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ABSTRACT 
CDK9 (cyclin dependent kinase) is a protein used as a target in the treatment of cancer. CDK9 is a 
component of the multi-protein complex TAK/P-TEFb, an elongation factor for RNA polymerase II-
directed transcription and functions by phosphorylating the C-terminal domain of the largest subunit 
of RNA polymerase II. It forms a complex with regulatory subunit of cyclin-T or cyclin-K. CDK9 is 
also known to associate with other proteins such as TRAF2, and is involved in differentiation of 
skeletal muscle. A 5-Point AADRR.63 pharmacophore model was developed using wogonin 
derivatives as CDK9 inhibitors. The generated pharmacophore model was used to derive a 
predictive–atom based 3D Quantitative structure activity relationship analysis (3D QSAR) model for 
the studied dataset. The obtained 3D-QSAR model has an excellent correlation coefficient value        
(r 2 =0.9332) along with good statistical significance as shown by higher fischer ratio (F=130.4). The 
model also exhibited good predictive power confirmed by the high value of cross validated 
correlation coefficient (q2=0.6843).Virtual screening was carried out further to identify potential 
CDK9 inhibitors. The QSAR model suggests the electron withdrawing character is crucial for the 
CDK9 inhibitory activity. In addition to the electron-withdrawing character, hydrogen bond donating 
groups, hydrophobic and negatively charged groups contribute to the CDK9 inhibition. These 
findings provide promising guidelines for designing compounds with better CDK9 inhibitory 
potential. 
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Geometry of best pharmacophore hypothesis  
AADRR.63 with (a) angles. 
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INTRODUCTION 
 

Cancer is one of the most prominent life threatening diseases and is a challenge to researcher’s 
worldwide. Researchers have been studying natural products since a long time and proved them to be 
potent anti cancer agents [1-4]. Flavonoids are one of them; they are polyphenolic compounds which 
are present abundantly in plants as their pigments [5]. Flavonoids act as anti cancer agents by 
preventing cell proliferation [6] and progression. In the present study we tried to put forth some of the 
flavonoids as potent anti cancer agents by performing PHASE studies on certain wogonin derivatives 
[7]. 
 
       Wogonin derivatives have a flavonoid nucleus and acts as anti-cancer agents by inhibiting CDK9. 
Cyclin-dependent kinase (CDK9) is a catalytic member of a group of enzymes which facilitate cell 
differentiation. It combines with cyclin T1, forms a Positive Transcription Elongation Factor b (p-
TEFb) complex responsible for cell regulation, transcription, elongation and mRNA maturation. The 
activity of CDK9 depends on its ability to associate with cyclin-T to form the positive transcription 
elongation factor b(P-TEFb).As cited by QiangZhou et al, [8] The carboxy-terminal domain (CTD) of 
the largest subunit of RNA polymerase (Pol) II undergoes a cycle of phosphorylation and 
dephosphorylation during the transcription cycle . Shortly after transcription begins, the CTD 
becomes phosphorylated on Ser5 of the heptapeptide (YSPTSPS) repeats by the CDK7 kinase of the 
general transcription factor TFIIH. This signals the polymerase to clear the promoter and shifts into an 
elongation mode. It also allows the CTD to recruit capping activities to the 5′ end of the pre-mRNA. 
During the elongation stage of the transcription cycle, phosphorylation of the CTD Ser2 
predominates. This enables the polymerase to resist pausing caused by negative elongation factors. 
 
      Molecular modeling is an interdisciplinary tool in the hands of a researcher to expedite the process 
involved in drug discovery. The extent of in silico studies on CDK9 inhibitors is increased, after 
understanding the function of CDK9 at the molecular level. The present work helps us to identify the 
pharmacophoric features of the wogonin derivatives taken from the literature using PHASE module of 
the Schrodinger software and build models with at least five such features. Best model is selected 
based on the statistics Similarity search is done against databases for the best hypothesis and hit 
molecules having the same features as the best hypothesis were identified. 

