Available online at www.joac.info

ISSN: 2278-1862

Journal of Applicable Chemistry

2019, 8 (1): 435-461 (International Peer Reviewed Journal)

New Chemistry News N=C=N				
New News of Chem (NNC) ChemNewsNew (CNN)				

Machine learning	Information Source (is)
in CQC	ACS.org

Concerning a mestalling	Interatoria motoriale				Maali Tam
Screening metallic	Interatomic potentials				MachLrn
MOFs					
Task → Electrical → MOFs	transport properties of		-] 1 6	DFT+PBE does not captu responsible for some part electrical transport proper	rre physics of potential affecting rties
Methods		MachI	.rnN	lethods	
Machine lear	rning	0	Los	gistic regression (LR)	
Statistical m	Statistical multi-voting			n (SVC)	
ab initio calo	vulations		Ne	pport vector classification	1(570)
	luiations	0		a law famat (DE)	
		0	Ka	indom forest (RF)	
		Semi-lo	ocal	DFT→ to identify most p	promising candidates
Metallic Metal–Organi	c Frameworks Predicted	by		J. Phys. Chem. Lett., 201	18, 9 (16), 4562–4569
the Combination of Machine Learning Methods and		nd		DOI: 10.102	21/acs.ipclett.8b01707
Ab Initio Calculations				2011 10:102	in design electropolition
Ao muo calculations	Vuning Ha Elzin D. Cubu	le Morte F	A 1	landorf Evan I Dead	
	i uping rie, Ekin D. Cubu	к, iviark L	י. Al	iendori, Evan J. Reed	

Material preparation	Nano	MachLrn	
Task			
Formation of Subnanometer	er Substructures in Nanoassembliesmaterials		

Methods				
 Expt → Small-angle X-ray scattering (SAXS) → X-ray absorption near-edge structure (XANES) spectroscopy 	CQC ⊇ ab initio	<mark>MachLrn</mark> ≘ NNs		

Subnanometer Substructures in Nanoassemblies Formed from
Clusters under a Reactive Atmosphere Revealed Using MachineJ. Phys. Chem. C, 2018, 122 (37), 21686–
21693LearningDOI: 10.1021/acs.jpcc.8b07952Janis Timoshenko, Avik Halder, Bing Yang, Soenke Seifert, Michael J. Pellin, Stefan Vajda, and Anatoly I.
Frenkel

SPR	DFT			MachLrn
Task			Compounds	
Predictive universa	al SPR o Over 12, 000 experimentally synthesized and characterized ones		y synthesized	
Machine learning-assisted di materials	scovery of solid Li-ion co	onducting	g Chem. Mater., Just Acce DOI: 10.1021/acs.cher	pted Manuscript nmater.8b03272
Austin D. Sendek, Ek	in D. Cubuk, Evan R Anton	iuk, Gow	oonCheon, Yi Cui, and Evan	I J. Reed

				1
Vibrational Properties				MachLrn
Methods		Accura	ncy	
 random-forest algorithm 121 different mechanically stable structures of KZnF3 reaches mean absolute error of 0.17 eV/Å2 			ZnF3 reaches	
Vibrational Properties of Metastable Polymorph Structures by Machine Learning J. Chem. Inf. Model., Article ASAP DOI: 10.1021/acs.jcim.8b00279				
Fleur Legrain, Ambroise van R Mingo	loekegh	em, Stefano Curtarolo, Jesús Carrete, Ge	eorg K. H. Madsen, N	Natalio

HOMO-LUMO		MachLrn
Task	Methods	Descriptors
HOMO level and HOMO–LUMO gapPrediction Method → DFT	 MachLrn molSimplify LASSO Kernel ridge regression (KRR) NNs 	 Heuristic Topological Revised Autocorrelation

- Performance of NNstrained with20–30 features is superior to RAC full (153 feature set)
 o full DFT evaluation of 15, 000 molecule design space requires n-days
- + MachLrn is fast (a few minutes)

