization of Online 
Two-Dimensional Liquid Chromatographic Systems 
Considering Losses in Theoretical Peak Capacity in 
First- and Second-Dimensions: A Pareto-Optimality 
Approach 

Anal. Chem., 2010, 82 (20), 8525–8536 
DOI: 10.1021/ac101420f  

  MultiObjectFns: [total analysis time, total peak capacity, total dilution]  
 Instrument: [two-dimensional liquid chromatography] 
 Model: Pareto-optimality   
 optimal parameters: [column particle sizes, column diameters, modulation times] 
 

 Accounted for losses in the peak capacities in the first dimension (due to undersampling) and 
in the second dimension (due to high injection volumes).  
 The first effect (detection band broadening) reduces the original peak capacity by about a 

half, the second effect can reduce the total peak capacity by an additional half. 
 

G. Vivó-Truyols, Sj. van der Wal, and P. J. Schoenmakers  
 
 Approximate and Exact Equations for Peak Capacity 
in Isocratic High-Pressure Liquid Chromatography 

Anal. Chem., 2011, 83 (20), 7614–7615 
DOI: 10.1021/ac202102s  

  Instru.chromatograph: [extra-column and column broadening on isocratic peak capacity] 
 

 Pareto-Optimality Approach 
Vivo-Truyols, G.; van der Wal, Sj.; Schoenmakers, P. J. Anal. Chem.2010, 82, 8525–8536. 

 Peter W. Carr 

 

 

Taguchi's Design removal of Cd, Ni, Zn Pareto analysis of 
variance 

 

 Multicomponent Adsorption Study of Metal Ions 
onto Bagasse Fly Ash Using Taguchi's Design of 
Experimental Methodology 

Ind. Eng. Chem. Res., 2007, 46 (17), 5697–5706 
DOI: 10.1021/ie0609822  
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  Task: [opt parameters ( simultaneous removal of Cd, Ni, and Zn metal ions from aqueous 
solutions using bagasse fly ash (BFA) as an adsorbent)] 

 Method.ExptDes: Taguchi optimization methodology (L27 orthogonal array); 
 

 X : [initial metal concentrations (C0,i), temperature, initial pH, adsorbent dosage (m), contact 
time on the adsorption of metal ions]; # levels : three 

 y response: [(total amount of metal adsorbed on BFA, in terms of mg/g of BFA (qtot))] 
  Pareto analysis of variance  

 
 Inference:  

   [most significant parameter: adsorbent dosage with  53.14% and 31.25% contribution to 
the qtot and signal-to-noise (S/N) ratio data  

   significantPar: interactions between the C0,i values] 
  Confirmation experiments with Taguchi optimum operating conditions  

 
Vimal C. Srivastava, Indra D. Mall, and Indra M. Mishra  

 

Biological Space 
Synthetic Biology  

 
Automated Design Framework for Synthetic Biology Exploiting 
Pareto Optimality 
 
 Gene regulatory networks motifs--for stripe formation, rapid 

adaption, fold-change detection 

ACS Synth. Biol., 2017, 6 (7), 1180–1193  
DOI: 10.1021/acssynbio.6b00306 
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Irene Otero-Muras  and Julio R. Banga 

 
 

Efficient Behavior of Photosynthetic Organelles via Pareto 
Optimality, Identifiability, and Sensitivity Analysis 

ACS Synth. Biol., 2013, 2 (5), 274–288 
DOI: 10.1021/sb300102k 

  Object: [ maximize the CO2 uptake rate ; production of metabolites of industrial interest or for 
ecological purposes] 

 Method: [Pareto front analysis]  
 

 

Giovanni Carapezza, Renato Umeton, Jole Costanza, Claudio Angione¶, Giovanni Stracquadanio, Alessio Papini||, 
Pietro Lió¶, and Giuseppe Nicosia 

 

Chemical Technology  Space 
 

Process Chemistry 
  Efficient Implementation of the Normal Boundary 
Intersection (NBI) Method on Multiobjective 
Optimization Problems 

Ind. Eng. Chem. Res., 2001, 40 (2), pp 648–655 
DOI: 10.1021/ie000400v 

 Task: [chemical process simulator]; 
 Normal boundary intersection (NBI) + Summation of weighted objective functions (SWOF) 

 
Young Il Lim, Pascal Floquet, and Xavier Joulia     
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  Pareto Profile Benchmark for Kinetics of Filtration 
and Extent of Dewatering of Fine and Colloidal 
Suspensions 

Ind. Eng. Chem. Res., 2005, 44 (24), pp 9364–9368 
DOI: 10.1021/ie050605+  

 .Pareto optimum, -- any improvement in the filtration kinetics can occur only at cost of reducing 
extent of moisture removed from the filter cake and vice versa    Not possible to improve  two 
performance measures simultaneously 
  

Sasanka Raha, Kartic C. Khilar,  Pradip, and Prakash C. Kapur  
 

 New Decision Making Criterion for Multiobjective Optimization 
Problems 
 
 Formulation of a polymer design 
 discrimination among Pareto solutions set  selection of 

single alternative (the least sensitive one); real life example 
 

Ind. Eng. Chem. Res., 2018, 57 (3), 1014–
1025 

DOI: 10.1021/acs.iecr.7b04196          

 
Lívia Pereira Lemos , Enrique Luis Lima, and José Carlos Pinto 

 

 
 Multiobjective Optimization of Cyclic Adsorption 
Processes 

Ind. Eng. Chem. Res., 2002, 41 (1), 93–104 
DOI: 10.1021/ie010288g  

 multiobjective optimization programmingSingle ObjFn(SWOF) 
® summation of a weighted objective function 
  Traditional ; simplest way  
  Remedy: Modified SWOF 

 approximates the Pareto curve efficiently 
 

Daeho Ko, and Il Moon  
 
 

 

Systematic Tools for the Conceptual Design of Inherently Safer 
Chemical Processes 

Ind. Eng. Chem. Res., 2017, 56 (25), 7301–
7313 

DOI: 10.1021/acs.iecr.7b00901 
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 Task: [synergy of merging Process System Engineering tools with inherent safety principles]  
 Design: superstructure that comprises several alternatives for streams, equipment, and process 

conditions  
 ConflObject: [total annualized cost, Dow’s Fire and Explosion Index] 
 Method:  Pareto set of solutions  

 

 
Rubén Ruiz-Femenia , María. J. Fernández-Torres, Raquel Salcedo-Díaz, M. Francisca Gómez-Rico, and José A. 

