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ABSTRACT 
Ultrasound-assisted, atomized sodium catalysed, sustainable, one-pot four-component approach 
offers a series of polysubstituted-tetrahydroquinolines. The protocol is a green organic synthetic 
method which works under mild reaction conditions. The ease imparted by ultrasound in the present 
method divulges the facile, efficient, economical, eco-friendly and clean approach to afford excellent 
yield of the products in short durations. 
 
Graphical Abstract 
 
 
 
 
 
 
 
Highlights 
 
 Ultrasound-assisted, atomized sodium mediated, sustainable, one-pot four-component approach 

has been developed. 
 A series of polysubstituted-tetrahydroquinolines have been synthesized in ethanol. 
 The protocol is a green organic synthetic method which works under mild reaction conditions. 
 The method is energy efficient, facile, economical and eco-friendly. 
 The approach is clean and affords excellent yield of the products in short durations. 
 
Keywords: Polysubstituted tetrahydroquinolines, Aryl aldehydes, Ethyl acetoacetate, Dimedone, 
Atomized sodium, Ultrasonication. 
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INTRODUCTION 

 
Green chemistry has clearly made us understand the fascinating developments in the synthesis of 
large libraries of simple and complex organic molecules; and successful use of the green principles in 
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the modern organic synthesis has received considerable attention in the recent past [1, 2]. The most 
important high look in the academic research is to develop green and energy efficient methods for the 
synthesis of a varied and highly functionalized heterocyclic scaffolds using readily available 
substrates and reagents under simple and efficient reaction conditions. One-pot multi-component 
reactions (MCRs) on the other hand, have emerged as a powerful tool towards the synthesis of 
complex, fused and highly functionalized heterocyclic compounds [3]. The major advantages of 
MCRs include: atom economy, ease in optimization of reaction conditions and easy access to several 
heterocyclic compounds in shorter reaction durations.  
 
      In recent years, ultrasonication, an energy efficient and green technique, has played a major role in 
carrying out various organic transformations [4, 5]. Ultrasound assisted, one-pot MCRs in a 
heterogeneous system have been known to improve the reaction rates and the yield of the products 
when compared with the traditional methods [6–10]. Sonication of solid-liquid system leads to 
formation of micro bubbles; and their collapse is termed as acoustic cavitation, which can create 
extreme chemical and physical changes. The short-lived localized hot-spots produce very high 
temperatures and pressures during implosive collapse of bubbles which assist the chemical species to 
react and afford the products through a most favorable transition state [11] .Thus, the ultrasound-
assisted one-pot MCR is an effective method for the synthesis of numerous complex heterocyclic 
compounds. 
 
      The design and synthesis of substituted quinolines is documented in the literature, and these 
compounds are known to possess a wide range of biological properties and pharmaceutical activities 
such as: antimicrobial, [12] antitumor, antiatherosclerotic, antidiabetic, antimutagenic, vasodilator, 
bronchodilator, hepatoprotective and geroprotective activities, [13, 14] and are known as calcium 
channel blockers. [15, 16]  Thus, the synthesis of structurally varied quinolines is of great interest. A 
few reports on the synthesis of these molecules in the presence of catalysts such as: mesoporous 
silica; mobil composition of matter (MCM-41) [17], silica based SBA-15 [18]; nano materials such 
as: titanium dioxide [19], iron oxide [20], nickel and zinc oxide [21, 22], boehmite-silica sulphuric 
acid (boehmite-SSA) [23] and carbon nanotubes-supported cobalt oxide (Co3O4-CNT) [24] are 
available in the literature. A few more methods report the use of other catalysts such as: trimethyl silyl 
chloride (TMSCl) [25], L-proline [26], different polymeric agents [27], ytterbium triflate [28], silica 
supported perchloric acid (HClO4-SiO2) [29], heteropoly acid [30], ceric ammonium nitrate [31], p-
toulenesulphonic acid [32], indium chloride [33], molecular iodine [34],  tinphosphonate 
nanoparticles [35],  triphenylamine and α,α‐dibromo‐p‐xylene [36], Baker’s yeast [37] and ZnO [38]; 
and under the conditions such as: conventional heating [39, 40], grinding [41], microwave irradiation 
[42], PEG-ultrasonication [43] and by a solid phase solvent-free reaction [44]. However, some of the 
reported methods suffer from drawbacks such as: catalyst preparation, elevated temperatures, inert 
atmosphere, tedious and time consuming methodologies, use of volatile and ecologically harmful 
solvents, conventional heating, low yields and long reaction durations. Our efforts are promising and 
in continuation of our work on the use of atomized sodium under sonic conditions [45], we have 
succeeded in overcoming most of the drawbacks, and herein, we report anatomized sodium catalysed, 
clean, simple, efficient, ultrasound-assisted, one-pot, four-component synthesis of polysubstituted-
tetrahydroquinolines in EtOH from dimedone, ethyl acetoacetate, ammonium acetate and substituted 
benzaldehydes and heteroaromatic aldehydes as depicted in the Scheme 1. 
 

