Available online at www.joac.info

ISSN: 2278-1862

Journal of Applicable Chemistry

Medical diagnosis

Data.	- Uncertainty, unknown, incomplete, imbalanced, heterogeneous, noisy,
Medical	dirty, erroneous, inaccurate, missing data
	- Probabilistic, fuzzy
	- Arbitrarily high-dimensional spaces

Dataset	China Acute Myocardial Infarction registry Tr: 9,619 ; Te: 9,125 patients
Task	In-hospital death in relation with clinical variables
Method (xAI)	XGBOOST
eXplainability of MachLrnMethod	New machine learning-based risk prediction model + Good discrimination ability + Offered individualized explanations on how clinical variables

	influenced the outcomes			
FOM				
		Present method	0.899	
		random forest	0.861	
		logistic regression (LR top 15 variables) + 0.850	
		LR + L2 regularization	0.869	
		GRACE scores	0.810	
		89 variables	0.899 0.886-0.911_95% CL	
		12 variables	0.880 0.859-0.887.95% CI	
Traditional statistical models	- Usually underestimate the complexity			
Machine learning models	 Hard to interpret Sensitive to the completeness of the input variables 			
Causal Inference	Engineering, 2020			
	https://doi.org/10.1016/j.eng.2019.08.016			
KunKuang and Lian Li and ZhiGeng and Lei Xu and Kun Zhang and Beishui Liao and Huaxin Huang and Peng				
Ding and Wang Miao and Zhichao Jiang				

Task	Mammography images				
Image	3,000 x 3,000 pixels Mammograph	у			
size	300 x 300 pixels; ImageNet57 d	competition			
Method	CNNs				
(NN)	Transition from rule-based Co	mputer Aided Detection			
	systems to DeepLearning solutions				
FOM	With embedded domain knowledge				
	+ Reduce diagnostic errors				
	+ Improve accuracy of radiologist				
	 Helps in decision-making 				
Artificial int	Artificial intelligence in breast imaging Clinical Radiology, 74 (2019) 357-366				
	https://doi.org/10.1016/j.crad.2019.02.006				
	E.P.V. Le and Y. Wang and Y. Huang and S. Hickman and F.J. Gilbert				

xAI	Visual approach on therapeutic decision with more than two classes
interpretable models	Rely on non-black box approachRule-based ones
Case Based Inference	Similar cases can be used as examples for justifying the response of the system.

+ This can be considered as an interpretable model.		
- Explanations, most CBR systems are limited to the display of the		
similar cases.		

Dataset	Breast Cancer Wisconsin (BCW) dataset2
Sample	Digitized image of fine needle aspirate of breast mass
Data	683 cases; 9 dimensions; integer values ranging from 0 to 10
	Classes: [benign or malignant]
Dataset	Mammographic Mass (MM) dataset
Sample	830 cases; 2 numeric dimensions (age ; BI-RADS [Breast Imaging Reporting And Data System value])
	3 categorical dimensions (shape margin density of the mass)
	\Im classes (benign or malignant)
	-
Dataset	• Breast Cancer (BC) dataset
Sample	• 286 cases
	• 4 numeric dimensions (age, tumor size, etc.),
	• 4 categorical dimensions (breast quadrant, etc.)
	• 2 classes (whether cancer is recurrent or not).
Simulated	• 4050 cases
Dataset	• 75 dimensions (22 Boolean, 14 integer and 39 nominal)
	• 4 classes, categories of treatment for breast cancer: [surgery,
	chemotherapy, radiotherapy, endocrine]
Explainable artific	tial intelligence for breast cancer: A Artificial Intelligence in Medicine, 94 (2019) 42-53
visual case-based	reasoning approach https://doi.org/10.1016/j.artmed.2019.01.001
Jean-Baptiste L	amy and BoomadeviSekar and Gilles Guezennec and Jacques Bouaud and Brigitte Séroussi

Discipline	0	Ophthalmology		
Goal	0	To augment vision care		
	0	• Improved efficiency of tools		
Task	0	• To identify, localize and quantify		
	Pathological features in macular and retinal disease			
Understanding the advent of artificial intelligence in Journal of Current Ophthalmology, 31 (2019) 115-117				
<mark>ophthalmolog</mark>	y			
Editorial				

What do we need to build explainable AI systems for the medical domain?	arXiv:1712.09923v1[cs>AI 28Dec,2017		
Andreas Holzinger, Chris Biemann, Constantinos S. Pattichis, Douglas B. Kell			
xAI — xAI — xAI — eXplainable Artificial Intelligence — xAI — xAI — xAI — Interpretable AI- IAI – IAI – xAI			

Medical Care

Task	Phenotype diagnosis			
Method	Multi-label gradient boosted tree (xgboost)		xAI	17 vital signs for explanation
dataset	First 24 hours vitals of a		SHAP	For attribution
MIMIC III	833 extracted features		LORE	For counterfactual rules
(17 patient vital \times 7 times windows \times 7 statistics)	(17 patient vital \times 7 time windows \times 7 statistics)		MOEA/D	For sensitivity analysis
Designing Theory-Driven User-Centric Explainable		1	In 2019 CHI Conference on Human Factors in	
AI		(Computing Sy	stems Proceedings (CHI 2019)
Danding Wang, Qian Yang, Ashr			Ashraf Abdul,	Brian Y. Lim

xAI—xAI—xAI—eXplainable Artificial Intelligence— xAI—xAI—xAI— Interpretable AI- IAI – IAI – xAI

Method proposed	• Conceptual framew theory-driven XAI	ork for building human-centered, decision-		
XAI	 Mitigate common cognitive biases 			
Application	Medical diagnostic tool CU			
	Co-design ex	Co-design exercise with clinicians.		
Explainable	From philosophy, cognitive	psychology,AI		
tools				
Future	 Articulation of detail 	led design space of technical features of XAI		
	 Connecting methods with requirements of human reasoning, 			
	 → Developers but 	ld more user-centric explainable AI-based		
	systems			
Designing Theory-Driven User-Centric Explainable Factors in Computing Systems Proceedings (CH				
AI. In 2019 CHI Conf	Ference on Human	2019)		
	doi.org/10.1145/3290605.3300			
Danding Wang, Qian Yang, Ashraf Abdul, Brian Y. Lim				