Caballero 
 
 Efficient approach for calculating Pareto 
boundaries under uncertainties in chemical 
process design 

Ind. Eng. Chem. Res., (2017)xxx,  
DOI: 10.1021/acs.iecr.7b02539  

 Task: [Distillation column] 
 Design variables/Parameters : [Physical model parameters; Design parameters; Operating 

parameters; Evaluation parameters] 
 uncertain Pareto boundaries 
 uncertainties taken into account by worst and best case Pareto boundaries or by considering 

robustness of the Pareto boundary with respect to uncertain model parameters as additional 
objectives 

 sensitivity analysis of Pareto boundary 
 going beyond sensitivity analysis can yield favorable process designs not seen by sensitivity 

analysis alone 
 adaptive scalarization approach 

M. Bortz, J. Burger, E. v. Harbou, M. Klein, J. Schwientek, N. Asprion, 
R. Bottcher, K.-H. Kufer, and H. Hassez  

 

Reactors 
 

Multiobjective Optimization of a Fixed Bed Maleic Anhydride 
Reactor Using an Improved Biomimetic Adaptation of NSGA-II 

Ind. Eng. Chem. Res., 2012, 51 (8), 3279–
3294 

DOI: 10.1021/ie202276q 
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 Process: Fixed bed maleic anhydride reactor 
 ObjFns: [Single; Two, Multiple] 
 ConflObject: [maximum productivity;  minimum operating cost; minimum pollution] 
 Alg.: [NSGA-II-Ajg]; [Alt-NSGA-II-Ajg] ;  
 biomimicking the altruism of honeybees 

o converges to the optimal solutions faster than does NSGA-II-aJG  
 If #ObjFns =2 
 If #ObjFns =3, inferior solutions  

Pranava Chaudhari and Santosh K. Gupta 
 

 

 
Multiobjective Optimization of Unseeded and Seeded Batch Cooling 
Crystallization Processes 

Ind. Eng. Chem. Res., 2017, 56 (20), 6012–
6021 

DOI: 10.1021/acs.iecr.7b00586 

 Task1: unseeded batch cooling crystallization of paracetamol 
 MultiObject: [Mean size ; coefficient of variation] 
 Task: seeded batch cooling crystallization of potassium nitrate 
 MultiObject: [mean size, CV, nucleated mass] 
 Method: Pareto front 

K. Hemalatha and K. Yamuna Rani 
 

 

Distillation 
Investigation of Separation Efficiency Indicator for the Optimization 
of the Acetone–Methanol Extractive Distillation with Water 
 

 Nonsorted genetic algorithm (NSGA)   

 GA Paretofront further optimized focusing on decreasing 
energy cost by   
 sequential quadratic programming (SQP)   

 

Ind. Eng. Chem. Res., 2015, 54 (43), 
10863–10875 

DOI: 10.1021/acs.iecr.5b02015 

Xinqiang You, Ivonne Rodriguez-Donis, and Vincent Gerbaud 
 

Efficient Approach for Calculating Pareto Boundaries under 
Uncertainties in Chemical Process Design 
 

 Distillation column  

 Adaptive scalarization : deals with uncertainties in 
multicriteria optimization 

Ind. Eng. Chem. Res., 2017, 56 (44), 
12672–12681 

DOI: 10.1021/acs.iecr.7b02539 
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M. Bortz , J. Burger , E. von Harbou , M. Klein, J. Schwientek, N. Asprion, R. Böttcher, K.-H. Küfer, and H. Hasse 

 
 

Multiobjective Optimization Approach for Integrating Design and 
Control in Multicomponent Distillation Sequences 

Ind. Eng. Chem. Res., 2015, 54 (49), 12320–
12330 

DOI: 10.1021/acs.iecr.5b01611         

 calculation of the condition number and the total annual cost of each design 
José Antonio Vázquez-Castillo, Juan Gabriel Segovia-Hernández, and José María Ponce-Ortega 

 
Multiobjective Optimization of a Hydrodesulfurization Process of Diesel 
Using Distillation with Side Reactor 

Ind. Eng. Chem. Res., 2014, 53 (42), 
16425–16435 

DOI: 10.1021/ie501940v 

 Task: hydrodesulfurization process  
 Nonlinear-multivariable multiobjective optimization; continuous and discrete design variables 
 Pareto solutions  opt conditions  

Erick Yair Miranda-Galindo, Juan Gabriel Segovia-Hernández, Salvador Hernández, and Adrián Bonilla-Petriciolet 
 

Procedure for the Selection among Technologies. Treatment of 
Deodorizer Distillate Oil 

Ind. Eng. Chem. Res., 2014, 53 (43), 16803–
16812 

DOI: 10.1021/ie500211u 

 Task: processing of deodorizer distillate oil  
 ConflObject: [max(net present value) ; Min(generation of greenhouse gases measured as 

kilogram-equivalent of CO2) 
 Math.task: Multiobjective optimization mixed integer linear program 

 
Daniela S. Laoretani and Oscar A. Iribarren 

 
 

