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Machine learning  
in CQC 

Information Source (is) 

ACS.org 

 

Screening metallic 
MOFs 
 

Interatomic potentials 
 

 MachLrn 

Task 
 Electrical transport properties of 
 MOFs 

 

- DFT+PBE does not capture physics 
responsible for some part of potential affecting 
electrical transport properties 

 

Methods 
 Machine learning 
 Statistical multi-voting 
 ab initio calculations 

MachLrnMethods 
o Logistic regression (LR) 
o Support vector classification (SVC) 
o  Neural network (NN)  
o  Random forest (RF)  

 
Semi-local DFT to identify most promising candidates 

 
Metallic Metal–Organic Frameworks Predicted by 
the Combination of Machine Learning Methods and 
Ab Initio Calculations 

J. Phys. Chem. Lett., 2018, 9 (16), 4562–4569  
DOI: 10.1021/acs.jpclett.8b01707 

Yuping He, Ekin D. Cubuk, Mark D. Allendorf, Evan J. Reed 
 

Material preparation 
 

Nano MachLrn 

Task  
Formation of Subnanometer Substructures in Nanoassembliesmaterials 
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Methods 
Expt 

 Small-angle X-ray scattering (SAXS) 
 X-ray absorption near-edge structure 

(XANES) spectroscopy 
 

CQC 
o ab initio  

MachLrn 
o NNs 

 

 
Subnanometer Substructures in Nanoassemblies Formed from 
Clusters under a Reactive Atmosphere Revealed Using Machine 
Learning 

J. Phys. Chem. C, 2018, 122 (37), 21686–
21693 

DOI: 10.1021/acs.jpcc.8b07952 
Janis Timoshenko, Avik Halder, Bing Yang, Soenke Seifert, Michael J. Pellin, Stefan Vajda, and Anatoly I. 
Frenkel 
 

SPR 
 

DFT 
 

MachLrn 

Task   Compounds 
 Predictive universal SPR 

 
o Over 12, 000 experimentally synthesized 

and characterized ones 

Machine learning-assisted discovery of solid Li-ion conducting 
materials 
 

Chem. Mater., Just Accepted Manuscript 
DOI: 10.1021/acs.chemmater.8b03272 

Austin D. Sendek, Ekin D. Cubuk, Evan R Antoniuk, GowoonCheon, Yi Cui, and Evan J. Reed 
 

Vibrational Properties 
 

  MachLrn 

Methods 
 

Accuracy 

 random-forest algorithm 
 
 

- 121 different mechanically stable structures of KZnF3 reaches 
mean absolute error of 0.17 eV/Å2 

 
 

Vibrational Properties of Metastable Polymorph Structures by 
Machine Learning 

J. Chem. Inf. Model., Article ASAP 
DOI: 10.1021/acs.jcim.8b00279 

Fleur Legrain, Ambroise van Roekeghem, Stefano Curtarolo,Jesús Carrete, Georg K. H. Madsen, Natalio 
Mingo 
 

HOMO–LUMO   MachLrn 
Task  Methods Descriptors 

HOMO level and HOMO–LUMO 
gapPrediction  
 
 

Method 
 DFT 

 
 
 

o MachLrn 
o molSimplify LASSO 
o Kernel ridge regression 

(KRR) 
o NNs 

o Heuristic 
o Topological 
o Revised Autocorrelation 
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+ Performance of NNstrained with20–30 features is superior to RAC full (153 feature set) 
o full DFT evaluation of 15, 000 molecule design space requires n-days  

+ MachLrn is fast (a few minutes) 
 

 
Strategies and Software 
or Machine Learning Accelerated Discovery in 
Transition Metal Chemistry 
 

Ind. Eng. Chem. Res., 2018, 57 (42), 13973–13986 
DOI: 10.1021/acs.iecr.8b04015 

 

Aditya Nandy, ChenruDuan, Jon Paul Janet, Stefan Gugler, and Heather J. Kulik 
 

 

Interatomic potential MachLrn 
Task   

 NN interatomic potential -- 
a promising next-generation 
atomic potential  
+ Self-learning capability 

and universal 
mathematical structure 

- NNP suffers from highly 
inhomogeneous feature-
space sampling in the 
training set 

 
 

 

 

 
Toward Reliable andransferable Machine Learning  
Potentials: Uniform Training by Overcoming Sampling Bias 

 
J. Phys. Chem. C, 2018, 122 (39), 22790–22795 

DOI: 10.1021/acs.jpcc.8b08063 
 

WonseokJeong, Kyuhyun Lee, DongsunYoo, Dongheon Lee, and Seungwu Han 

 

Correlation energies MachLrn 
Task  

 To predict structure correlation energies (which is a measure of interactions between electrons 
enabling chemists to model behavior of molecule(s) 

Machine learning predicts electron energies 
 

C&EN, 2018, 96 (33), 77 
DOI: 10.1021/cen-09633-scicon3 

Sam Lemonick 
 

Thermodynamic properties   MachLrn 
Task  Prediction   

Thermodynamic properties: [liquid densities, heats of 
vaporization, heat capacities, vapor–liquid equilibrium curves, 
critical temperatures, critical densities, surface tensions;] 
 

+ Feasibility of expanding 
predictions beyond simulation 
using a machine learning model 

 
Predicting Thermodynamic Properties of Alkanes by High-
Throughput Force Field Simulation and Machine Learning 
 

J. Chem. Inf. Model., Article ASAP 
DOI: 10.1021/acs.jcim.8b00407 

Zheng Gong, Yanze Wu, Liang Wu, and Huai Sun 
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Energy MachLrn 
Task  Prediction 

forces and energy of a molecule with only XYZ 
 

 Accurate NeurAlnetworKengINe for Molecular Energies (ANAKIN-ME) 
  Third version called ANI-1ccx 
 Accuracy of CCSD(T) in the computational time of force fields 