DataSet	Medical Information Mart for Intensive Care (MIMIC-III)		
Data Descriptor: MIMIC-III, a freelyaccessible		SCIENTIFIC DATA, 3:160035	
critical care database		DOI: 10.1038/sdata.2016.35	
Alistair E.W. Johnson, Tom J. Pollard, Lu Shen, Li-wei H. Lehman, Mengling Feng, Mohammad Ghassemi,			
Benjamin Moody, Peter Szolovits, Leo Anthony Celi& Roger G. Mark			

xAI—xAI—xAI—eXplainable Artificial Intelligence— xAI—xAI—xAI— Interpretable AI- IAI – IAI – xAI

xAI	Implei	nentation of transpar	ency/ traceability
	0	For statistical black	-box machine (deep)learning methods
AI	0	Phenomenon of inte	elligence is very difficult to define
		AI itself esoteric ter	m in engineering
Application	o	Human explanation	in histopathology
Future	0	Go beyond explaina	ble AI
	0	Explainable medicin	ne with causality
Causability and explainabilty of artificial intelligence		f artificial intelligence	WIREs Data Mining KnowlDiscov. 2019;e1312.
in <mark>medicine</mark>			wires.wiley.com/dmkd 1 of 13
			https://doi.org/10.1002/widm.1312
Andreas Holzinger, Georg Langs, Helmut Denk, Kurt Zatloukal, Heimo Müller			

xAI—xAI—xAI—eXplainable Artificial Intelligence— xAI—xAI—xAI— Interpretable AI- IAI – IAI – xAI

Dynamic and explainable machine learning prediction	www.thelancet.com/digital-health Published online	
of mortality in patients in the intensive care unit	March 12, 2020	
(ICU):	https://doi.org/10.1016/S2589-7500(20)30056-X	
a retrospective study of high-frequency data in		
electronic patient records		
Hans-Christian Thorsen-Meyer, Annelaura B Nielsen, Anna P Nielsen, Benjamin SkovKaas-Hansen, Palle Toft		
Jens Schierbeck, Thomas Strøm, Piotr J Chmura, Marc Heimann, Lars Dybdahl, Lasse Spangsege, Patrick		
Hulsen, Kirstine Belling, SørenBrunak, Anders Perner		

Protein folding

Computers;	! Computers are incredibly fast, accurate but stupid	
humans	! Humans are incredibly slow, inaccurate but brilliant,	
	I Together they are powerful beyond imagination	
Datasets	• Protein Folding	
	• Clustering of large high-dimensional gene expression data	
	• Traveling Salesman Problem	
Application	Integrative machine learning	
	Understanding intelligence	
Intelligence	✓ What is it? Where is it?	
	 Solve intelligence – then everything else solved 	
	✓ How real is AI?	
Data;	 Today is drowning in data 	
Knowledge	 Information overload 	
	 A wealth of information creates a poverty of attention 	
	✓ Yet, starving for knowledge	
Future	 Multi-Task Learning to help to reduce catastrophic forgetting 	
	✓ Multi-Agent Hybrid Systems making use of collective	
	intelligenceand crowd-sourcing	
	✓ Transfer learning [learning to perform a task by exploiting	
	knowledge acquired when solving previous tasks]	
	✓ Multi-Agent Hybrid Systems making use of collective intelligence	
	and crowd-sourcing	
✓ Automatic machinelearning (aML)		
From Machine Learni	From Machine Learning to Explainable AI IEEE DISA 2018 Conference, Kosice, August, 23	
2018		
DOI: 10.1109/DISA.2018.8490530		
Andreas Holzinger		

xAI—xAI—xAI—eXplainable Artificial Intelligence— xAI—xAI—xAI— Interpretable AI- IAI – IAI – xAI

QSAR (Structure actitivity relationships)

xAI — xAI — xAI — eXplainable Artificial Intelligence — xAI — xAI — xAI — Interpretable AI- IAI – IAI – xAI

Building of Robust and Interpretable QSAR	J. Chem. Inf. Model. 2019, 59, 2785-2804	
Classification Models by Means of the Rivality Index	DOI: 10.1021/acs.jcim.9b00264	
Irene Luque Ruiz and Miguel ÁngelGómez-Nieto		

Interpretation of QSAR Models by Coloring Atoms	J. Chem. Inf. Model. 2019, 59, 1324–1337	
According to Changes in Predicted Activity: How	DOI: 10.1021/acs.jcim.8b00825	
Robust Is It?		
Robert P. Sheridan		

xAI — xAI — xAI — eXplainable Artificial Intelligence — xAI — xAI — xAI — Interpretable AI- IAI – IAI – xAI

Structural and physico-chemical interpretation (SPCI)	J Che Infor Model (2020)	
of QSAR models and its comparison with MMP		
analysis		
Pavel G. Polishchuk, Oleg Tinkov, Tatiana Khristova, Ludmila Ognichenko, Anna Kosinskaya, Alexandre		
Varnek, and Victor Kuz'min		
AT AT AT \$7.1 * 11 A /*** * 1 T / 11*		

xAI — xAI — xAI — eXplainable Artificial Intelligence — xAI — xAI — xAI — Interpretable AI- IAI – IAI – xAI

Toxicology-Envronmental

Field	Environmental toxicology	
Feature	• Model interpretability; Data interpretation	
	 Organisation for Economic Co-operation and Development (OECD) 	
	 Five Principles for Quantitative StructureActivity Relationship (QSAR) validation 	
Machine Learning for Environmental Toxicology: A Environ. Sci. Technol. 2018, 52, 12953–12955		
Call for Integration and Innovation		
Thomas H. Miller, Matteo D. Gallidabino, James I. MacRae, Christer Hogstrand, Nicolas R. Bury, Leon P.		
Barron, Jason R. Snape, and Stewart F. Owen		
xAI — xAI — xAI — eXplainable Artificial Intelligence — xAI — xAI — xAI — Interpretable AI- IAI – IAI – xAI		