 Reactive Thermally Coupled Distillation 
Sequences: Pareto Front 

Ind. Eng. Chem. Res., 2011, 50 (2), 926–938 
DOI: 10.1021/ie101290t 

 Task:  [optimal design of reactive complex distillation systems with thermal coupling for 
production of fatty esters] 
 

 Task.Maths: nonlinear and multivariable problem; nonconvex with several local optimums and 
constraints; conflicting objectives 
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 traditional optimization methods  
 converge to local optimums  
 fail to capture the full Pareto optimal front 

 Soln:  multiobjective genetic algorithm with restrictions coupled to Aspen ONE Aspen Plus,  
 previously used in the design and optimization of intensified distillation systems 

Erick Yair Miranda-Galindo, Juan Gabriel Segovia-Hernández, Salvador Hernández, Claudia Gutiérrez-Antonio, 
and Abel Briones-Ramírez  

 
 Multiobjective Design of Reactive Distillation with 
Feasible Regions 

Ind. Eng. Chem. Res., 2008, 47 (19), 7284–7293 
DOI: 10.1021/ie800306b  

 Task: [ multiobjective design of complex reactive distillation columns] 
  few heuristic rules about the distribution of the reaction  
 

Rui M. Filipe, Scott Turnberg, Steinar Hauan, Henrique A. Matos and Augusto Q. Novais  

 

 
Multiobjective Optimization of an Unseeded Batch Cooling 
Crystallizer for Shape and Size Manipulation 

Ind. Eng. Chem. Res., 2015, 54 (7), 2156–2166 
DOI: 10.1021/acs.iecr.5b00173 

 ObjFns: [length mean size ; target aspect ratio (AR) of final crystals] 
David Acevedo, Yanssen Tandy, and Zoltan K. Nagy 

Life Cycle Optimization 
 

Life Cycle Optimization for 
Sustainable Algal Biofuel Production 
Using Integrated Nutrient Recycling 
Technology 

ACS Sustainable Chem. Eng., 2017, 5 (11), 9869–9880 
DOI: 10.1021/acssuschemeng.7b01833 

 Task: design of the 
algal biofuel 
production system 

  ConflObject: [Gross 
annual profitability 
(economic) ; global 
warming potential 
(environmental 
criteria)] 

 
Muhammadu Bello, Panneerselvam Ranganathan , and Feargal Brennan 

 
 Life Cycle Optimization of Biomass-to-Liquid 
Supply Chains with Distributed–Centralized 
Processing Networks 

Ind. Eng. Chem. Res., 2011, 50 (17), 10102–10127 
DOI: 10.1021/ie200850t  
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 Task: [optimal design and planning of biomass-to-liquids (BTL) supply chains under 
economic and environmental criteria] 

 supply chain: [multisite distributed–centralized processing networks for biomass conversion 
and liquid transportation fuel production] 

 Case Study: [county-level Ex. Iowa state] 
 Objective.economic: [total annualized cost]; Objective. environPerformance: [life cycle 

greenhouse gas emissions]  
 Model: [multiobjective, multiperiod, mixed-integer linear programming] ; 

ModelComponents: [diverse conversion pathways and technologies, feedstock seasonality, 
geographical diversity, biomass degradation, infrastructure compatibility, demand 
distribution, government incentives] 

 Model: bicriterion opt;  Method.: Pareto-optimal curve; Method.Soln.Pareto: ε-constraint  
  Pred.Simultaneous: [optimal network design, facility location, technology selection, capital 

investment, production planning, inventory control, and logistics management decisions] 
  

Fengqi You and Belinda Wang  
 

 Biomass and biofuels; Life cycle optimization; 
MINLP; Sustainable supply chain  

Ind. Eng. Chem. Res., 2010, 49 (6), pp 2841–2848 
DOI: 10.1021/ie901685m  

  Task: [design of a chemical process for effectively adjusting calorific values in an offshore 
regasification terminal] 

 design : [one objective generalized disjunctive programming (GDP) task ; 
multiobjective problem for min([operating costs; performance of natural gas liquids]).  

 GDP (mathematically mapped into) [mixed-integer nonlinear programming (MINLP)] 
  MINLP technique incorporated into the process simulator  
 Solution of resulting bicriterion problem with MINLP,: [heuristic procedure that reduces the 

number of discrete solutions which are necessary for complete Pareto optimal sets] 
 

Hosoo Kim, Ik Hyun Kim and En Sup Yoon  
 

 
Separation of racemic mixtures 

 
Design and Performance Assessment of Continuous Crystallization 
Processes Resolving Racemic Conglomerates 

Cryst. Growth Des., 2018, 18 (3), 1686–
1696 

DOI: 10.1021/acs.cgd.7b01618 

 separation of enantiomers forming conglomerates in the solid state 
 attainable enantiomeric excess and productivity 
 complete resolution of racemic feed mixtures of conglomerate forming substances 

Till Köllges  and Thomas Vetter 
 

Computational Fluid Dynamics 
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Optimization of Dual-Impeller Configurations in a 
Gas–Liquid Stirred Tank Based on Computational 
Fluid Dynamics and Multiobjective Evolutionary 
Algorithm 

Ind. Eng. Chem. Res., 2016, 55 (33), 9054–9063 
DOI: 10.1021/acs.iecr.6b01660 

 computational fluid 
dynamics (CFD) with 
multiobjective 
evolutionary 
algorithm (MOEA) 

 maximize the overall effective 
gas holdup and minimize the 
power consumption with six 
geometrical variables. The 
nondominated sorting genetic 
algorithm-II (NSGA-II) was 
applied to construct a Pareto 
front 

 
 

Miaona Chen, Jiajun Wang, Siwei Zhao, Chaozhong Xu, and Lianfang Feng 

 

Physical  Space 
 

Environment 
 

Optimal Design of Energy Systems Involving Pollution 
Trading through Forest Plantations 