Strategies and Software or Machine Learning Accelerated Discovery in Transition Metal Chemistry Ind. Eng. Chem. Res., 2018, 57 (42), 13973–13986 DOI: 10.1021/acs.iecr.8b04015

Aditya Nandy, ChenruDuan, Jon Paul Janet, Stefan Gugler, and Heather J. Kulik

WonseokJeong, Kyuhyun Lee, Dongsun Yoo, Dongheon Lee, and Seungwu Han

Correlation energies		MachLrn		
	Task			
To predict structure correlation energe enabling chemists to model behavior of r	ies (which is a measure of interactions between electronolecule(s)	cons		
Machine learning predicts electron energies	<i>C&EN</i> , 2018, <i>96</i> (33), 77			
	DOI: 10.1021/cen-09633-scie	con3		
Sam Lemonick				

Thermodynamic properties				MachLrn
Task	Prediction			
Thermodynamic prope vaporization, heat capa critical temperatures, c	rties: [liquid densities, heats of acities, vapor–liquid equilibrium curves, ritical densities, surface tensions;]	+	Feasibility of exp predictions beyon using a machine	panding nd simulation learning model
Predicting Thermodynamic Throughput Force Field Sin	c Properties of Alkanes by High- nulation and Machine Learning	J.	<i>Chem. Inf. Model.</i> DOI: 10.1021/ac	., Article ASAP s.jcim.8b00407
	<u>Zheng Gong, Yanze Wu, Liang Wu</u> , and	I <u>Huai S</u>	<u>sun</u>	

Energy			MachLrn
Task	Prediction		
forces and energy of a	molecule with only XYZ		
 Accurate NeurAlnetwo Third version called A Accuracy of CCSD 	orKengINe for Molecular Energies NI-1ccx O(T) in the computational time of fo	(ANAKIN-ME) orce fields	
Machine learning offers fast, accurate calculationsC&EN, 2018, 96 (34), 7–7DOI: 10.1021/cen-09634-scicon5			
	Sam Lemonic	k	

CO₂ capture MachLrn Task **Methods- multiscale** -DFT CO₂ capture enhancement metrics of MOF • → Grand canonical Monte Carlo Effect of pore chemical/topological features • machine learning Role of Pore Chemistry and Topology in the CO₂ Capture Chem. Mater., 2018, 30 (18), 6325–6337 Capabilities of MOFs: From Molecular Simulation **DOI:** 10.1021/acs.chemmater.8b02257 to Machine Learning

Ryther Anderson, Jacob Rodgers, Edwin Argueta, AchayBiong Diego A. Gómez-Gualdrón

$\frac{\mathrm{IC}_{50},\mathrm{EC}_{50},K_{\mathrm{i}}}{\mathrm{IC}_{50},K_{\mathrm{i}}}$		MachLrn	
Task Prediction of IC ₅₀ , EC ₅₀ , K _i Data Set large ChEMBL data set of preclinical assays [of compounds targeting dopamine pathway proteins]	Methods O NNs O Random Forest O Deep Learnin	 Perturbation Theory/Machine Learnin g (PTML) linear model of multiple pharmacological parameters + 50,000 cases with accuracy of 70–91% in training and external validation series 	
 Organic synthesis, chemical characterization, and pharmacological assay of a new series of l-prolyl-l-leucyl-glycinamide (PLG) peptidomimetic compoundsfor the first time Molecular docking study for some of these compounds with software Vina AutoDock. 			