 
 

Machine learning offers fast, accurate calculations 
 

C&EN, 2018, 96 (34), 7–7 
DOI: 10.1021/cen-09634-scicon5 

 
Sam Lemonick 

 

CO2 capture 
 

  MachLrn 

Task  Methods- multiscale 

 CO2 capture enhancement metrics of MOF 
Effect of pore chemical/topological features  

 DFT 
 Grand canonical Monte Carlo  
 machine learning 

Role of Pore Chemistry and Topology in the CO2 Capture 
Capabilities of MOFs: From Molecular Simulation 
to Machine Learning 

Chem. Mater., 2018, 30 (18),  6325–6337 
DOI: 10.1021/acs.chemmater.8b02257 

 

Ryther Anderson, Jacob Rodgers, Edwin Argueta, AchayBiong, Diego A. Gómez-Gualdrón 
 

IC50, EC50, Ki 
 

  MachLrn 

Task  
 

Prediction of IC50, EC50, Ki 
 

Data Set 
large ChEMBL data set of preclinical assays  
[of compounds targeting dopamine pathway 
proteins] 
 

Methods 
oo  NNs 
oo  Random 

Forest 
oo  Deep Learning 

 
 
 

 Perturbation 
Theory/Machine Learnin
g (PTML) 
linear model of multiple 
pharmacological 
parameters 
+ 50,000 cases with 

accuracy of 70–91% 
in training and 
external validation 
series 

oo  Organic synthesis, chemical characterization, and pharmacological assay of a new series of l-prolyl-l-
leucyl-glycinamide (PLG) peptidomimetic compoundsfor the first time 

oo  Molecular docking study for some of these compounds with software Vina AutoDock.  
oo  Perturbation Theory/Machine Learning (PTML) -- linear model of multiple pharmacological 

parameters 
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Perturbation Theory/Machine Learning Model of ChEMBL Data for 
Dopamine Targets: Docking, Synthesis, and Assay of New l-Prolyl-
l-leucyl-glycinamide Peptidomimetics 
 

ACS Chem. Neurosci., 2018, 9 (11),  
2572–2587 

DOI: 10.1021/acschemneuro.8b00083 
 

Joana Ferreira da Costa, David Silva, Olga Caamaño, José M. Brea, Maria Isabel Loza, Cristian R. Munteanu, 
Alejandro Pazos, Xerardo García-Mera, ,  Humbert González-Díaz 

 

Atomization energies MachLrn 
Task  Information 

 
 To automatize parametrization process of 

DFTB 
 

 To improve transferability and accuracy 
using large quantum chemical data 

 

 Training with energies, forces of equilibrium 
and nonequilibrium structures of2100 
molecules 

 
  Testset:∼130, 000 organic molecules 

containing O, N, C, H, and F atoms. 
 Result: Atomization energies of the reference 

method can be reproduced within an error of 
∼2.6 kcal/molindicating drastic improvement 
over standard DFTB.  

Methods 
 Density-functional tight-binding (DFTB) 

method  
  Unsupervised machine learning 

 Generalized pair-potentials 
+ Chemical environment is included 

during the learning process 
specific effective two-body 
potentials 

 

 
Generalized Density-Functional Tight-Binding Repulsive 
Potentials from Unsupervised MachineLearning 
 

J. Chem. Theory Comput., 2018, 14 (5),  2341–
2352 

DOI: 10.1021/acs.jctc.7b00933 
 

Julian J. Kranz, Maximilian Kubillus, Raghunathan Ramakrishnan, O. Anatole von Lilienfeld,  Marcus Elstner 
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Adsorption energies    MachLrn 
Task  Methods X 

 To predict adsorption energies of 
CH4 related species on the Cu-based alloys 

 To predict the catalytic performances of 
the solid catalysts 

 Ordinary linear regression 
 Boosting regression (GBR) 
 Extra tree regression (ETR) 

 

12 descriptors 
ETR (RMSEs for 
energies below 0.3 
eV )>> [OLS, 
GBR] 

 

 

 

Toward Effective Utilization of Methane: Machine Learning Prediction of 
Adsorption Energies onMetal Alloys 
 

J. Phys. Chem. C, 2018, 122 (15), 
8315–8326, 
DOI: 10.1021/acs.jpcc.7b12670 

Takashi Toyao, Keisuke Suzuki, Shoma Kikuchi, Satoru Takakusagi, Ken-ichi Shimizu, IchigakuTakigawa 

 

Materials MachLrn 
Task  Methods 

 Comparative 
analysis of cathode 
materials 

 LiNiO2 (LNO) 
 LiNi0.8Co0.15Al0.05O2

 (NCA)  
 

 NCA 
configurational 
space :20,760 
configurations 

 Combined topological 
analysis 
 DFT 
 operandoneutron 
diffraction 
 Machine learning 
algorithms 

Strong dependence of the results of 
optimization on the initial structure guess 
 

Li(Ni, Co, Al)O2 Cathode Delithiation: A Combination of 
Topological Analysis, Density Functional Theory, Neutron 
Diffraction, and Machine Learning Techniques 
 

J. Phys. Chem. C, 2017, 121 (51), 28293–
28305 

DOI: 10.1021/acs.jpcc.7b09760 
 

Roman A. Eremin, Pavel N. Zolotarev, Olga Yu. Ivanshina, Ivan A. Bobrikov 
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Ground-state properties 
 