 
 
 
 
 
 
 

Scheme 1. Synthesis of polysubstituted-tetrahydroquinolines. 
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MATERIALS AND METHODS 
 

All reagents are commercial and were used as received, except liquid reagents which were distilled 
before use. Melting points were determined on a Raaga, Indian make melting point apparatus. The 
progress of the reactions was monitored by thin layer chromatography [(TLC) analytical silica gel 
plates (Merck 60 F250), observed under ultraviolet (UV) light]. Infrared (IR) spectra were recorded 
using an Agilent Cary 630 and Bruker FT-IR spectrophotometers. 1H NMR and 13C NMR spectra 
were recorded on a Varian Mercury Spectrophotometer in DMSO-d6 and CDCl3 at 400 MHz and 100 
MHz respectively with TMS as an internal standard. The chemical shifts are expressed in δ parts per 
million (ppm) and the coupling constants (J) are given in hertz (Hz). LC-Mass spectra were recorded 
on an Agilent Technologies 1200 series instrument. Ultrasonication was performed using SIDILU, 
Indian make sonic bath operating at 35 kHz (constant frequency, 80 W) maintained between 28‒30 °C 
by continuously circulating water. 
 
General experimental procedure for the synthesis of polysubstituted tetrahydroquinolines (5a–
5l) under ultrasonication: A 50 mL flask containing aromatic/heteroaromatic aldehyde (1 mmol), 
dimedone (1 mmol), ethyl acetoacetate (1 mmol), ammonium acetate (1.5 mmol), atomized sodium 
(0.03 g) and EtOH (10 mL) was sonicated in a cleaning bath working at 35 kHz for an appropriate 
time at 25°C. After the completion of the reaction [TLC (eluent: 8–10 % ethyl acetate in light petrol)], 
the reaction mixture was poured onto crushed ice. The precipitate thus formed was filtered, repeatedly 
washed with water and allowed to dry in the open atmosphere. Ethyl acetate (8 mL) was then added to 
dissolve the solid and the solution was dried over anhydrous Na2SO4, the solvent was distilled and the 
crude solid thus obtained was further purified by recrystallization using ethyl acetate. The structures 
of all the products were confirmed by IR, 1H NMR, 13C NMR and LC-Mass spectral analysis. 
 

RESULTS AND DISCUSSION 
 

Firstly, a mixture of the model substrates 4-chlorobenzaldehyde (1), dimedone (2), ethyl acetoacetate 
(3) and ammonium acetate (4) were sonicated in EtOH without any catalyst. The observation inferred 
the formation of the desired polysubstituted-tetrahydroquinoline (5a) in 20% yield (Table 1, entry 1), 
hence, EtOH was selected as a solvent for further studies. For increasing the yield of the product, 
various acidic and basic catalysts were then screened in EtOH under ultrasonication (Table 1, entries 
2–14). As illustrated in table 1, the reaction using catalysts such as: ZnCl2, Ba(OH)2, SiO2, p-TSA and 
CAN (entries 2–6) afforded the desired product in low yields. The catalysts such as: FeCl3, TiO2, ZnO  
 

Table 1. Effect of various catalysts on the synthesis of Ethyl-4-(4-chlorophenyl)-2,7,7- 
trimethyl-5-oxo-1,4,6,8-tetrahydroquinoline-3-carboxylate (5a) 