Bio-informatics

Supervised and Unsupervised Algorithms	Progress in Biophysics and Molecular Biology(2020)	
for,Bioinformatics and Data Science	doi.org/10.1016/j.pbiomolbio.2019.11.012	
Ayesha Sohaila;b, Fatima Arif		
xAI — xAI — xAI — eXplainable Artificial Intelligence — xAI — xAI—xAI —		

Climate and plant biology

Mega-Goal Socially oriented Sustainable Development Goals • New crop ideotypes Image: Comparison of the system		
• New crop ideotypes • Water and nutrient use efficiency		
The water and nutrient use efficiency		
Water and nutrent use effectively		
High food or net energy yield per hectare		
Carbonsequestration		
Optimized microbiome usage		
Disease resistance		
Objective • AI + decipherable decision-making process \rightarrow		
 Offers meaningful explanation to humans 		
Data Large Data		
 Multi-omics 		
 Imaging 		
 Ecophysiology 		
 Field-based data for large-scale population 		
 Plant omics 		
 Datasets of plant populations (genome, epigenome, transcriptome, 		
proteome, metabolome, phytobiome, phenome)		
Datasets o Global exascale datasets		
• 12 major Elemental layers for soil		
• 48 light spectra (300 nm–780 nm) across 365 days		
• Calculated similarity indexes using the duo algorithm on summit		
supercomputer		
• \rightarrow Generated climate clusters globally at 1 km ² resolution		
Resources 200-petaflop supercomputer		
• Systems-level approach		
 To dissect biological mechanisms in plants` 		
• Exascale computing (from individual plant to global scale)		
Goal • Advanced AI approaches to model climate type		
• Patterns/clustering across last 50 years		
• To predictfuture patterns		
Can exascale computing and explainable artificial Current Opinion in Biotechnology, 61 (2020) 217		
intelligence applied to plant biology deliver on the 225https://doi.org/10.1016/j.copbio.2020.01.0		
United Nations sustainable development goals?		
Jared Streich and Jonathon Romero and João Gabriel Felipe Machado Gazolla and David Kainer and Ashley		
Cliff and Erica Teixeira Prates and James B Brown and Sacha Khoury and Gerald A Tuskan and Michael		
Garvin and Daniel Jacobson and Antoine L Harfouche		

Discipline	High yield cultivation; Climate; Environment
Task	 Predicting effects of expression of genes involved in plant growth = fn(changing water availability) Resistance to pests Ill-defined prediction targets

Tools	Next-Gen AI : [xAI + MachLrn + Deep NN +]
Implements	Automation of much of the analysis, but with human support/discretion in cvcle
Big data	 Omics data Theterogeneous ; high dimensional Derived from a wide range of experiments which yield different types of information
Data characteristics	 Noisy Sparse, irregularly sampled Collected under different conditions Ambiguous time points

Accelerating Climate Resilient Plant Breeding by	Trends in Biotechnology, 37 (2019)1217-1235	
Applying Next-Generation Artificial Intelligence	https://doi.org/10.1016/j.tibtech.2019.05.007	
Antoine L. Harfouche and Daniel A. Jacobson and David Kainer and Jonathon C. Romero and Antoine H.		
Harfouche and Giuseppe ScarasciaMugnozza and Menachem Moshelion and Gerald A. Tuskan and Joost J.B.		
Keurentjes and Arie Altman		

Classification

Earlier successful approach	 NNs with multiple hidden layers (deep neural networks) More effective More efficient 			
Limitation	- Not trivial to understand the way howthey derive their			
	classification decisions			
Method introduced	🛄 decompositional algorithm – DeepRED –			
	• Able to extract rules from deep neural networks			
	 Decision processes more comprehensible 			
	 Ex: XOR function 			

			#attributes	#training ex.	#test ex.	NN structure	$\operatorname{acc}(\operatorname{training})$	acc(test)
		MNIST	784	12056	2195	784-10-5-2	99.6 %	98.8%
		letter	16	1239	438	16-40-30-26	96.9%	97.3%
		artif-I	5	20000	10000	5-10-5-2	99.5 %	99.4%
		artif-II	5	3348	1652	5-10-5-2	99.4%	99.0%
		XOR	8	150	106	8-8-4-4-2-2-2	100%	100%
DeepRED – Rule Extraction from Deep)	Sp	ringer Internation	al Publishing Sw	vitzerland	
Neural Networks			T. Calders et al. (Eds.): DS 2016, LNAI 9956, pp.					
					457–473, DOI: 10.1007/978-3-319-46307-0 29			
	Jan Ruben Zilke(B), EneldoLozaMenc'1a, and Frederik Janssen							

Earlier successful approach	 Tree-based machine learning models: [random forests, decision trees: gradient boosted trees 	
Limitation	- No explanation of their predictions	
Method introduced	Interpretability of tree-based models through three main contributions.	
Local explanation methods	 Reporting decision path Not helpful for most models(ex. Multiple trees) Assigning credit to each input featureby heuristic approach Strongly biased based on tree depth Model-agnostic approaches Executing the model for each explanation Slow and suffer from sampling variability 	

Dataset	Chronic Renal		
	Insufficiency Cohort		
	(CRIC)		
Patients	3,939 chronic kidney		
	disease patients;	Dataset	National Health and
	10,745 visits		Nutrition
Features	333;		Examination Survey
	Electronic medical record		(NHANES)
	dataset with		Epidemiologic Followup
	147,000 procedures and		Study
	2,185 features	Patients	14,407 individuals and 79
Task	Classification		features
	End-stage renal disease	Task	Risk of death over 20 yr
	within 4 yr or not		of followup