• Perturbation Theory/Machine Learning (PTML) -- linear model of multiple pharmacological parameters

Joana Ferreira da Costa, David Silva, Olga Caamaño, José M. Brea, Maria Isabel Loza, Cristian R. Munteanu, Alejandro Pazos, Xerardo García-Mera, , Humbert González-Díaz

Atomization energies		MachLrn
Task	Information	
To automatize parametrization process of DFTB	Training with energies, forces and nonequilibrium structures molecules	of equilibrium of2100
• To improve transferability and accuracy using large quantum chemical data	 Testset:~130,000 organic mocontaining O, N, C, H, and F a Result: Atomization energies of method can be reproduced wit ~2.6 kcal/molindicating drastic over standard DFTB. 	blecules atoms. of the reference hin an error of the improvement
 Methods → Density-functional tight-binding (DFTB) method → Unsupervised machine learning 	 ✓ Generalized pair-pote + Chemical environmenduring the learning pr → specific effective tw potentials 	ntials it is included ocess vo-body
Generalized Density-Functional Tight-Binding Repu Potentials from Unsupervised MachineLearning	$\mathbf{\hat{e}}_{C-F}$	8 , <i>14</i> (5), 2341– 2352 acs.jctc.7b00933
Julian J. Kranz, Maximilian Kubillus, Raghunathan Ram	akrishnan, O. Anatole von Lilienfeld,	Marcus Elstner

Adsorption energies MachLrn **Methods** Task Х To predict adsorption energies of 12 descriptors Ordinary linear regression CH₄ related species on the Cu-based alloys ETR (RMSEs for Boosting regression (GBR) energies below 0.3 To predict the catalytic performances of Extra tree regression (ETR) the solid catalysts eV)>>[OLS, GBR] able of Elements B C N 0 F AI Si P S CI Ga Se Br Sn O.S Sb Te 1 Pb Bi Po At Ts Ъ Bk Toward Effective Utilization of Methane: Machine Learning Prediction of J. Phys. Chem. C, 2018, 122 (15), Adsorption Energies onMetal Alloys 8315-8326, **DOI:** 10.1021/acs.jpcc.7b12670

Takashi Toyao, Keisuke Suzuki, Shoma Kikuchi, Satoru Takakusagi, Ken-ichi Shimizu, IchigakuTakigawa

Materials			MachLrn
Task		Methods	
 Comparative analysis of cathode materials LiNiO₂ (LNO) LiNi_{0.8}Co_{0.15}Al_{0.05}O₂ (NCA) NCA configurational space :20,760 configurations 	 Combined topological analysis DFT operandoneutron diffraction Machine learning algorithms 	Strong deper optimization Machir learnin Lit Neutro diffracti	ndence of the results of on the initial structure guess Topological analysis Density functional theory
Li(Ni, Co, Al)O ₂ Cathode De Topological Analysis, Density Diffraction, and Machine Learnin	lithiation: A Combination of Functional Theory, Neutron ag Techniques	J. Phys. Ch	<i>em. C</i> , 2017 , <i>121</i> (51), 28293– 28305 OI: 10.1021/acs.jpcc.7b09760
Roman A. Erem	in, Pavel N. Zolotarev, Olga Yu.	Ivanshina, Ivar	n A. Bobrikov

Felix A. Faber, Luke Hutchison, Bing Huang, Justin Gilmer, Samuel S. Schoenholz, George E. Dahl, Oriol Vinyals, Steven Kearnes, Patrick F. Riley, and O. Anatole von Lilienfeld

Catalytic activities based on local atomic configurations	MachLrn
Task	Method
To direct NO decomposition on RhAu alloy nanoparticles	• Universal machine-learning scheme using a local similarity kernel.
Predicting Catalytic Activity of Nanoparticles by a DI Machine-Learning Algorithm	T-Aided J. Phys. Chem. Lett., 2017 , 8 (17), 4279– 4283 DOI: 10.1021/acs.jpclett.7b02010
Ryosuke Jinnouch	<u>ni, Ryoji Asahi</u>