MachLrn 

Task  Database 
Machine learning (ML) models of 13 electronic ground-state 
properties of organic molecules 

QM9 database [Ramakrishnan et al. Sci. 
Data 2014, 1, 140022] 

Methods.Regression Molecular representations  

 Bayesian ridge regression (BR)  
  Linear regression (LR) with  

 elastic net regularization (EN) 
 Random forest (RF) 
 Kernel ridge regression (KRR) 
 Neural networks 

 Graph convolutions (GC)  
 Gated graph networks (GG) 

o Coulomb matrix 
o  Bag of bonds 
o  Molecular graphs  

o (MG) BAML  
o ECFP4 

o Distribution based variants  
  Histograms of  
 Distances (HD) 
 Angles (HDA/MARAD) 

  Dihedrals (HDAD) 
 

 

 
Molecular Properties 

 Enthalpies  
 Free energies of 

atomization 
 HOMO/LUMO gap 
 HOMO/LUMO 

energies  
 Dipole moment 
 Polarizability 
 Zero point energy 
 Vibrational energy 
 Heat capacity 
 Highest fundamental 

vibrational frequency 
 

 
Prediction Errors of Molecular Machine Learning Models 
Lower than Hybrid DFT Error 
 

J. Chem. TheoryComput. ,2017,  13 (11),  5255–
5264 

DOI: 10.1021/acs.jctc.7b00577 
 

Felix A. Faber, Luke Hutchison, Bing Huang, Justin Gilmer, Samuel S. Schoenholz, George E. Dahl, Oriol 
Vinyals, Steven Kearnes, Patrick F. Riley, and O. Anatole von Lilienfeld 

 

Catalytic activities based on local atomic configurations MachLrn 
Task  Method 

 To direct NO decomposition on RhAu alloy 
nanoparticles 

 Universal machine-learning scheme using a 
local similarity kernel. 

 
Predicting Catalytic Activity of Nanoparticles by a DFT-Aided 
Machine-Learning Algorithm  

J. Phys. Chem. Lett., 2017, 8 (17), 4279–
4283 

DOI: 10.1021/acs.jpclett.7b02010 
Ryosuke Jinnouchi, Ryoji Asahi 
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Properties-- condensed phase 
 

MachLrn 

Task  Methods 
 To determine a polarizable force field 

parameters using only ab initio data from 
quantum mechanics (QM) calculations of 
molecular clusters at the MP2/6-31G(d, p), 
DFMP2(fc)/jul-cc-pVDZ, and 
DFMP2(fc)/jul-cc-pVTZ levels 

 Prediction of experimental condensed phase 
properties 
o Density  
o Heat of vaporization 

 Machine learning (ML) techniques 
with the genetic algorithm (GA) 

 
Systems  
 4943 dimer electrostatic potentials  
 1250 cluster interaction energies for methanol 

 

 

 
 
Machine Learning Force Field Parameters from Ab 
Initio Data 
 

J. Chem. Theory Comput., 2017, 13 (9),  4492–4503 
DOI: 10.1021/acs.jctc.7b00521 

 
Ying Li, Hui Li, Frank C. Pickard, Badri Narayanan, Fatih G. Sen, Maria K. Y. Chan, Subramanian K. R. S. 

Sankaranarayanan, Bernard R. Brooks, Benoît Roux 
 

Discovery of New Half-
Heuslers 
 

MachLrn 

Task  Randomforest 
Method 

 

+ Predicting stability of half-
Heusler (HH) compounds, 
using only experimentally 
reported compounds as a 
training set 

 

 Screened 1:1:1 
compositions with ML: 
71 178  

 Likely stable candidates: 
481  

o Configurational entropies 
o Quasiharmonicontributions 

 

 
 
Materials Screening for the Discovery of New Half-Heuslers: 
Machine Learning versus ab Initio Methods 
 

J. Phys. Chem. B, 2018, 122 (2), 625–632 
DOI: 10.1021/acs.jpcb.7b05296 
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Fleur Legrain, Jesús Carrete, Ambroise van Roekeghem, Georg K.H. Madsen, Natalio Mingo 
Adaptive Basis Sets MachLrn 
Machine Learning Adaptive Basis Sets for Efficient 
Large Scale Density Functional Theory Simulation 
 

J. Chem. Theory Comput., 2018, 14 (8), 4168–4175 
DOI: 10.1021/acs.jctc.8b00378 

 
Ole Schütt and Joost VandeVondele 

 

Electronic structure MachLrn 
Task  WorkFlow 

 To determine electronic structure of 
molecules without DFT 

 

 Molecules’ structure and properties = 
machLrn (maps of molecular electron 
density determined from molecules’ PE) 
 

Machine learning streamlines electronic structure calculations for molecules 
 

C&EN, 2017, 95 (42), 5–5 
DOI: 10.1021/cen-09542-notw3 

 
JyllianKemsley 

 

Thermodynamic Stability MachLrn 
Task Data Modeling 

 PredictingThermodynamic 
Stability of Solids (perovskites) 

 2,  50,  000 cubic perovskites 
(withelements from 
hydrogen to bismuth, 
excluding rare gases and 
lanthanides) 

 
 Perovskites 
Trainingset 20,  000 
Test set 2,  30,  000  

 

 

Methods Information 

 Ridge regression 
 Random forests 
 Extremely randomized trees (including adaptive 

boosting) 
 Neural networks 

 

o Extremely randomized trees: smallest 
mean absolute error of the distance to 
the convex hull (121 meV/atom) 

o Systems (around 500) that are 
thermodynamically stable but that are 
not present in crystal structure 
databases 

 
 