From local explanations to global understanding	Nature Machine Intelligence, 56 (2020), 56–67			
with explainable AI for trees				
Scott M. Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M. Prutkin, Bala Nair,				
Ronit Katz, Jonathan Himmelfarb, Nisha Bansal and Su-In Lee				

Interpretable multiclass classification by MDL-based	Information Sciences xxx (xxxx) xxx;			
rule lists	doi.org/10.1016/j.ins.2019.10.050			
Hugo M. Proença, Matthijs van Leeuwen				

Image Analysis

Caltech data set	0 0 0	9144 images 102 classes (101 Object classes: brain, camera, etc	object classes and a "back-ground"class [human faces, leopards, motorbikes, binocular, 2.]	
	Dimen	sion : 3,000 ; Tr:3060(30/class); Te:6084		
YaleB data	0	38 Persons (or classes)		
	0	2414 Face Images		
	0	64 Illumination Conditions		
	0	Images Resized to 24×21		
	0	Dimension : 504 ; Tr:1216(32/class); Te:1198		
A group LASSO based sparse KNN classifier		classifier	Pattern Recognition Letters, 131 (2020) 227-233	
			https://doi.org/10.1016/j.patrec.2019.12.020	
Shuai Zheng and Chris Ding				

xAI—xAI—xAI—eXplainable Artificial Intelligence— xAI—xAI—xAI— Interpretable AI- IAI – IAI – xAI

Material Science

Explanation	Interpretable models			
	• Material science			
	• Small datasets			
Task	Design and discovery			
	• Of new materials with desired properties			
Machine Lrn	• With Bootstrapped Projected Gradient Descent – BOPGD algorithm is constrained with Buckingham Pi theorem based dimensional analysis and scaling laws of relationships between different input descriptors(properties)			
Positive	+ Learn from Small data			
features	+ Develop predictive models			
	 Accurate, computationally inexpensive physically interpretable. 			
Dataset	• 82 materials \rightarrow classified into three different crystal structures,			
Target	• Predicting intrinsic dielectric breakdown (Fb)			
property	• Descriptors: Eight			
Method	• PCA			
	• Pairwise correlations			
Machine learning constrained with dimensional Chem.Materials (202				
analysis and scal	ling laws:Simple, transferable and DOI: 10.1021/acs.chemmater.8b02837			
interpretable models of materials from small datasets				
Narendra Kumar, Padmini Rajagopalan, Praveen Pankajakshan, Arnab Bhattacharyya, Suchismita Sanyal,				
Janakiraman Balachandran, and Umesh V. Waghmare				
xAI—xAI—xAI—eXplainable Artificial Intelligence— xAI—xAI—xAI— Interpretable AI- IAI – IAI – xAI				

Explainable Machine Learning Algorithms To Predict	Acta Materialia (2020), doi:			
Glass Transition Temperature	https://doi.org/10.1016/j.actamat.2020.01.047			
EdesioAlcobac, a, SauloMartielloMastelini, Tiago Botari, Bruno Almeida Pimentel, Daniel Roberto Cassar,				
Andr´e Carlos Ponce de Leon Ferreira de Carvalho, Edgar Dutra Zanotto				

 $xAI - xAI - xAI - eXplainable \ Artificial \ Intelligence - xAI - xAI - xAI - Interpretable \ AI- \ IAI - IAI - Xai$

Deep Taylor Decomposition(DTD)

Method • OC (One class)-DTD FOM • Outperforms baseline procedures viz. @ Sensitivity analysis, distance to nearest neighbor, or edge detection @ Distance Decomposition, Gradient-Based, SHAP Outlier Neuralized One-Class SVM Deep Taylor Decomposition Explanantion Outlier Neuralized One-Class SVM Deep Taylor Decomposition Explanantion Outlier Outlier explanation Outlier explanation	Deep Taylor decomposition (DTD)	Quickly and reliably explaBasis: It leverages the mod	in decisions in terms of input features del structure
 Outperforms baseline procedures viz. Sensitivity analysis, distance to nearest neighbor, or edge detection Distance Decomposition, Gradient-Based, SHAP 	Method	OC (One class)-DTD	
Sensitivity analysis, distance to nearest neighbor, or edge detection Distance Decomposition, Gradient-Based, SHAP Outlier Neuralized One-Class SVM Deep Taylor Decomposition Explanantion Explanantion Outlier explanation	FOM	 Outperforms baseline proc 	cedures viz.
Distance Decomposition, Gradient-Based, SHAP Outlier Neuralized One-Class SVM Deep Taylor Decomposition Explanantion Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM Image: Class SVM		Sensitivity analysis	is, distance to nearest neighbor, or edge detection
Outlier Neuralized One-Class SVM Deep Taylor Decomposition Explanantion		Distance Decomp	osition, Gradient-Based, SHAP
Towards explaining anomalies: A deep Taylor Pattern Recognition 101 (2020) 107198	Towards explaining anomalies: A deep Taylor Pattern Recognition 101 (202		Pattern Recognition 101 (2020) 107198
decomposition of one-class models /doi.org/10.1016/j.patcog.2020.107198	/doi.org/10.1016/j.patcog.2020.107198		
Jacob Kauffmann, Klaus-Robert Müller, Grégoire Montavon			

Deep Neural Networks	 Gold standard in MachLrn DNNS are black boxes due Lack of transparency→Lim Prevents a human expert frasystem 	to their multilayer Nonlinear structure iting interpretability rom being able to verify, understand reasoning of		
Method proposed	• Deep Taylor decomposition • Alg: backpropagating explanation	ons from the output to the input layer		
proposed	 Explanation of classification decisions of a machine learning model in terms of input variables 			
Datasets	MNIST and ILSVRC			
Explanation	Image classification			
necessary	Indicate whether a test image belongs to a certain category or not			
	Explain what structures (e.g. pixels in the image) were the basis for its decision			
	- Sensitivity analysis ignores or overrepresents some of the relevant regions			
Explaining NonLinear ClassificationPattern Recognition 65,2017, 211				
Decisions with Deep Taylor Decomposition, Pattern		http://dx.doi.org/10.1016/j.patcog.2016.11.008		
Recognition				
Grégoire M	Grégoire Montavon, Sebastian Lapuschkin, Alexander Binder, Wojciech Samek and Klaus-Robert Müller			