ACS Sustainable Chem. Eng., d 5 (3), 2585–2604 
DOI: 10.1021/acssuschemeng.6b02928 

  
Aurora de Fátima Sánchez-Bautista, José Ezequiel Santibañez-Aguilar, Fengqi You , and José María Ponce-

Ortega 
 

Environmental and Economic Optimization 
 

Environmental and Economic Optimization of Algal Biofuel Supply 
Chain with Multiple Technological Pathways 

Ind. Eng. Chem. Res., 2018, 57 (20), 
6910–6925 

DOI: 10.1021/acs.iecr.7b02956 
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 economic and environmental objectives: [Minimization of total supply chain cost;  total life cycle 
greenhouse gas emission]  

 multiobjective mixed integer linear programming approach 
o  [multiple production pathways; time periods; seasonality factors; water evaporation; 

recycling opportunities; major traits of algal biofuel SCN]   

  optimal strategic and tactical level decisions of all SCN echelons.  

 Pareto-optimal solutions: [fuzzy solution-based ε-constraint method ]  [trade-off between economic 
and environmental objectives] 

 Prediction: seven states of the U.S which intends to develop the algal biofuel SCN from the year 2018 
to the year 2024 

 Impact of future on present prediction: [Essential information with regard to the future of different 
technological pathways;  relative importance of various supply chain factors; sensitivity analysis] 
 
Keivan Ghasemi Nodooshan , Reinaldo J. Moraga , Shi-Jie Gary Chen , Christine Nguyen,  

Ziteng Wang, Shayan Mohseni 
 

Groundwater 
 

Optimal Design of a Rotating Packed Bed for VOC 
Stripping from Contaminated Groundwater 

Ind. Eng. Chem. Res., 2012, 51 (2), 835–847 
DOI: 10.1021/ie201218w         

 volatile organic compounds (VOCs) 
 ConflObject: [total annual cost ;total VOC removal] 
 Method: Pareto-optimal solutions  
 Scope: provides a wide range of optimized design alternatives 

Krishna Gudena, G. P. Rangaiah, and S. Lakshminarayanan 

 

 
 Multiobjective Optimization of Cyclone Separators 
Using Genetic Algorithm 

Ind. Eng. Chem. Res., 2000, 39 (11), 4272–4286 
DOI: 10.1021/ie990741c  

 Task: [industrial problem—treatment of 165 m3/s of air] 
 ConflObject: [maximization (overall collection efficiency); minimization (pressure drop)] 
  X: Decision variables: [number of cyclones; eight geometrical parameters of the cyclone] 
 Nondominated Pareto optimal  
 optimal values (decision variables) 
 Influencing factors: [diameters of the cyclone body; vortex finder, number of cyclones 

used in parallel]  
 

G. Ravi, Santosh K. Gupta, and M. B. Ray  

 

Supply Chains 
 

Dynamic Operability Analysis of Process Supply 
Chains for Forest Industry Transformation 

Ind. Eng. Chem. Res., 2014, 53 (23), 9825–9840 
DOI: 10.1021/ie500608w 
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 ConflObject: [economics; response criterion]  
Richard Mastragostino and Christopher L. E. Swartz 

 
Shale Gas Supply Chain Design 
and Operations toward Better 
Economic and Life Cycle 
Environmental Performance: 
MINLP Model and Global 
Optimization Algorithm 

ACS Sustainable Chem. Eng., 2015, 3 (7), 1282–1291 
DOI: 10.1021/acssuschemeng.5b00122         

 Task: cooperative shale gas 
supply chain  

 ConflObject: [economic; 
environmental]   opt trade-off 
by Pareto 

 Method: multiobjective 
nonconvex mixed-integer 
nonlinear programming  

 case study: Marcellus shale 
play  
o greenhouse gas emission of 

electricity generated from 
shale gas ranges from 433 to 
499 kg CO2e/MWh,  

o levelized cost of electricity 
ranges from $69 to 
$91/MWh. 

 

 

 

Jiyao Gao and Fengqi You 
 

Multiobjective Optimization Using Goal 
Programming for Industrial Water Network 
Design 

Ind. Eng. Chem. Res., 2014, 53 (45), 17722–17735 
DOI: 10.1021/ie5025408 

 Math.task: Mixed-integer linear programming  
 case study: Industrial water network : [10 processes, 1 contaminant, and 1 water 

regeneration unit] 
 real industrial case study: [12 processes, 1 contaminant, 4 water regeneration units 

addition of temperature requirements for each process] 
 antagonist objectiveFns: [total freshwater flow rate; number of connections; total energy 

consumption] 
 

Manuel A. Ramos, Marianne Boix, Ludovic Montastruc, and Serge Domenech 
 

Design of Sustainable Product Systems and 
Supply Chains with Life Cycle Optimization 
Based on Functional Unit: General Modeling 
Framework, Mixed-Integer Nonlinear 
Programming Algorithms and Case Study on 
Hydrocarbon Biofuels 

ACS Sustainable  
Chem. Eng., 2013, 1  
(8), 1003–1014 
DOI: 10.1021/sc400080x 
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  ObjectFns: [economics and environmental];  
 Method : [Pareto-optimal frontier] ; Trade-off between Confl.Multiple.Objects 
 mixed-integer linear fractional programming 

 
Dajun Yue, Min Ah Kim, and Fengqi You 

 
Identifying Key Life Cycle Assessment Metrics 
in the Multiobjective Design of Bioethanol 
Supply Chains Using a Rigorous Mixed-Integer 
Linear Programming Approach 

Ind. Eng. Chem. Res., 2012, 51 (14), 5282–5291 
DOI: 10.1021/ie2027074 

 Task: Design of a bioethanol/sugar SC in Argentina 
 MultiObjectFns: [five environmental goals];  Soln: [Pareto]  
 Rigorous mixed-integer linear programming 
 Basis: dimensionality reduction method which minimizes the error of omitting objectives 

