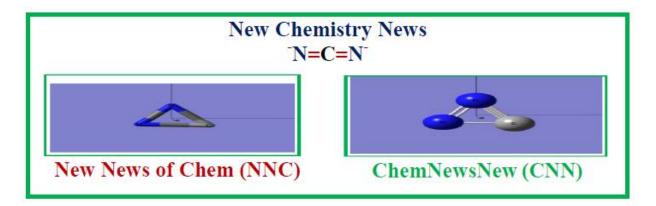
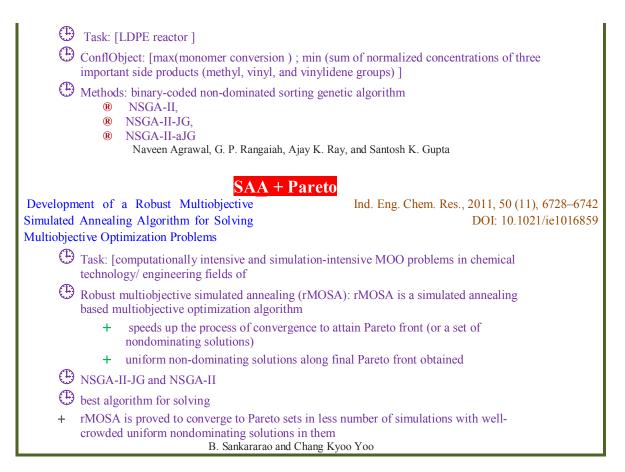
Available online at www.joac.info


ISSN: 2278-1862

×

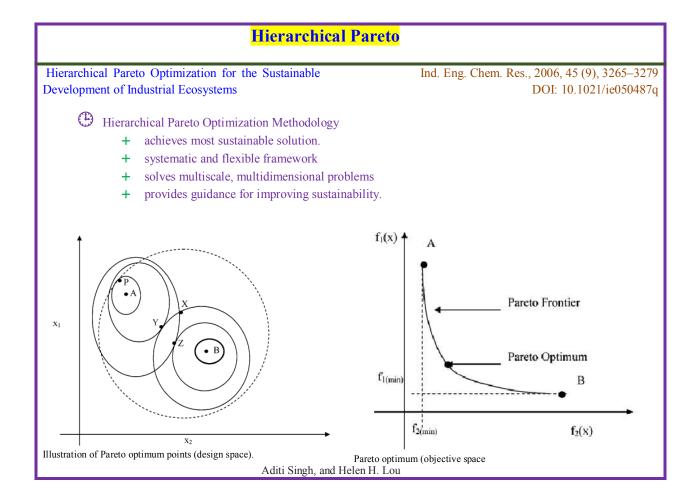
Journal of Applicable Chemistry

2018, 7 (4): 1084-1120 (International Peer Reviewed Journal)



Pareto optimality in Omni_metrics (Om)

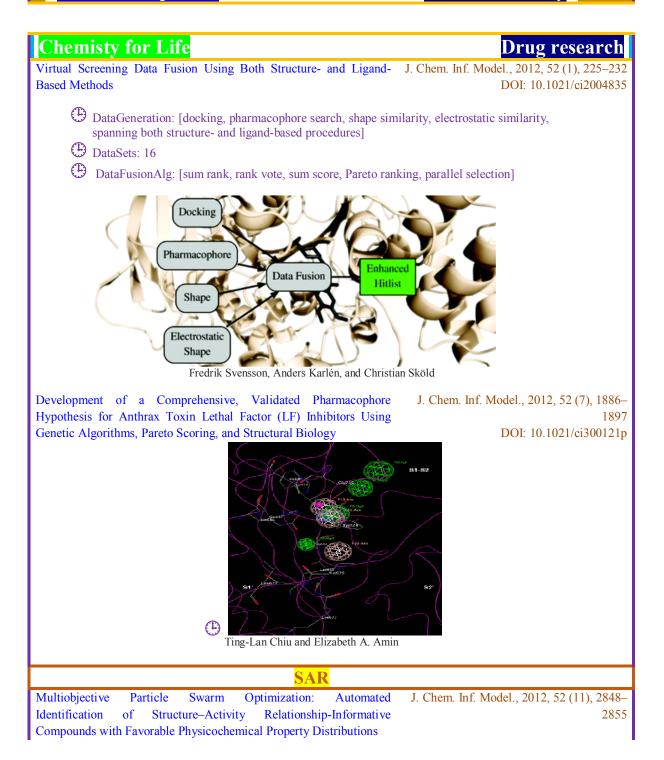
Binary Hybrid Algorithm	ns of Pareto Strategy		
Mathematical Space			
PSO + Pareto			
Multi-objective Particle Swarm Optimization Hybrid	Ind. Eng. Chem. Res., 2007, 46 (11), 3602–3609		
Algorithm: An Application on Industrial Cracking	DOI: 10.1021/ie051084t		
Furnace			
🙂 Task: [naphtha industrial cracking furnace]			
HultiObjectFns: [yield rates [ethylene ; propylene	e]].		
decision variables :[ratio of gas to hydrocarbon, coil outlet temperature (COT) of pyrolysis gas, outlet pressure]			
Hethod : [multi-objective particle swarm optimization (MOPSO) + Pareteo]			
Alg.: Calculate Pareto set as a repository of particles			
(b) use later by other particles to guide their own flig	ht		
\oplus MOPSO + ANN hybrid model \rightarrow			
(b) for operation optimization of a naphtha industrial	l cracking furnace		
Chengfei Li, Qunxiong Zhu, and	Zhiqiang Geng		


5		ptimization (MC	OPSO) procedure,		
	convergence ity Pareto soluti	ons than the NS	SGAII algorithm		
	of Adiabatic Sty Differential			Ind. Eng. Chen	n. Res., 2009, 48 (24), 11115–11132 DOI: 10.1021/ie901074k
🕒 Sol	n.Method: [gloł	bal search: evo	lutionary algori	thm + local search	: deterministic alg.]
🕒 The Par	e proposed algor	rithm converge	es to a better set nondominated se	of nondominated	solutions (possibly a using NSGA and an
Ð					
🕒 be	nchmark test fn:	: (KUR) : com	pared algs in		
	k2: [multiobjec	tive optimizat	ion of an industr	ial adiabatic styre	ne reactor]
	ln: with prevalio MODE.	dated model us	sing the hybrid-l	MODE algorithm	and an improved strategy
			ective optimizat		d one set of three-
	tificial Neur hnique for Mod ctor		-Genetic imization	Ind. Eng. Ch	em. Res., 2006, 45 (20), 6655–6664 DOI: 10.1021/ie060562c
🕒 Та	sk: [dielectric b	arrier discharg	ge (DBD) plasma	a reactor without c	atalyst and heating]
					lation, and optimization
🕒 Eff per	ects of CH4/CC	02 feed ratio, to ncatalytic DBI	otal feed flow ra	te, and discharge	
🕒 Tas	ks: CH4 convertion and H2	rsion and C2+ selectivity	selectivity, CH4	conversion and C	C2+ yield, CH4
() X:	[feed flow rates	of the three in	nitiators and of the fluids in the	ne transfer agent, i e five jackets]	nlet temperature, inlet
equ					below a safe value;) of the product, to ensure
	eto-optimal solu	utions are obta	ined.		
🕒 ме	thod: binary-co	ded NSGA-II-	aJG and NSGA-	·II-JG	
				ard end-point cons	traints
		Ist	adi, and N. A. S. A	Amin	
		Jumpi	ng genes +	Pareto	
Industrial L	ve Optimization ow-Density I g Genetic Algo ons	of the Operat Polyethylene	ion of an Tubular		hem. Res., 2006, 45 (9), 3182–3199 DOI: 10.1021/ie050977i

ľ

DiffEvol	+ Pareto
Optimization of Adiabatic Styrene Reactor: A Hybrid Multiobjective Differential Evolution (H- MODE) Approach	Ind. Eng. Chem. Res., 2009, 48 (24), pp 11115–11132 DOI: 10.1021/ie901074k
compared algs in	Multi(m) Test case
• Task2: [multiobjective optimization of an industrial adiabatic styrene reactor]	ObjFnstwo-1-3Three-4
 Soln: with prevalidated model using the hybrid-MODE algorithm and an improved strategy of MODE. Four cases (three sets of two-objective optimization, cases 1–3, and one set of three-objective optimization, case 4) are considered consisting of 	 Simultaneous maximization of styrene productivity, selectivity, yield four decision variables two constraints hybrid strategy of MODE converges to the true Pareto front more rapidly (in fewer function evaluations) → well-diversified Pareto front as compared to the stand-alone
Ashish M. Gujarathi an	evolutionary approach d B. V. Babu