Properties condensed phase	MachLrn
Task	Methods
 To determine a polarizable force field parameters using only ab initio data from quantum mechanics (QM) calculations of molecular clusters at the MP2/6-31G(d, p), DFMP2(fc)/jul-cc-pVDZ, and DFMP2(fc)/jul-cc-pVTZ levels Prediction of experimental condensed phase properties Density Heat of vaporization 	 Machine learning (ML) techniques with the genetic algorithm (GA) Systems 4943 dimer electrostatic potentials 1250 cluster interaction energies for methanol
	-24 -21 -18 -15 -12 -9 -6 -3 0 3 ΔE (kcal/mol)
Machine Learning Force Field Parameters from Ab Initio Data	J. Chem. Theory Comput., 2017 , 13 (9), 4492–4503 DOI: 10.1021/acs.jctc.7b00521

Ying Li, Hui Li, Frank C. Pickard, Badri Narayanan, Fatih G. Sen, Maria K. Y. Chan, Subramanian K. R. S. Sankaranarayanan, Bernard R. Brooks, Benoît Roux

Materials Screening for the Discovery of New Half-Heuslers:J. Phys. Chem. B, 2018, 122 (2), 625–632Machine Learning versus ab Initio MethodsDOI: 10.1021/acs.jpcb.7b05296

Fleur Legrain, Jesús Car	rete, Ambroise van Ro	bekeghem, Georg K.H. Madsen, Natalio Mingo
Adaptive Basis Sets		MachLrn
Machine Learning Adaptive Basis	Sets for Efficient	J. Chem. Theory Comput., 2018, 14 (8), 4168–4175
Large Seare Density Functional Th	cory simulation	DOI. 10.1021/acs.jete.0000370
Ole Schütt and Joost VandeVondele		

Electronic structure		MachLrn
Task		WorkFlow
To determine electronic structure of molecules without DFT	Molecules' machLrn (1 density det	structure and properties = maps of molecular electron ermined from molecules' PE)
Machine learning streamlines electronic structure calculations for molecules C&EN, 2017, 95 (42), 9 DOI: 10.1021/cen-09542-not		
JyllianKe	msley	

Thermodynamic Stability		MachLrn	
Task	Data	N	Iodeling
 PredictingThermodynamic Stability of Solids (perovskites) 	 2, 50, 000 cubic perovskites (withelements from hydrogen to bismuth, excluding rare gases and lanthanides) 	Trainingset Test set	Perovskites 20, 000 2, 30, 000

Methods		Information	
 Ridge regression Random forests Extremely randomized trees (include boosting) Neural networks 	 Extremely randomized trees: smallest mean absolute error of the distance to the convex hull (121 meV/atom) Systems (around 500) that are thermodynamically stable but that are not present in crystal structure databases 		
	ABX ₃	IIIA IVA VA VIA VIIA B C 7 N 0 F AL If Si IP 10 S 17 CL 18 14 14 14	
4 19 K 20 15 17 12 V 118 V 4 16 K 20 15 17 12 V 16 V 17 K 20 15 17 12 V 16 V 16 Mn	Fe 27 Ni 28 Cu 20 Zn	Ga ¹² Ge ¹³ As ¹⁴ Se ¹⁵ Br ¹⁶ Kr	
5 37 86 57 99 40 Zr 10 10 10 10 10 10 10 10 10 10 10 10 10	Ru Rh Pd Ag Cd	⁹ In ⁹⁸ Sn ³¹ Sb ³² Te ³³ I ⁵⁴ Xe	
5 55 56 56 56 56 56 56 56 56 56 56 56 56	⁵ Os ⁷⁷ Ir ⁷⁸ Pt ⁷⁹ Au ⁸⁰ Hg ¹	¹⁷ TI ¹² Pb ¹⁸ Bi ¹⁸⁴ Po ¹⁸⁵ At ¹⁸⁶ Rn	
Predicting the Thermodynamic Stability of Solids Combining Density Functional Theory and Machine LearningChem. Mater., 2017, 29 (12), 5090–5103 DOI: 10.1021/acs.chemmater.7b00156Jonathan Schmidt, Jingming Shi, Pedro Borlido, Liming Chen, Silvana Botti, and Miguel A. L. Marques			