 
A. Kostin, G. Guillén-Gosálbez, F. D. Mele, and L. Jiménez 

 

 

 
Single-Objective and Multiobjective Designs for Hydrogen 
Networks with Fuel Cells 

Ind. Eng. Chem. Res., 2014, 53 (14), 
6006–6020 

DOI: 10.1021/ie404068p 

 ConflObject: [cost reduction ; pollution control (global CO2 emission rate)]  
  Meth: Pareto front  

Yen-Cheng Chiang and Chuei-Tin Chang 
 

 

 
Optimization of Pathways for Biorefineries 
Involving the Selection of Feedstocks, 
Products, and Processing Steps 

Ind. Eng. Chem. Res., 2013, 52 (14), 5177–5190 
DOI: 10.1021/ie303428v 

 
 Task: [optimal selection of 

biorefinery configuration for 
conditions of Mexico under 
several scenarios] 
 disjunctive programming model 
 ConflObject: [max(net profit) ;   

  min(greenhouse gas emissions)]  
 Constraints: [number of processing steps] 
 Method : [ε-constraint for Pareto curves]  

  
Pascual Eduardo Murillo-Alvarado, José María Ponce-Ortega, Medardo Serna-González, Agustín Jaime 

Castro-Montoya, and Mahmoud M. El-Halwagi 
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Pareto Approach in Designing Optimal 
Semicontinuous Water Networks 

Ind. Eng. Chem. Res., 2012, 51 (17), 6116–6136 
DOI: 10.1021/ie2024728 

 Case Study: semicontinuous water network (batch with respect to the raw materials) 
 Task: [searching {particular successions of topologies; operating conditions} ] 
 Multi.lObjectFns: [min(freshwater consumption; investment ; operating costs] 
 Method: [GA ; RK-type integrator] 
 Software: Matlab built in functions  
 

Elena-Lăcrămioara Dogaru and Vasile Lavric 

 

A Multiobjective Optimization Approach for the Simultaneous 
Single Line Scheduling and Control of CSTRs 

Ind. Eng. Chem. Res., 2012, 51 (17), 
5881–5890 

DOI: 10.1021/ie201740s 

 Varibles: [integer, continuous];    process: [dynamic]  
  Bicriterion Opt  mixed-integer dynamic optimization (MIDO) problem 
 Paretofront-of-each-problem: ε-constraint method 
 Multi.ObjFns casted into singleObjFn is inferior to multiobjective optimization techniques  

 
Miguel Angel Gutiérrez-Limón, Antonio Flores-Tlacuahuac, and Ignacio E. Grossmann 

 

 
Analysis of Carbon Policies in the Optimal Integration of Power 
Plants Involving Chemical Looping Combustion with Algal 
Cultivation Systems 

ACS Sustainable Chem. Eng., 2018, 6 
(4), 5248–5264 

DOI: 10.1021/acssuschemeng.7b04903 

 trade-offs between multiple objectives (economic and environmental)  different Pareto 
sets. 
Aurora del Carmen Munguía-López, Vicente Rico-Ramírez , and José María Ponce-Ortega 

 
Toward Economically and Environmentally Optimal Operations in 
Natural Gas Based Petrochemical Sites 

Ind. Eng. Chem. Res., 2018, 57 (17), 
5999–6012 

DOI: 10.1021/acs.iecr.7b04598 
Task: Integrated petrochemical complex-sustainable operations 

 Pareto-optimal curve  

  trade-off between the economic and environmental aspects   
Antonio González-Castaño, J. Alberto Bandoni , and M. Soledad Diaz 

 
Trade-Off Analysis in High-Throughput Materials Exploration ACS Comb. Sci., 2017, 19 (3), 145–152 

DOI: 10.1021/acscombsci.6b00122 



  

Advancement Application Announcement (AAA)                                                                          1106 

 

 Task: optimum compositions in metal alloys with certain desired properties  
 experimental data: from over 200 different compositions belonging to four different alloy 

systems 

 
Kalpana K. Volety and Guido P. J. Huyberechts 

 

 
 Economic and Environmental Assessment of 
Alternatives to the Extraction of Acetic Acid 
from Water 

Ind. Eng. Chem. Res., 2011, 50 (18), 10717–10729 
DOI: 10.1021/ie201064x  

 For each of alternatives, detailed optimization (ε-constraint method) was performed  
Pareto’s curves 

 individual Pareto curves  compound Pareto’s curve 
 superimpose the individual Pareto’scurves for alternatives  to identify the trade-offs of 

this multiobjective optimization  best alternatives, optimum operational conditions.  
Norberto García and José A. Caballero  

 
 

 
 Selective Hydrogenation of Methylacetylene and 
Propadiene in an Industrial Process: A Multiobjective 
Optimization Approach 

Ind. Eng. Chem. Res., 2011, 50 (3), 1453–1459 
DOI: 10.1021/ie100994j  

 Task: [industrial selective hydrogenation process for methylacetylene and propadiene] 
 Optimum operating conditions: Multiple-conflicting objective optimization with 

constraints 
 Method: fuzzy-based membership function for Pareto-optimal solution 
  desired operating conditions like ratios of H2 to MAPD at each reactor and the recycle 

ratio  
 

 Wei Wu and Yu-Lu Li 

  

 
 Optimal Planning of a Biomass Conversion System 
Considering Economic and Environmental Aspects 

Ind. Eng. Chem. Res., 2011, 50 (14), 8558–8570 
DOI: 10.1021/ie102195g  
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 Task: [planning production of a biorefinery in Mexico ] 
 ObjectFn.Economic: [ availability of bioresources, processing limits, demand of products, 

costs of feedstocks, products, processing routes] 
 . ObjFn.EnvImpact : [overall environmental impact measured through the eco-indicator-99 

based on the life cycle analysis methodology)] 
 ConflObject: [Max(profit) ; Min(environmental impact)] 