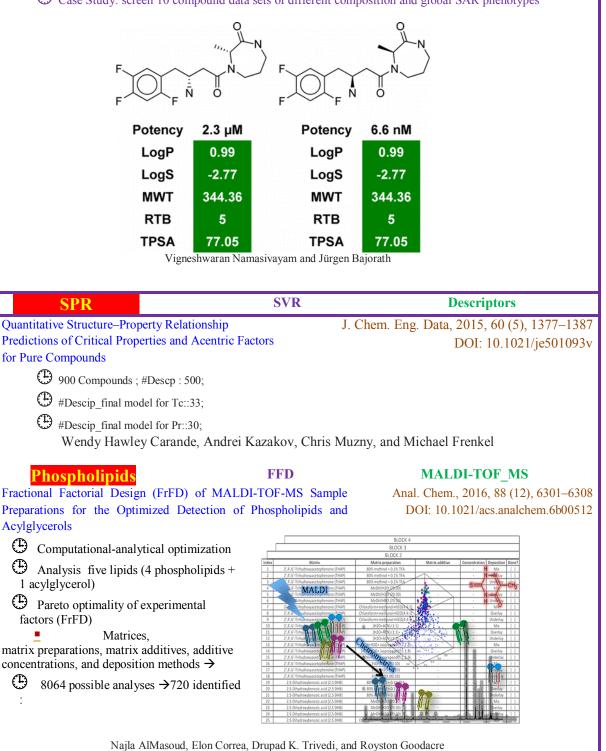
Hybrid Modeling of Methane Reformers. 3. Optimal	Ind. Eng. Chem. Res., 2009, 48 (23), 10277–10283	
Geometries of Perforated Catalyst Pellets	DOI: 10.1021/ie9001662	
ConflObject: [maximization (specific area); simultaneous maximization (overall catalyst thickness of the pellet)]		
⁽¹⁾ Pareto filter: ObJFns evaluated for several catalyst geometries		
The Pareto fronts obtained for the two analyzed cases are essentially the same		
Inference: maximization of the specific area constitutes a useful criterion for design of perforated catalysts in diffusion-controlled systems		
André L. Alberton, Marcio Schwaab, Roberto Carlos	s Bittencourt, Martin Schmal and José Carlos Pinto	

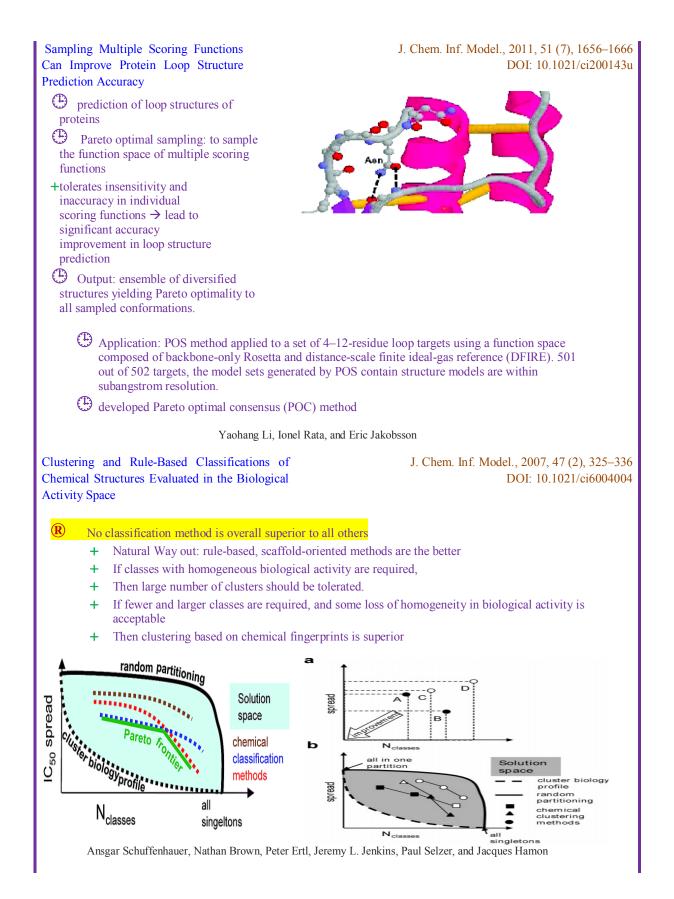


Parameters-- Precision & Correlation

Multiobjective Framework for Model-based Design of Experiments
to Improve Parameter Precision and Minimize Parameter CorrelationInd. Eng. Chem. Res., 2013, 52 (24), 8289–
8304
DOI: 10.1021/ie400133m

Multiobjective optimization				
(B) Model based experimental design				
(B) Pareto-optimal front				
trade-off between system information and correlation among parameters				
Vaibhav Maheshwari, Gade Pandu Rangaiah, and Lakshminarayanan Samavedham				
Data Driven modeling				
Data Driven Modeling Using an Optimal Principle Component Ind. Eng. Chem. Res., 2018, 57 (18),				
Analysis Based Neural Network and Its Application to a Nonlinear 6344–6352				
Coke FurnaceDOI: 10.1021/acs.iecr.8b00071				
🕒 PCA; RBF-NN;				
🕒 NSGA II				
Ridong Zhang, Qiang Lv, Jili Tao, and Furong Gao				
Optimum Pareto Front				
Application and Analysis of Methods for Selecting an Optimal Solution from the Pareto-Optimal Front obtained by Multiobjective 574				
Optimization DOI: 10.1021/acs.iecr.6b03453				
10 methods TO select optimal solution from the Pareto- optimal front				
MS Excel-based program.				
Zhiyuan Wang and Gade Pandu Rangaiah				


Optima and extrema
(Mathematical to physico-chemical-biological space)
 Optimization of reacting systems to a Unique single, set of equivalent multiple, Pareto optimal group or a single Pareto optimal (the best, nearer to true value if known) solution(s) also evolved with human needs and progressive scientific pursuit.
 The interactions are physical, chemical and/or biological in normal energy scale or very low/very high or even at extreme limits on planet earth or universe.
From another perspective, interactions are among
Butter with matter and/or energy, or energy with energy.
Probing more and more is to
🕒 understand, control, alter the (natural/man made) phenomena for
📩 befit of man- kind, other life forms and environment
 The interactions are physical, chemical and/or biological in normal energy scale or very low/very high or even at extreme limits on planet earth or universe. From another perspective, interactions are among matter with matter and/or energy, or energy with energy. Probing more and more is to understand, control, alter the (natural/man made) phenomena for



Pareto-Optim(multipleObjFns)

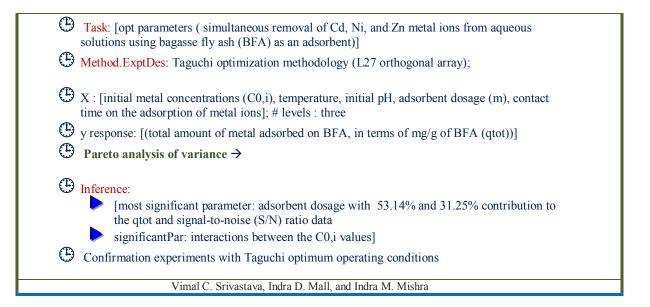
- + does not require subjective intervention.
- + automated and can be easily modified.

