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ABSTRACT 
Thermal decomposition of ammonium per chlorate (AP) in the presence of lanthanide oxides L2O3, 
where L=Nd, and Pr, has been studied with TG–MS approach towards understanding the mechanistic 
aspects of thermal decomposition. Nd2O3 has no appreciable influence on the onset temperature of AP 
decomposition; and it brings down the end set temperature of AP decomposition. Pr2O3 influences 
both the LTD and HTD of pure AP. Addition of either Nd2O3 or Pr2O3 does not catalyze the evolution 
of HCl. Presence of Pr2O3 catalyzes both the LTD and HTD of AP. Both the catalysts contribute to the 
oxidation of ammonia to NO2, rather than NO as in the case of pure AP. Release of O2 is another 
favorable contribution by these oxides that have profound influence on the energetic of composite 
solid rocket propellants based on AP.  
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MS Peaks corresponding to AP – Nd2O3 System. 
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INTRODUCTION 
 

Composite solid rocket propellant is an ad-mixture of polymeric–fuel binder such as hydroxyl-
terminated polybutadiene (HTPB); energetic metallic–fuel; dioctyl esters as plasticizers; isocyanate 
curing agents; combustion rate modifiers, and other processing aids. In addition, it contains a major 
fraction of ammonium per chlorate (AP), a crystalline inorganic oxidizer, may be because of which, 
the thermal decomposition characteristics of AP has a bearing on the combustion characteristics of 
composite solid rocket propellants based on it. It is a well established fact that, those compounds that 
catalyze the thermal decomposition of AP will also have profound influence in modifying the 
combustion characteristics of composite solid rocket propellants based on AP [1-7].   
 
       For the past four and half decades, bulk-size transition metal oxides have been extensively used 
towards catalytic improvements in the thermal decomposition of AP [8-12]. The effect of ‘p’-type 
rare earth oxides with partially filled f - orbital’s, such as, La2O3, Pr2O3 and Nd2O3 on the thermal 
decomposition of AP has been studied by Survase et al [13]. Also, Survase et al [14] studied the 
effect of Nd2O3 on thermal and ballistic properties of AP based composite propellants employing 
DSC technique. The kinetics of thermal decomposition of AP in the presence of rare earth oxides of 
yttrium (Y2O3) and lanthanum (La2O3) was investigated by Raha et al [15]. Catalytic effect of 
nanoparticles of proviskite type oxides of LaMO3 (M=Fe, Co, and Ni) on AP thermal decomposition 
of was reported by Wang et al [16].  
 
      Shalini et al [17] reviewed the catalytic effect of nanodimensional metal oxides (including various 
rare earth metal oxides) on AP thermal decomposition. Synthesis and characterization of 
nanoparticles of CeO2, Pr2O3, and Nd2O3 through sol-gel technique and their influence on thermal 
decomposition of AP was reported by Supriya et al [18]. Yang et al [19] studied the catalytic effect of 
nanometer transition metal oxide and rare earth oxides on thermal decomposition of AP. Li et al [20] 
attributed the semiconducting properties of rare earth oxides of Pr6O11, Nd2O3, Sm2O3, Gd2O3, Er2O3, 
Yb2O3 synthesized through sol-gel technique, and their functional property of storing and releasing 
electron that resulted in the hysteresis of the first-exotherm of AP or advancing its second exothermic 
peak.  
 
       Yu et al., [21] presented the synthesis through micro-emulsion technique, and characterization of 
nanocrystals (60nm) of NdCrO; its effect on thermal decomposition of AP. The mechanism of catalytic 
action attributed to the presence of superoxide ion of O2

 ̶ on the surface of NdCrO causing different 
extent of oxidation of ammonia resulting from the decomposition of AP. The influence of nanometer 
sized and micrometer sized Nd2O3 on ammonium per chlorate thermal decomposition was evaluated by 
Zou, Min et al [22], and these authors proposed that, the newly formed chloride of neodymium oxide 
(NdOCl) species are responsible for the overall thermal decomposition of AP over Nd2O3.  
 
        Chrysin complexes having formula Ln (C15H9O4)3.H2O, where Ln = Tb (III), Ho (III), Er (III) and 
Yb (III) were synthesized and characterized by Janusz Pusz et al [23]. Phytoconstituents assisted green 
synthesis of cerium oxide nanoparticles for thermal decomposition and dye remediation was reported by 
Sharma et al [24], wherein the role of nano-cerium oxide particles in the thermal decomposition of AP 
was discussed. Zhang et al [25] described the preparation and catalytic activity of M2O3 / CNTs (M = Y, 
Nd, Sm) nano-composites by solvo-thermal process.  
 
       In the present work, attempt has been made to understand catalytic thermal decomposition of AP in 
the presence of oxides of rare earth metals (M) where M = Nd and Pr, employing TG-MS and DSC 
techniques.  
 

MATERIALS AND METHODS 
 

The ammonium per chlorate (AP) employed in this work was obtained from Ammonium per chlorate 
Experimental Plant (APEP) of Vikram Sarabhai Space Centre, Indian space research organization 
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(ISRO), Department of Space, Government of India. The catalysts Nd2O3 and Pr2O3 were procured 
from SD Fine Chemicals Limited. The thermal decomposition studies were carried out employing a 
sample mass of 5 mg; inert gas (N2) flow -rate of 50mL.min-1, and a sample heating rate of 10C min-1 
were maintained. Experiments were carried out in a TA Instruments, Model SDT Q600 TD System.  
 