 
MATERIALS AND METHODS 

 
Data set selection and Molecule preparation: A set of fifty molecules with definite inhibitory 
activity against CDK9 was used for the QSAR analysis. In vitro inhibitory concentrations (IC50) of the 
molecules were converted into corresponding pIC50 [−log(IC50)] and were used as dependent variables 
in the QSAR calculations. PHASE module [9-14] of Schrodinger molecular modeling software was 
used to generate pharmacophore models. All the selected molecules were sketched in Maestro build 
panel. Further, geometry optimization of built molecules was carried out using the Ligprep application 
applying OPLS_2005 force field. All possible conformations for a molecule were generated by 
conformational analysis using Monte-Carlo Multiple Minimum method implemented in the 
Schrodinger software. The ligands were designated as active and inactive by giving suitable activity 
threshold value. The threshold value was fixed for active and inactive ligands. The activity threshold 
value was selected on the basis of dataset activity distribution and the active ligands were chosen to 
derive a set of suitable pharmacophores.  
 
Creation of Pharmacophore sites and Scoring: The chemical features of all ligands were defined 
by six pharmacophoric features: H-bond acceptor (A), H-bond donor (D), hydrophobic group (H), 
negatively charged group (N), positively charged group (P), and aromatic ring (R). An active 
analogue approach was used to identify the common pharmacophore hypotheses (CPHs).The resulting 
pharmacophores were then scored and ranked to identify the best hypothesis. The scoring algorithm 
includes the contributions from the alignment of site points and vectors, volume overlap, selectivity, 
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number of ligands matched, relative conformational energy, and activity.  
 
Building 3D-QSAR models: An atom-based QSAR model generation was carried out using the 
selected hypothesis by dividing the dataset into training and test set in a random manner in 70:30 
ratio. Partial Least Square (PLS) analysis was carried to build atom-based QSAR model for the 
selected hypothesis using the training set molecule with a grid spacing of 1.0 Å. The best QSAR 
model was validated by predicting activities of the compounds. A best model (PLS factor) with good 
statistics was obtained for the dataset keeping the number of PLS factors in each model by 
maintaining  PLS factor in a ratio  of 1:5 of the total number of training set molecules. 
 
Virtual Screening based on Phase Hypothesis: Virtual screening was carried out using best 
hypothesis to search a 3D database of ASINEX gold-platinum library [15] used for structures that 
match the pharmacophoric features of the model. To achieve the best 3D similarity search, a 
constraint of 0.7 RMSD, 10 rotatable bond cut-off and molecular weight range of 180–500 Dalton 
was applied. A molecule which fits well with the pharmacophoric features of the best hypothesis was 
retrieved as a virtual hit molecule. 

 
RESULTS AND DISCUSSION 

 
The aim of this study was to elucidate the 3D structural features of Wogonin derivatives that are 
crucial for binding, by generating 3D pharmacophore and to quantify the structural features of CDK9 
inhibitors essential for biological activity by generating atom-based 3D QSAR model. For this, a set 
of 50 derivatives were used in the pharmacophore modelling and QSAR studies performed in Phase 
module of Schrodinger suite. The structure of the molecules is provided in table 1 along with their 
activity values (pIC50). Based on the dataset activity distribution (4.007-5.970) 11 molecules as active 
and 12 molecules as inactive was selected. Active (pIC50>4.5) molecules were considered for the 
generation of pharmacophores model. To have optimum combination of sites or features common 
to the most active compounds, five minimum and maximum sites were set for common 
pharmacophore generation. Common pharmacophores models were generated with different 
combination of variants in which all the models were considered. Among these pharmacophores, 
the models which are showing better alignment with active compounds were identified by mapping to 
them and calculating the survival score.  
 