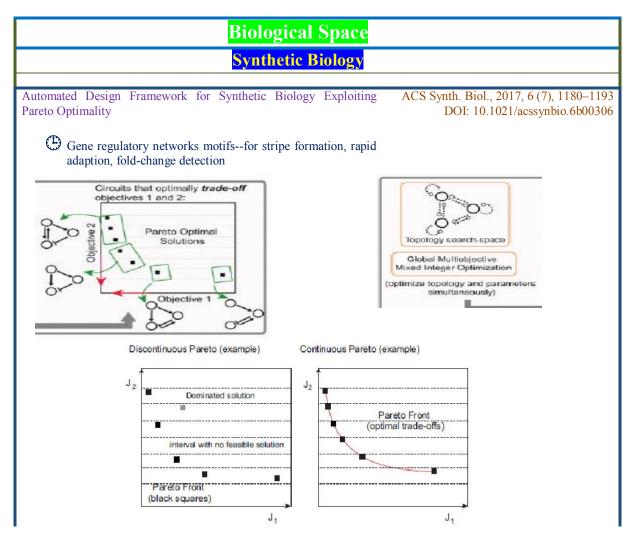
🕒 Case Study: screen 10 compound data sets of different composition and global SAR phenotypes

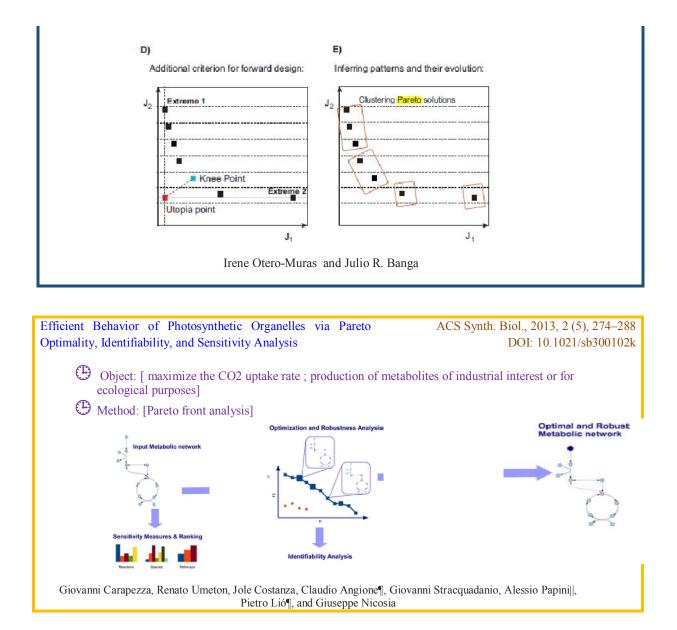
1091

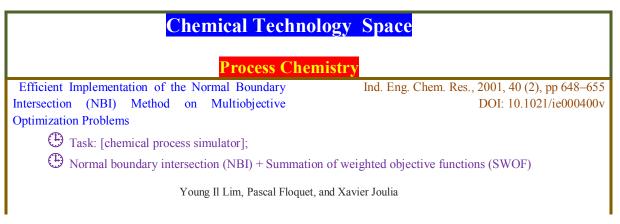
Improving predicted protein loop structure ranking using a BMC Structural Biology 2010, 10:22, 2-14 Pareto-optimality consensus method
Integrating multiple knowledge- and physics-based scoring functions
Pareto Optimality Consensus (POC) Method

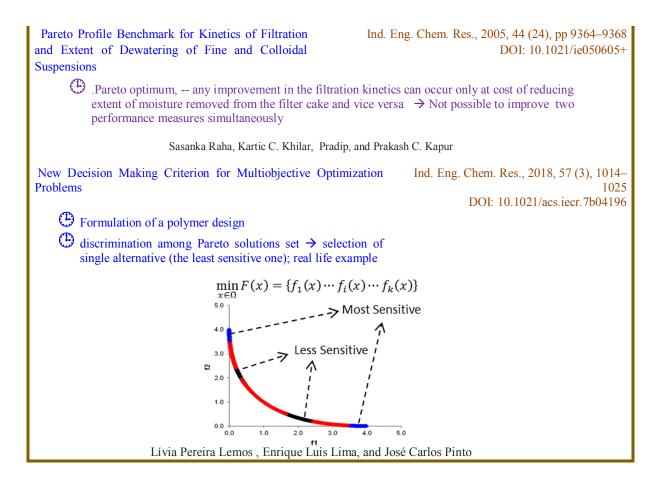
Basis: Pareto optimality + fuzzy dominance
Jacobson's loop decoy sets, membrane protein loop decoy sets
selection accuracy: rank-by-vote, rank-by-number, rank-by-rank, and regressionDistinguishing the best loop models from others within a loop model set.

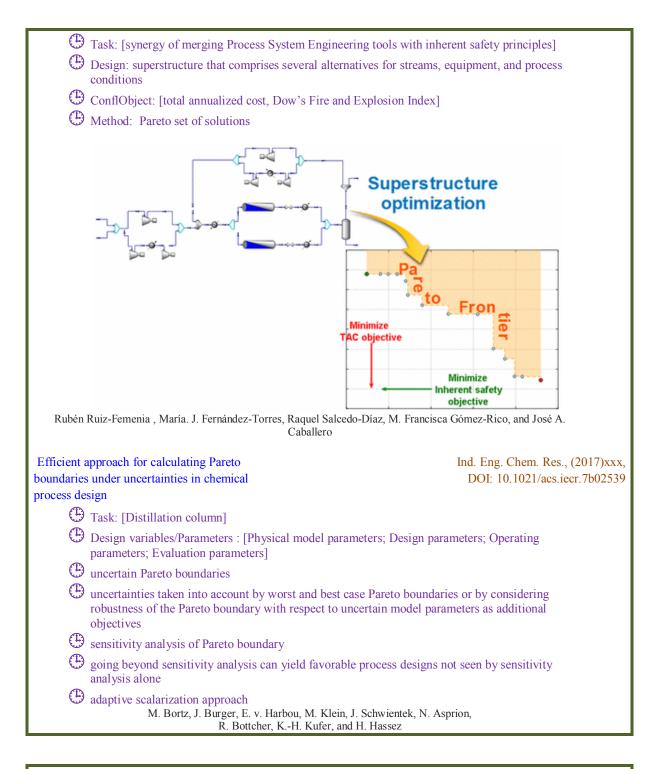

Yaohang Li, Ionel Rata, See-wing Chiu and Eric Jakobsson

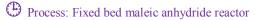

Instrumental Probes


Liquid Chromatography			
Comprehensive Study on the Optimization of Online	Anal. Chem., 2010, 82 (20), 8525-8536		
Two-Dimensional Liquid Chromatographic Systems	DOI: 10.1021/ac101420f		
Considering Losses in Theoretical Peak Capacity in			
First- and Second-Dimensions: A Pareto-Optimality			
Approach			
🕒 🕒 MultiObjectFns: [total analysis time, total peak capacity, total dilu	tion]		
Instrument: [two-dimensional liquid chromatography]			
\oplus Model: Pareto-optimality \rightarrow			
• optimal parameters: [column particle sizes, column diameters, mod	ulation times]		
 Accounted for losses in the peak capacities in the first dimens in the second dimension (due to high injection volumes). The first effect (detection band broadening) reduces the half, the second effect can reduce the total peak capacity 	original peak capacity by about a		
G. Vivó-Truyols, Sj. van der Wal, and P. J. Schoer	unakers		
Approximate and Exact Equations for Peak Capacity in Isocratic High-Pressure Liquid Chromatography	Anal. Chem., 2011, 83 (20), 7614–7615 DOI: 10.1021/ac202102s		
(B) Instru.chromatograph: [extra-column and column broadening of	on isocratic peak capacity]		
Pareto-Optimality Approach Vivo-Truyols, G.; van der Wal, Sj.; Schoenmakers, P. J. Anal.	Chem.2010, 82, 8525–8536.		


Peter	W.	Carr	


Taguchi's Design	removal of Cd, Ni, Zn	Pareto analysis of	
		variance	
· · · ·	tion Study of Metal Ions	Ind. Eng. Chem. R	es., 2007, 46 (17), 5697–5706
onto Bagasse Fly Ash	Using Taguchi's Design of		DOI: 10.1021/ie0609822
Experimental Methodolog	зу		
A			1002




Multiobjective Optimization of Cyclic Adsorption Processes	Ind. Eng. Chem. Res., 2002, 41 (1), 93–104 DOI: 10.1021/ie010288g	
 multiobjective optimization programming→Single Obj summation of a weighted objective function Traditional ; simplest way Remedy: Modified SWOF approximates the Pareto curve end 		
Daeho Ko, and Il Moon		

Systematic Tools for the Conceptual Design of Inherently SaferInd. Eng. Chem. Res., 2017, 56 (25), 7301–Chemical Processes7313DOI: 10.1021/acs.iecr.7b00901

Reactors

Multiobjective Optimization of a Fixed Bed Maleic Anhydride
Reactor Using an Improved Biomimetic Adaptation of NSGA-IIInd. Eng. Chem. Res., 2012, 51 (8), 3279–
3294DOI: 10.1021/ie202276q

(b) ObjFns: [Single; Two, Multiple]

ConflObject: [maximum productivity; minimum operating cost; minimum pollution]

Alg.: [NSGA-II-Ajg]; [Alt-NSGA-II-Ajg];

