Available online at www.joac.info

ISSN: 2278-1862

Journal of Applicable Chemistry

2019, 8 (1): 435-461 (International Peer Reviewed Journal)

New Chemi N=C			
	2.5		
New News of Chem (NNC) ChemNewsNew (CNN)			

Machine learning	Information Source (is)
in CQC	ACS.org

Screening metallic Interatomic potentials MOFs	3 MachLrn
Task → Electrical transport properties of → MOFs	 DFT+PBE does not capture physics responsible for some part of potential affecting electrical transport properties
Methods Machine learning Statistical multi-voting ab initio calculations 	MachLrnMethods•Logistic regression (LR)•Support vector classification (SVC)•Neural network (NN)•Random forest (RF)
	Semi-local DFT \rightarrow to identify most promising candidates
Metallic Metal–Organic Frameworks Predict the Combination of Machine Learning Method Ab Initio Calculations Yuping He, Ekin D. C	

Material preparation	Nano	MachLrn
Task		
Formation of Subnanomet	er Substructures in Nanoassembliesmaterials	

Methods			
 Expt → Small-angle X-ray scattering (SAXS) → X-ray absorption near-edge structure (XANES) spectroscopy 	CQC ⊇ ab initio	<mark>MachLrn</mark> <u>♀</u> NNs	

Subnanometer Substructures in Nanoassemblies Formed from
Clusters under a Reactive Atmosphere Revealed Using MachineJ. Phys. Chem. C, 2018, 122 (37), 21686–
21693LearningDOI: 10.1021/acs.jpcc.8b07952Janis Timoshenko, Avik Halder, Bing Yang, Soenke Seifert, Michael J. Pellin, Stefan Vajda, and Anatoly I.
Frenkel

SPR	DFT			MachLrn
Task			Compounds	
Predictive universa	al SPR	<u>0</u>	Over 12, 000 experimentally and characterized ones	y synthesized
Machine learning-assisted discovery of solid Li-ion conducting materials Chem. Mater., Just Accepted Manuscript DOI: 10.1021/acs.chemmater.8b03272				
Austin D. Sendek, Ek	in D. Cubuk, Evan R Anton	iuk, Gow	oonCheon, Yi Cui, and Evan	I J. Reed

				4
Vibrational Properties				MachLrn
Methods		Accura	ncy	
 → random-forest algorithm 121 different mechanically stable structures of KZnF3 reaches mean absolute error of 0.17 eV/Å2 			ZnF3 reaches	
Vibrational Properties of Metastable Polymorph Structures by Machine Learning J. Chem. Inf. Model., Article ASAF DOI: 10.1021/acs.jcim.8b00279				
Fleur Legrain, Ambroise van R Mingo	oekeghe	em, Stefano Curtarolo,Jesús Carrete, Ge	eorg K. H. Madsen, N	Vatalio

HOMO-LUMO		MachLrn
Task	Methods	Descriptors
HOMO level and HOMO–LUMO gapPrediction Method → DFT	 MachLrn molSimplify LASSO Kernel ridge regression (KRR) NNs 	 Heuristic Topological Revised Autocorrelation

- Performance of NNstrained with20–30 features is superior to RAC full (153 feature set)
 o full DFT evaluation of 15, 000 molecule design space requires n-days
- + MachLrn is fast (a few minutes)

Strategies and Software or Machine Learning Accelerated Discovery in Transition Metal Chemistry Ind. Eng. Chem. Res., 2018, 57 (42), 13973–13986 DOI: 10.1021/acs.iecr.8b04015

Aditya Nandy, ChenruDuan, Jon Paul Janet, Stefan Gugler, and Heather J. Kulik

WonseokJeong, Kyuhyun Lee, Dongsun Yoo, Dongheon Lee, and Seungwu Han

Correlation energies	MachLrn		
Task			
 To predict structure correlation energies (which enabling chemists to model behavior of molecule(s) 	is a measure of interactions between electrons		
Machine learning predicts electron energies	C&EN, 2018, 96 (33), 77		
	DOI: 10.1021/cen-09633-scicon3		
Sam Lemonick			