 
José Ezequiel Santibañez-Aguilar , J. Betzabe González-Campos, José María Ponce-Ortega , Medardo Serna-

González , and Mahmoud M. El-Halwagi  
 

 Multi-Objective Lot-Sizing and Scheduling Dealing 
with Perishability Issues 

Ind. Eng. Chem. Res., 2011, 50 (6), 3371–3381 
DOI: 10.1021/ie101645h  

 Task : [Diary company producing yogurt] 
 MultiObjectFns: [multi-objective lot-sizing ; scheduling model] 
 Soln.Method: [NSGA-II]  decision maker can arrive at true choice between different 

trade-offs from the Pareto front 
 

Pedro Amorim, Carlos H. Antunes, and Bernardo Almada-Lobo  

 

 

 

 Resiliency Issues in Integration of Scheduling and 
Control 

Ind. Eng. Chem. Res., 2010, 49 (1), 222–235 
DOI: 10.1021/ie900380s  

  Different layers of hierarchy in optimization and control  Integration of scheduling and 
control in process manufacturing systems  

 Model: deterministic integrated scheduling and control  
[Flores-Tlacuahuac, A.; Grossmann, I. E. Ind. Eng. Chem. Res. 2006, 45, 6698] 

 Robust integration of the scheduling and control layers in an uncertainty analysis 
framework  yields robust manufacturing systems  

 performs well in the presence of the parametric variations.  
 Uncertainty analysis: [chance constrained program; fuzzy; robust opt.]  
 Multiobjective Pareto: [takes care of impact of the uncertainty on the different 

manufacturing objectives] 
 

Kishalay Mitra, Ravindra D. Gudi, Sachin C. Patwardhan and Gautam Sardar  
 

 
 Optimization of Recovery Processes for Multiple 
Economic and Environmental Objectives 

Ind. Eng. Chem. Res., 2009, 48 (16), 7662–7681 
DOI: 10.1021/ie802006w  
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  Method: [elitist NSGA] 
 Pareto-optimal Soln 

o elucidate the trade-offs present 
o decision maker’s preference has to be declared 
o decision maker would be better equipped in choosing the best solution 
o identifies the best Pareto-optimal solution 

 
 two case studies  
 sustainability: [economic development, environmental stewardship, and societal equity] 
 economic criteria: [profit before taxes, payback period, net present worth] --well established,  
 environmental impacts:[impact on humans, ecosystem—terrestrial and aquatic, and 

local/global temperatures—global warming and ozone depletion, as well as photochemical 
oxidation, acid rain, and eutrophication]  

Elaine Su-Qin Lee and G. P. Rangaiah  
 

 
 Stochastic Combinatorial Optimization Approach to 
Biopharmaceutical Portfolio Management 

Ind. Eng. Chem. Res., 2008, 47 (22), 8762–8774 
DOI: 10.1021/ie8003144  

 Task: [portfolio of five therapeutic antibody projects] 
 MultiObjectFns: [maximizing profitability ; maximizing the probability of being 

profitable] 
  Method: Pareto optimal front  
  cluster analysis: identifies prevalence of broad and superior building blocks along the 

Pareto front.  
 Key strategic decisions in biopharmaceutical portfolio management: [drug selection, 

activity scheduling, and third party involvement] 
  Complications in optimizing strategies: [uncertainty, dependency relationships between 

decisions, multiple conflict objectives] 
 Remedy: [stochastic combinatorial multiobjective optimization framework]  

 designed to address complications 
 framework simulates portfolio management strategies  
 harnesses Bayesian networks and evolutionary computation concertedly 
  characterizes probabilistic structure of superior decisions  
  evolves strategies to multiobjective optimality 

 
Edmund D. George and Suzanne S. Farid  

 

 
 Optimal Operating Conditions of 
Microwave−Convective Drying of a Porous Medium 

Ind. Eng. Chem. Res., 2008, 47 (1), 133–144 
DOI: 10.1021/ie070738q  
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 Task: [to dry a porous medium via combined convective−microwave supplies] 
 Design of experiments (DOE) & Response surface methodology 

   X: [drying time, maximum of overpressure in the material, energy balances of the 
process, material]  

   effects of drying parameters: [initial moisture, microwave power, air temperature, 
velocity, humidity)    optimal operating (response surfaces)  

 
Patrick Salagnac, Patrick Dutournié, and Patrick Glouannec  

 

 
 Pareto Optimal Solutions Visualization Techniques 
for Multiobjective Design and Upgrade of 
Instrumentation Networks 

Ind. Eng. Chem. Res., 2003, 42 (21), 5195–5203 
DOI: 10.1021/ie020865g  

 Task: [design and upgrade of sensor networks:] 
 visualization of Pareto optimal solutions (VisPOSs)  

1) projections of the POS onto specific two-dimensional surfaces 
2) representation of the problem in parallel coordinates systems 

Miguel Bagajewicz, and Enmanuel Cabrera  
 

 
 Dynamic Model of an Industrial Steam Reformer and 
Its Use for Multiobjective Optimization 

Ind. Eng. Chem. Res., 2003, 42 (17), 4028–4042 
DOI: 10.1021/ie0209576  

 MultiObjectFns: [min(cumulative (integrated over time) deviation of the flow rate of 
hydrogen);   
              min(cumulative deviation of the steam flow rate)] 

  Method : [elitist NSGA-II] 

Anjana D. Nandasana, Ajay K. Ray, and Santosh K. Gupta  
 

 Application of Multiobjective Optimization in the 
Design and Operation of Reactive SMB and Its 
Experimental Verification 

Ind. Eng. Chem. Res., 2003, 42 (26), 6823–6831 
DOI: 10.1021/ie030387p        

 Task: [design of reactive SMB processes] 
  Method : [AI-based NSGA] 