Predicting the Thermodynamic Stability of Solids Combining 
Density Functional Theory and Machine Learning 
 

Chem. Mater., 2017, 29 (12),  5090–5103 
DOI: 10.1021/acs.chemmater.7b00156 

 
Jonathan Schmidt, Jingming Shi, Pedro Borlido, Liming Chen, Silvana Botti, and Miguel A. L. Marques 
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CO adsorption  MachLrn 
Task  Method 

 CO adsorption on Pt nanoclusters  
 Predictive models for site-specific adsorption 

behavior 

Empirical-potential-based GA-DFT 

Information Descriptors 

o Absolute mean error in CO adsorption energy 
prediction of 0.12 eV 

o Similar to underlying error of DFT 
adsorption calculations 

 Structural 
 Electronic 
 Fully frozen adsorption energy—

computationally inexpensive probe of 
CO–Pt bond formation 

 

 
 
Adsorption of CO on Low-Energy, Low-Symmetry Pt 
Nanoparticles: Energy Decomposition Analysis and 
Prediction via Machine-Learning Models 
 

J. Phys. Chem. C, 2017, 121 (10),  5612–5619 
DOI: 10.1021/acs.jpcc.6b12800 

Raymond Gasper,  Hongbo Shi, Ashwin Ramasubramaniam 
 

Forcefields:Construction,   MachLrn 
Task  multistep WorkFlow Alg 

Force Fields 
Machine learning methods in tandem 
with quantum mechanics  Force 
fields 

 Generating diverse reference 
atomic environments and force 
data 

 Choosing a numerical 
representation for the atomic 
environments 

 Down selecting a representative 
training set 

 Learning method  
 

 Simulating complex materials 
phenomena viz.Surface melting, 
stress–strain behavior [it truly goes 
beyond the realm of ab initio 
methods, both in length and time 
scales] 

 Validation of constructed force 
field  
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Machine Learning Forcefields:Construction, Validation, and 
Outlook 
 

J. Phys. Chem. C, 2017, 121 (1),  511–522 
DOI: 10.1021/acs.jpcc.6b10908 

V. Botu, R. Batra, J. Chapman, and R. Ramprasad 
 

 

Electrostatic multipole moments MachLrn 
Predict  
 Electrostatic multipole moments for all topological  

atoms in any amino acid based on molecular geometry only 
 Molecular electrostatic interaction energies 

 
+ Methodology can also handle amino acids with aromatic 

side chains, without the need for modification 
 

 
Fn(Error) kJ mol–1 

Mean prediction error  < 5.3  
Lowest error observed  2.8  
Mean error across the 
entire set  

4.2  
 

 

 

  

Method 
 Krigin

g 

 
Multipolar Electrostatic Energy Prediction for all 20 Natural Amino Acids 
Using Kriging Machine Learning 
 

J. Chem. Theory Comput., 2016, 
12 (6),  2742–2751 

DOI: 10.1021/acs.jctc.6b00457 
 

Timothy L. Fletcher, Paul L. A. Popelier 
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Chemisorption MachLrn 
Task  Data Information 

 Machine-learning-
augmented 
chemisorption model 
Prediction of the 
surface reactivity of 
metal alloys 

 
 

o ab initio adsorption energies and electronic 
fingerprints of idealized bimetallic surfaces 

 
 

 Captures 
complex, 
nonlinear 
interactions of 
adsorbates (e.g., 
CO) on multi-
metallics 

 ∼0.1 eV error 
 

Machine-Learning-Augmented Chemisorption Model for 
CO2 Electroreduction Catalyst Screening 

 
J. Phys. Chem. Lett.,  2015,  6 (18),  pp 3528–3533 

DOI: 10.1021/acs.jpclett.5b01660 
XianfengMa,  Zheng Li,  Luke E. K. Achenie, Hongliang Xin  

 

NMR MachLrn 
Task  Methods  

Prediction  
  Proton and carbon 

nuclear chemical 
shifts,   

  Atomic core level 
excitations, forces  

 

  Machine learning 
models of quantum 
mechanical 
observables of atoms 
in molecules.  

 

 Diverse set of 9 k small organic 
molecules 

 accuracies on par with DFT 
 

 

 
  
Machine Learning for Quantum Mechanical Properties of 
Atoms in Molecules 
 

J. Phys. Chem. Lett., 2015, 6 (16),  3309–3313 
DOI: 10.1021/acs.jpclett.5b01456 

 
Matthias Ru, Raghunathan Ramakrishnan, O. Anatole von Lilienfeld 

SEMO-parameters  MachLrn 
Task  WorkFlow Information 
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 Improvements in the 
accuracy of SEMO 
by 
o ML models for 

the parameters  
 

o ML-SQC  
o Automatic tuning of SQC 

parameters for individual 
molecules 

+ Improved accuracy  
+ Without deteriorating 

transferability to molecules with 
molecular descriptors very 
different from those in the training 
set 

 Semiempirical OM2 appliedto 
6095 constitutional isomers 
C7H10O2 
o accurate ab 

initio atomization 
enthalpies are available 

 Mean absolute errors in 
atomization enthalpies : 

[ 6.3 to 1.7 kcal/mol] 

Machine Learning of Parameters for Accurate Semiempirical 
Quantum Chemical Calculations 
 

J. Chem. Theory Comput., 2015, 11 (5),  2120–
2125 

DOI: 10.1021/acs.jctc.5b00141 
Pavlo O. Dral, O. Anatole von Lilienfeld, and Walter Thiel 

 
 