 
Entry Catalysta,b Time (min) Yield (%)e,f 

1 No catalyst 120 20 
2 ZnCl2 120 26 
3 Ba(OH)2 120 32 
4 SiO2 120 34 
5 p-TSA 120 48 
6 CAN 120 45 
7 FeCl3 120 55 
8 TiO2 120 57 
9 ZnO 120 60 
10 L-Proline 120 65 
11 I2 50 67 
12 NaOMec,d 50 74 
13 NaOEtc 50 87 
14 Atomized sodium 30 98 
a 0.03 g; b EtOH (10 mL); c 0.05 g; d MeOH (10 mL); 

e Compared on TLC; f Isolated yield. 
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and L-proline (entries 7–10) improved the yield of 5a after prolonged reaction duration. Molecular 
iodine in EtOH (10 mL) gave 67% of the product; Sodium methoxide (NaOMe) in methanol (MeOH, 
10 mL) yielded 74% and Sodium ethoxide (NaOEt) in EtOH (10 mL) furnished 87% of the desired 
product (Table 1, entries 11–13) in 50 min. As can be seen from the data provided in the table 1, the 
best result with enhanced yield and short reaction time to get 5a was use of atomized sodium (0.03 g) 
in EtOH (10 mL) under ultrasonic condition (entry 14). 
 
      In the presence of atomized sodium, the effect of various solvents such as n-hexane, 
dichloromethane (DCM), acetonitrile (CH3CN), acetone, o-xylene, THF, methanol and ethanol under 
sonication was then evaluated on the model reaction; and it was found that, n-Hexane was not a 
suitable solvent (Table 2, entry 1); solvents such as: DCM, CH3CN, acetone and xylene in the 
presence of atomized sodium rendered very low yield of the product (entries 2–5). Reaction in THF 
gave 67% yield, in MeOH (78%) and in ethanol 98% of the product was obtained (entries 6–8). 

 
Table 2: Effect of solvent on the atomized sodium catalysed synthesis of Ethyl-4-(4-chlorophenyl) 

-2,7,7-trimethyl-5-oxo-1,4,6,8-tetrahydroquinoline-3-carboxylate (5a) 
 

Entry      Solventa Time (min) Yield (%)b 
1 n-Hexane 30 NDc 
2 DCM 30 20 
3 CH3CN 30 20 
4 Acetone 30 25 
5 o-Xylene 30 34 
6 THF 30 67 
7 MeOH 30 78 
8 EtOH 30 98 
a 10 mL; b Isolated yield; c ND-Not Detected. 

  
      In order to determine the appropriate feed ratio of atomized sodium in the model reaction, 
different amounts was selected (0.010 g, 0.015 g, 0.020 g, 0.025 g, 0.030 g and 0.035 g) and the 
reaction was performed under sonication, and the product was obtained in 57%, 62%, 70%, 73%, 98% 
and 95% yield respectively (Table 3, entries 1–6). From table 3 (entry 5), it is clear that, 0.03 g of 
atomized sodium is sufficient for the synthesis of 5a in 98% yield. 
 

Table 3: Optimization of the feed ratio of atomized sodium for  
the synthesis of 5a under sonication 

 
Entry Catalyst load (g) Yield (%)a 

1 0.010 57 
2 0.015 62 
3 0.020 70 
4 0.025 73 
5 0.030 98 
6 0.035 95 

a Isolated yield. 
 

      Under the optimized condition, we extended the study to different aromatic aldehydes and 
heteroaromatic aldehydes and a series of various polysubstituted-tetrahydroquinolines were obtained 
in excellent yields. The results of this study are presented in the table 4, as can be seen, the functional 
groups, either electron donating or electron withdrawing does not have any adverse effect on the rate 
of the reaction or the yield of the products. 
 
A Plausible Mechanism: A plausible mechanism for the formation of product 5a is depicted in 
the scheme 2. The first step of the reaction may involve the formation of dimedone (1) radical by the 
transfer of an electron from the sodium metal; transfer of another electron from the metal may lead to 
the formation of dimedone anion which may react with a molecule of benzaldehyde (2) to give the 
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Knoevenagel adduct: benzylidene-dimedone (I). Ammonia (from ammonium acetate, 4) may then 
react with a molecule of ethyl acetoacetate (3) to give the enamine II; in the next step the enamine (II) 
may undergo condensation with the adduct I by a Michael addition reaction to give the intermediate 
III. The intermediate III may then undergo an internal cyclization under ultrasonication to give the 
desired product 5a after the elimination of a molecule of water as shown in the scheme 2.  