 
Weifang Yu, K. Hidajat, and Ajay K. Ray  

 

 
 Scheduling of Actual Size Refinery Processes 
Considering Environmental Impacts with 
Multiobjective Optimization 

Ind. Eng. Chem. Res., 2002, 41 (19), 4794–4806 
DOI: 10.1021/ie010813b  
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 Task: [scheduling problem of actual size refinery processes] 
  ConflObject: [maximize (total profit) ; minimize (environmental impacts)] 
 Plotting Pareto optimal solutions   

 decision makers pinpoint correlation between two objectives  . 
 Selection of one of Pareto optimal solutions  

 depends largely on the decision makers 
 Model: [mixed-integer linear programming model]; Soln. : [ε-constraint method] 
 

Jehoon Song, Hyungjin Park, Dong-Yup Lee, and Sunwon Park  

 

 Optimization of Venturi Scrubbers Using Genetic 
Algorithm 

Ind. Eng. Chem. Res., 2002, 41 (12), 2988–3002 
DOI: 10.1021/ie010531b  

 Task: [pilot-scale scrubber] 
 ConflObject: [maximization (overall collection efficiency) ; minimization (pressure drop)] 
  X : [liquid−gas flow ratio, gas velocity in the throat ,aspect ratio] 
 Soln: nondominated Pareto sets  Optimal design curves 

G. Ravi, Santosh K. Gupta, S. Viswanathan, and M. B. Ray  

 

 
 Simulation and Multiobjective Optimization of an 
Industrial Hydrogen Plant Based on Refinery Off-Gas 

Ind. Eng. Chem. Res., 2002, 41 (9), 2248–2261 
DOI: 10.1021/ie010277n  

 ConflObject: [maximization (product hydrogen and export steam rates) 
;minimization(heat duty supplied to the steam reformer)] 

 NSGA  Pareto-optimal operating conditions  
P. P. Oh, G. P. Rangaiah, and Ajay K. Ray  

 

 

 
 Multiobjective Optimization of Steam Reformer 
Performance Using Genetic Algorithm 

Ind. Eng. Chem. Res., 2000, 39 (3), 706–717 
DOI: 10.1021/ie9905409  

 ConflObject: [minimization (methane feed rate) ; maximization(flow rate of carbon 
monoxide in the syngas)]   

 Soln.: Pareto-optimal operating conditions  
J. K. Rajesh, Santosh K. Gupta, G. P. Rangaiah, and Ajay K. Ray  

 

ACS.org; Sci.direct.com (SD): Information Source (is)  
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Data  Information  Knowledge  Intelligence 

     <I Kid>    .    
  

Artificial Intelligence (AI)  Computational AI  Abstract AI      
  

Brain  Mind  Consciousness  ….. 

  
Super/hyper/beyond Intelligence …..   

  
  

 

Object Oriented Terminology &  

(Geometric) Information (OOTI) 

 

Multi-Object-Functions (MOF) 
 

Dara   Fn  ObjFn   many (multi-) ObjFns  Soln(s)  
 

Pareto front  Performance measures  Set of Pareto solns  
 

Single_Pareto_Soln   
 

Knowledge Exploration 
 

Data space to solution space 
Space.Math Pre-processing Tasks Solution characteristics 
 Variables [X,y] 
 Parameters 

[Free; 
$$:distribution 
[normal; ..]] 

 functions 
 object 

functions 
 Solution 

 Raw 
 Scaled 
 Transformed 

[log; exp; 
[Fourier,…] 

 Projected 
[orthogonal 
[PCA, PLS,….], 

 

 Design  
 Solution 

 

 Valid/[feasible; 
infeasible] 

 Invalid 
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Mapping from variable space to object function space 

 
 
 

Variable : [X,y] 

X : [Explanatory; independent; 
design] 

 y :  [Response; dependent;] 
 

 

Functions (Fns) & Objective Fns (ObjFns) 

 
 

Fn : [algebraic; 
trigonometric; 
….., 
symbolic] 

Fn(.) : Function(X or 
y) 

 

 
ObjFn : [Fn([X, y] or 

Fn(X), or 
Fn(y)] 

   

MulObjFns : [ObjFn1, 
ObjFn2, ….  
ObjFnj], 

 

 

 
 

Constraints : [Equality, 
Inequality] 

Constr.ineq : [< ; >; <++; >=] 

Constr.eq : [=] 

 

Multiple object functions with constraints 
 
 

 

 
Knowledge bits (KB). ObJFns  

If NObjFns =1 
Then Single object Function  

[SObjFn OR 1ObjFn; ] 
  
If NObjFns >1 
Then  MultiObjFns:  

[2ObjFns; 3ObjFns;  
many[4,5,….]ObjFns] 

  
If NObjFns = 2 
Then  biObjFn [2ObjFns] 
  
If NObjFns > 3 
Then  ManyObjFns  

[NObjFns =  4 OR 5 OR 6,….] 
 