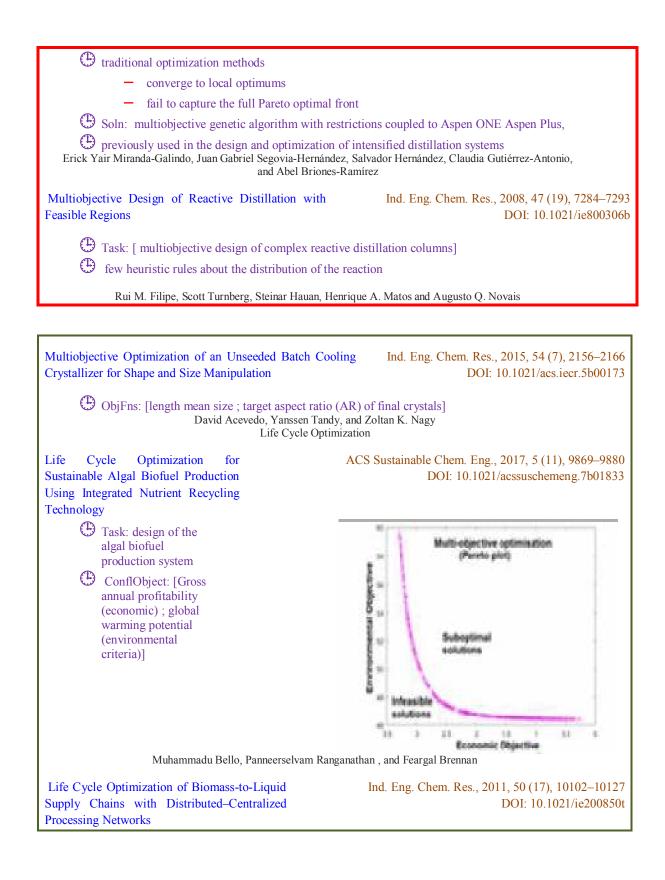
- biomimicking the altruism of honeybees
 converges to the optimal solutions faster than does NSGA-II-aJG
 - If #ObjFns =2
 - If #ObjFns =3, inferior solutions
 - Pranava Chaudhari and Santosh K. Gupta

Multiobjective Optimization of Unseeded and Seeded Batch Cooling Ind. Eng. Chem. Res., 2017, 56 (20), 6012-**Crystallization Processes** 6021 DOI: 10.1021/acs.iecr.7b00586

Task1: unseeded batch cooling crystallization of paracetamol

HultiObject: [Mean size ; coefficient of variation]

Task: seeded batch cooling crystallization of potassium nitrate


(D) MultiObject: [mean size, CV, nucleated mass]

(b) Method: Pareto front

K. Hemalatha and K. Yamuna Rani

Distillation Investigation of Separation Efficiency Indicator for the Optimization	Ind. Eng. Chem. Res., 2015, 54 (43),
of the Acetone–Methanol Extractive Distillation with Water	10863–10875
	DOI: 10.1021/acs.iecr.5b02015
$$ Nonsorted genetic algorithm (NSGA) \rightarrow	
GA Paretofront further optimized focusing on decreasing energy cost by	
\blacksquare sequential quadratic programming (SQP) →	
Xinqiang You, Ivonne Rodriguez-Donis, and Vincer	nt Gerbaud
Efficient Approach for Calculating Pareto Boundaries under Uncertainties in Chemical Process Design	Ind. Eng. Chem. Res., 2017, 56 (44), 12672–12681
Distillation column	DOI: 10.1021/acs.iecr.7b02539
Adaptive scalarization : deals with uncertainties in multicriteria optimization	

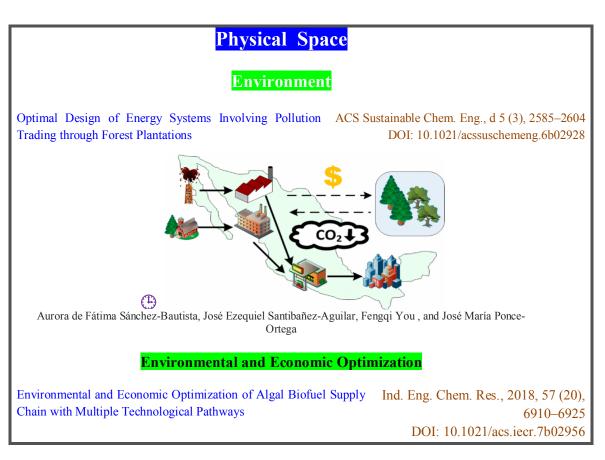
M. Bortz , J. Burger , E. von Harbou , M. Klein, J. Schwientek, N. Asprion, R. Böttcher, KH. Küfer, and H. Hasse			
N Robust Pareto boundary			
(Capex) Robust optimization Uncertainties			
\dot{Q} (Opex)			
Multiobjective Optimization Approach for Integrating Design and Ind. Eng. Chem. Res., 20	015, 54 (49), 12320–		
Control in Multicomponent Distillation Sequences DOI: 10.10	12330)21/acs.iecr.5b01611		
Calculation of the condition number and the total annual cost of each design José Antonio Vázquez-Castillo, Juan Gabriel Segovia-Hernández, and José María Ponce-Orteg	ga		
	Res., 2014, 53 (42),		
Using Distillation with Side Reactor DOI:	16425–16435 : 10.1021/ie501940v		
Task: hydrodesulfurization process			
\oplus Nonlinear-multivariable multiobjective optimization; continuous and discrete design variables			
Pareto solutions → opt conditions Erick Yair Miranda-Galindo, Juan Gabriel Segovia-Hernández, Salvador Hernández, and Adrián Bonilla	a-Petriciolet		
Procedure for the Selection among Technologies. Treatment of Ind. Eng. Chem. Res., 20 Deodorizer Distillate Oil	014, 53 (43), 16803– 16812		
	: 10.1021/ie500211u		
① Task: processing of deodorizer distillate oil			
ConflObject: [max(net present value) ; Min(generation of greenhouse gases measured as kilogram-equivalent of CO2)			
Hath.task: Multiobjective optimization mixed integer linear program			
Daniela S. Laoretani and Oscar A. Iribarren			
Reactive Thermally Coupled DistillationInd. Eng. Chem. Res., 20Sequences: Pareto FrontDOI	011, 50 (2), 926–938 I: 10.1021/ie101290t		
Task: [optimal design of reactive complex distillation systems with thermal coupling production of fatty esters]	g for		
Task.Maths: nonlinear and multivariable problem; nonconvex with several local optin constraints; conflicting objectives	mums and		

Ċ	Task: [optimal design and planning of biomass-to-liquids (BTL) supply chains under economic and environmental criteria]			
٩	B supply chain: [multisite distributed-centralized processing networks for biomass conversion and liquid transportation fuel production]			
Ð	Case Study: [county-level Ex. Iowa state]			
۲	Objective.economic: [total annualized cost]; Objective. environPerformance: [life cycle greenhouse gas emissions]			
Ŀ	Model: [multiobjective, multiperiod, mixed-integer linear programming]; ModelComponents: [diverse conversion pathways and technologies, feedstock seasonality, geographical diversity, biomass degradation, infrastructure compatibility, demand distribution, government incentives]			
Ð	Model: bicriterion opt; Method.: Pareto-optimal curve; Method.Soln.Pareto: ɛ-constraint			
œ	Pred.Simultaneous: [optimal network design, facility location, technology selection, capital investment, production planning, inventory control, and logistics management decisions]			
	Fengqi You and Belinda Wang			
Biomass and biofuels; Life cycle optimization;Ind. Eng. Chem. Res., 2010, 49 (6), pp 2841–MINLP; Sustainable supply chainDOI: 10.1021/ie9016				
Œ	Task: [design of a chemical process for effectively adjusting calorific values in an offshore regasification terminal]			
۲	design : [one objective generalized disjunctive programming (GDP) task ; multiobjective problem for min([operating costs; performance of natural gas liquids]).			
Ð	\bigoplus GDP (mathematically mapped into) \rightarrow [mixed-integer nonlinear programming (MINLP)]			
Ð				
Ð	Solution of resulting bicriterion problem with MINLP,: [heuristic procedure that reduces the number of discrete solutions which are necessary for complete Pareto optimal sets]			
	Hosoo Kim Ik Hyun Kim and En Sun Yoon			

Separation of racemic mixtures

Design and Performance Assessment of Continuous Crystallization Cryst. Growth Des., 2018, 18 (3), 1686– Processes Resolving Racemic Conglomerates 1696