 
Table 4. Synthesis of polysubstituted-tetrahydroquinolines using atomized sodium  

in EtOH under ultrasonication 
 

Entry Aromatic/ heteroaromatic 
aldehyde Product Time (min) Yield (%) a,b 

1 4-ClC6H4CHO 5a 30 98 
2 3-NO2C6H4CHO 5b 30 97 
3 4-NO2C6H4CHO 5c 30 97 
4 3,4-(CH3O)2C6H3CHO 5d 30 95 
5 1H-Indol-3-yl-CHO 5e 30 94 
6 4-(CH3)2NC6H4CHO 5f 30 96 
7 3,4,5-(CH3O)3C6H2CHO 5g 30 96 
8 5-Butyl-1H-imidazole-2-yl-CHO† 5h 30 94 
9 4-(Methylsulfonyl)C6H4CHO† 5i 30 95 
10 3,5-(I)2-2-HOC6H2CHO† 5j 30 96 
11 3-pyridyl-CHO 5k 30 97 
12 4-(CH3O)-3-Br-C6H3CHO† 5l 30 96 

a Characterized by IR, 1H NMR, 13C NMR and LC-Mass spectral analysis; 
 b Isolated yield; †Novel compound. 

 
  

  

  

  

  

  

  

  

  

  
Scheme 2. A plausible mechanism for the formation of 5a. 

 
Spectral data of 5a–5l 
 
Ethyl-4-(4-chlorophenyl)-2,7,7-trimethyl-5-oxo-1,4,6,8-tetrahydroquinoline-3-carboxylate (5a): 
Yellow crystals; m.p 238–240°C; IR (KBr, ν cm˗1): 3272, 3206, 2967, 1704, 1647, 1486, 1380, 1230, 
1106, 972, 730, 606; 1H NMR (400 MHz, DMSO-d6): δ 9.06 (s, 1H, NH), 7.22 (d, J = 8.4 Hz, 2H, Ar-
H), 7.13 (d, J = 8.40 Hz, 2H, Ar-H), 4.81 (s, 1H, CH), 3.945 (q, J = 6.8 Hz, 2H, CH2), 2.41–1.93 
(m,4H, CH2 × 2), 2.26 (s, 3H, CH3), 1.095 (t, J = 6.8 Hz, 3H, CH3), 1.02 (s, 3H, CH3), 0.81 (s, 3H, 
CH3) ppm;  13C NMR (100 MHz, CDCl3): δ 14.21, 19.28, 27.10, 32.86, 39.58, 41.68, 50.55, 61.00, 
103.30, 111.97, 128.00, 130.10, 131.10, 143.71, 151.61, 167.51, 196.01 ppm; MS: m/z: 374.1 
[M+H]+. 
 
Ethyl-2,7,7-trimethyl-4-(3-nitrophenyl)-5-oxo-1,4,6,8-tetrahydroquinoline-3-carboxylate (5b): 
Colourless crystals; m.p 179–181°C; IR (KBr, ν cm˗1): 3261, 2959, 1702, 1632, 1481, 1378, 1350, 
1209, 1101; 1H NMR (400 MHz, DMSO-d6): δ 9.32 (s, 1H, NH), 8.29 (s, 1H, Ar-H), 8.11 (d, J = 8 
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Hz, 1H, Ar-H), 7.78 (d, J = 8 Hz, 1H, Ar-H), 7.63 (t, J = 8 Hz, 1H, Ar-H), 4.88 (s, 1H, CH), 3.945 (q, 
J = 6.8 Hz, 2H, CH2), 2.41–1.95 (m, 4H, CH2 × 2), 2.25 (s, 3H, CH3), 1.075 (t, J = 6.8 Hz, 3H, CH3), 
0.99 (s, 3H, CH3), 0.90 (s, 3H, CH3) ppm; 13C NMR (100 MHz, CDCl3): δ 14.20, 19.42, 27.04, 32.71, 
37.22, 40.33, 50.60, 60.09, 104.84, 111.01, 120.61, 121.03, 122.03, 133.98, 144.58, 146.18, 149.02, 
154.47, 166.88, 195.49 ppm; MS: m/z: 385.1 [M+H]+. 
 