Raymond Gasper,	Hongbo Shi, Ashwin	1 Ramasubramaniam
-----------------	--------------------	-------------------

Forcefields:Construction,		MachLrn		
Task	multistep	WorkFlow		Alg
Force Fields	Machine learning r with quantum mec fields	nethods in tandem hanics → Force	•	Generating diverse reference atomic environments and force data Choosing a numerical representation for the atomic environments Down selecting a representative training set Learning method Simulating complex materials phenomena viz.Surface melting, stress–strain behavior [it truly goes beyond the realm of ab initio methods, both in length and time scales] Validation of constructed force field

Electrostatic multipole moments		MachLrn
Predict		
✓ Electrostatic multipole moments for all topological	Fn(Error)	kJ mol ⁻¹
atoms in any amino acid based on molecular geometry only	Mean prediction error	< 5.3
✓ Molecular electrostatic interaction energies	Lowest error observed	2.8
	Mean error across the	4.2
+ Methodology can also handle amino acids with aromatic	entire set	
side chains, without the need for modification		

Chemisorption	MachLrn	
Task	Data	Information
 → Machine-learning- augmented chemisorption model → Prediction of the surface reactivity of metal alloys 	• <i>ab initio</i> adsorption energies and electronic fingerprints of idealized bimetallic surfaces-	 Captures complex, nonlinear interactions of adsorbates (e.g., CO) on multi- metallics ~0.1 eV error
Machine-Learning-Augment CO2 Electroreduction Cataly	ed Chemisorption Model for st ScreeningJ. Phys. Chem. Lett., 2015, 6	(18), pp 3528–3533
	DOI: 10.1021	/acs.jpclett.5b01660
XianfengMa,	Zheng Li, Luke E. K. Achenie, Hongliang Xin	

NMR			MachLrn	
Task	Methods			
 Prediction Proton and carbon nuclear chemical shifts, Atomic core level excitations, forces 	Machine learning models of quantum mechanical observables of atoms in molecules.		Diverse set of 9 k small organic molecules accuracies on par with DFT	
10 ⁴ 10 ³ 10 ² 10	$10^{4} \qquad \qquad$			
Machine Learning for Qua Atoms in Molecules <u>Matthia</u>	antum Mechanical Properties of as Ru, Raghunathan Ramakrishnan,	J. Phys.	Chem. Lett., 2015 , 6 (16), 3309–3313 DOI: 10.1021/acs.jpclett.5b01456 ble von Lilienfeld	
SEMO-parameters			MachLrn	
Task	WorkFlow		Information	

=	Imp acc by o	orovements in the uracy of SEMO ML models for the parameters	0 0 + +	ML-SQC Automatic tuning of SQC parameters for individual molecules Improved accuracy Without deteriorating transferability to molecules with molecular descriptors very different from those in the training set		$\begin{array}{l} \text{Semiempirical OM2 appliedto} \\ 6095 \text{ constitutional isomers} \\ \text{C}_7\text{H}_{10}\text{O}_2 \\ \circ \text{accurate } ab \\ initio \text{ atomization} \\ \text{enthalpies are available} \\ \text{Mean absolute errors in} \\ \text{atomization enthalpies :} \\ [6.3 \text{ to } 1.7 \text{ kcal/mol}] \end{array}$
Ma Oua	chine antur	Learning of Param Chemical Calculati	eters fo	or Accurate Semiempirical J. Chem.	. The	ory Comput., 2015 , 11 (5), 2120– 2125
Z						DOI: 10.1021/acs.jctc.5b00141

Drug DiscoveryComputationa	1	MachLrn

AdvancementApplicationAnnouncement→CNN →Machine Learning in CQC

Justin S. Smith, Adrian E. Roitberg, OlexandrIsayev

To predict important new configurations	MachLrn
Ta	ask
• Multireference problem of the water mole	cule with elongated bonds.
Methods	
First-order perturbation	• NNs discriminate between important and
→ Random selection	unimportant configurations
Monte carlo configuration interaction	
Machine Learning Configuration Interaction	J. Chem. Theory Comput., 2018, 14 (11), 5739–5749 DOI: 10.1021/acs.jctc.8b00849