Table 1. Molecule structure, Activity, PLS-3 Fitness and predicted activity data for test and training set 
 

Molecule R QSAR Set Activity Predicted Activity Pharm Set Fitness 

O

O

O

R

O H O

CH 3

    

O

O

OH

OH O

R

          

R
O

O

OH

OH O

CH3

 
                                                       1                               2                                    3 

1a CH3(CH2)2N(CH2)4 training 4.764 4.61  2.61 
1b (HOCH2CH2)2N(CH2)4- training 4.578 4.65  2.68 
1c N

CH3

 training 5.442 5.29 active 2.85 

1d 
N CH3 

training 5.705 5.72 active 2.98 

1e O

N CH3 
test 5.481 5.78 active 2.99 

1f N

N CH3

CH3

 
training 5.95 5.97 active 2.97 

1g 
NH

N
CH3 

training 5.039 5.07 active 2.69 

1h NH

N CH3 test 5.97 5.34 active 3 
1i Ph CH2NH(CH2)4 training 4.34 4.31  2.67 
1j (CH3CH2)2N(CH2)3 training 5.477 5.33 active 2.7 
1k (HOCH2CH2)2N(CH2)3 training 5.421 5.53 active 2.63 
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1l N CH3
 training 4.812 4.84  2.79 

1m 
O

N

CH3

 
test 5.187 5.21 active 2.82 

1n 
N

N

CH3

CH3  
training 4.5 4.75  2.83 

1o Ph CH2NH(CH2)3 training 4.09 4.14 inactive 2.65 

1p 
O

N

CH3

CH3 
training 4.693 4.59  2.7 

1q 
ON

CH3

CH3

 
training 4.664 4.54  2.71 

1r 
N

N
H

CH3

 
training 4.531 4.6  2.59 

2a (CH3)2N(CH2)2- test 4.398 4.3  2.66 
2b (CH3CH2)2N(CH2)2 test 4.167 4.27 inactive 2.63 
2c N

CH3 test 4.164 4.28 inactive 2.64 

2d NO

CH3

 
training 4.399 4.3  2.66 

2e NN

CH3
CH3  

training 4.247 4.28 inactive 2.65 

2f (CH3)2N(CH2)3- test 4.379 4.29  2.66 
2g CH3CH2)2N(CH2)3 training 4.17 4.13 inactive 2.61 

2h N CH3
 

training 4.232 4.39 inactive 2.69 

2i N

O

CH3 
training 

4.667 4.51  2.71 

2j NN

CH3

CH3  
test 4.37 4.59  2.69 

2k (CH3)2N(CH2)4 test 4.447 4.49  2.72 
2l N

O

CH3 
training 4.82 4.65  2.7 

2m 
N

N

CH3

CH3

 
test 4.82 4.62  2.68 

2n CH3NH(CH2)2 training 4.192 4.29 inactive 2.63 
2o CH3(CH2)2NH(CH2)2 test 4.007 4.46 inactive 2.73 
2p CH3)2 CHNH(CH2)2 training 4.417 4.41  2.66 
2q CH3(CH2)3NH(CH2)2 training 4.242 4.43 inactive 2.71 
2r HO(CH2)3NH(CH2)2 test 4.244 4.4 inactive 2.68 
2s HOCH2CH(CH3) NH(CH2)2 training 4.361 4.17  2.64 
2t CH3NH(CH2)4 test 4.013 4.68 inactive 2.69 
2u CH3  (CH2)2  NH(CH2)4 test 5 4.65 active 2.65 
2v (CH3)2 CHNH(CH2)4 training 4.524 4.54  2.68 
2w CH3  (CH2)3 NH(CH2)4 training 4.41 4.58  2.46 

2x 
NH

CH3 
training 

4.961 4.93 active 2.64 
3a 4’-F training 4.721 4.56  2.64 
3b 4’-Br test 4.417 4.59  2.62 
3c 2’-Br, 4’-F training 4.474 4.57  2.56 
3d 3’-F test 4.226 4.3 inactive 2.54 
3e 4’-OCH3 training 4.372 4.55  2.61 
3f 4’-CH3 Training 4.603 4.59  2.62 
3g 4’-Cl test 4.465 4.33  2.54 