Computer science

Classical AI	Expert systems and rule based models	Review
Sub symbolic systems	Ensembles or Deep Neural Networks	
eXplainable AI (xAI)	Machine learning-explainability	
Methods	Data fusion ; workflows; explainability	
Responsible AI	Large-scale implementation of AI methods in real organizations Fairness, model explainability; accountability	

xAI—xAI—xAI—eXplainable Artificial Intelligence— xAI—xAI—xAI— Interpretable AI- IAI – IAI – xAI

Explainable AI	 Closer to explanation concept of outcome Performance improvement is closer to concept of a benefit
Imperfect AI	Utilitarian benefit, empathy
Humans	 Capable of producing high-quality data that AI lacks Complex image recognition Speech recognition Translation in the field constructs Bias (conscious/unconscious)
AI	No bias (unless machine is a replica of human brain)

Egoistic and altruistic motivation: How to induce	Computers in Human Behavior, 101 (2019) 180-196	
users' willingness to help for imperfect AI	https://doi.org/10.1016/j.chb.2019.06.009	
Yeonjoo Lee and Miyeon Ha and Sujeon	g Kwon and Yealin Shim and Jinwoo Kim	

Explanation technique	 LIME[Local Interpretable Model-agnostic Explanations] SP- [submodular pick] LIME RP- [Random pick] LIME
Explainability	 ✓ Explains predictions of any model in an interpretable manner ✓ →Improving an untrustworthy classifier ✓ Identifying why a classifier should not be trusted
Humans	 Learn an interpretableModel locally around the prediction Explain the predictions of any classification

Dashed line:learned explanationlocally (but not globally) faithful
Bold red cross:Bold red cross:Instance explainedBlue/pink background:black-box model's complex decision function (unknown to LIME)"Why Should I Trust You?"doi.org/10.1145/2939672.2939778Explaining the Predictions of Any ClassifierKDD 2016 San Francisco, CA, USAMarco Tulio Ribeiro, Sameer Singh, Carlos Guestrin

xAI—xAI—xAI—eXplainable Artificial Intelligence— xAI—xAI—xAI— Interpretable AI- IAI – IAI – xAI

Feature selectionmethod	Informative Variable Iden Identifying inform 	tifier (IVI), native variables.
DataSets	• Non-linear Madelon Data	
	 Digit Recognition Databas 	se MNIST
	• Synthetic linear classificat	ion problem with a binary output variable
Informative variable identifier: Expanding Pattern Recognition, 98 (2020) 10707		
interpretability in feature selection		
Sergio Munoz-Romero, ArantzaGorostiaga, Cristina Soguero-Ruiz, Inmaculada Mora-Jiménez, JoséLuisRojo-		
Álvarez		

xAI—xAI—xAI—eXplainable Artificial Intelligence— xAI—xAI—xAI— Interpretable AI- IAI – IAI – Xai

Explanation technique	🗳 SHAP (SHapley Ad	ditive exPlanations)
Explainability	Interpreting predictions	
Method	 Additive Feature Attribution methods LIME DeepLIFT Layer-Wise Relevance Propagation Classic Shapley Value Estimation Shapley regression values Shapley sampling values QuantitativeInput Influence 	
Basis	Additive feature attribution methods have an explanation model which is a linearfunction of binary variables	
Limitation of classical methods	 Accuracy versus interpretability of model predictions Remedy: class of additive feature importance methods 	
Future methods	 Faster model-type-specific estimation methods Make fewer assumptions Integrating work on estimation Interaction effects from game theory Defining new explanation model classes 	
A Unified Approach t Predictions	o Interpreting Model	31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA
Scott M. Lundberg, Su-In Lee		

Applications	• Medical domain
of xAI	- Wrong decisions of the system can be very harmful
	• Image classification
	• Sentimentanalysis,
	• Speech understanding
	• Strategic game playing
MachLrn	Nested non-linear structure
	+ Highly successful
	- Black-box manner [No informationabout what exactly makes
	system to arrive at decisions/predictions]
xAI	Visualizing
	Explaining in text mode
	Interpreting deep learning models
Explanation	Sensitivity of the prediction with respect to changes in the input
tools	
	$R_i = \left \left rac{\partial}{\partial x_i} f(\mathbf{x}) ight ight $
	 Meaningfully decomposition of decision in terms of input variables Layer-wise relevance propagation (LRP)

xAI—xAI—xAI—eXplainable Artificial Intelligence— xAI—xAI—xAI— Interpretable AI- IAI - IAI -	– Xai
---	-------

xAI	• Fuzzy linguistic modelling based approach	
Intelligibility	• Machine learning models	
	- Lack of intelligibility	
Methods.	• LIME or SHAP	
Explanation	• Make the predictions of ML transparent for humans	
	• Still a gap to make enough intelligibility	
	Intelligibility modes	
	• Expert-2-Model:Existing expert knowledge compatibility with the	
	machine learning model	
	• Expert-2-Expert:Consolidation of knowledge from many experts in	
	accordance with the model	
	 Model-2-Expert:Output of model explainers to humans 	
	 Feature-2-Expert: Feature importance to humans 	

A fuzzy linguistic supported framework to increase	7th International Conference on Information	
Artificial Intelligence intelligibility for subject matter	Technologyand Quantitative Management(ITQM	
experts	2019)	
	Procedia computer science 162(2019)865-872	
Juan Bernabé-Moreno, KarstenWildberger		