J. P. Coe

Surface Chemistry		MachLrn
Task	Methods	
 Complex atomic-scale structures Chemical reactivity of ta-C (Tetrahedral amorphous carbon)surfac es 	 Machine learning Density functional tight binding DFT 	
Computational Surface Amorphous Carbon by (Density Functional Theory Volker L. Deringer,	Chemistry of T Combining MachineLea y Miguel A. Caro, Richa GáborCsái	Cetrahedral arning andChem. Mater., 2018, 30 (21), pp 7438–7445 DOI: 10.1021/acs.chemmater.8b02410ard Jana, Anja Aarva, Stephen R. Elliott, Tomi Laurila, nyi, and Lars Pastewka

Molecular Recognition of Myocardial Infarction	MachLrn

Daniel P. Russo, Kimberley M. Zorn, Alex M. Clark, Hao Zhu, and Sean Ekins

<mark>Ato</mark>	mistic Simulations			MachLrn
	Task		Μ	ethods
	Defect Dynamics in 2-D MoS ₂	000000000000000000000000000000000000000	Supervised machine learning, in situ high-resolution transmission electron microscopy (s) MD GA with MD→to identify the long-range structure of randomly distributed point defects (sulfur vacancies)	Machine HITEM Simulation 2H Q II
Def Ato	ect Dynamics in 2-D mistic Simulations, an	Mos nd Hi	32 Probed by Using Machine Lear gh-Resolution Microscopy	ning, ACS Nano, 2018, 12 (8), pp 8006– 8016

DOI: 10.1021/acsnano.8b02844

Tarak K. Patra, Fu Zhang, Daniel S. Schulman, Henry Chan, Mathew J. Cherukara, Mauricio Terrones, Saptarshi Das⊽, Badri Narayanan, Subramanian K. R. S. Sankaranarayanan

Drug Discovery		MachLrn
Machine Learning in Drug Discovery J.	. Che	em. Inf. Model., 2018, 58 (9), 1723–1724
		DOI: 10.1021/acs.jcim.8b00478
	13.0	

Se Hochreiter, Guenter Klambauer, and Matthias Rarey

Discovering a Transferable Charge Assignment Model Using Machine Learning

J. Phys. Chem. Lett., 2018, 9 (16), 4495–4501 DOI: 10.1021/acs.jpclett.8b01939

Andrew E. Sifain, Nicholas Lubbers, Benjamin T. Nebgen, Justin S. Smith, Andrey Y. Lokhov, OlexandrIsayev, Adrian E. Roitberg, Kipton Barros, and Sergei Tretiak

Crystal Structure	J				MachLrn
Task	Task Methods Pearson Crystal Date			Database	
To predict crystal structure		Machine learning DFT	24 913 unique chemical formulas existing between 290 and 310 K They contain 10 711 unique crystal structures		
	l	Metrics	Range	:	
		Accuracy	97 ± 2 to 85	± 2%;	
		Average precision	86 ± 2 to 79	± 2%	
		Average recall	73 ± 2 to 54	± 2%	
		Minimum-class representatives	150 to 10,		
Machine Learning and Energy Minimization Approaches Chem. Mater., 2018, 30 (11), 3601–3612					
for Crystal Structure Predictions: A Review and New DOI: 10.1021/acs.chemmater.7b05304					
Horizons					
Jake Graser, Steven K. Kauwe, and Taylor D. Sparks					

Molecular properties		MachLrn
Task	Descriptors	Methods
Prediction of molecular properties across chemical compound space	 Two-body and three-body interaction descriptors Invariant to translation, rotation, and atomic indexing 	 Kernel ridge regression DFT