RESULTS AND DISCUSSION 
 

The thermo gravimetric (TG) and derivative thermo gravimetric (DTG) curves for pure AP are shown 
in figure 1, it can be seen that, the thermal decomposition of AP takes place in two distinct stages. 
During the first –stage decomposition 28.2 percent of the material is lost, and in the second step the 
remaining material is lost. The cessation of decomposition of AP after about 28.2 percent 
decomposition in the initial stage is in tune with the earlier observations [3, 26-31]. The temperature 
of onset of decomposition is ~253C, and the temperature of end set of decomposition is at ~ 430C. 
 

 
 

Figure 1. TG – DTG Curves of pure Ammonium per chlorate. 
 
The TG–DTG curves for AP-Nd2O3 mixture are presented in figure 2. The onset temperature (253C) 
observed in the case of pure AP is shifted by about 33.82 o C towards higher temperature region in the 
presence of Nd2O3 (286.82C). Similarly, the end set temperature of decomposition for pure AP 
(430C) is shift by 27.44C towards lower temperature region (402.56C), indicating the catalytic 
action by Nd2O3. The TG-DTG curves for AP-Pr2O3 mixture are shown in figure 3. The onset 
temperature (253C) observed in the case of pure AP is shifted by about 5.86 C in the presence of 
Pr2O3 (258.86 C), which is a marginal shift towards high temperature zone. Similarly, the end set  
 
 

 
 

Figure 2. TG–DTG Curves of AP–Nd2O3 Mixture. 
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temperature of decomposition for pure AP (430C) is shift by 27.79C towards lower temperature 
region (402.21C) indicating the catalytic action by Pr2O3. In other words, Pr2O3’s presence has least 
effect on the onset temperature of decomposition while catalyzing the high temperature 
decomposition. 

 
Differential Scanning Calorimetric (DSC) curves for pure AP; AP-Nd2O3; and AP- Pr2O3 mixtures are 
presented in figure 4. It can be seen from figure 4 that, the presence of these catalysts (Nd2O3 and 
Pr2O3) does not influence much of the crystallographic phase-transition of AP from orthorhombic to 
cubic phase. The presence of Pr2O3 lowered the low-temperature decomposition (LTD) peak by about 
21C; and the high-temperature decomposition (HTD) peak is lowered by 24C (from 393C), 
indicating catalysis. 
 

 
 

Figure 3. TG – DTG Curves of AP – Pr2O3 Mixture. 
 
Apparently, from the area under the HTD peak, the enthalpy released is relatively high compared to 
pure AP. In the case of AP – Nd2O3 system, the LTD peak is broadened and shifted to high-
temperature region by about 14C; while the HTD peak is lowered by about 36C from that of pure 
AP. Also, the area under the HTD peak is more significant indicating catalytic activity.  
 

 
 

Figure 4. DSC Curves of pure AP; AP–Nd2O3 and AP–Pr2O3 Mixtures. 
 

From figure 4, it can be seen that, in the case of AP–Nd2O3 system, the low-temperature 
decomposition (LTD) peak of pure AP occurring at 296C, is shifted to a marginally high- 
temperature region to309C, indicating the inhibitory effect of Nd2O3on the LTD of AP; while the 
high–temperature decomposition (HTD) peak of pure AP is lowered from 454C to 357C, a catalytic 
effect on the HTD of AP.  
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In the case of AP – Pr2O3 mixture, the LTD of pure AP is lowered to 275C from 296C indicating the 
catalytic effect on the LTD of AP; while the HTD of pure AP occurs at 367C in the presence of 
Pr2O3, down from 454C for pure AP. Thus, we notice that, Nd2O3 catalyzes HTD of pure AP, while 
Pr2O3 has a positive catalytic effect on both LTD and HTD peaks of pure AP.  Thus, we observe that, 
while Pr2O3 catalyzes both LTD and HTD of AP; Nd2O3 catalyzes only the HTD of AP.  Figure 5 
corresponds to that of pure AP, and the decomposition products being NH3, H2O, NO, and HCl of 
which H2O is more predominant.  
 

 
 

Figure 5. MS Peaks corresponding to pure AP. 
 
       Figure 6 corresponds to AP – Nd2O3 system and the decomposition products include - NH3, H2O, 
O2, HCl, and N2O of which H2O and O2 are predominant. This indicates that the presence of Nd2O3, 
while facilitating the release of pure oxygen from AP, oxidizes the primary product of NH3 to NO2 
rather than NO as in the case of pure AP.  Figure 7 corresponds to the system AP–Pr2O3 wherein the 
products of decomposition include –NH3, H2O, HCl, N2O and O2. It is observed that, the primary 
product of NH3 being oxidized to NO2 in addition to release of pure oxygen as in the case of AP–
Nd2O3 system.  
 

 
 

Figure 6. MS Peaks corresponding to AP – Nd2O3 System. 
 

       Here again, it is evident that, H2O and O2 are the predominant products of decomposition. 
Another important observation is that, the presence of the oxides does not catalyze HCl (a corrosive 
gas) evolution, thereby indicating better performance probability of composite solid rocket propellants 
performance employing AP as the oxidizer.  
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Figure 7. MS Peaks corresponding to AP – Pr2O3 System. 
 

APPLICATION 
 
These results are useful to solid rocket propulsion technologists in modifying solid rocket propellant 
formulations to suit their requirements of combustion rates of these propellants for specific mission 
requirements.  
 

CONCLUSION 
 

 Nd2O3 has no appreciable influence on the onset temperature of AP decomposition; and it brings 
down the end set temperature of AP decomposition. 

 Pr2O3 influences both the LTD and HTD of pure AP. 
 Addition of either Nd2O3 or Pr2O3 does not catalyze the evolution of HCl. 
 Both the catalysts contribute to the oxidation of ammonia to NO2, rather than NO as in the case of 

pure AP.  
 Release of O2 is another favorable contribution by these oxides that have profound influence on the 

energetic of composite solid rocket propellants based on AP. 
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