Method	New visualization approacl	n based on a Sensitivity Analysis
Application	I To extract human	understandable knowledge from supervised ox data miningmodels. Ex: NNs. SVMs.
	ensembles, including	g Random Forests
visualizations	Tuput pair importance	
for SA	Color matrix	
	Variable effect char	acteristic surface
Datasets	• Bank direct market	ing (classification)
	• Contraceptive method choice (classification)	
	• Rise time of a servomechanism (regression)	
	• White wine quality (regression)	
Using sensitivity analysis and visualization techniques Information Sciences, (2		Information Sciences, (2012)
to open black box data mining models		dx.doi.org/10.1016/j.ins.2012.10.039
Paulo Cortez, Mark J. Embrechts		

Evolution of eXplanation

- Application fields
 - e-health, domestic robots, training
- Necessary conditions for demanding explainability
- Understandable explanations based on Social Science and psychological background
- Platforms/architectures
 - BDI (Belief, Desires, and Intentions)
 - MDP(Markov Decision Process)
 - POSH (Parallel-rooted-ordered Slip-stack Hierarchical Action Selection),
 - STRIPS (Stanford Research Institute Problem Solver)
- Explanatory granularity (Context; user-sensitive)
- Explanation display
 - ✓ Expressive lights
 - ✓ Graphical. User interface
 - ✓ Natural language
- Evaluation of explanation frame work
- Future solutions for present xAI limitations

 Explainable Agents and Robots: Results from a Systematic Literature Review
 AAMAS 2019, May 13-17, 1078-1088, Montréal, Canada

 SuleAnjomshoae, Amro Najjar, Davide Calvaresi, Kary Främling

xAI	Vital interdisciplinary research field	
	! XAI is not just a labcoat research field	
Explainability	All aspects related to XAI	
	Five W's	
	• What, Who, When, Why, Where	

	🍘 How		
Peeking Inside the Bl	ack-Box: A Survey on	IEEE, Access, 6(2018)52138-52160	
Explainable Artificial	ll Intelligence (XAI) DOI: 10.1109/ACCESS.2018.2870052		
AMINA ADADI AND MOHAMMED BERRADA			
xAI — xAI — xAI — eXplainable Artificial Intelligence — xAI — xAI—xAI — Interpretable AI- IAI – IAI – xAI			

ML vs Humans ML algorithms performance exceed human level at times Future To integrate explanations into a larger optimization process \rightarrow Improvementin performance of model or reduce its complexity. Methods for visualizing, explaining and interpreting deep learning models xAI Which one?? Predict right for the 'wrong' reason ! Predict wrong with right reasoning 1 Evolution (natural/artificial) without explicit explanations I. Towards Explainable Artificial Intelligence Explainable AI, LNAI 11700, pp. 5–22, 2019 https://doi.org/10.1007/978-3-030-28954-6_1 Wojciech Samek, and Klaus-Robert Muller W. Samek et al. (Eds.)

AI procures	- Poor explainability		
New method	• Exp-scalable method		
	• Easily interpretable high-level summary of the relationship		
	between entities		
Data type	Dyadic datasets		
FoM (Figure of	+ Explainability and accuracy		
Merit)	+ Extract relevant actionable information		
	+ Handles large datasets		
A scalable decision-tree-b	-based method to explain Decision Support Systems, 127 (2019) 113-141		
interactions in dyadic data	https://doi.org/10.1016/j.dss.2019.		
CarloartisEiras-Franco and Bertha Guijarro-Berdiñas and Amparo Alonso-Betanzos and Antonio Bahamonde",			
and Yealin Shim and Jinwoo Kim			
xAI_xAI_vAI_eXnlainable Artificial Intelligence_ xAI_xAI_ xAI_ Interpretable AI_IAI_IAI_XAI			

xAI	Human knowledge role in explainable systems	
New method	Neural Logic Networks (NLN); supervised incremental learning	
Data set	Credit rating	
Explanation	Tree method; NLN	
Future scope	Fuzzy clustering and Bayesian models connection with NLN	

Human Knowledge in Constructing AI Systems -Neural Logic Networks Approach towards an Explainable AI Procedia Computer Science, 126 (2018) 1561-1570 https://doi.org/10.1016/j.procs.2018.08.129

Liya Ding

xAI—xAI—xAI—eXplainable Artificial Intelligence— xAI—xAI—xAI— Interpretable AI- IAI – IAI – xAI

Explanation	Basis			
	Philosophy, psychology, see	² Philosophy, psychology, social psychology, cognitive science		
Article type	• Review	Review		
xAI	• Explainable AI scientists	• Explainable AI scientists + Human computer Interface + \rightarrow Impressive		
	results	results		
	 Fool proof products not str 	aight forward		
Explanation in a	Explanation in artificial intelligence: Insights from the Artificial Intelligence, 267 (2019) 1-38			
social sciences	tiences https://doi.org/10.1016/j.artint.2018.07.007			
Tim Miller				

xAI—xAI—xAI—eXplainable Artificial Intelligence— xAI—xAI—xAI— Interpretable AI- IAI – XAI

Object orieted terminology (OOT)

Explainable AI [Machine Learning; Deep NN; Rule -Base; Robotics;]

	Creation of technology for xAI			
	Rew or modified machine learning techniques with embedded or			
	external explanation interfaces/modules			
	Explainable models + Explanation approaches			
DARPA goals	Integrating state-of-the-art human-computer interaction (HCI)			
	techniques (e.g., visualization, language understanding, language			
	generation, dialog management)			
	Psychological assertions/theories of explanation for effective			
	Interpretations			

Autonomous systems of future			
Terceive, learn, decide	Civilian		
Act on their own			
Intelligent, autonomous,	Department of Defence (DoD)		
Symbiotic systems + Explainable AI			
+ Help users to understand, appropriately trust, effectively manage AI systems			

[Black box; White box]	Computation: Intelligence [human; artificial], Learning; Machine learning; networks [Shallow; deep]	
Black box AI	 Employs complex opaque algorithms Make no transparency for why a specific decision arrived Not clear even to designers 	Input Output
White box	Lighten up darkness of complex black-box	
AI	models	
	Opening black box	
	Peeking Inside the Black-Box	
	Whitening/increasing transparency or	
	decreasing opaqueness	
	Design of transparent deep models and	
	deep learning modules	Interpretability
	Interfaces/modules for explanation	