       
      The survival scoring function identifies the best candidate hypothesis from the generated models 
and provides an overall ranking of all the hypotheses. The scoring algorithm includes contributions 
from the alignment of site points and vectors, volume overlap, selectivity, number of ligands matched, 
relative conformational energy and activity. However, these pharmacophore models should also 
differentiate the active (most active) and inactive (less active) molecules. To identify the 
pharmacophore models with more active and less inactive features among these models, they were 
mapped to inactive compounds and scored. If inactive ligands score well, the hypothesis could be 
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invalid because it does not discriminate between active and inactive ligands. Therefore, adjusted 
survival score was calculated by subtracting the inactive score from survivals score of these 
pharmacophores. After careful analysis, best pharmacophore hypothesis were selected that had 
maximum adjusted survival score and lowest relative conformational energy (Table 2).  Based on the 
selected hypothesis, pharmacophore (atom)-based alignment of all the CDK9 inhibitors was 
performed. Atom-based QSAR models were generated using the 32-member training set and 
validated o n  18 test set compounds for prediction of activities. A three-component (PLS factor) 
model with good statistics was obtained. 
 

Table 2. Scores of different parameters of the AADRR.63 hypothesis 
 

ID Survi- 
val 

Survival – 
inactive 

Post- 
hoc Site Vector Volume Selecti- 

vity Matches Energy Activity Inactive 

AADRR.63 3.792 3.792 3.792 0.99 0.997 0.803 1.414 11 0.861 5.97 4.13 
 

       Model AADRR.63 has been chosen because it produced good predictive power above other 
models. The special arrangement of features present in five-featured pharmacophore, AADRR.63 
with distances and angles between different sites of the model AADRR.63 was shown in figure 1. The 
alignment generated by the best pharmacophore model AADRR.63 was used for QSAR model 
generation. Figure 2a presents good alignment of the active ligands and scattered alignment of 
inactive ligands on the developed pharmacophore model. As depicted in the figure, the two ring 
aromatic features, two accept or features and one donor features are mapped with all 11 active 
inhibitors. Alignments of in actives are shown in figure 2b. 
 

  
         (a)                                                                              (b) 

 
Figure 1. Geometry of best pharmacophore hypothesis AADRR.63 with (a) angles and (b) distances. 

 

   
      ( a )        (b)  

 
Figure 2. Alignment of (a) Best active molecule and (b) inactive molecules on hypothesis AADRR.63. 
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      From figures (2 a and b), we can easily identify that active ligand is having good alignment than 
inactive one. A three-PLS factor model with good statistics and predictive ability was generated for 
the dataset (Table 3). 
 

 
Table 3. PLS statistical parameters of selected 3D-QSAR model 

 
ID Factors SD R2 F P Stability RMSE Q2 Pearson-R 

 AADRR.63 1 0.3025 0.5951 44.1 2.36E-07 0.611 0.2993 0.6639 0.8493 
2 0.1822 0.858 87.6 5.12e-013 0.1428 0.2864 0.6922 0.836 
3 0.1272 0.9332 130.4 1.48e-016 0.0948 0.29 0.6843 0.8365 

(SD, standard deviation of the regression; R, squared value of R2 for the regression; F, variance ratio. Large values of F indicate a more 
statistically significant regression, P, significance level of variance ratio. Smaller values indicate a greater degree of confidence; RMSE, 
root-mean-square error, Q, squared value of Q2 for the predicted activities, Pearson-R, Pearson R value for the correlation between the 

predicted and observed activity for the test set.) 
 
      T he statistical significance and predictivity was observed for an incremental increase in PLS 
factor up to three. The F value (130.4) indicates a statistically significant regression model, which is 
also supported by the small value of the variance ratio (P), an indication of a high degree of 
confidence. Further, small values of standard deviation (0.1272) of the regression and RMSE (0.29) 
make an obvious implication that the data used for model generation are best for the QSAR analysis. 
Validity of the model is authenticated by cross-validated correlation coefficient (q2 =0.6843) that was 
obtained for the test set and was not included in the model generation. The scatter plot of 
experimental and PHASE predicted activity of the Wogonin derivatives is shown in figure 3. 
  

