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ABSTRACT 
3D pharmacophore models were developed using chemical features for IGF1R based on the known 
inhibitors using Discovery Studio 2.0 and validated using external test set. The best pharmacophore 
model, Hypo1, includes hydrogen bond donor, hydrophobic and ring aromatic features, which has the 
highest correlation coefficient (0.90), cost difference (77.80), low RMS (1.55), as well as it shows a 
high goodness of fit and enrichment factor. Hypo1 was used as a 3D query for virtual screening to 
retrieve potential inhibitors from GOSTAR and ZINC databases. The hit compounds were 
subsequently subjected to molecular docking studies and finally, 44 compounds were obtained based 
on consensus scoring function for biological evaluation. 
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INTRODUCTION 
 

IGF- 1R is a heterotetramer composed of two extracellular alpha-subunits that contain the ligand-
binding domain and two beta-subunits that contain the cytoplasmic kinase domain. Binding of the 
ligands IGF- 1 and IGF-2 to the extra cellular domain of the receptor leads to autophosphorylation of 
the cytoplasmic beta-subunit and activation of the intrinsic kinase activity of the receptor. Activation 
results in the phosphorylation of insulin receptor substrates (IRS-1- 4) and Src-homology containing 
adapter protein (Shc). These in turn activate the PI-3K/Akt/m TOR survival pathway and the 
mitogenic RAS/Raf/MAPK pathway respectively [1, 2]. IGF-1R signaling has pleiotropic effects 
ranging from cell proliferation, differentiation, and migration to regulation of the apoptotic 
machinery. The crosstalk observed between epidermal growth factor receptor (EGFR) and IGF-1R 
signaling suggests wide potential for using IGF-1R inhibitors in combination therapy with other 
targeted agents, cytotoxic, and radiation therapy. IGF-1R activation has also been implicated in the 
development of resistance toward trastuzumab treatment in breast cancer [3] and lung cancer [4]. In 
the current study, we have generated series of 3D pharmacophore models based on the known IGF1R 
inhibitors, training set and validated using known test set compounds. Pharmacophore models were 
used as 3D queries for searching large databases to identify novel IGF1R inhibitors and were also 
used as predictive tool for estimating biological activity of IGF1R inhibitors through virtual screening 
or molecular designing on the basis of structure-activity analysis. 

 
MATERIALS AND METHODS 

 
Pharmacophore: Pharmacophore modelling is one of the most potent and rapid method to discover a 
novel scaffold and it can be generated either based on ligands or on the active site of proteins. Two 
different methods were applied for the ligand based pharmacophore model: HipHop and HYPOGEN. 
HipHop also known as common features hypothesis, which is generated based on the common 
features present in the training set molecules. HYPOGEN uses the activity values of the small 
compounds in the training set to generate the hypothesis. In this study, HYPOGEN algorithm [5] was 
applied to build the 3D QSAR pharmacophore models using DS V2.0 software (Accelrys Inc., San 
Diego, CA, USA). 
 
Test and training set preparation: For generating hypotheses, training set molecules have to satisfy 
certain set of laws like it must be broadly colonized (minimum 18 compounds) by structurally diverse 
representatives and wrap an activity range of at least four order magnitude. All the biologically 
relevant data must be obtained by homogeneous processes along with the most active compounds 
have to be necessarily be integrated in training set. For this study, 18 diverse compounds with activity 
value (IC50) between 0.0003 µM and 489 µM were selected as training set from various literatures, 
which span over four orders of magnitude, was used to engender the hypotheses which span over four 
orders of magnitude. To validate the hypothesis the test set was prepared using the same protocol as 
training set. Test set contains 34 structurally different compounds from the training set with wide 
range of activity values. MDL-ISIS Draw 2.5 was used to sketch the two-dimensional (2D) chemical 
structures of all compounds which were converted into 3D structures using DS. Maximum numbers of 
250 conformations were generated for each compound using the Best Conformation model generation 
method based on CHARMm force field and Poling algorithm to assure the energy-minimized 
conformation. The conformations with energy higher than 20 kcal mol-1 from the global minimum 
were rejected. Compounds with their conformational models were then submitted to DS for 
generating hypothesis. 
 