Thermodynamic properties				MachLrn
Task	Prediction			
vaporization, heat capa	rties: [liquid densities, heats of acities, vapor–liquid equilibrium curves, ritical densities, surface tensions;]	+	Feasibility of exp predictions beyon using a machine	nd simulation
	c Properties of Alkanes by High- nulation and Machine Learning		<i>Chem. Inf. Model.</i> DOI: 10.1021/ac	
	Zheng Gong, Yanze Wu, Liang Wu, and	I <u>Huai S</u>	<u>sun</u>	

Energy			MachLrn
Task	Prediction		
forces and energy of a	molecule with only XYZ		
Third version called A	rKengINe for Molecular Energies (A NI-1ccx (T) in the computational time of force		
Machine learning offers fast	, accurate calculations	<i>C&EN</i> , 20 DOI: 10.1021/cen	18, 96 (34), 7–7 1-09634-scicon5
	Sam Lemonick		

CO₂ capture MachLrn Task **Methods- multiscale** • DFT CO₂ capture enhancement metrics of MOF • → Grand canonical Monte Carlo Effect of pore chemical/topological features • machine learning Role of Pore Chemistry and Topology in the CO₂ Capture Chem. Mater., 2018, 30 (18), 6325–6337 Capabilities of MOFs: From Molecular Simulation **DOI:** 10.1021/acs.chemmater.8b02257 to Machine Learning

Ryther Anderson, Jacob Rodgers, Edwin Argueta, AchayBiong Diego A. Gómez-Gualdrón

IC ₅₀ , EC ₅₀ , <i>K</i> _i		MachLrn		
Task Prediction of IC ₅₀ , EC ₅₀ , K _i Data Set large ChEMBL data set of preclinical assays [of compounds targeting dopamine pathway proteins]	Methods O NNs O Random Forest O Deep Learning	 Perturbation Theory/Machine Learnin g (PTML) linear model of multiple pharmacological parameters + 50,000 cases with accuracy of 70–91% in training and external validation series 		
 Organic synthesis, chemical characterization, and pharmacological assay of a new series of l-prolyl-l-leucyl-glycinamide (PLG) peptidomimetic compoundsfor the first time Molecular docking study for some of these compounds with software Vina AutoDock. 				

• Perturbation Theory/Machine Learning (PTML) -- linear model of multiple pharmacological parameters

Joana Ferreira da Costa, David Silva, Olga Caamaño, José M. Brea, Maria Isabel Loza, Cristian R. Munteanu, Alejandro Pazos, Xerardo García-Mera, , Humbert González-Díaz

Atomization energies	MachLrn
Task	Information
To automatize parametrization process of DFTB	Training with energies, forces of equilibrium and nonequilibrium structures of2100 molecules
• To improve transferability and accuracy using large quantum chemical data	 Testset:~130,000 organic molecules containing O, N, C, H, and F atoms. Result: Atomization energies of the reference method can be reproduced within an error of ~2.6 kcal/molindicating drastic improvement over standard DFTB.
 Methods Density-functional tight-binding (DFTB) method Unsupervised machine learning 	 ✓ Generalized pair-potentials + Chemical environment is included during the learning process → specific effective two-body potentials
	C = F
Generalized Density-Functional Tight-Binding Repu Potentials from Unsupervised MachineLearning	lsive J. Chem. Theory Comput., 2018 , 14 (5), 2341– 2352 DOI: 10.1021/acs.jctc.7b00933
Julian J. Kranz, Maximilian Kubillus, Raghunathan Rama	akrishnan, O. Anatole von Lilienfeld, Marcus Elstner

Adsorption energies MachLrn **Methods** Task Х To predict adsorption energies of 12 descriptors Ordinary linear regression CH₄ related species on the Cu-based alloys ETR (RMSEs for Boosting regression (GBR) energies below 0.3 To predict the catalytic performances of Extra tree regression (ETR) the solid catalysts eV)>> [OLS, GBR] able of Elements Ddic B C N 0 F AI Si P S CI Ga Se Br Sn O.S Sb Te 1 Pb Bi Po At Ts Ъ Bk Toward Effective Utilization of Methane: Machine Learning Prediction of J. Phys. Chem. C, 2018, 122 (15), Adsorption Energies onMetal Alloys 8315-8326, **DOI:** 10.1021/acs.jpcc.7b12670