Ethyl-2,7,7-trimethyl-4-(4-nitrophenyl)-5-oxo-1,4,6,8-tetrahydroquinoline-3-carboxylate (5c): 
Colourless crystals; m.p 242–244°C; IR (KBr, ν cm˗1): 3263, 2958, 1728, 1576, 1450, 1368, 1341, 
1250, 1110; 1H NMR (400 MHz, DMSO-d6): δ 9.09 (s, 1H, NH), 6.885 (d, J = 6.8 Hz, 2H, Ar-H), 6.7 
(d, J = 6.8 Hz, 2H, Ar-H), 5.07 (s, 1H, CH), 3.975 (q, J = 7.2 Hz, 2H, CH2), 2.40‒1.88 (m, 4H, CH2 × 
2), 2.22 (s, 3H, CH3), 1.12 (t, J = 7.2 Hz, 3H, CH3), 0.99 (s, 3H, CH3), 0.98 (s, 3H, CH3) ppm; 13C 
NMR (100 MHz, CDCl3): δ 14.20, 19.42, 27.05, 32.80, 39.52, 40.93, 50.60, 60.09, 104.79, 111.01, 
123.33, 126.98, 144.88, 149.02, 152.00, 154.47, 166.88, 197.19 ppm; MS: m/z: 384.1 [M]+. 
 
Ethyl-4-(3,4-dimethoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,6,8-tetrahydroquinoline-3-carboxy- 
late (5d): Yellow crystals; m.p 204–206°C; IR (KBr, ν cm˗1): 3279, 2962, 1729, 1684, 1577, 1461, 
1300, 1237, 1144; 1H NMR (400 MHz, DMSO-d6): δ 9.82 (s, 1H, NH), 7.37 (s, 1H, Ar-H), 7.115(d, J 
= 22 Hz, 1H, Ar-H), 6.725 (d, J = 22 Hz, 1H, Ar-H), 4.89 (s, 1H, CH), 4.14 (q, J = 6.8 Hz, 2H, CH2), 
3.92 (s, 3H, OCH3), 3.81 (s, 3H, OCH3), 2.48‒1.85 (m, 4H, CH2 × 2), 2.24 (s, 3H, CH3), 1.115 (t, J = 
6.8 Hz, 3H, CH3), 0.93 (s, 3H, CH3), 0.88 (s, 3H, CH3) ppm; 13C NMR (100 MHz, CDCl3): δ 14.38, 
19.02, 27.08, 32.30, 39.89, 41.06, 51.05, 56.01, 59.66, 103.75, 109.60, 110.08, 110.87, 121.55, 130.0, 
144.01, 146.78, 149.40, 150.88, 168.72, 196.44 ppm; MS: m/z: 399.2 [M]+. 
 
Ethyl-4-(1H-indol-3-yl)-2,7,7-trimethyl-5-oxo-1,4,6,8-tetrahydroquinoline-3-carboxylate (5e): 
Yellow solid; m.p 168–170 °C; 1H NMR (400 MHz, DMSO-d6): δ 9.82 (s, 1H, NH), 9.04 (s, 1H, 
NH), 7.61 (d, J = 25.6 Hz, 1H, Ar-H), 7.29 (s, 1H, Ar-H), 7.165 (d, J = 20.8 Hz, 1H, Ar-H), 6.81–6.60 
(m, 2H, Ar-H), 4.96 (s, 1H, CH), 4.24 (q, J = 18.4 Hz, 2H, CH2), 2.40‒1.85 (m, 4H, CH2 × 2), 2.24 (s, 
3H, CH3), 1.075 (t, J = 18.4 Hz, 3H, CH3), 0.93 (s, 3H, CH3), 0.89 (s, 3H, CH3) ppm; 13C NMR (100 
MHz, CDCl3): δ 14.20, 19.37, 27.33, 33.42, 40.92, 41.0, 50.88, 60.09, 102.22, 104.79, 111.99, 
112.26, 115.75, 116.11, 123.35, 123.47, 127.48, 136.94, 150.60, 154.62, 166.90, 195.74 ppm; MS: 
m/z: 378.1 [M]+. 
 