Atomization energies MachLrn 
Task  Methods 

 
Accuracy 

 Molecular 
atomization 
energies  

 Machine learning kernels in closed and analytic form  
o Atomic property weighted radial distribution 

function (AP-RDF) + descriptor with a Gaussian 
kernel.  
 improvement in performance of the Bag-of-
Bonds descriptor when the bond type restriction 
is included in AP-RDF. 

o MAE = 1.7  
kcal/mol  

o QM7 data set 

 
 
Bond Type Restricted Property Weighted Radial 
Distribution Functions for 
accurate MachineLearning Prediction of Atomization 
Energies 

J. Chem. Theory Comput., 2018, 14 (10),  5229–
5237 

DOI: 10.1021/acs.jctc.8b00788 

MykhayloKrykunov,  Tom K. Woo 
 

 

 

 

 

Drug Discovery--Computational MachLrn 



AdvancementApplicationAnnouncementCNN Machine Learning in CQC                          448 
 

 

 
 
Transforming Computational Drug Discovery  
with Machine Learning and AI 

ACS Med. Chem. Lett., 2018, 9 (11), pp 1065–069 
DOI: 10.1021/acsmedchemlett.8b00437 x 

 
Justin S. Smith, Adrian E. Roitberg, OlexandrIsayev 

 

To predict important new configurations MachLrn 
Task  

o Multireference problem of the water molecule with elongated bonds.  

Methods 
 First-order perturbation 
 Random selection  
 Monte carlo configuration interaction 

 NNs discriminate between important and 
unimportant configurations 

Machine Learning Configuration Interaction J. Chem. Theory Comput., 2018, 14 (11),  5739–5749 
DOI: 10.1021/acs.jctc.8b00849 

J. P. Coe 
 

Surface Chemistry MachLrn 
Task  Methods  

 

 Complex 
atomic-scale 
structures  

 Chemical 
reactivity of 
ta-C 
(Tetrahedral 
amorphous 
carbon)surfac
es 

 Machine 
learning 

  Density 
functional tight 
binding 

 DFT 

Computational Surface Chemistry of Tetrahedral 
Amorphous Carbon by Combining MachineLearning and 
Density Functional Theory 

Chem. Mater.,  2018,  30 (21),  pp 7438–7445 
DOI: 10.1021/acs.chemmater.8b02410 

 
Volker L. Deringer,  Miguel A. Caro,  Richard Jana,  Anja Aarva,  Stephen R. Elliott,  Tomi Laurila, 

GáborCsányi,  and Lars Pastewka 
 

 

Molecular Recognition of Myocardial Infarction MachLrn 
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Task   

 

Identification 
 Cardiac pathology molecules classification 
 Chemical identity of small metabolites and 

lipids  

Method 
 Gradient boosting tree ensemble 

 

Combining Desorption Electrospray Ionization Mass 
Spectrometry Imaging and Machine Learning for 
Molecular Recognition of Myocardial Infarction 

Anal. Chem., 2018, 90 (20),  12198–12206 
DOI: 10.1021/acs.analchem.8b03410 

Katherine Margulis, Zhenpeng Zhou, Qizhi Fang, Richard E. Sievers, Randall J. Lee, and Richard N. Zare 
 

Prediction- Estrogen Receptor Binding  MachLrn 
X 

 Chemical features  
 Binary fingerprints (ECFP6, FCFP6, ToxPrint, or MACCS keys)  
 Continuous molecular descriptors from RDKit 

classic MachLrnAlg 
o Bernoulli Naive Bayes 
o AdaBoost Decision Tree 
o Random Forest 
o SVM 
o Deep NNs 

Metrics  

 

 Recall 
 Precision 
 F1-score 
 Accuracy 
 Area under receiver 

operating characteristic 
curve 

 Cohen’s Kaa 
 Matthews correlation 

coefficient 
 
Comparing Multiple Machine Learning Algorithms and Metrics 
for Estrogen Receptor Binding Prediction 

Mol. Pharmaceutics, 2018, 15(10),4361-
4370 

DOI:10.1021/acs.molpharmaceut.8b00546xx 
Daniel P. Russo,Kimberley M. Zorn, Alex M. Clark, Hao Zhu, and Sean Ekins 

 

Atomistic Simulations MachLrn 
Task  Methods 

 Defect Dynamics 
in 2-D MoS2 

o Supervised machine learning,   
o  in situ high-resolution 

transmission electron 
microscopy (s)  

o MD 
o GA with MDto identify the 

long-range structure of 
randomly distributed point 
defects (sulfur vacancies) 

 

 
Defect Dynamics in 2-D MoS2 Probed by Using Machine Learning,  
Atomistic Simulations,  and High-Resolution Microscopy 

ACS Nano,  2018,  12 (8),  pp 8006–
8016 

DOI: 10.1021/acsnano.8b02844 
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Tarak K. Patra,  Fu Zhang,  Daniel S. Schulman,  Henry Chan,  Mathew J. Cherukara,  Mauricio Terrones , 
Saptarshi Das∇,  Badri Narayanan,  Subramanian K. R. S. Sankaranarayanan 

 

Correlation energies  MachLrn 
Task  WorkFlow 

 Predicting electronic structure 
correlation energies using Hartree–Fock 
input.  