Takashi Toyao, Keisuke Suzuki, Shoma Kikuchi, Satoru Takakusagi, Ken-ichi Shimizu, IchigakuTakigawa

Materials			MachLrn
Task		Methods	
 Comparative analysis of cathode materials LiNiO₂ (LNO) LiNi_{0.8}Co_{0.15}Al_{0.05}O₂ (NCA) NCA configurational space :20,760 configurations 	 Combined topological analysis DFT operandoneutron diffraction Machine learning algorithms 		analysis analysis Density functional
Li(Ni, Co, Al)O ₂ Cathode De Topological Analysis, Density Diffraction, and Machine Learnin	Functional Theory, Neutron	-	<i>hem. C</i> , 2017 , <i>121</i> (51), 28293– 28305 DOI: 10.1021/acs.jpcc.7b09760
Roman A. Erem	n, Pavel N. Zolotarev, Olga Yu. I	vanshina, Iva	n A. Bobrikov

Felix A. Faber, Luke Hutchison, Bing Huang, Justin Gilmer, Samuel S. Schoenholz, George E. Dahl, Oriol Vinyals, Steven Kearnes, Patrick F. Riley, and O. Anatole von Lilienfeld

Catalytic activities based on local atomic configurations	MachLrn
Task	Method
 To direct NO decomposition on RhAu alloy nanoparticles 	• Universal machine-learning scheme using a local similarity kernel.
Predicting Catalytic Activity of Nanoparticles by a DI Machine-Learning Algorithm	FT-Aided J. Phys. Chem. Lett., 2017, 8 (17), 4279– 4283 DOI: 10.1021/acs.jpclett.7b02010
Ryosuke Jinnouch	

Properties condensed phase	MachLrn
Task	Methods
 To determine a polarizable force field parameters using only ab initio data from quantum mechanics (QM) calculations of molecular clusters at the MP2/6-31G(d, p), DFMP2(fc)/jul-cc-pVDZ, and DFMP2(fc)/jul-cc-pVTZ levels Prediction of experimental condensed phase properties Density Heat of vaporization 	 Machine learning (ML) techniques with the genetic algorithm (GA) Systems 4943 dimer electrostatic potentials 1250 cluster interaction energies for methanol
	-24 -21 -18 -15 -12 -9 -6 -3 0 3 ΔE (kcal/mol)
Machine Learning Force Field Parameters from Ab Initio Data	J. Chem. Theory Comput., 2017 , 13 (9), 4492–4503 DOI: 10.1021/acs.jctc.7b00521
Ying Li, Hui Li, Frank C. Pickard, Badri Narayanan, F	atih G. Sen. Maria K. Y. Chan. Subramanian K. R. S.

Ying Li, Hui Li, Frank C. Pickard, Badri Narayanan, Fatih G. Sen, Maria K. Y. Chan, Subramanian K. R. S. Sankaranarayanan, Bernard R. Brooks, Benoît Roux

Materials Screening for the Discovery of New Half-Heuslers:J. Phys. Chem. B, 2018, 122 (2), 625–632Machine Learning versus ab Initio MethodsDOI: 10.1021/acs.jpcb.7b05296

Fleur Legrain, Jesús Carrete, Ambroise van Roekeghem, Georg K.H. Madsen, Natalio Mingo				
Adaptive Basis Sets		MachLrn		
Machine Learning Adaptive Basis Large Scale Density Functional Th		<i>J. Chem. Theory Comput.</i> , 2018 , <i>14</i> (8), 4168–4175 DOI: 10.1021/acs.jctc.8b00378		
Ole Schütt and Joost VandeVondele				

Electronic structure		MachLrn			
Task		WorkFlow			
To determine electronic structure of molecules without DFT	machLrn (1	structure and properties = maps of molecular electron ermined from molecules' PE)			
Machine learning streamlines electronic structure calculat	ions for molecules	<i>C&EN</i> , 2017, <i>95</i> (42), 5–5 DOI: 10.1021/cen-09542-notw3			
JyllianKemsley					