CQ	C	MachLrn
	Task	
	To reduce the dimensionality of a complex molecular system Essential/ internal coordinates • Specific interatomic distances	
Mac	chine Learning of Biomolecular Reaction Coordinates J. P	hys. Chem. Lett., 2018, 9 (9), 2144–2150 DOI: 10.1021/acs.jpclett.8b00759xx
	Simon Brandt, Florian Sittel, Matthias Ernst, a	nd Gerhard Stock

Band gap MachLrn **Methods** Task To predict band gap of inorganic solids Support vector classification DFT (PBE-level) calculated CBN BM S classification regression Predicting the Band Gaps of Inorganic Solids by Machine xx J. Phys. Chem. Lett., 2018, 9 (7), 1668–1673 Learning DOI: 10.1021/acs.jpclett.8b00124 YaZhuo, Aria Mansouri Tehrani, JakoahBrgoch

Sabrina Jaeger, Simone Fulle, Samo Turk

Mr. (117) (11) manually	I		Maali Iam	
MaterialsDesirable properties			MachLrn	
Task			Methods	
Acceleration of search for materials with desired properties		•	Support vector	
• For an arbitrary composition of a compound, what crystal str	uctures	_	machine	
are adopted	uerta es		Random forest algs.	
• Discovery of RhCd, the first new binary AB compound to be found	1 in over 15	5 years, w	vith a CsCl-type	
structure				
• New candidates for thermoelectric materials, including previously	unknown c	ompound	ls (e.g., TiRu2Ga	
with Heusler structure; Mn(Ru0.4Ge0.6) with CsCl-type structure) and previously reported compour counterintuitive candidates (e.g., Gd12Co5Bi).				
- Machine-learning models are only as good as the experimental dat	a used to d	evelop th	em →	
Experimental work will continue to be necessary to improve	the predicti	ions made	e by machine	
learning	ure promo		<i>c c j</i>	
iou inig				
Discovery of Intermetallic Compounds from Traditional to	Acc. Cl	ham Ras	2018 51 (1) 50 68	
Machine Learning Areaches		10 1021/	, 2010, 51(1), 57-00	
Machine-Learning Aroaches	DOI	10.1021/0	<i>ucs.accounts.70</i> 00490	
Anton O. Oliynyk and Arthur Mar				

Energies from Topological Atoms

Chem. Theory Comput., 2018, 14 (1), 216–224 DOI: 10.1021/acs.jctc.7b01157

James L. McDonagh, Ar	naldo F. Silva, Mark A.	Vincent, and Paul L.	A. Popelier
-----------------------	-------------------------	----------------------	-------------

PES	MachLrn		
	 Cluster structures are grouped using hierarchical clustering 		
	\rightarrow Partitions the PES in terms of nuclear configuration.		
 37 isomers are identified within 180 kJ·mol-1 of the global-minimum structure 	• Calculated IR spectra for the various isomers are then compared with the isomer-specific IR spectra by means of the cosine distance metric		
	 To facilitate spectral assignment To identify which regions of the PES are populated in the electrospray ionization process. 		

Typical Machine Learning Methods

Machine Learning methods (Algs.)	
Regression • Linear (LR) • Ordinary • With elastic net regularization (EN) • Stepwise Regression • Bayesian ridge (BR) • Logistic Regression • Kernel ridge (KRR) • Boosting (GBR) • Extra tree (ETR) • • Multivariate Adaptive Regression Splines (MARS) • Locally Estimated Scatterplot Smoothing (LOESS) • Ridge Regression • Least Absolute Shrinkage and Selection Operator (LASSO) • Elastic Net • Least-Angle Regression (LARS)	Bayesian algorithms • Naive Bayes • Gaussian Naive Bayes • Multinomial Naive Bayes • Averaged One-Dependence Estimators (AODE) • Bayesian Belief Network (BBN) • Bayesian Network (BN)