Ethyl-4-[4-(N,N-dimethylamino)phenyl]-2,7,7-trimethyl-5-oxo-1,4,6,8-tetrahydroquinoline-3-
carboxylate (5f): Brown solid; m.p 229–231°C; IR (KBr, ν cm˗1): 3277, 2965, 1699, 1681, 1597, 
1478, 1308, 1214, 1105; 1H NMR (400 MHz, DMSO-d6): 9.20 (s, 1H, NH), 6.415 (d, J = 8.4 Hz, 1H, 
Ar-H), 6.24 (d, J = 8.4 Hz, 1H, Ar-H), 4.15 (q, J = 7.6 Hz, 2H, CH2), 3.18 (s, 6H, CH3 × 2), 2.38–1.85 
(m, 4H, CH2 × 2), 2.24 (s, 3H, CH3), 1.06 (t, J = 7.6 Hz, 3H, CH3), 0.95 (s, 3H, CH3), 0.89 (s, 3H, 
CH3) ppm; 13C NMR (100 MHz, CDCl3): 14.20, 19.26, 28.35, 32.41, 40.89, 42.52, 43.64, 50.97, 
61.21, 106.02, 112.00, 112.90, 127.92, 132.03, 143.61, 147.21, 149.88, 169.50, 196.02 ppm;  
MS: m/z: 382.2 [M]+. 
 
Ethyl-2,7,7-trimethyl-5-oxo-4-(3,4,5-trimethoxyphenyl)-1,4,6,8-tetrahydroquinoline-3-carbo- 
xy late (5g): Yellow solid; m.p 220–222°C; IR (KBr, ν cm˗1): 3268, 2947, 1695, 1630, 1585, 1488, 
1300, 1265, 1118; 1H NMR (400 MHz, DMSO-d6): 9.86 (s, 1H, NH), 6.49 (s, 2H, Ar-H), 4.80 (s, 1H, 
CH), 4.01 (q, J = 7.2 Hz, 2H, CH2), 2.45–1.98 (m, 4H, CH2 × 2), 2.24 (s, 3H, CH3), 1.17 (t, J = 7.2 
Hz, 3H, CH3), 1.01 (s, 3H, CH3), 0.92 (s, 3H, CH3) ppm; 13C NMR (100 MHz, CDCl3): 14.01, 19.32, 
27.01, 32.87, 39.51, 40.95, 50.72, 56.10, 60.09, 61.52, 102.12, 106.30, 111.12, 136.10, 136.36, 
149.16, 152.01, 154.52, 166.85, 197.21 ppm; MS: m/z: 430.2 [M+H]+. 
 
Ethyl-4-(5-butyl-1H-imidazol-2-yl)-2,7,7-trimethyl-5-oxo-1,4,6,8-tetrahydroquinoline-3-carbo- 
xylate (5h): Yellow solid; m.p 160–162°C; 1H NMR (400 MHz, DMSO-d6): 10.95 (s, 1H, NH), 9.12 
(s, 1H, NH), 7.08 (s, 1H, Ar-H), 4.81 (s, 1H, CH), 4.04 (q, J = 14 Hz, 2H, CH2), 2.545 (t, J = 12.8 Hz, 
2H, CH2), 2.385 (d, J = 20 Hz, 1H, CH), 2.305 (d, J = 20 Hz, 1H, CH),  2.24 (s, 3H, CH3), 2.15 (d, J = 
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18 Hz, 1H, CH), 1.91 (d, J = 18.4 Hz, 1H, CH), 1.50–1.37 (m, 2H, CH2), 1.31–1.19 (m, 2H, CH2), 
1.115 (t, J = 14 Hz, 3H, CH3), 0.90 (s, 3H, CH3), 0.80 (s, 3H, CH3), 0.73 (t, J = 10 Hz, 3H, CH3) ppm; 
13C NMR (100 MHz, CDCl3): 14.12, 14.32, 19.01, 22.01, 27.01, 29.57, 30.50, 31.85, 32.21, 40.07, 
51.04, 60.22, 105.36, 111.65, 120.17, 144.22, 146.17, 148.91, 150.07, 167.75, 195.52 ppm;  
MS: m/z: 386.2 [M]+. 
 