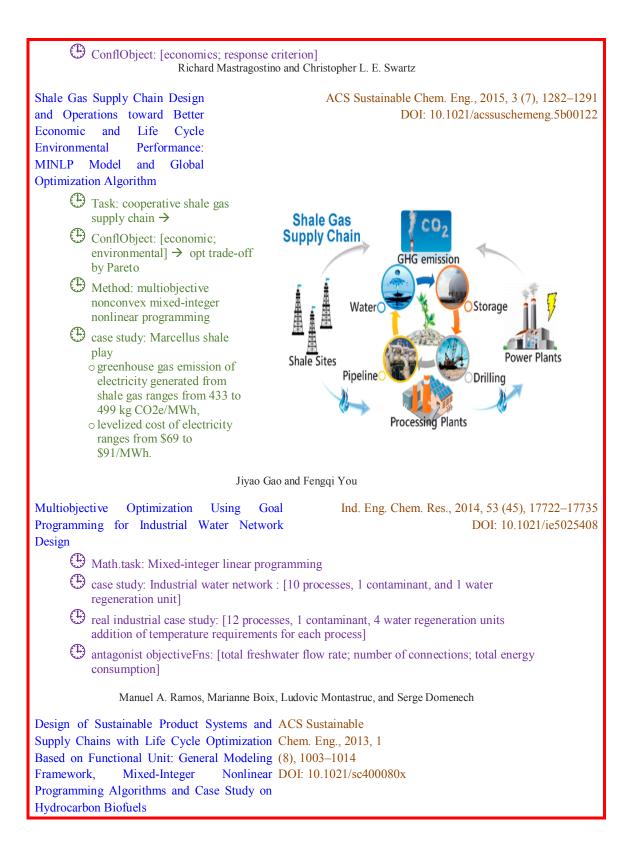
DOI: 10.1021/acs.cgd.7b01618


 \oplus separation of enantiomers forming conglomerates in the solid state

attainable enantiomeric excess and productivity

Complete resolution of racemic feed mixtures of conglomerate forming substances Till Köllges and Thomas Vetter

Computational Fluid Dynamics



Θ	economic and environmental objectives: [Minimization of total supply chain cost; total life cycle greenhouse gas emission]			
Ð	 multiobjective mixed integer linear programming approach [multiple production pathways; time periods; seasonality factors; water evaporation; recycling opportunities; major traits of algal biofuel SCN] 			
(B)	\rightarrow optimal strategic and tactical level decisions of all SCN echelons.			
Ġ	Pareto-optimal solutions: [fuzzy solution-based ε-constraint method] → [trade-off between economic and environmental objectives]			
Ð	Prediction: seven states of the U.S which intends to develop the algal biofuel SCN from the year 2018 to the year 2024			
G	Impact of future on present prediction: [Essential information with regard to the future of different technological pathways; relative importance of various supply chain factors; sensitivity analysis]			
	Keivan Ghasemi Nodooshan , Reinaldo J. Moraga , Shi-Jie Gary Chen , Christine Nguyen, Ziteng Wang, Shayan Mohseni			
	Groundwater			
· ·	Design of a Rotating Packed Bed for VOC Ind. Eng. Chem. Res., 2012, 51 (2), 835–847 from Contaminated Groundwater DOI: 10.1021/ie201218w			
G	volatile organic compounds (VOCs)			
Ð	ConflObject: [total annual cost ;total VOC removal]			
Ð	Method: Pareto-optimal solutions			
Ġ	Scope: provides a wide range of optimized design alternatives Krishna Gudena, G. P. Rangaiah, and S. Lakshminarayanan			

Multiobjective Optimization of Cyclone Separators	Ind. Eng. Chem. Res., 2000, 39 (11), 4272–4286 DOI: 10.1021/ie990741c	
Using Genetic Algorithm	DOI: 10.1021/16990/41C	
Task: [industrial problem—treatment of 165 m3/s of air]		
OnflObject: [maximization (overall collection efficiency); minimization (pressure drop)]		
X: Decision variables: [number of cyclones; eight geometrical parameters of the cyclone]		
\bigcirc Nondominated Pareto optimal \rightarrow		
Optimal values (decision variables)		
Influencing factors: [diameters of the cyclone body; vortex finder, number of cyclones used in parallel]		
G. Ravi, Santosh K. Gupta, and M. B. Ray		

Supply Chains

Dynamic Operability Analysis of Process Supply Chains for Forest Industry Transformation Ind. Eng. Chem. Res., 2014, 53 (23), 9825–9840 DOI: 10.1021/ie500608w

ObjectFns: [economics and environmental];

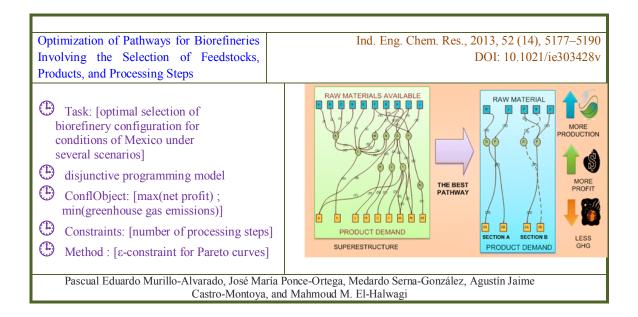
Hethod : [Pareto-optimal frontier] ; Trade-off between Confl.Multiple.Objects

• mixed-integer linear fractional programming

Dajun Yue, Min Ah Kim, and Fengqi You

Identifying Key Life Cycle Assessment Metrics in the Multiobjective Design of Bioethanol Supply Chains Using a Rigorous Mixed-Integer Linear Programming Approach Ind. Eng. Chem. Res., 2012, 51 (14), 5282–5291 DOI: 10.1021/ie2027074

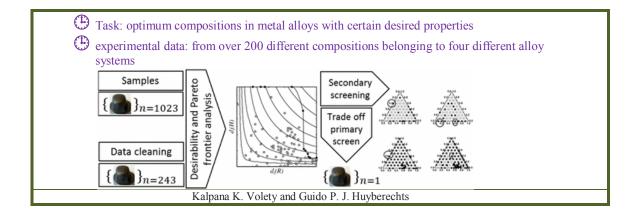
🕒 Task: Design of a bioethanol/sugar SC in Argentina


HultiObjectFns: [five environmental goals]; Soln: [Pareto]

B Rigorous mixed-integer linear programming

Basis: dimensionality reduction method which minimizes the error of omitting objectives

A. Kostin, G. Guillén-Gosálbez, F. D. Mele, and L. Jiménez


Single-Objective and Multiobjective Designs for Hydrogen	Ind. Eng. Chem. Res., 2014, 53 (14),	
Networks with Fuel Cells	6006–6020	
DOI: 10.1021/ie404068p		
ConflObject: [cost reduction ; pollution control (global CO2 emission rate)]		
(b) Meth: Pareto front		
Yen-Cheng Chiang and Chuei-Tin Chang		

Pareto Approach in Designing Optimal Semicontinuous Water Networks	Ind. Eng. Chem. Res., 2012, 51 (17), 6116–6136 DOI: 10.1021/ie2024728	
 Case Study: semicontinuous water network (batch with respect to the raw materials) Task: [searching {particular successions of topologies; operating conditions}] Multi.lObjectFns: [min(freshwater consumption; investment ; operating costs] Method: [GA ; RK-type integrator] Software: Matlab built in functions 		
Elena-Lăcrămioara Dogaru and Vasile Lavric		

A Multiobjective Optimization Approach for the Simultaneous	Ind. Eng. Chem. Res., 2012, 51 (17),	
Single Line Scheduling and Control of CSTRs	5881-5890	
	DOI: 10.1021/ie201740s	
 ♥ Varibles: [integer, continuous]; process: [dynamic] ♥ Bicriterion Opt → mixed-integer dynamic optimization (MIDO) problem ♥ Paretofront-of-each-problem: ε-constraint method ♥ Multi.ObjFns casted into singleObjFn is inferior to multiobjective optimization techniques 		
• Multi.obji ilis casted into singleobji il is interior to multiobjective optimization techniques		
Miguel Angel Gutiérrez-Limón, Antonio Flores-Tlacuahuac, and Ignacio E. Grossmann		

Analysis of Carbon Policies in the Optimal Integration of Power	ACS Sustainable Chem. Eng., 2018, 6		
Plants Involving Chemical Looping Combustion with Algal	(4), 5248–5264		
Cultivation Systems	DOI: 10.1021/acssuschemeng.7b04903		
⊕ trade-offs between multiple objectives (economic and environmental) → different Pareto sets.			
Aurora del Carmen Munguía-López, Vicente Rico-Ramírez, and .	José María Ponce-Ortega		
Toward Economically and Environmentally Optimal Operations in	Ind. Eng. Chem. Res., 2018, 57 (17),		
Natural Gas Based Petrochemical Sites	5999-6012		
	DOI: 10.1021/acs.iecr.7b04598		
Task: Integrated petrochemical complex-sustainable operations			
\oplus Pareto-optimal curve \rightarrow			
trade-off between the economic and environmental aspects			
Antonio González-Castaño, J. Alberto Bandoni, and M. Soledad Diaz			
Trade-Off Analysis in High-Throughput Materials Exploration	ACS Comb. Sci., 2017, 19 (3), 145–152		
	DOI: 10.1021/acscombsci.6b00122		

Economic and Environmental Assessment of Ind. Eng. Chem. Res., 2011, 50 (18), 10717–107		
Alternatives to the Extraction of Acetic Acid	DOI: 10.1021/ie201064x	
from Water		
For each of alternatives, detailed optimization (ε-constraint method) was performed → Pareto's curves		
\textcircled{O} individual Pareto curves \rightarrow compound Pareto's curve		
⊕ superimpose the individual Pareto'scurves for alternatives → to identify the trade-offs of this multiobjective optimization → best alternatives, optimum operational conditions.		
	best alternatives, optimum operational conditions.	