Dimensionality Reduction	• Principal Component Analysis (PCA)
	• Principal Component Regression (PCR)
	• Partial Least Squares Regression (PLSR)
	• Sammon Mapping
	• Multidimensional Scaling (MDS)
	• Projection Pursuit
	• Linear Discriminant Analysis (LDA)
Discriminant Analysis	• Mixture Discriminant Analysis (MDA)
	• Quadratic Discriminant Analysis (QDA)
	• Flexible Discriminant Analysis (FDA)
clustering algorithmsok-Meansok-MediansoExpectation Maximisation (EM)oHierarchical Clustering	Decision Tree AlgorithmsoClassification and Regression Tree (CART)oIterative Dichotomiser 3 (ID3)oC4.5 and C5.0 (different versions)oChi-squared Automatic Interaction Detection (CHAID)oDecision Stump
	o M5
	 Conditional Decision Trees
Instance-based Algorithms	Association Rule Learning Algorithms
• k-Nearest Neighbor (kNN)	Apriori algorithm
• Learning Vector Quantization (LVQ)	• Eclat algorithm

 Self-Organizing Map (SOM) Locally Weighted Learning (LWL) 	
Deep Learning Algorithms • Deep Boltzmann Machine (DBM) • Deep Belief Networks (DBN) • Convolutional Neural Network (CNN) • Stacked Auto-Encoders	Artificial Neural Network o Perceptron o Hopfield Network o Radial Basis Function Network (RBFN) o Graph convolutions (GC) o Gated graph networks (GG o Deep Learning Deep NNs
Ensemble Algorithms	 Boosting Bootstrapped Aggregation (Bagging) AdaBoost Stacked Generalization (blending) Gradient Boosting Machines (GBM) Gradient Boosted Regression Trees (GBRT) Random Forest Extremely randomized trees (including adaptive boosting)

	Туре		Size	Dimer	nsion	
Data	Symbolic		Small	[1, 2, 3	3]	
	Boolean		Large	[4, 5, .]	
	Numeric		Big			
	Pixel,					
	Data Scienc	ce				
Artificial	intelligence	;	Symbolic			
Computationa	al intelligence	;	Numeric			
Machine	learning					
Deep	learning					
	I	_				
Learning [Life, Machine]						• • • •
Life [animal, Human]					[Leai	rning style;
Learning intensity [Deep, normal]		N	lachine Lea	arning	Simi	larity form
		-			OF F	unction
		_			[Sup	ervised [.]
		I	earning St	vle	Unsu	ipervised:
				, -	Semi	-Supervised]
		S	imilarity fo	rm	[Reg	ression;

	or function	Instance-based
Machine learning		Decision Tree Clustering
 Unsupervised Semi-supervised supervised hybrid 		Deep Learning; Dimensionality Reduction Ensemble

CQC-derived properties	CQC-derivedproperties	
• Electron energies	• Thermodynamic properties	
HOMOHOMO–LUMO gap Prediction	• Chemisorption	
• Forces and energy	CO adsorption on Pt nanoclustersForce Fields	
• Interatomic potential	• Discovery in Transition Metal Chemistry	
• Polarizable force field parameters	 Vibrational 	
• Electrostatic multipole moment	• NMR (1H1;13C)	

CQC-methods		Experimental
 DFT Grand canonical Monte Carlo Density-functional tight-binding (DFTB) method 	➔ Combined topological analysis	 Small-angle X- ray scattering (SAXS) X-ray absorption near-edge structure (XANES) spectroscopy Neutron
		diffraction

Molecular representations	DataBases
 Coulomb matrix Bag of bonds Molecular graphs (MG) BAML ECFP4 Distribution based variants histograms of distances (HD) 	• QM9 database [Ramakrishnan et al. <i>Sci. Data</i> 2014, <i>1</i> , 140022]
 angles (HDA/MARAD) dihedrals (HDAD 	

ACS.org: Information Source (is)

R. Sambasiva Rao, School of Chemistry Andhra University, Visakhapatnam <u>rsr.chem@gmail.com</u>