	Development of new/modified machine learningtechniques with
	Transparent AI
	+ Actions should be easily understood by humans
	+ Explainable models
	+ Well-designed explanation interface
	+ To work with existing old and new machine learning techniques to render
	them more explainable
v AI goole	Interested in
XAI goals	• New technology at the intersection of machine learning and HCI
	 Explaining machine learning models to end users
	• Interactive machine learning and visual analytics
	• Psychology of explanation
	DOD is not interested in XAI research
	Unrelated to the specific issues of explainable AI
	On effective explanation dialog Ex: user modeling, personalization, theory
	of mind

xAI workshops

2017 Workshop on Explainable Artificial Intelligence5, and the

IJCAI

2018 Workshop on Explainable Smart Systems (EXSS)

XAI ANTITHESIS: EXPLAIN OR PREDICT

Simple and interpretable functions do not make the most accurate predictors

Accuracy requires more complex prediction methods

A More complex the model, the more difficult it is to interpret

Software for explaining/interpreting black box models			
SHAP	SHapley Additive exPlanations		
(Link)	github.com/slundberg/shap		
ELI5	A library for debugging/inspecting machine learning classifiers and		
	explaining their predictions		
	github.com/TeamHGMemex/eli5		
Skater	Python Library for Model Interpretation/Explanations		
	github.com/datascienceinc/Skater		
Yellowbrick	Visual analysis and diagnostic tools to facilitate machine learning model		
	selection		
	github.com/DistrictDataLabs/yellowbrick		
Lucid	A collection of infrastructure and tools for research in neural network		
	interpretability		
	github.com/tensorflow/lucid		
DeepExplain	perturbation and gradient-based attribution methods		
	github.com/marcoancona/DeepExplain		
iNNvestigate	A toolbox to iNNvestigate neural networks' predictions		
	github.com/albermax/innvestigate		

Explainability

Accuracy versus eXplainability

Ŧ	Tradeoffs between "how smart an AI is" and "how transparent it is"
P	Tradeoffs grow larger as AI systems increase in internal complexity

;=-=			
Explanation not mandatory But	Explanation Essential		
emances credibinty	Finance	Criminal	Healthcare
:	Credit	Justice	

Task Goal Target users Necessary	 Recommender system online retail To show adverts, products Social Media posts Right people at the right time Accurate algorithms Commercially optimal approach Revenue 	scoring Loan approval Insurance quotes Big Data tasks 	 People wrongly denied Recidivism prediction Unfair Police dispatch Governess 	 ICUs Critical Systems Diagnosis Med. Insurance
Not essential	optimization Carlot eXplainability ('why'doesn't matter) Carlot to the second seco			

eXplainability standards

- The Having human intelligence as the gold standard of AI
- Explaining capability of human decision makers
- Learning in defining semantic attributes, describing seed model, deciding layers and relation between layers, or verifying interpretations

Explainability	Narration of causal relationships of observed phenomena/model for I/O mapping or classification in a comprehensible manner through a linguistic description and visual display
	 Explanations cannot answer all queries of all users No agreed definition of what an explanation is No quantification/scale of comprehensibility of an explanation for humans (of different intellectual level)
Post-hoc explainability	A high complex uninterpretableblack-box model with high accuracy is developed. The model predicts outcome. It is explained in terms of readily available off-the-shelf interpretable knowledge Probes to reverse engineering process are used without altering or even knowing inner details of the black box model
Ante-hoc explainability	Explainability is included in the strucuture of work-flow during design itself So explanation is available for possible outcomes even before running the software

Agnostic explanation	This model approximates a black-box model locally in the neighborhood of any prediction of interest Dilating models even without knowledge of dataset
Causal explanations	The outcome or intermediate results explained from laws and conditions in a deductive way Hybridisation of machine learning \rightarrow it develops a new dimenion in xAI systems

Transparency	The transformation of Input to output is clear
Understanding	 Knowing context in which the facts appear In addition to Representation of facts Recognizing, perceiving Reproducing (stimulus-response on a physiological level) Content comprehension
Intelligibility to	[Scientific community [Developers; tool application scientists;] [non- experts, experts] [product designers, Engineers, data scientists] [Marketing personnel, business customers] [End users] Explainable [products; agents;] product user; public setting
Interpretability	Related to the model and notto the training data that is unknown
Accountability	For use of product by end users

Reasoning	• [Deductive; inductive; abductive]	
Deductive	• "Top-down logic" : process of reasoning from premises to conclusion	a
Inductive	• "Bottom-up logic" Reasoning from a single observation or instance to	b
reasoning	a probable explanation or generalization.	
Abductive	• Reverse of deductive reasoning	
reasoning	• Proceeds from an observation to the most likely explanation	

Creation of Explainability modules from black-box-models or from scrap

Learning

- Associating explanatory semantics with features of the model
- Developing simpler models -- easier to explain
- Proposing richer models that contain more explanatory content
- Inferring approximate models -- purpose is only explanation

Explanators		
Decision Tree (DT) Decision Rules (DR)	Saliency Mask (SM)Saliency MapSensitivity Analysis (SA)Partial Dependence Plot (PDP)Prototype Selection (PS)Activation Maximization (AM)Individual Conditional Expectation	