Selective Hydrogenation of Methylacetylene and Propadiene in an Industrial Process: A Multiobjective Optimization ApproachInd. Eng. Chem. Res., 2011, 50 (3), 1453–1459 DOI: 10.1021/ie100994j			
 Task: [industrial selective hydrogenation process for methylacetylene and propadiene] Optimum operating conditions: Multiple-conflicting objective optimization with constraints 			
 ↔ Method: fuzzy-based membership function for Pareto-optimal solution ↔ desired operating conditions like ratios of H2 to MAPD at each reactor and the recycle ratio 			
Wei Wu and Yu-Lu Li			

Optimal Planning of a Biomass Conversion System	Ind. Eng. Chem. Res., 2011, 50 (14), 8558–8570
Considering Economic and Environmental Aspects	DOI: 10.1021/ie102195g

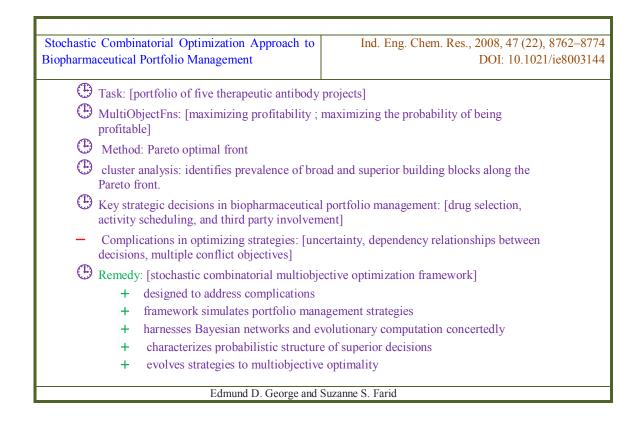
$^{\odot}$	Task:	[planning product	ion of a biorefiner	y in Mexico]

ObjectFn.Economic: [availability of bioresources, processing limits, demand of products, costs of feedstocks, products, processing routes]

 $\textcircled{\mbox{$\textcircled$}}$. ObjFn.EnvImpact : [overall environmental impact measured through the eco-indicator-99 based on the life cycle analysis methodology)]

ConflObject: [Max(profit) ; Min(environmental impact)]

José Ezequiel Santibañez-Aguilar , J. Betzabe González-Campos, José María Ponce-Ortega , Medardo Serna-González , and Mahmoud M. El-Halwagi


Multi-Objective Lot-Sizing and Scheduling Dealing	Ind. Eng. Chem. Res., 2011, 50 (6), 3371–3381
with Perishability Issues	DOI: 10.1021/ie101645h
 ➡ Task : [Diary company producing yogurt] ➡ MultiObjectFns: [multi-objective lot-sizing ➡ Soln.Method: [NSGA-II] → decision maker trade-offs from the Pareto front 	

Pedro Amorim	, Carlos H.	Antunes,	and Bernardo	Almada-Lobo
--------------	-------------	----------	--------------	-------------

Resiliency Issues in Integration of Scheduling and Control	Ind. Eng. Chem. Res., 2010, 49 (1), 222–235 DOI: 10.1021/ie900380s			
Different layers of hierarchy in optimization and control → Integration of scheduling and control in process manufacturing systems				
Model: deterministic integrated scheduling and control [Flores-Tlacuahuac, A.; Grossmann, I. E. Ind. Eng. Chem. Res. 2006, 45, 6698]				
+ performs well in the presence of the parametric variations.				
Uncertainty analysis: [chance constrained program; fuzzy; robust opt.]				
Multiobjective Pareto: [takes care of impact of the uncertainty on the different manufacturing objectives]				
Kishalay Mitra, Ravindra D. Gudi, Sachin C. Patwardhan and Gautam Sardar				

Optimization of Recovery Processes for Multiple	Ind. Eng. Chem. Res., 2009, 48 (16), 7662–7681
Economic and Environmental Objectives	DOI: 10.1021/ie802006w

Ð	Method: [elitist NSGA]
Ð	Pareto-optimal Soln
	 elucidate the trade-offs present decision maker's preference has to be declared
	 decision maker's preference has to be declared decision maker would be better equipped in choosing the best solution
	 identifies the best Pareto-optimal solution
Ð	two case studies sustainability: [economic development, environmental stewardship, and societal equity] onomic criteria: [profit before taxes, payback period, net present worth]well established,
œ	environmental impacts:[impact on humans, ecosystem—terrestrial and aquatic, and local/global temperatures—global warming and ozone depletion, as well as photochemical oxidation, acid rain, and eutrophication]
	Elaine Su-Qin Lee and G. P. Rangaiah

Optimal	Operating	Conditions	of	Ind. Eng. Chem. Res., 2008, 47 (1), 133-144
Microwave-Convective Drying of a Porous Medium			dium	DOI: 10.1021/ie070738q

Task: [to dry a porous medium via combined convective-microwave supplies]

Design of experiments (DOE) & Response surface methodology

X: [drying time, maximum of overpressure in the material, energy balances of the process, material]

effects of drying parameters: [initial moisture, microwave power, air temperature, velocity, humidity) $\rightarrow \rightarrow$ optimal operating (response surfaces)

Patrick Salagna	c, Patrick	Dutournié,	and	Patrick	Glouannec
-----------------	------------	------------	-----	---------	-----------

Pareto Optimal Solutions Visualization Techniques	Ind. Eng. Chem. Res., 2003, 42 (21), 5195–5203		
for Multiobjective Design and Upgrade of	DOI: 10.1021/ie020865g		
Instrumentation Networks			
• Task: [design and upgrade of sensor networks:]		
visualization of Pareto optimal solutions (VisPOSs)			
1) projections of the POS onto specific two-dimensional surfaces			
2) representation of the problem in par	rallel coordinates systems		

Miguel Bagajewicz, and Enmanuel Cabrera

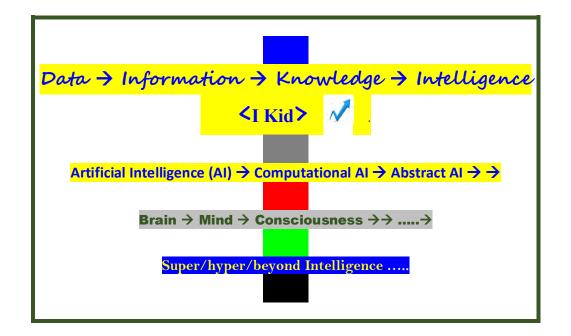
Ind. Eng. Chem. Res., 2003, 42 (17), 4028–4042				
DOI: 10.1021/ie0209576				
d over time) deviation of the flow rate of				
eam flow rate)]				
Hethod : [elitist NSGA-II]				
Anjana D. Nandasana, Ajay K. Ray, and Santosh K. Gupta				
Ind. Eng. Chem. Res., 2003, 42 (26), 6823–6831				
DOI: 10.1021/ie030387p				
and Ajay K. Ray				

Scheduling	of Actual Size	Refinery Processes	Ind. Eng. Chem. Res., 2002, 41 (19), 4794–4806
Considering	Environmental	Impacts with	DOI: 10.1021/ie010813b
Multiobjectiv	e Optimization		

- Task: [scheduling problem of actual size refinery processes]
- OcnflObject: [maximize (total profit); minimize (environmental impacts)]
- ^(C) Plotting Pareto optimal solutions
 - decision makers pinpoint correlation between two objectives .
- 🕒 Selection of one of Pareto optimal solutions
 - depends largely on the decision makers

^Φ Model: [mixed-integer linear programming model]; Soln. : [ε-constraint method]