Pharmacophore generation using HYPOGEN: An automated 3D QSAR pharmacophore was 
created by comparing the activity values of compounds in the training set, which could be used for 
quantitative assessment of activities while screening large databases [6]. Selecting the chemical 
feature is one of the most important steps in generating pharmacophore. Feature mapping module 
from DS was used to select the chemical features for hypothesis generation. While generating 
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hypotheses hydrogen bond acceptor (HBA), hydrogen bond donor (HBD), hydrophobic aromatic and 
ring aromatic (RA) features were selected based on the training set compounds with the minimum of 
0 to maximum of 5 features were selected. The ‘Uncertainty’ values for the 18 compounds in the 
training set were set to 2, and the default values for other parameters were kept constant. 
Subsequently, pharmacophore models were computed using 3D QSAR Pharmacophore module and 
the top 10 scoring hypotheses were collected. The qualities of the hypotheses were dependent on the 
fixed cost, null cost, and total cost values [7]. Assessment of pharmacophore quality and database 
screening Evaluation of the quality of the pharmacophore using test set showed a correlation value of 
0.92 between the experimental and predicted activities. All queries were performed using the Ligand 
Pharmacophore Mapping protocol. In order to further validate the Hypo1, GF and EF were calculated 
[8] using the formula ((Ha/4HtA)(3A+Ht)) x (1-((Ht-Ha)/(D-A))) and (Ha/Ht)/(A/D)b respectively. 
Finally, Hypo1 was selected as the best hypothesis and used as a 3D query to retrieve a novel scaffold 
for IGF1R inhibitors from various databases like GOSTAR and ZINC. 
 
Structure based molecular docking: Molecular docking and pharmacophore model are the two 
potent methods in drug discovery process. Virtual screening followed by docking has become one of 
the reputable methods for drug discovery and enhancing the efficiency in lead optimization. The main 
advantage of pharmacophore based docking was to focus on specific key interaction for protein-ligand 
binding. Ameliorate the selection of active compounds it is optimal to use both methods like 
molecular docking and pharmacophore [9–15]. 
 
      Molecular docking was executed for accurate docking of ligands into protein active sites using 
Ligand Fit module in DS. There are three stages in Ligand Fit protocol: (i) Docking: attempt is made 
to dock a ligand into a user defined binding site (ii) In-Situ Ligand Minimization and (ii) Scoring: 
various scoring functions were calculated for each pose of the ligands. The protein complexes were 
selected from protein databank (PDB, www.rcsb.org). Till date, there are many IGF1R complexes 
were reported, among them PDB ID: 3O23 was selected based on the resolution of the complex and 
the size of the co-crystal. For docking study, initially protein was prepared by removing all water 
compounds and CHARMm force field was applied using Receptor-Ligand Interactions tool in DS. 
After the protein preparation, the active site of the protein has to be identified. The active site of the 
protein was represented as binding site; it’s a set of points on a grid that lie in a cavity. Two methods 
were applied to define the binding site for a protein: (i) Firstly, binding sites were identified based on 
the shape of the receptor using ‘‘eraser’’ algorithm and (ii) secondly, volume occupied by the known 
ligand pose already in an active site. In this study, binding site was defined using second method and 
the critical amino acids were identified by analyzing the protein–ligand interactions from IGF1R co-
crystal structures which were deposited in PDB. During the docking process top 10 conformations 
was generated for each ligand based on dock score value after the energy minimization using the 
smart minimizer method, which begins with steepest descent method and followed by the conjugate 
gradient method. Ligand binding affinity was computed based on the dock score and other scoring 
functions like LigScore1, LigScore2, Jain, Potential of Mean Force (PMF), Piecewise Liner Potential 
(PLP) ligand. 

 
RESULTS AND DISCUSSION 

 
HYPOGEN model for IGF1R inhibitors: A training set of 18 compounds with diverse scaffold 
were collected from various literature and used in this study. Structures of the training set compounds 
were shown in figure 1. 3D QSAR Pharmacophore Generation module/Discovery Studio (DS) was 
used to construct pharmacophore model using hydrogen bond acceptor (HBA), hydrogen bond donor 
(HBD), hydrophobic aromatic and ring aromatic (RA) chemical features. It produced ten top-scored 
hypotheses based on the activity values of the training set molecules. Best Hypo1 establishes the 
highest cost difference (77.80), best correlation coefficient (0.90), maximum fit value (10.81) and 
lowest root mean square (RMS) of 1.5. The fixed and the null cost values are 72.1806 and 174.255, 
respectively. Fixed total cost was dependent on summation of the cost components: weight cost, error 

http://www.rcsb.org).
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cost and configuration cost. Two key values were used for cost analysis: one is the difference between 
the fixed and null costs and another one is the difference between null and total cost (cost difference). 
The fixed cost represents a cost of the theoretical ideal hypothesis, which could absolutely predict the 
activity of compounds in the training set with lowest deviation, while null cost represented the cost of 
hypothesis with no features that estimates every activity to be the average activity. The difference 
between these two costs should be 70 bits to show the over 90% statistical significance of the model. 
The cost difference should be greater than 60 bits to represent a true correlation data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Chemically diverse 18 compounds used as training set in 3D QSAR  

Discovery Studio/Pharmacophore generation. 
 