 

 



  

Advancement Application Announcement (AAA)                                                                          1113 

 

 

 

  

 
 
 

If Non convexity in  object functions and/or  

 Non-convexity in feasible solution region 
Then  nonconvex Pareto optimal front 

 

If nonconvex Pareto optimal front 
Then weighted-sum approach will fail  

to find some Pareto optimal solutions 
 

Courtesy of J. Chem. Inf. Model. 2011, 51, 1656–1666 

 

Goals and sub-goals  

 

Goals Sub-goals   Outcome    

 
 

 Model 

 Control 

 Prediction 

 
 

 Curve fitting 
 Parametrization 
 Design  

 
 

 Solutions  
  Statistics 

  
 

 Inferences   
  Knowledge bits 

 

Optimization of  Objective Function(s) (Opt.ObjFns)   Solution Set(s) 

 

Optimization [unconstrained; constrained] 
constrained [Equality [=];  

 inequality [ < OR >]] 
 

 

SubGoal. ObjFn : min Or max (ObjFnj) 

SubGoal. 
ObjFns.Conflict 

: [Min(ObjFnj) and 
Max(ObjFnk)] 
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Rank 

 

  
 
Rule 
 

rank k individuals are 
dominated only by 

individuals in rank k - 1 or 
lower 

If Rank 1 individuals  
Then  They are not dominated by 

any other individuals 
  
If Rank 2 individuals  
Then  They are dominated only by 

rank 1 individuals 
  
KB: All infeasible individuals have 

a worse rank than any 
feasible individual 

  
If Within the  
Then  Rank-of-infeasible-population  

is the order by  
sorted infeasibility measure + 
highest rank for feasible 
members 

  
If Individuals are of lower rank 
Then  They have a higher chance of 

selection  
KB: lower rank is better 

 

 

 
Pareto Optimal Solutions (POS) 

 
 

Nondominated set  P: A set of points;  
Q:  The set of points in P that are not dominated by any point in P 

  

Conflicting bi-objFns Non-dominant Pareto front 



  

Advancement Application Announcement (AAA)                                                                          1115 

 

 

Non-inferior solution 
 

Ω : set of solutions 
x∗∈Ω is a noninferior solution, if 
an improvement in one objective, F1, requires a degradation in the 
other objective, F2, i.e., F1B < F1A, F2B > F2A 
 
i.e. if for some neighborhood of x* there does not exist a Δx such 
that (x∗+Δx)∈Ω and 

Fi(x∗+Δx)≤Fi(x∗), i=1,...,m, andFj(x∗+Δx)<Fj(x∗) for at least one j. 
 

 

 

A and B : set of noninferior 
solutions lies on the curve in 
between C and D 

   

 

 

Pareto optimality  a tradeoff  among conflicted objectives 

Pareto optimal 
solution set 

Solutions which are not dominated by any other Solutions in Solution set 
Any improvement in one objective of a Pareto optimal point must lead to 
deteriorations in at least one other objective. 

 deeper insights into the trade-off among the objectives and many 
choices for implementation 

Pareto solution set set of all the Pareto optimal points 
Pareto optimal 
front 

set of all the Pareto optimal objective vectors  

 

 

 
Pareto front  

 
boxed points feasible solutions 

 
 

KB smaller values are preferred to larger 
ones 

  
 Point C is not on the Pareto frontier  
Because it is dominated by both point A and 

point B. 
  
 Points A and B are not strictly 

dominated by any other,  
So, do lie on the frontier 
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Courtesy of   IEEE TRANS. EVOLUT. COMPUT, 6, (2) 
(2002) 182 

 
 Objective function (F(1) and f(2)) space; 
 Plot shows tradeoff between the two objectives 

MatLab notation 
 
f(1) = x(1)^4 - 10*x(1)^2+x(1)*x(2) + x(2)^4 -
(x(1)^2)*(x(2)^2); 
f(2) = x(2)^4 - (x(1)^2)*(x(2)^2) + x(1)^4 + 
x(1)*x(2); 
 

Xdim [2; 60]  
Lower [-5;-5]  
upper [5;5]  
Pareto Front  
population  
fraction 

0.7 User chosen 

 

 

 

NP = 10;  

 

Courtesy from K Deb report  (2001) 
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Initial population                        generation 5 generation 5                                generation 100 

 

 
 2D-Contour of two objective functions; 
 figure is in parameter space; 

 

Methods for Calculation of Pareto Front 

 

 A set of solutions is Pareto optimum 

If by moving from that solution to another in the feasible solution space, any 

improvement in the value of one of the objective functions 

results in the deterioration of at least one of the remaining objective functions 

 

Methods.appoximating.true PeratoFront: Decomposition-based.Method 

 Pareto dominance-based ;  

 performance indicator-based ;  

 decomposition-based; 

 multi-objective evolutionary algorithms (MOEAs);  

 MOEA/D ; MOEA/D-DRA; MOEA/D-AWA   

 [augmented  €-constraint method (AUGMECON); 
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AUGMECON2; 

 simple augmented €-constraint method 

(SAUGMECON); 

 decomposition based multi-objective evolutionary 

algorithm with the "-constraint framework (DMOEA-

"C); 

SMEA  
 

Competitive multiobjective evolutionary algorithm.  
based on   selforganizing mapping method (SOM) and 
neighborhood relationship concept. 

MOCell cellular-based and MO solver 
SMPSO PSO based multiobjective solvers 
 

Pareto frontier 

generation algs. 

 [Constraint Proposal Method, Normal Constraint Method, Linear Weight 

Method]; [genetic alg;  evolutionary alg.] 

[GA; Evolv.A] applied to solve complex multi-objective problems,  

 find solutions quickly ven  in a complex solution space 

 a framework for effectively sampling large search spaces,  

 

Pareto front by weighted sum method   
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Two different perspective views of 3D-surface 
 overall surface of the Pareto front is nonconvex  
 middle front has nonconvex regions  

 disconnected due to dominated solutions region  looks like a valley  
 
 boundary of Pareto front consists of three edge curves:  
 curve between J1∗ and J3∗ is convex with a gap due to a dominated solution region, 
 other two curves are not convex.  
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Concept and procedure of the adaptive weighted 
sum (AWS) method   
 

 

Configuration of an additional equality constraint 
for refinement 
 

 

Performance measures in   

Pareto Front 

 Choice of Single Pareto  

optimal solution 

 

 Inverted generational distance (IGD) 
 Hyper volume (HV) 
 additive€ -indicator (I€+) 

 
 

  gray relational analysis.  
 simple additive weighting 

 
 

 

 
. 

Data  Information  Knowledge  Intelligence  
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