 
(a) 

(b) 

Figure 3. Scatter plot of experimental activity (on X axis) vs PHASE predicted  
activity (on Y axis) of [a] Training set [b] Test. 
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      The QSAR model displays 3D characteristics (Figure-4a, b and c) as cubes that represent the 
model and color according to the sign of their coefficient values, which by default is blue for positive 
coefficients and red for negative coefficients. Positive coefficients indicate increase inactivity, 
negative coefficients a decrease. The visualization of the coefficients is useful to identify 
characteristics features of t h e  mo l ec u l e  s tructures that tend to increase or decrease the activity. 
This might give a clue to what functional groups are enviable or adverse at certain positions in a 
molecule. The blue cubes in 3D plots of the 3D pharmacophore regions refer to position at which 
the specific feature in a molecule is important for better activity, whereas the red cubes 
demonstrates that particular structural feature or functional group, which is not essential for the 
activity or likely the reason for decreased binding potency. Visual analysis of above figure 4a 
demonstrates that the presence of the blue cubes at alkyl chain is pointing out the positive potential of 
electron withdrawing characteristic of the molecules at this particular place and is requisite for the 
activity. It can be suggested that addition of appropriate electron withdrawing groups at this region 
will enhance the CDK9 inhibition. Figure 4b illustrates that H-bond donor characteristic is necessary 
at D2 site. The red cubes at the alkyl chain demonstrate a negative potential of H-bond donor at that 
position on the compounds. Figure-3c demonstrates the effect of hydrophobic groups on CDK9 
inhibition. It can be deduced from the figure that hydrophobic group’s are well tolerated near alkyl 
chain (blue cubes).  
 

          

          (a). Electron withdrawing feature                         (b). H-bond Donor    (c). Hydrophobic feature 
 

Figure 4. QSAR visualization of various substituent effects. 
 

APPLICATION 
 

3D QSAR Model-Virtual Screening: The pharmacophore hypothesis AADRR.63 was used as a 3D 
structural query for retrieving potent molecules from the in house database. From that 1000 molecules 
were retrieved as a hit which were further screened based on their drug like property. The most promising 
hit molecule structure is provided in figure 5. The hit molecules can be further screened by molecular 
docking studies, where in molecular interaction between the hit molecule and CDK9 protein can be 
analysed.  
 

    
                                                         (a)                                                                                    (b) 

Figure 5. New scaffolds retrieved as CDK9 inhibitors based on 3D-QSAR similarity feature search 
 (PHASE hypothesis based virtual screening). 



P. Sarita Rajender et al                                   Journal of Applicable Chemistry, 2019, 8 (3):960-968 

www. joac.info 967 

 

CONCLUSION 
 

A ligand-based pharmacophore model was generated for the series of Wogonin with CDK9 inhibitory 
activity to reveal the structural features responsible for biological activity. With the help of 
pharmacophore-based alignment of CDK9 inhibitors, a meaningful 3D-QSAR was derived to identify 
the three-dimensional arrangements of various substituents and their impact on CDK9 inhibition. The 
selected model as shown by the correlation statistics and predictive statistics is very much significant to 
draw unambiguous inferences. Further, the generated 3D-QSAR model also explain show and at what 
extent electron withdrawing, hydrophobic and H-Donor moieties in the molecular structure 
influences CDK9 inhibition showed by the title compounds. The model shows that CDK9 inhibition 
can be increased, if the electron-withdrawing character at alkyl side chain is supplemented by 
appropriate functional groups and by the incorporation of H bond acceptor and hydrophobic groups 
at specific positions in the molecules.  
 
      Finally, six potential hits with good fitness value and predicted activity were identified by virtual 
screening and docking, whose activity can be further improved with the help of this QSAR model. This 
study provides a set of guidelines which will greatly help in designing the newer and more potent CDK9 
inhibitors of the Wogonin based scaffold. 
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