The cost difference between null and fixed cost was found to be 77.80 and it was more than 70 bits. 
All hypotheses had a correlation coefficient of higher than 0.80, but Hypo1 showed the highest 
correlation coefficient values of 0.90, demonstrating good prediction ability of Hypo1. Higher cost 
difference and correlation value with low RMS and error values have been observed for Hypo1 when 
compared with other hypotheses as in (Table 1). Hence, Hypo1 was selected as a best hypothesis and 
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employed for further analyses and the most active and inactive compounds in the training set were 
aligned in Hypo1 was shown in figure 2, 3 and 4. 

Table 1. Results of top 10 hypotheses as a result of automated  
3D QSAR pharmacophore generation 

 
Hypo  

no. 
Total  
cost 

Cost  
difference  RMSD Correlation 

 Coefficient 
Max 

fit 
Hypo1  96.45 77.804 1.55 0.901849 10.813 
Hypo2  97.79 76.4672 1.6 0.894331 10.721 
Hypo3  110.9 63.402 2 0.828048 10.731 
Hypo4  118.3 55.942 2.25 0.77564 9.4718 
Hypo5  118.4 55.862 2.23 0.78089 10.168 
Hypo6  119.9 54.313 2.24 0.777569 10.649 
Hypo7  121.7 52.516 2.32 0.757503 9.679 
Hypo8  122.4 51.897 2.33 0.755567 9.8787 
Hypo9  123 51.213 2.2 0.79727 9.4865 

Hypo10  123.2 51.022 2.27 0.775756 8.7828 
 

 
Figure 2. HYPOGEN pharmacophore model. 

 

 
Figure 3. Best pharmacophore model Hypo1 aligned to 

training set active Compound 1-1. 
 

 
 

Figure 4.  Best pharmacophore model Hypo1 aligned to training  
set inactive Compound 1-18. 

 
Training set compounds were classified relatively into three sets based on their activity values: highly 
active IC50 < 0.3 µM =+++; moderately active 0.3 <= IC50 < 3 µM = ++ and inactive IC50 < 500 
µM = +. The experimental and estimated activities by Hypo1 for 18 training set compounds are 
shown in table 2. 
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Table 2. Actual and predicted activity of the training set molecules based on pharmacophore model 
 

Compound Fit 
value 

Exp.IC50
µM 

Predicted 
IC50 µM 

Exp.IC50
nM 

Predicted 
IC50 nM 

Experimental 
scale 

Predicted 
scale 

1-1 9.71211 0.0003 0.000212 0.3 0.212318 (+++) (+++) 
1-2 8.15366 0.002 0.007681 2 7.68142 (+++) (+++) 
1-3 7.79072 0.003 0.017717 3 17.7166 (+++) (+++) 
1-4 7.79847 0.017 0.017403 17 17.4034 (+++) (+++) 
1-5 7.75566 0.026 0.019206 26 19.2063 (+++) (+++) 
1-6 7.6422 0.058 0.024941 58 24.9405 (+++) (+++) 
1-7 6.53012 0.098 0.322832 98 322.832 (+++) (++) 
1-8 5.37831 0.25 4.57922 250 4579.22 (+++) (+) 
1-9 5.38351 1.87 4.52475 1870 4524.75 (++) (+) 

1-10 5.29531 2.42 5.54355 2420 5543.55 (++) (+) 
1-11 4.7371 2.7 20.0446 2700 20044.6 (++) (+) 
1-12 5.35738 4.1 4.80529 4100 4805.29 (+) (+) 
1-13 5.54499 5.1 3.11969 5100 3119.69 (+) (+) 
1-14 5.36254 7.7 4.74859 7700 4748.59 (+) (+) 
1-15 4.84587 12 15.6039 12000 15603.9 (+) (+) 
1-16 5.13079 67.6 8.09673 67600 8096.73 (+) (+) 
1-17 4.95646 114 12.096 114000 12096 (+) (+) 
1-18 5.32488 489 5.17869 489000 5178.69 (+) (+) 

 
Validation of hypo1: Validating the hypothesis is one of the significant methods in pharmacophore 
generation. There are several methods to confirm the quality of pharmacophore like preparing test set, 
etc. The generated hypotheses were mainly validated to check whether the best hypothesis selected 
the active compounds during the screening process such as the percentage of active compounds 
picked from dataset, correlation between the predicted and estimated values of test set along with its 
efficiency in reducing true negatives and false positives. 
 