Thermodynamic Stability	Macl	ıLrn	
Task	Data]	Modeling
 PredictingThermodynamic Stability of Solids (perovskites) 	 2, 50, 000 cubic perovskites (withelements from hydrogen to bismuth, excluding rare gases and lanthanides) 	Trainingset Test set	Perovskites 20, 000 2, 30, 000

	Methods											Info	orma	tion			
 Ridge regression Random forests Extremely randomized trees (including adaptive boosting) Neural networks 						c	r t S S t r	nean he co Syste herm tot p	abso onve ms (nody	olute x hu arou nami	error ll (12 nd 5(ically	zed trees: of the dis 1 meV/ato 0) that are stable but al structure	tance to m) that are				
1 H 1 H 2 Lii 4 Be							VA 7 N	VIA	VIIA	VIIIA ² He ¹⁰ Ne							
3 Na Mg	IIIB I	VB VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	IB	IIB	AL	SL	Р	٣s.	α	Ar		
4 ¹² K ²⁰ Ca	Sc	Ti ²³ V	Cr	Mn	Fe	27 Co	Ni	°Cu	Zn	Ga	Ge	As	Se	Br	36 Kr		
5 ³⁷ Rb ³⁸ Sr	³⁹ Y ⁴⁰	Zr Nb	Mo	^O Tc	44 Ru	⁴⁵ Rh	⁶⁶ Pd	Ag	48 Cd	"" In	50 Sn	SP.	Te	⁵³ I	54 Xe		
5 50 50 50 Ba	57 La ⁷²	Hf ⁷³ Ta	²⁴ w	²⁵ Re	⁷⁶ Os	77 r	78 Pt	29 Au	® Hg	81 TI	₽Ъ	Bi	Po	⁸⁵ At	⁸⁶ Rn		
Predicting the Thermodynamic Stability of Solids Combining Density Functional Theory and Machine Learning Jonathan Schmidt, Jingming Shi, Pedro Borlido, Liming Chen, Silvana Botti, and Miguel A. L. Marques																	

Raymond Gasper,	Hongbo Shi, Ashwin Ramasubramaniam
-----------------	------------------------------------

Forcefields:Construction,		MachLrn
Task	multistep WorkFlow	Alg
Force Fields	Machine learning methods in tander with quantum mechanics → Force fields	 Generating diverse reference atomic environments and force data Choosing a numerical representation for the atomic environments Down selecting a representative training set Learning method Simulating complex materials phenomena viz.Surface melting, stress-strain behavior [it truly goes beyond the realm of ab initio methods, both in length and time scales] Validation of constructed force field

	MachLrn
Fn(Error)	kJ mol ⁻¹
Mean prediction error	< 5.3
Lowest error observed	2.8
Mean error across the	4.2
entire set	
	Mean prediction error Lowest error observed Mean error across the

Chemisorption	MachLrn	
Task	Data	Information
 → Machine-learning- augmented chemisorption model → Prediction of the surface reactivity of metal alloys 	• <i>ab initio</i> adsorption energies and electronic fingerprints of idealized bimetallic surfaces	 Captures complex, nonlinear interactions of adsorbates (e.g., CO) on multi- metallics ~0.1 eV error
Machine-Learning-Augment	ed Chemisorption Model for	
CO2 Electroreduction Cataly		5 (18), pp 3528–3533 1/acs.jpclett.5b01660
XianfengMa,	Zheng Li, Luke E. K. Achenie, Hongliang Xin	J1

NMR			MachLrn
Task	Methods		
 Prediction Proton and carbon nuclear chemical shifts, Atomic core level excitations, forces 	Machine learning models of quantum mechanical observables of atoms in molecules.	m	Piverse set of 9 k small organic nolecules ccuracies on par with DFT
$10^{4} \qquad \qquad$			
Machine Learning for Quantum Mechanical Properties of J. Phys. Chem. Lett., 2015, 6 (16), 3309–3313 Atoms in Molecules DOI: 10.1021/acs.jpclett.5b01456 Matthias Ru, Raghunathan Ramakrishnan, O. Anatole von Lilienfeld			
SEMO-parameters	<u></u>		MachLrn
Task	WorkFlow		Information