Ethyl-2,7,7-trimethyl-4-[4-(methylsulfonyl)phenyl]-5-oxo-1,4,6,8-tetrahydroquinoline-3-carbo- 
xylate (5i): Yellow solid; m.p 229–231°C; 1H NMR (400 MHz, DMSO-d6): 9.06 (s, 1H, NH), 7.57 
(d, J = 8.4 Hz, 2H, Ar-H), 7.43 (d, J = 8.4 Hz, 2H, Ar-H), 4.81 (s, 1H, CH), 3.945 (q, J = 6.8 Hz, 2H, 
CH2), 3.19 (s, 3H, CH3), 2.41–1.93 (m, 4H, CH2 × 2), 2.23 (s, 3H, CH3), 1.095 (t, J = 6.8 Hz, 3H, 
CH3), 0.98 (s, 3H, CH3), 0.88 (s, 3H, CH3) ppm; 13C NMR (100 MHz, CDCl3): 14.20, 19.42, 27.04, 
32.71, 40.93, 41.12, 47.73, 50.60, 60.09, 104.84, 111.01, 128.98, 130.33, 138.26, 149.02, 149.18, 
154.47, 166.88, 195.49 ppm; MS: m/z: 417.1 [M]+. 
 
Ethyl-4-(2-hydroxy-3,5-diiodophenyl)-2,7,7-trimethyl-5-oxo-1,4,6,8-tetrahydroquinoline-3-
carboxylate (5j): Pale yellow solid; m.p 168–170°C; 1H NMR (400 MHz, DMSO-d6): 9.44 (s, 1H, 
NH), 7.60 (s, 1H, Ar-H), 7.45 (s, 1H, Ar-H), 5.46 (s, 1H, OH), 4.91 (s, 1H, CH), 4.125 (q, J = 6.8 Hz, 
2H, CH2), 2.41–1.89 (m, 4H, CH2 × 2), 2.26 (s, 3H, CH3), 1.185 (t, J = 6.8 Hz, 3H, CH3), 0.99 (s, 3H, 
CH3), 0.97 (s, 3H, CH3) ppm; 13C NMR (100 MHz, CDCl3): 14.29, 19.28, 27.23, 32.62, 33.13, 40.71, 
51.00, 61.40, 88.89, 89.61, 106.38, 112.19, 125.59, 140.22, 143.19, 149.30, 150.26, 153.69, 167.76, 
194.91 ppm; MS: m/z: 606.9 [M]+. 
 
Ethyl-2,7,7-trimethyl-5-oxo-4-(pyridin-3-yl)-1,4,6,8-tetrahydroquinoline-3-carboxylate(5k): 
Yellow solid; m.p 147–148°C; 1H NMR (400 MHz, DMSO-d6):  9.12 (s, 1H, NH), 8.40 (s, 1H, Ar-H), 
8.27 (d, J = 9.6 Hz, 1H, Ar-H), 7.18–7.49 (m, 2H, Ar-H), 4.81 (s, 1H, CH), 4.04 (q, J = 14.4 Hz, 2H, 
CH2), 2.48–1.93 (m, 4H, CH2 × 2), 2.24 (s, 3H, CH3), 1.115 (t, J = 14.4 Hz, 3H, CH3), 0.98 (s, 3H, 
CH3), 0.90 (s, 3H, CH3) ppm; 13C NMR (100 MHz, CDCl3): 14.20, 19.42, 27.04, 32.71, 40.93, 41.18, 
50.60, 60.09, 104.84, 111.01, 123.33, 132.85, 134.18, 144.58, 146.18, 149.02, 154.47, 166.88, 195.49 
ppm; MS: m/z: 341.2 [M+H]+. 
 