Test set: Test set was prepared using the same protocol as training set prepared and used to determine 
whether the hypothesis was able to predict the active compounds (Figure 5) other than the training 
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. 
 
 

Figure 5. Chemically diverse 34 compounds used as test set in 3D QSAR Discovery Studio. 
 

set molecules. The correlation coefficient (r) for the test set given by Hypo1 was 0.94. The 
experimental and predicted activities of Hypo1 as applied to test set are shown in table 3. This result 
was used for further legalization of Hypo1 and we also suggest that the Hypo1 not only fit for training 
set compounds but also for the external compounds. 
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Table 3. Experimental and predicted IC50 data values of 34 test set molecules against IGF1R 
 

Compound 
No. 

Fit 
value 

Exp.IC50 
µM 

Predicted 
IC50 µM 

Exp.IC50 
nM 

Predicted 
IC50 nM 

Experimental 
scale 

Predicted 
scale 

1 5.03396 24.6 10.1191 24600 10119.1 (+) (+) 
2 5.23554 10.1 6.36148 10100 6361.48 (+) (+) 
3 5.24009 12.6 6.29519 12600 6295.19 (+) (+) 
4 5.87349 0.14 1.46422 140 1464.22 (+++) (+) 
5 6.62296 0.18 0.2607 180 260.697 (+++) (+++) 
6 7.6134 0.023 0.02665 23 26.6501 (+++) (+++) 
7 7.3568 0.038 0.04812 38 48.1172 (+++) (+++) 
8 7.34134 0.035 0.04986 35 49.8614 (+++) (+++) 
9 7.50796 0.032 0.03397 32 33.9733 (+++) (+++) 
10 7.04922 0.078 0.0977 78 97.6962 (+++) (+++) 
11 7.24895 0.06 0.06168 60 61.6815 (+++) (+++) 
12 6.25662 0.605 0.60601 605 606.009 (++) (++) 
13 7.73461 0.0032 0.02016 3.2 20.1599 (+++) (+++) 
14 7.73855 0.0008 0.01998 0.8 19.9778 (+++) (+++) 
15 7.70506 0.0016 0.02158 1.6 21.5794 (+++) (+++) 
16 8.31776 0.005 0.00526 5 5.26427 (+++) (+++) 
17 8.10311 0.0006 0.00863 0.6 8.62959 (+++) (+++) 
18 8.27368 0.0016 0.00583 1.6 5.82673 (+++) (+++) 
19 7.56501 0.025 0.02979 25 29.7915 (+++) (+++) 
20 7.67501 0.01 0.02313 10 23.1256 (+++) (+++) 
21 7.69875 0.01 0.0219 10 21.8954 (+++) (+++) 
22 7.70531 0.009 0.02157 9 21.567 (+++) (+++) 
23 7.51683 0.022 0.03329 22 33.287 (+++) (+++) 
24 7.69901 0.011 0.02188 11 21.8823 (+++) (+++) 
25 7.65393 0.013 0.02428 13 24.2758 (+++) (+++) 
26 7.63104 0.01 0.02559 10 25.5892 (+++) (+++) 
27 7.79926 0.004 0.01737 4 17.3716 (+++) (+++) 
28 7.81335 0.008 0.01682 8 16.8169 (+++) (+++) 
29 7.80899 0.005 0.01699 5 16.9868 (+++) (+++) 
30 8.09006 0.006 0.00889 6 8.89292 (+++) (+++) 
31 7.80796 0.006 0.01703 6 17.027 (+++) (+++) 
32 7.78798 0.005 0.01783 5 17.8289 (+++) (+++) 
33 7.81575 0.005 0.01672 5 16.7242 (+++) (+++) 
34 6.8415 0.154 0.15762 154 157.615 (+++) (+++) 

 

Databases screening: Virtual screening of small-molecule libraries forms one aspect of a 
sophisticated approach to drug discovery [16]. Hypo1 was used to screen the various databases like 
GVK and ZINC database, which consists of million compounds. In drug discovery process virtual 
screening of databases is an effective alternative to high throughput screening (HTS). Totally, 30000 
compounds satisfied all the critical features in Hypo1 and 2000 compounds were considered for 
further analyses based on the maximum fit value. Drug-likeness properties are an important indicator 
for selecting the compounds for in vitro studies, which includes molecular or physicochemical 
properties that contribute to favorable Lipinski’s rule of five. So, we further sorted these 2000 
compounds using the Lipinski’s rule of five and finally 1000 compounds were further considered for 
docking studies. To evaluate the fit of the pharmacophore to the binding site of the crystal structure of 
IGF1R (PDB ID:3O23), the pharmacophore model Hypo1 was compared with the bound 
conformation of the compound IGF1R ligand ((5S)-5-methyl-1-(quinolin-4-ylmethyl)-3-{4-
[(trifluoromethyl)sulfonyl]phenyl}imidazolidine-2,4-dione). complexed with IGF1R. We compared 
the pharmacophore model with the active site of IGF1R crystal structure and it clearly shows a good 
agreement with the target based pharmacophore. 
 