 Improvements in the accuracy of SEMO by ML models for the parameters 	 ML-SQC Automatic tuning of SQC parameters for individual molecules Improved accuracy Without deteriorating transferability to molecules with molecular descriptors very different from those in the training set 	 Semiempirical OM2 appliedto 6095 constitutional isomers C₇H₁₀O₂ accurate <i>ab</i> <i>initio</i> atomization enthalpies are available Mean absolute errors in atomization enthalpies : [6.3 to 1.7 kcal/mol]
Machine Learning of Parameter Quantum Chemical Calculation	ers for Accurate Semiempirical <i>J. Chem.</i> 18	Theory Comput., 2015 , 11 (5), 2120– 2125 DOI: 10.1021/acs.jctc.5b00141

Drug DiscoveryComputational	MachLrn

AdvancementApplicationAnnouncement→CNN →Machine Learning in CQC

Justin S. Smith, Adrian E. Roitberg, OlexandrIsayev

To predict important new configurations	MachLrn
	Task
• Multireference problem of the water n	nolecule with elongated bonds.
Methods	
First-order perturbation	• NNs discriminate between important and
Random selection	unimportant configurations
Monte carlo configuration interaction	
Machine Learning Configuration Interaction	J. Chem. Theory Comput., 2018, 14 (11), 5739–5749
	DOI: 10.1021/acs.jctc.8b00849

J. P. Coe

Surface Chemistry		MachLrn
Task	Methods	
 Complex atomic-scale structures Chemical reactivity of ta-C (Tetrahedral amorphous carbon)surfac es 	 Machine learning Density functional tight binding DFT 	
Computational Surface Amorphous Carbon by O Density Functional Theor Volker L. Deringer,	Combining MachineLea y Miguel A. Caro, Richa	

Molecular Recognition of Myocardial Infarction	MachLrn

Daniel P. Russo, Kimberley M. Zorn, Alex M. Clark, Hao Zhu, and Sean Ekins

Atomistic Simulations Task	M	MachLrn (ethods
■ Defect Dynamics in 2-D MoS ₂	 Supervised machine learning, in situ high-resolution transmission electron microscopy (s) MD GA with MD→to identify the long-range structure of randomly distributed point defects (sulfur vacancies) 	Atomistic Simulation 2H \alpha to
	D MoS2 Probed by Using Machine Lea nd High-Resolution Microscopy	rning, ACS Nano, 2018, 12 (8), pp 800 80

DOI: 10.1021/acsnano.8b02844

Tarak K. Patra, Fu Zhang, Daniel S. Schulman, Henry Chan, Mathew J. Cherukara, Mauricio Terrones, Saptarshi Das⊽, Badri Narayanan, Subramanian K. R. S. Sankaranarayanan

Drug Discovery	Mach	Lrn
Machine Learning in Drug Discovery	J. Chem. Inf. Model., 2018, 58 (9), 1723-	
	DOI: 10.1021/acs.jcim.8b0	0478
Se Hechneiten Counter Vlam	waa and Matthias Danas	

Se Hochreiter, Guenter Klambauer, and Matthias Rarey

Discovering a Transferable Charge Assignment Model Using Machine Learning

J. Phys. Chem. Lett., 2018, 9 (16), 4495–4501 DOI: 10.1021/acs.jpclett.8b01939

Andrew E. Sifain, Nicholas Lubbers, Benjamin T. Nebgen, Justin S. Smith, Andrey Y. Lokhov, OlexandrIsayev, Adrian E. Roitberg, Kipton Barros, and Sergei Tretiak