 Maximizing transferability across 
chemical systems and compactness of 
the feature set,   

 Total correlation energy =Fn( individual and pair 
contributions from occupied molecular orbitals)  

 Gaussian process regression  
 To predict the contributions from a feature set 

[molecular orbital properties Ex:Fock, Coulomb, 
and exchange matrix elements] 

 

 
 
Transferability in Machine Learning for Electronic 
Structure via the Molecular Orbital Basis 

J. Chem. Theory Comput., 2018, 14 (9),  4772–
4779 

DOI: 10.1021/acs.jctc.8b00636 
Matthew Welborn, Lixue Cheng, and Thomas F. Miller, III 

 

Drug Discovery MachLrn 
Machine Learning in Drug Discovery J. Chem. Inf. Model., 2018, 58 (9),  1723–1724 

DOI: 10.1021/acs.jcim.8b00478 
Se Hochreiter, Guenter Klambauer, and Matthias Rarey 

 

Partial atomic charge assignment  MachLrn 
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Discovering a Transferable Charge Assignment Model 
Using Machine Learning 

J. Phys. Chem. Lett., 2018, 9 (16),  4495–4501 
DOI: 10.1021/acs.jpclett.8b01939 

Andrew E. Sifain, Nicholas Lubbers, Benjamin T. Nebgen, Justin S. Smith, Andrey Y. Lokhov, 
OlexandrIsayev,Adrian E. Roitberg, Kipton Barros, and Sergei Tretiak 

 

Crystal Structure  MachLrn 
Task  Methods Pearson Crystal Database 

 To predict crystal 
structure  

 Machine learning 
  DFT 

 24 913 unique chemical formulas existing 
between 290 and 310 K They contain 10 711 
unique crystal structures  

 
Metrics Range 

Accuracy 97 ± 2 to 85 ± 2%; 
Average precision 86 ± 2 to 79 ± 2% 
Average recall 73 ± 2 to 54 ± 2% 
Minimum-class 
 representatives  

150 to 10,  
 

Machine Learning and Energy Minimization Approaches 
for Crystal Structure Predictions: A Review and New 
Horizons 

Chem. Mater., 2018, 30 (11),  3601–3612 
DOI: 10.1021/acs.chemmater.7b05304 

Jake Graser, Steven K. Kauwe, and Taylor D. Sparks 
 

Molecular properties MachLrn 
Task  Descriptors Methods 

 Prediction of molecular properties 
across chemical compound space  

 Two-body and three-body 
interaction descriptors 
 Invariant to 

translation, rotation, 
and atomic indexing 

 Kernel ridge 
regression 

  DFT 

 

 
Best model (Training set : 
[5000 random molecules]) 

Accuracy 
( kcal/mol) 

On remaining 
 molecules 

DB 

0.8  1, 868  GDB-7 
1.5  16, 722  GDB-9 

 
 

 
 

Many-Body Descriptors for Predicting Molecular Properties 
with Machine Learning: Analysis of Pairwise and Three-
Body Interactions in Molecules 

J. Chem. Theory Comput., 2018, 14 (6),  2991–
3003 
DOI: 10.1021/acs.jctc.8b00110xx 
 

WiktorPronobis, Alexandre Tkatchenko, and Klaus-Robert Müller 
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Dynamics simulation of polyatomic 
systems 

MachLrn 

Task  Method 

o Learning potential 
energy surfaces in 
nonadiabatic MD 

 Kernel ridge regression 
 ML-PESs are consistent with 

those based on CASSCF  
Potential Energy Surfaces 

 
Inclusion of Machine Learning Kernel Ridge Regression Potential 
Energy Surfaces in On-the-Fly Nonadiabatic Molecular Dynamics 
Simulation 

J. Phys. Chem. Lett., 2018, 9 (11),  2725–
2732 

DOI: 10.1021/acs.jpclett.8b00684xx 
 

Deping Hu, Yu Xie, Xusong Li, Lingyue Li, and Zhenggang Lan 
 

Computer-aided synthesis planning MachLrn 
Task  WorkFlow 

 Data-driven approaches to synthesis 
planning. 

 Input  :Molecular structure  
 Output:Sorted list of detailed reaction 

schemes 
 Each connect the target to via a series of 

chemically feasible reaction through 
purchasable starting materials  

Methods Large reaction corpora 

 Retrosynthetic planning 
 Anticipating the products of chemical 

reactions 
 Earlier Chemists decide how to synthesize 

small molecule compounds  
 

 United States Patent and Trademark Office 
(USPTO)  

 Reaxys,  
 SciFinder databases 

o Millions of tabulated reaction examples 

 
 
Machine Learning in Computer-Aided Synthesis Planning  Acc. Chem. Res., 2018, 51 (5),  1281–1289 

DOI: 10.1021/acs.accounts.8b00087 
 

Connor W. Coley, William H. Green, and Klavs F. Jensen 
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Energy gap MachLrn 
Task  Data & Descriptors 

 Predicting the energy gaps   >12 000 porphyrins from the Computational Materials 
Repository  

 Electrotopological-state index,   

Methods 
o Domain knowledge of 

chemical graph theory 

 

 
 

Machine-Learning Energy Gaps of Porphyrins with 
Molecular Graph Representations 

J. Phys. Chem. A, 2018, 122 (18),  4571–4578 
DOI: 10.1021/acs.jpca.8b02842xx 

Zheng Li, NoushinOmidvar, Wei Shan Chin, Esther Robb, Amanda Morris, Luke Achenie, Hongliang Xin 
 

Molecular atomization energies MachLrn 
Task   

 

o Ground state molecular atomization 
energies  

Significantly Improving the Prediction of Molecular Atomization 
Energies by an Ensemble of Machine Learning Algorithms and 
Rescanning Input Space: A Stacked Generalization Aroach 

J. Phys. Chem. C, 2018, 122 (16),  8868–
8873 

DOI: 10.1021/acs.jpcc.8b03405 
Ruobing Wang 
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CQC MachLrn 
Task  

 To reduce the dimensionality of a complex molecular system  
 Essential/ internal coordinates  

o Specific interatomic distances  
o  Dihedral angles 

Machine Learning of Biomolecular Reaction Coordinates J. Phys. Chem. Lett., 2018, 9 (9),  2144–2150 
DOI: 10.1021/acs.jpclett.8b00759xx 