Molecular docking studies of IGF1R: Molecular docking is a computational technique that samples 
conformations of small compounds in protein binding sites; scoring functions are used to assess which 
of these conformations were best complements to the protein binding site. There are two main aspects 
to assess the quality of docking methods: (i) docking accuracy, which recognizes the true binding 
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mode of the ligands to the target protein and (ii) screening enrichment which measures the relative 
improvement in the identification of true binding ligands using a docking method versus random 
screening [17]. Training set of 18 compounds as well as 1000 hit compounds retrieved from the 
databases which satisfied drug like properties were docked in the active site of IGF1R using Ligand 
Fit (Figure 6). Totally, 60 compounds show showed the hydrogen bond interactions with Lys 1033A, 
Met1082A and Asp1153A. 
 

 

 
Figure 6. Comparison of D-44 and 3O23 ligand in active site of IGF1R (PDB ID: 3O23). 

 
The training set compounds showed the dock score greater than 80 and the maximum fit value. All of 
the hit compounds possessed the good fit value and the dock score. Based on the consensus scoring 
function finally 44 compounds were sorted for further vitro studies (Figure 7). 
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Figure 7. Compounds retrieved based on pharmacophore and docking. 
 
All the ligands in the complex structures showed the hydrogen bond interactions with Lys 1033A, 
Met1082A and Asp1153A. This clearly indicates that these hydrogen bonded amino acids play a 
crucial role in IGF1R inhibitions and the result was shown in table 4 [18-31]. 

Table 4. Analyses of critical amino acids for IGF1R inhibition 16 crystal structures deposited in PDB 
 

S.No. PDB-1D Resolution A  Ligand  Hydrogen bond integrations 
1 3LW0 1.79 CCX Vol1063(A) 
2 3O23 2.10 MQY Lys 1033, Asp 1153, Met 1082 
3 3NW5 2.14 LGX Glu 1050, Met 1052  
4 3NW6 2.2 LGW Glu 1050, Met 1052 
5 3NW7 2.11 LGV Asp 1123, Met 1052 
6 3I81 2.08 EBI Asp 1123, Met 1052 
7 3D94 2.3 D94 Glu 1050, Lys 1003 Met 1052 
8 2OJ9 2 BMI Glu 1050, Met 1052 
9 1JQH 2.1 ANP MG 304, Glu 1080, Lys 1033, Met 1082, Ser1009 
10 1K3A 2.1 ACP Glu 1050, Met 1052, Ser 979 
11 3QQU 2.9 01P Asp 1150, Met 1079 
12 3ETA 2.6 315 Asp 1150, Glu 1047, Glu 1077, Met 1079 
13 3F5P 2.9 741 Lys 1033, Met 1082  
14 2ZM3 2.5 575 Glu 1080, Met 1082  
15 1IGR 2.6 FUC Asn 105, Asp 132, His 223 
16 3LVP 3 PDR, EPE Met 1082 

     
APPLICATION 

 
The purpose of this study was not only to construct the pharmacophore model to predict the estimated 
activity of the compounds, but also to employ the hypothesis on virtual screening to search novel 
scaffolds.  
 

CONCLUSION 
In this work, it have built 3D pharmacophore models from 18 IGF1R inhibitors and the best 
quantitative pharmacophore model, Hypo1, consisted of five features like two HBA and three H. The 
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features were perfectly complementary to the IGF1R active site and directed to relative protein 
residues, showing that Hypo1 represents the characteristic of IGF1R active site. For predicting 
activity, the correlation coefficient of Hypo1 with training and test sets were 0.93 and 0.91 
respectively, suggesting a good predictive power of the hypothesis for the majority of IGF1R 
inhibitors. Hypo1 was used as a 3D query for screening large databases like GOSTAR and ZINC. 
Finally, 44 compounds were selected as potent IGF1R inhibitors based on the consensus scoring 
function. From the overall analyses, we conclude that the Hypo1 pharmacophore truly reflects the 
features of IGF1R inhibitors and this pharmacophore could be used as fast and accurate tool to assist 
discovery of novel IGF1R inhibitors. 
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