Crystal Structure			MachLrn
Task	Methods	Pearson Crys	tal Database
To predict crystal structure	Machine learninDFT	U	e chemical formulas existing and 310 K They contain 10 711 Il structures
	Me	trics Range	
	Accuracy	97 ± 2 to $85 \pm 2\%$;
	Average prec	ision 86 ± 2 to $79 \pm 2\%$	
	Average reca	11 $73 \pm 2 \text{ to } 54 \pm 2\%$	
	Minimum-cla representativ	· · · · · · · · · · · · · · · · · · ·	
Machine Learning and Energy Minimization Approaches Chem. Mater., 2018, 30 (11), 3601–3612			
for Crystal Structure Predictions: A Review and New DOI: 10.1021/acs.chemmater.7b05304			
Horizons			
Jake Graser, Steven K. Kauwe, and Taylor D. Sparks			

Molecular properties		MachLrn
Task	Descriptors	Methods
Prediction of molecular properties across chemical compound space	 Two-body and three-body interaction descriptors Invariant to translation, rotation, and atomic indexing 	 Kernel ridge regression DFT

CQC	MachLrn	
Task		
To reduce the dimensionality of a complex molecular syst	tem	
 Essential/ internal coordinates Specific interatomic distances 		
 Dihedral angles 		
Machine Learning of Biomolecular Reaction Coordinates	J. Phys. Chem. Lett., 2018, 9 (9), 2144–2150 DOI: 10.1021/acs.jpclett.8b00759xx	
Simon Brandt, Florian Sittel, Matthias Ernst, and Gerhard Stock		

Band gap MachLrn **Methods** Task To predict band gap of inorganic solids Support vector classification DFT (PBE-level) calculated CBN BM S classification regression Predicting the Band Gaps of Inorganic Solids by Machine xx J. Phys. Chem. Lett., 2018, 9 (7), 1668–1673 Learning DOI: 10.1021/acs.jpclett.8b00124 YaZhuo, Aria Mansouri Tehrani, JakoahBrgoch

Sabrina Jaeger, Simone Fulle, Samo Turk

MaterialsDesirable properties	MachLrn
Task	Methods
 Acceleration of search for materials with desired properties For an arbitrary composition of a compound , what crystal structu are adopted 	 Support vector machine Random forest algs.
 Discovery of RhCd, the first new binary AB compound to be found in a structure New candidates for thermoelectric materials, including previously unkr with Heusler structure; Mn(Ru0.4Ge0.6) with CsCl-type structure) and counterintuitive candidates (e.g., Gd12Co5Bi). 	nown compounds (e.g., TiRu2Ga
 Machine-learning models are only as good as the experimental data use Experimental work will continue to be necessary to improve the plearning 	1
Discovery of Intermetallic Compounds from Traditional to A Machine-Learning Aroaches	Acc. Chem. Res., 2018, 51 (1), 59–68 DOI: 10.1021/acs.accounts.7b00490
Anton O. Oliynyk and Arthur Mar	

Energies from Topological Atoms

Chem. Theory Comput., 2018, 14 (1), 216–224 DOI: 10.1021/acs.jctc.7b01157

James L. McDonagh,	Arnaldo F. Silva,	Mark A.	Vincent, and Paul I	L. A. Popelier
--------------------	-------------------	---------	---------------------	----------------

PES	MachLrn
	 Cluster structures are grouped using hierarchical clustering
	\rightarrow Partitions the PES in terms of nuclear configuration.
→ 37 isomers are identified within 180 kJ·mol-1 of the global-minimum structure	• Calculated IR spectra for the various isomers are then compared with the isomer-specific IR spectra by means of the cosine distance metric
	 To facilitate spectral assignment To identify which regions of the PES are populated in the electrospray ionization process.