Simon Brandt, Florian Sittel, Matthias Ernst, and Gerhard Stock 
 

Band gap MachLrn 
Task  Methods 

 To predict band gap of inorganic solids   Support vector classification 
 DFT (PBE-level) calculated 

 

 
Predicting the Band Gaps of Inorganic Solids by Machine 
Learning 

xx 
J. Phys. Chem. Lett., 2018, 9 (7),  1668–1673 

DOI: 10.1021/acs.jpclett.8b00124 
YaZhuo, Aria Mansouri Tehrani, JakoahBrgoch 

 

Partial charges  Prediction MachLrn 
Task   

 Parametrization of small organic 
molecules for classical molecular 
dynamics simulations 

 

 

Methods 
 DFT 

Machine Learning of Partial Charges Derived from High-
Quality Quantum-Mechanical Calculations 

J. Chem. Inf. Model., 2018, 58 (3),  579–590 
DOI: 10.1021/acs.jcim.7b00663 

Patrick Bleiziffer, Kay Schaller, SereinaRiniker 
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Moleules vectors MachLrn 
Task  Mol2vec 

 To learn vector representations of molecular 
substructures 

 Learns vector representations of molecular 
substructures 

  Compounds can finally be encoded as 
vectors by summing the vectors of the 
individual substructures  

Methods 
 Proteochemometric approach  
 That is alignment-independent and used for 

proteins with low sequence similarities 
 Unsupervised machine learning approach 

o Yields dense vector representations 
o Overcomes drawbacks of 

common compound feature 
representations such as 
sparseness and bit collisions 

 

Mol2vec: Unsupervised Machine Learning Aroach with 
Chemical Intuition 

J. Chem. Inf. Model., 2018, 58 (1),  27–35 
DOI: 10.1021/acs.jcim.7b00616 

 
Sabrina Jaeger, Simone Fulle, Samo Turk 

 

MaterialsDesirable properties MachLrn 
Task  Methods 

 
 Acceleration of search for materials with desired properties  
 For an arbitrary composition of a compound , what crystal structures 

are adopted 

 Support vector 
machine  

 Random forest algs. 
o Discovery of RhCd, the first new binary AB compound to be found in over 15 years, with a CsCl-type 

structure 
o New candidates for thermoelectric materials, including previously unknown compounds (e.g., TiRu2Ga 

with Heusler structure; Mn(Ru0.4Ge0.6) with CsCl-type structure) and previously reported compounds but 
counterintuitive candidates (e.g., Gd12Co5Bi). 

- Machine-learning models are only as good as the experimental data used to develop them  
  Experimental work will continue to be necessary to improve the predictions made by machine 

learning 
 
Discovery of Intermetallic Compounds from Traditional to 
Machine-Learning Aroaches 

Acc. Chem. Res., 2018, 51 (1),  59–68 
DOI: 10.1021/acs.accounts.7b00490 

 
Anton O. Oliynyk and Arthur Mar 
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Electron correlation energy MachLrn 
Task  Systems Methods 

 To predict dynamic electron 
correlation energy of an atom or a 
bond in a molecule utilizing 
topological atoms 

 Water monomer 
 Water dimer  
 van der Waals complex  

 H2···He 

 Kriging (Gaussian 
Process 
Regression with a 
non-zero mean 
function)  

 New method by 
which dispersion 
potentials for 
molecular 
simulation can be 
generated 

 

 
Machine Learning of Dynamic Electron Correlation 
Energies from Topological Atoms 

J. Chem. Theory Comput., 2018, 14 (1),  216–224 
DOI: 10.1021/acs.jctc.7b01157 

 
James L. McDonagh, Arnaldo F. Silva, Mark A. Vincent, and Paul L. A. Popelier 

 

PES MachLrn 

 37 isomers are identified within 180 
kJ·mol–1 of the global-minimum 
structure 

- Cluster structures are grouped using hierarchical 
clustering 

 
Partitions the PES in terms of nuclear 
configuration. 
 
o Calculated IR spectra for the various isomers 

are then compared with the isomer-specific IR 
spectra by means of the cosine distance metric 

 
o To facilitate spectral assignment  
o To identify which regions of the PES are 

populated in the electrospray ionization 
process. 
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Applying Machine Learning to Vibrational Spectroscopy J. Phys. Chem. A, 2018, 122 (1),  167–171  

DOI: 10.1021/acs.jpca.7b10303 
Weiqiang Fu, W. Scott Hopkins 

 

Typical Machine Learning Methods 

Open-source libraries for MachLrn 
 

 

o Scikitlearn,  
o TensorFlow  
o PyTorch4 
o Google's TensorFlow. 
o Nervana Neon. 
o Amazon Web Services. 
o OpenNN. 
o Apache Spark MLlib. 
o Caffe. 
o Veles 

  
 

Machine Learning Software 
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Machine Learning methods (Algs.) 
 