Ethyl-4-(3-bromo-4-methoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,6,8-tetrahydroquinoline-3-
carboxylate (5l): Brown solid; m.p 189–190°C; IR (KBr, ν cm˗1): 3276, 2939, 1670, 1599, 1489, 
1323, 1279, 1107; 1H NMR (400 MHz, DMSO-d6): 9.02 (s, 1H, NH), 7.26 (s, 1H, Ar-H), 7.06 (d, J = 
7.6 Hz, 1H, Ar-H), 6.91 (d, J = 8.4 Hz, 1H, Ar-H), 4.75 (s, 1H, CH), 3.955 (q, J = 6.8 Hz, 2H, CH2), 
3.74 (s, 3H, OCH3), 2.42–1.96 (m, 4H, 2×CH2), 2.28 (s, 3H, CH3), 1.12 (t, J = 6.8 Hz, 3H, CH3), 0.99 
(s, 3H, CH3), 0.86 (s, 3H, CH3) ppm; 13C NMR (100 MHz, CDCl3): 14.22, 19.13, 27.19, 32.74, 40.0, 
40.91, 51.26, 55.99, 61.73, 102.32, 111.98, 112.87, 113.81, 129.23, 134.72, 138.94, 149.32, 150.11, 
154.03, 167.37, 194.98 ppm; MS: m/z: 448.1 [M+H]+. 
 
Effect of ultrasound on the reaction: Sonication of heterogeneous liquid–solid media proceeds with 
nucleation, which depends largely on the intermolecular attractive forces of the liquid causing 
cohesion. The gas present in the micro bubbles experiences the variation of vapour pressure and 
simultaneous decrease in the liquid pressure creates convex bubble surface, and the unstable pressure 
in the gas pocket leads to implosion of bubbles which produces enormous amounts of heat and 
pressure. Further, the micro bubbles present in the liquid medium leads to the physical effects of 
cavitation. Eventually, the acoustic cavitation is through the formation of gas pockets in the crevices 
of the solid materials. In the liquid medium, several mechanisms such as: micro streaming, 
microturbulence, formation of acoustic waves and microjets (non-linear bubble) accelerate the 
dissolution, heat flow (induces randomness in chemical species) and mass transfer in the medium. 
Thus, ultrasonic irradiation accelerates the rates of the chemical reactions by inducing high local 
temperatures and pressures generated inside the cavitation bubble and near its interface when it 
collapses [4, 5]. In the present heterogeneous reaction, the asymmetric bubble collapse may progress 
in the vicinity of the atomized sodium (solid) surface and may give rise to high-speed liquid jets 
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which can accelerate the collisions between the substrate molecules in the presence of the catalyst and 
hence, the formation of the products takes place rapidly. Owing to the associated chemical and 
mechanical effects, the efficient role of atomized sodium pronounces effectively the synthesis of 
polysubstituted-tetrahydroquinolines in EtOH under ultrasonication. 

 
APPLICATION 

 
Quinoline and a number of derivatives of quinoline exhibit a wide range of biological properties 
including: antimalarial, antimicrobial, antitumor, antiatherosclerotic, antidiabetic, antimutagenic, 
vasodilator, bronchodilator, hepatoprotective and geroprotective activities, and are known to show 
calcium channel blocking property; due to which they find application in the medical and 
pharmaceutical industries. A series of known and novel substituted quinolinones have been prepared 
by a one-pot four-component reaction under ultrasonication, which is considered to a highly energy 
efficient and green technique. The prepared heterocyclic compounds may also exhibit biological 
activity and find application in the pharmaceutical industries. 

 
CONCLUSION 

 
In conclusion, we have developed a clean, simple, economical, ultrasound-assisted, energy efficient, 
atomized sodium catalyzed, one-pot four-component synthesis of polysubstituted-tetrahydro 
quinolines in EtOH as a medium from dimedone, ethyl acetoacetate, ammonium acetate and 
substituted benzaldehydes/ heteroaromatic aldehydes in shorter reaction durations. The outcome of 
our effort is: excellent yield of the products, sustainability of the reaction and promotion of reaction 
rates. The reaction is green as it involves use of a simple and readily available sodium metal as a 
catalyst and a green solvent: ethanol; and is a rational approach towards the synthesis of nitrogen 
based-polysubstituted quinolines under ultrasonic conditions.  
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