Jehoon Song, Hyungjin Park, Dong-Yup Lee, and Sunwon Park

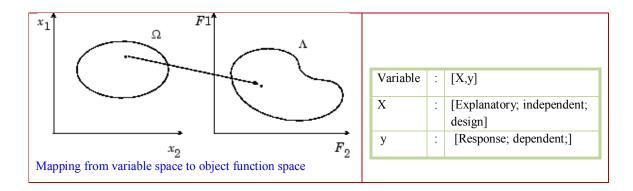

Optimization of Venturi Scrubbers Using Genetic	Ind. Eng. Chem. Res., 2002, 41 (12), 2988–3002
Algorithm	DOI: 10.1021/ie010531b
 Task: [pilot-scale scrubber] ConflObject: [maximization (overall collection)] 	on efficiency); minimization (pressure drop)]

- X : [liquid-gas flow ratio, gas velocity in the throat ,aspect ratio]
- \bigcirc Soln: nondominated Pareto sets \rightarrow Optimal design curves
 - G. Ravi, Santosh K. Gupta, S. Viswanathan, and M. B. Ray

Simulation and Multiobjective Optimization of an	Ind. Eng. Chem. Res., 2002, 41 (9), 2248–2261		
Industrial Hydrogen Plant Based on Refinery Off-Gas	DOI: 10.1021/ie010277n		
GonflObject: [maximization (product hydrogen and export steam rates)			
;minimization(heat duty supplied to the steam reformer)]			
\textcircled{O} NSGA \rightarrow Pareto-optimal operating conditions			
P. P. Oh, G. P. Rangaiah, and Ajay K. Ray			

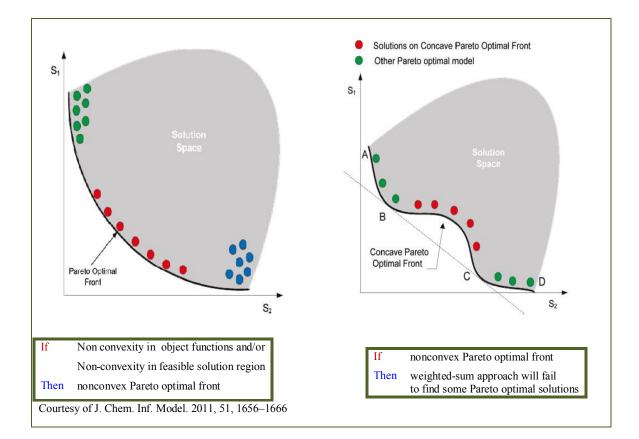
Multiobjective Optimization of Steam Reformer	Ind. Eng. Chem. Res., 2000, 39 (3), 706-717
Performance Using Genetic Algorithm	DOI: 10.1021/ie9905409
 ConflObject: [minimization (methane feed ramonoxide in the syngas)] Soln.: Pareto-optimal operating conditions J. K. Rajesh, Santosh K. Gupta, G. P 	

ACS.org; Sci.direct.com (SD): Information Source (is)



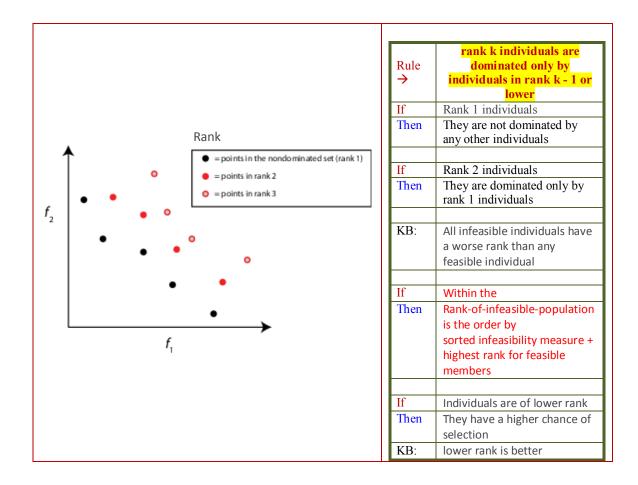
Object Oriented Terminology &

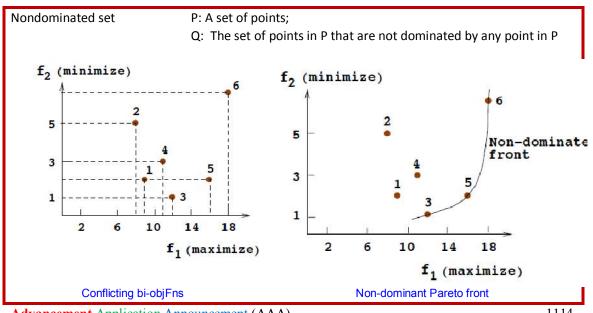
(Geometric) Information (OOTI)


Multi-Object-Functions (MOF)
Dara \rightarrow Fn \rightarrow ObjFn \rightarrow many (multi-) ObjFns \rightarrow Soln(s) \rightarrow
Pareto front \rightarrow Performance measures \rightarrow Set of Pareto solns \rightarrow
Single_Pareto_Soln →
Knowledge Exploration

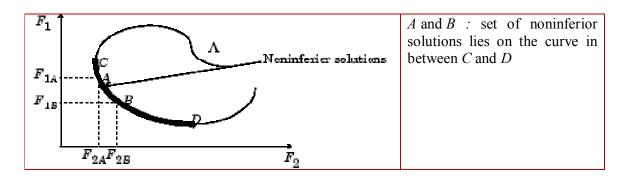
Data space to solution space			
Space.Math	Pre-processing	Tasks	Solution characteristics
 Variables [X,y] Parameters [Free; \$\$:distribution [normal;]] functions object functions 	 Raw Scaled Transformed [log; exp; [Fourier,] Projected [orthogonal [PCA, PLS,], 	∰ Design ∰ Solution	
🛄 Solution			

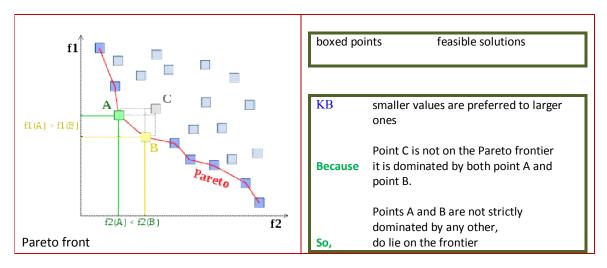
Functions (Fns) & Objective Fns (ObjFns)		
Fn:[algebraic; trigonometric; , symbolic]Fn(.):Function(X or y)	ObjFn:[Fn([X, y] or Fn(X), or Fn(y)]MulObjFns:MulObjFns:ObjFn1, ObjFn2, ObjFnj],	Constraints:[Equality, Inequality]Constr.ineq:[<; >; <++; >=]Constr.eq:[=]

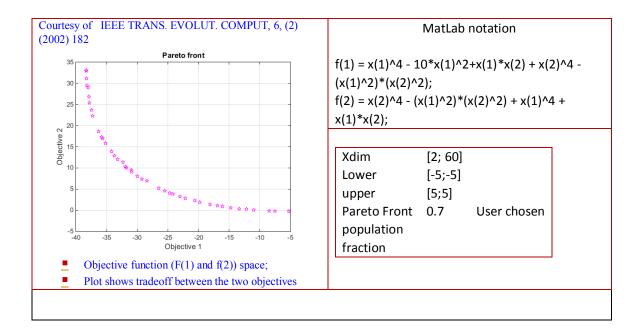

	Knowledge bits (KB). ObJFns
$ \min_{\in \Omega} F(x) = \{f_1(x) \cdots f_i(x) \cdots f_k(x)\} $	If NObjFns =1 Then Single object Function [SObjFn OR 1ObjFn;]
ubject to $g_i(x) \le 0, i = 1,, m_1$ $h_j(x) = 0, j = 1,, m_2$	If NObjFns >1 Then MultiObjFns: [2ObjFns; 3ObjFns; many[4,5,]ObjFns]
	If NObjFns = 2 Then biObjFn [2ObjFns]
	If NObjFns > 3 Then ManyObjFns [NObjFns = 4 OR 5 OR 6,]