Typical Machine Learning Methods

Regres 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 sion Linear (LR) Ordinary With elastic net regularization (EN) Stepwise Regression Bayesian ridge (BR) Logistic Regression Kernel ridge (KRR) Boosting (GBR) Extra tree (ETR) Multivariate Adaptive Regression Splines (MARS) Locally Estimated Scatterplot Smoothing (LOESS) Ridge Regression Least Absolute Shrinkage and Selection Operator (LASSO) Elastic Net Least-Angle Regression (LARS) 	Bayesian algorithms • Naive Bayes • Gaussian Naive Bayes • Multinomial Naive Bayes • Averaged One-Dependence Estimators (AODE) • Bayesian Belief Network (BBN) • Bayesian Network (BN)
--	---	--

Dimensionality Reduction $\overrightarrow{\square} \rightarrow \boxed{\circ \circ}_{\circ}$	 Principal Component Analysis (PCA) Principal Component Regression (PCR) Partial Least Squares Regression (PLSR) Sammon Mapping Multidimensional Scaling (MDS) Projection Pursuit
Discriminant Analysis	 Linear Discriminant Analysis (LDA) Mixture Discriminant Analysis (MDA) Quadratic Discriminant Analysis (QDA) Flexible Discriminant Analysis (FDA)
clustering algorithms o k-Means o k-Medians o Expectation Maximisation (EM) o Hierarchical Clustering	Decision Tree Algorithms• Classification and Regression Tree (CART)• Iterative Dichotomiser 3 (ID3)• C4.5 and C5.0 (different versions)• Chi-squared Automatic Interaction Detection (CHAID)• Decision Stump• M5• Conditional Decision Trees
Instance-based Algorithmsok-Nearest Neighbor (kNN)oLearning Vector Quantization (LVQ)	Association Rule Learning Algorithms Apriori algorithm Eclat algorithm

Self-Organizing Map (SOM) o Locally Weighted Learning (LWL) Deep Learning Algorithms	
 Deep Boltzmann Machine (DBM) Deep Belief Networks (DBN) Convolutional Neural Network (CNN) Stacked Auto-Encoders 	Artificial Neural NetworkoPerceptronoHopfield NetworkoRadial Basis Function Network (RBFN)oGraph convolutions (GC)oGated graph networks (GGoDeep Learning Deep NNs
Ensemble Algorithms	 Boosting Bootstrapped Aggregation (Bagging) AdaBoost Stacked Generalization (blending) Gradient Boosting Machines (GBM) Gradient Boosted Regression Trees (GBRT) Random Forest Extremely randomized trees (including adaptive boosting)

ſ		Туре	Size	Dimen	sion	
	Data	Symbolic	Small	[1, 2, 3	8]	
		Boolean	Large	[4, 5, .]	
		Numeric	Big			
		Pixel,				
		Data Science	e I			
-	Artificial	intelligence	Symbolic			
	Computational	intelligence	Numeric			
	Machine	learning				
	Deep	learning				
Life [ani	fe, Machine] imal, Human] ep, normal]		Machine Lo	earning	Simil	ning style; arity form nction]
			Learning S	-	Unsuj Semi-	rvised; pervised; Supervised]
			Similarity f	orm	[Regr	ession;

	or function	Instance-based Regularization;
Machine learning		Decision Tree Clustering
<u>o</u> Unsupervised		Deep Learning; Dimensionality Reduction
 Semi-supervised supervised 		Ensemble
<u>e</u> hybrid		

CQC-derived properties	CQC-derivedproperties
• Electron energies	• Thermodynamic properties
HOMOHOMO-LUMO gap Prediction	• Chemisorption
• Forces and energy	CO adsorption on Pt nanoclustersForce Fields
• Interatomic potential	• Discovery in Transition Metal Chemistry
• Polarizable force field parameters	• Vibrational
• Electrostatic multipole moment	• NMR (1H1;13C)

CQC-methods		Experimental
 DFT Grand canonical Monte Carlo Density-functional tight-binding (DFTB) method 	Combined topological analysis	 Small-angle X- ray scattering (SAXS) X-ray absorption near-edge structure (XANES) spectroscopy
		 Neutron diffraction

Molecular representations	DataBases		
 Coulomb matrix Bag of bonds Molecular graphs (MG) BAML ECFP4 Distribution based variants histograms of distances (HD) angles (HDA/MARAD) dihedrals (HDAD 	• QM9 database [Ramakrishnan et al. <i>Sci. Data</i> 2014, <i>1</i> , 140022]		

ACS.org: Information Source (is)

R. Sambasiva Rao, School of Chemistry Andhra University, Visakhapatnam <u>rsr.chem@gmail.com</u>