 

Regression 
o Linear (LR)  

o Ordinary 
o With elastic net regularization 

(EN)  
o Stepwise Regression 
o Bayesian ridge (BR)  
o Logistic Regression 

o Kernel ridge (KRR) 
o Boosting (GBR) 

 
o Extra tree (ETR) 
o  
o Multivariate Adaptive Regression Splines 

(MARS) 
o Locally Estimated Scatterplot Smoothing 

(LOESS) 
o Ridge Regression  
o Least Absolute Shrinkage and Selection 

Operator (LASSO)  
o Elastic Net 
o  Least-Angle Regression (LARS) 

 
 
 

 
 

Bayesian algorithms 
• Naive Bayes  
• Gaussian Naive Bayes 
 • Multinomial Naive Bayes 
• Averaged One-Dependence Estimators (AODE) 
 • Bayesian Belief Network (BBN)  
• Bayesian Network (BN) 

 

 

Dimensionality Reduction 

 

o Principal Component Analysis (PCA)  
o Principal Component Regression (PCR) 
o Partial Least Squares Regression (PLSR)  

 
o Sammon Mapping 
o Multidimensional Scaling (MDS) 
o Projection Pursuit 

 
Discriminant Analysis 
 

o Linear Discriminant Analysis (LDA)  
o Mixture Discriminant Analysis (MDA) 
o Quadratic Discriminant Analysis (QDA)  
o Flexible Discriminant Analysis (FDA) 

  

 
clustering algorithms 

o k-Means  
o k-Medians  
o Expectation Maximisation (EM)  
o Hierarchical Clustering 

 

 
Decision Tree Algorithms 
o Classification and Regression Tree (CART)  
o Iterative Dichotomiser 3 (ID3)  
o C4.5 and C5.0 (different versions)  
o Chi-squared Automatic Interaction Detection 

(CHAID)  
o Decision Stump  
o M5  
o Conditional Decision Trees 

 

  
 

Instance-based Algorithms 
o k-Nearest Neighbor (kNN) 
o Learning Vector Quantization (LVQ) 

 
Association Rule Learning Algorithms 
• Apriori algorithm 
 • Eclat algorithm 
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o Self-Organizing Map (SOM)  
o  Locally Weighted Learning (LWL) 

 

  
 

Deep Learning Algorithms 
o Deep Boltzmann Machine (DBM)  
o Deep Belief Networks (DBN) 
o Convolutional Neural Network (CNN) 
o Stacked Auto-Encoders 

 
 

 

 
Artificial Neural Network 

o Perceptron  
o Hopfield Network  
o Radial Basis Function Network (RBFN)  
o Graph convolutions (GC)  
o Gated graph networks (GG 
o Deep Learning Deep NNs 

 
 

  
Ensemble Algorithms 

 
 

o Boosting  
o Bootstrapped Aggregation (Bagging) 
o AdaBoost  
o Stacked Generalization (blending)  
o Gradient Boosting Machines (GBM)  
o Gradient Boosted Regression Trees (GBRT)  
o Random Forest 
o Extremely randomized trees (including 

adaptive boosting) 
 

 
 

 Type Size Dimension 
Data Symbolic 

Boolean 
Numeric 
Pixel,  …. 

Small 
Large 
Big 

[1, 2, 3] 
[4, 5, ….] 

 Data Science   
    
Artificial intelligence Symbolic  
Computational intelligence Numeric  
Machine learning   
Deep learning   

 

 
Learning [Life,  Machine] 
Life [animal,  Human] 
Learning intensity [Deep,  normal] 
  

 
 

 
  

Machine Learning  
[Learning style;  
Similarity form 
 or Function] 

  

Learning Style 
[Supervised; 
Unsupervised;  
Semi-Supervised] 

Similarity form  [Regression;  
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Machine learning 

o Unsupervised 
o Semi-supervised 
o supervised 
o hybrid 

 

 or function Instance-based 
Regularization;  
Decision Tree 
Clustering  
Deep Learning; 
Dimensionality Reduction 
Ensemble 
 

 
 
 

 

 
  
Input o Multiple levels of representation 

o Single source 
o Fusion 

 
 

 
Data 

 Noise [Low, high] 
Bias 

uncertainty 

Redundant Inconsistent 
 

  
 

Models: 
o Inadequate; overambitious; 
o Empirical ; Theoretical  

 

 
Theories: 

low level; complicated hierarchical, 
; 

 

 

Performance  Data uncertainity 
Human level or above 

 

 
Real time,  dynamic live  
molecular/atomic/electron level 

 

  
 

Phenomena:  

Completely known  but difficult to model 
Not completely known  
In a compartment 
 or sub phenomenon 

The rest can be modelled 

Vague  
 

 
High level scientific computing 
Software 

Python/R/Matlab,  Mathematica 

  
Low-level libraries C/C++/Fortran/Assembly 
  

 

 

CQC-derived properties CQC-derivedproperties 

o Electron energies o Thermodynamic properties 
o HOMO  
o  HOMO–LUMO gap Prediction  o Chemisorption 

o Forces and energy o CO adsorption on Pt nanoclusters  
o Force Fields 

o Interatomic potential o Discovery in Transition Metal 
Chemistry 

o Polarizable force field parameters o Vibrational  
o Electrostatic multipole moment o NMR (1H1;13C) 
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CQC-methods  Experimental 

 DFT 
 Grand canonical Monte Carlo  
 Density-functional tight-binding (DFTB) method 

 Combined 
topological 
analysis 

 

o Small-angle X-
ray scattering 
(SAXS)  

o X-ray 
absorption 
near-edge 
structure 
(XANES) 
spectroscopy 

o Neutron 
diffraction 

 

Molecular representations 
DataBases 

o Coulomb matrix 
o  Bag of bonds 
o  Molecular graphs  
o (MG) BAML  
o ECFP4  
o Distribution based variants  
o histograms of  

o distances (HD) 
o angles (HDA/MARAD)  
o  dihedrals (HDAD 

o QM9 database [Ramakrishnan et al. Sci. Data 2014, 1, 
140022] 

 

ACS.org: Information Source (is)  

R. Sambasiva Rao, School of Chemistry  
Andhra University, Visakhapatnam 

rsr.chem@gmail.com 
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