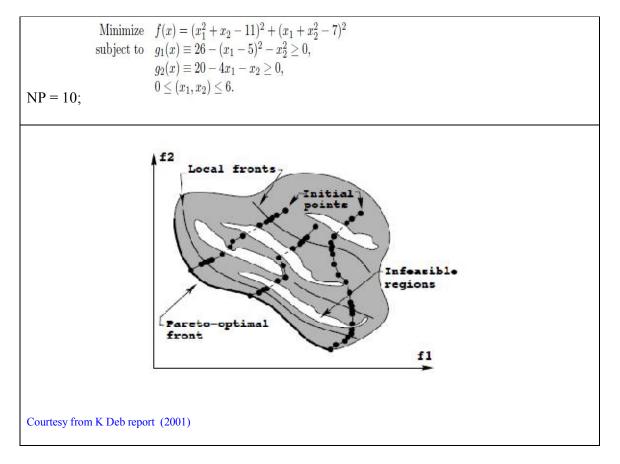

Goals and sub-goals

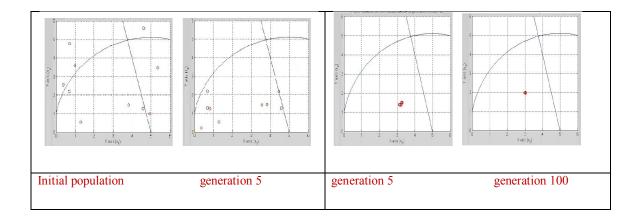
Goals	Sub-goals	→ Outcon	me →
 Model Control Prediction 	Curve fitting Parametrization Design	Solutions Statistics	InferencesKnowledge bits

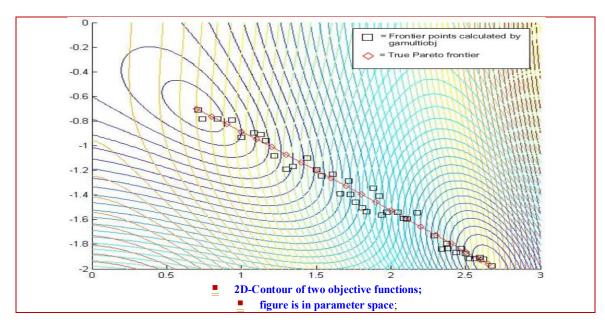

Optimization of Objective Function(s) (Opt.ObjFns) $ ightarrow$ Solution Set(s)		
Optimization[unconstrained; constrained]constrained[Equality [=]; inequality [< OR >]]	SubGoal. ObjFn:min Or max (ObjFnj)SubGoal.:[Min(ObjFnj) andObjFns.Conflict:Max(ObjFnk)]	

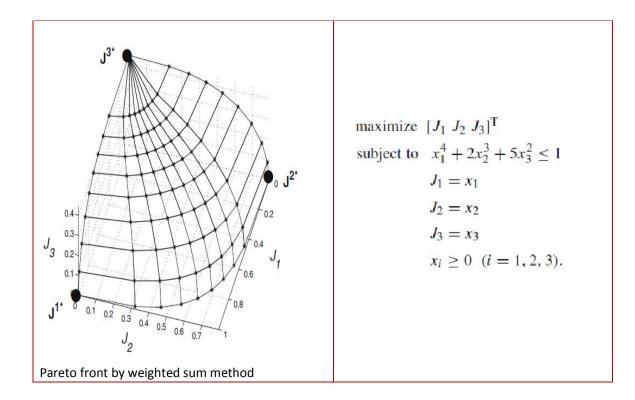

Pareto Optimal Solutions (POS)

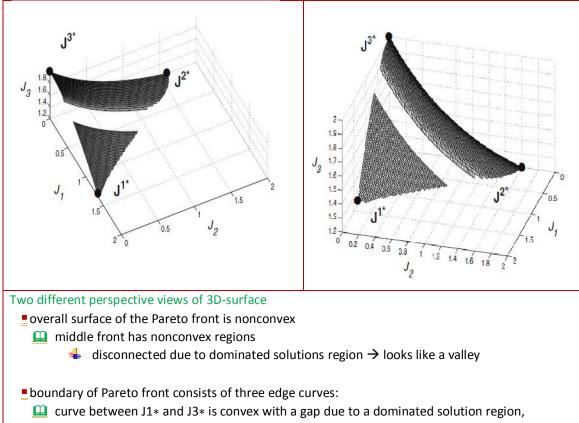



Non-inferior solution	Ω : set of solutions $x \in \Omega$ is a noninferior solution, if an improvement in one objective, F_1 , requires a degradation in the other objective, F_2 , i.e., $F_{1B} < F_{1A}$, $F_{2B} > F_{2A}$
	i.e. if for some neighborhood of x^* there does not exist a Δx such that $(x^{*+}\Delta x)\in\Omega$ and $F_i(x^{*+}\Delta x)\leq F_i(x^*)$, $i=1,,m$, and $F_j(x^{*+}\Delta x)\leq F_j(x^*)$ for at least one j .

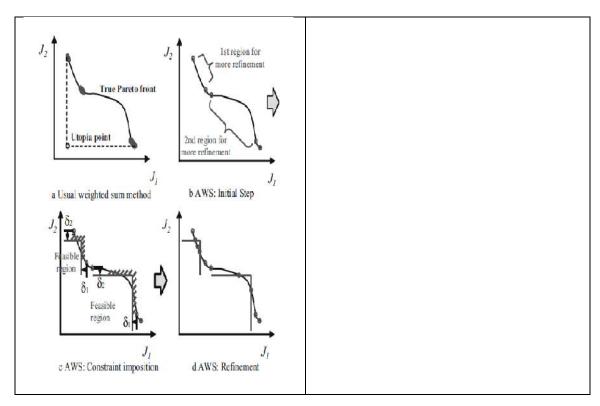


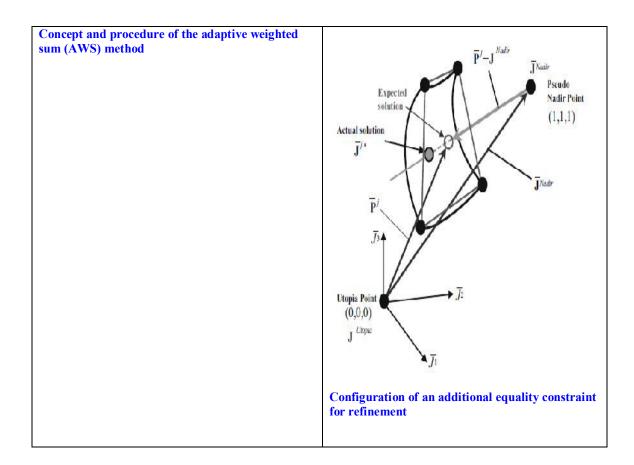

Pareto optimality	a tradeoff among conflicted objectives
Pareto optimal solution set	Solutions which are not dominated by any other Solutions in Solution set Any improvement in one objective of a Pareto optimal point must lead to deteriorations in at least one other objective. + deeper insights into the trade-off among the objectives and many choices for implementation
Pareto solution set	set of all the Pareto optimal points
Pareto optimal front	set of all the Pareto optimal objective vectors

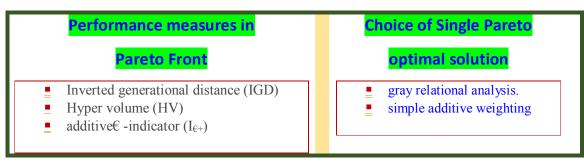

Methods for Calculation of Pareto Front


	A set of solutions is Pareto optimum
If	by moving from that solution to another in the feasible solution space, any
	improvement in the value of one of the objective functions
	results in the deterioration of at least one of the remaining objective functions

Methods.appoximating.true PeratoFront:	Decomposition-based.Method
Pareto dominance-based ;	multi-objective evolutionary algorithms (MOEAs);
performance indicator-based ;	🛄 MOEA/D ; MOEA/D-DRA; MOEA/D-AWA
decomposition-based;	$\square [augmented \in -constraint method (AUGMECON);$


	AUGMECON2;
	Given augmented €-constraint method
	(SAUGMECON);
	decomposition based multi-objective evolutionary
	algorithm with the "-constraint framework (DMOEA-
	"C);
SMEA	Competitive multiobjective evolutionary algorithm.
	based on selforganizing mapping method (SOM) and
	neighborhood relationship concept.
MOCell	cellular-based and MO solver
SMPSO	PSO based multiobjective solvers


Pareto frontier	[Constraint Proposal Method, Normal Constraint Method, Linear Weight	
generation algs.	Method]; [genetic alg; evolutionary alg.]	
[GA; Evolv.A]	applied to solve complex multi-objective problems,	
	+ find solutions quickly ven in a complex solution space	
	+ a framework for effectively sampling large search spaces,	



R. Sambasiva Rao, School of Chemistry Andhra University, Visakhapatnam <u>rsr.chem@gmail.com</u>