Evolution of transparency, interpretability and explainability of Model outcome			
Yester	Blackbox model driven		
years	 No Explanation 		
Now	Data driven models	x1	
	\square Black box Explanation \rightarrow	v1	
	transparent box model driven		
	Model specific implementation		
Tomorrow	• Transparent box		
	(interpretation by design;		
	Explanation embedded)	X X X X X X X X X X X X X X X X X X X	
	• NLP interfacecan also be		
	used as black box at choice	**	
	(of users in field operation)		
Future	Agnostic models		
	! New models interpretable		
	by design		

pDeep Explainability

Deep Explanation	• Operational details of deep NNs		
	• Deconvolutional networks		
	+ Used to visualize the feature mapping output in layers of		
	convolutional networks		
eXplainablehybrid deep learning methods			
• Explainable featu	• Explainable features, explainable representations		
• Explanation generation facilities			
-			
Design choices fortransparent deep learning			
• Selection of train	ing data, initial conditions, and training sequences		
 Architectural lay 	ers, loss functions, regularization, optimization		

Categorization of models based on degree of explanation			
Method. Learning	Class of model		eXp. Scale
Bayesian belief NNs	Graphical	Models	3.5
Decision trees	Supervised unsupervised	Leaning	4
Logistic regression	Supervised unsupervised	Leaning	3
SVM	Supervised unsupervised	Leaning	2
k-means	Supervised unsupervised	Leaning	3
Random Forest/Boosting	Ensemble	Leaning	3
Q leaning	Reinforcement	Leaning	2
NNs	Deep	Learning	1
Hidden Markov Models	Natural Language process	Learning	3
1: most difficult5: easiest			

Evolution of AI during 1956-2020		
Generation	AI	Time
		period
First	 Symbolic expert system 	1957-1970
	 Shaky robots 	
	 First order logic 	
Second	Neural networks	1980-2000
	Probabilistic models (Statistical ; Bayesian]	
	GRNN, ProbNN; FuzzyNN]	
	SVM,	
	Iearning [Mathematical; statistical; Fuzzy]	
Third	Neocognitron; Deep NN, Deep Learning	1990;
	Explainability of SLP, Stat models	2000-2020
Fourth	• Explainable (for hitherto existing black box models)	2016-
Fifth	! (Near) Realistic models for Real-life (micro- to mega)	>2020
	Phenomenon to control, communicate; command in	
	Flealth, Environment, Defense, Governess, evolution	
	(Hedge)	
	Conscientious ; Consciousness	

AI	[Comprehensive; understandable; Intelligible; Interpretable;]
	[Accurate AI; Responsible AI; [General AI; Super AI]
	[Accountable; Transparent; Fairness; Ethics;]
Intelligence	+ Accepted term (Psychology; Philosophy, Social Science)
	+ Difficult todefine
	 Dependent on a wealth of different factors
	+ Does not need a metal body to be a thread
Big data	• Coined by Cox and Ellsworth in 1997
	• Originally referred to data being too big to fit into memory

	and processed by conventional means		
	• Eight Vs – volume, velocity, variety, variability, visibility,		
	value, veracity, vexing		
Knowledge	Processed and consolidated information or interpretations		
	of the basic data, raw facts, observations from a particular		
	point of view ;validated and is thought to be true		
Knowledge distillation	• Compression method for training a small model to mimic a		
	pretrained model or ensemble of models		
	• Used to transfer knowledge from cumbersome model to a		
	small model		
Data Mining (DM)	Data Mining (DM) aims to extract useful knowledge from raw		
	data		
Machine learning	Methods: Statistical and mathematical methods of increasing		
	adaptability, complexity, goals/sub goals and utility		
	Computational facilities : Computer hardware and software→		
	increased speed of computation and size of problem		
	Data: Toy data sets to Big data; images/speech/hyphenated		
	multisensory signals		
	Learning:Learn important information, hidden patterns,		
	associations from very large amount of data		
	State-of-art: Machine learning has a niche in high performance		
	computations		
	• Multilayered Neural networks		
	• Neo-cognitron breakthrough in perception		
Deep networks	• Convolution NNs are of recent hype		
	• Auto coders, decoders		
	• Shallow NNs: If NN hidden layers restricted to two		

Explanation	Response to a question;
_	Why did you do that? Why not something else?
	When do you succeed? When do you fail?
	🛄 When can I trust you?
	How do I correct an error?
Types	[Textual ; visual; graphical; dialectical]
Explanation about	# Parts of model
	#Antecedents / consequents
	#Non-Zero weight (linear)
	Depth of tree (decision tree)
	Model explanation: overall logic inside black box
	Outcome: response for an instance input –local
	explanation [Lime; Anchors]
	Model inspection [PDP; ICE; SHAP]
Local explanations	Local explanations
	 Focus on data and provide individual explanations,
	 Provide trust to model outcomes
	 More faithful than global explanations
	✓ LIME, onecovariate-out (LOCO)

LIME	 Local interpretable model explanation ; Mathematical model: Fn(linear, x) + fn2(cubic,x) Generate only 2ⁿ different neighbors 		
	Remedy LioNets		
LioNets	 Tried to interpret a neural network's prediction. 		
	• It is a model-specific outcome explanator		
	Local interpretation of neural networks using penultimate layer		
	coding		
Global interpretability	Focus on model and provide an understanding of the decision process		
	Applications		
	Drugs prescription, diagnosis		
	Trends or a climatic change		
	Global effect estimate is more helpful compared to many explanations for all possible idiosyncrasies		

Explanation	Rules [symbolic] [If-then-else; [first order predicate; fuzzy; probabilistic; trees]] Graphic Textual [NLP; Human [expert; product-user; common-man[non- expert in all but potential consumer/user/propagator/promotor]
	[Input; process [work-flow; algorithm; output]
	Input: [Data [raw; pre-processed; generated from KIDs] [features] KIDs : [free/fixed parameters; data reduction/projection; dimension reduction; mapping to high dimensional space [SVM]}

Typical explainable Methods in research targets				
Linear trend in	Statistical parameters; graphical (ellipse)			
presence of outliers	Residual analysis			
Non-linear trend	Stat_Par; scatter diagrams-residual;			
(polynomial – order	Prior knowledge : data accuracy;			
zero to four)	If prior model available; $y1 = f(x-square;par)$			
	Resid_1= yobs-y1;			
polyModel = f(resid_1);				
	Explainable_1 + pseudo (explainable, black box)			
	Predictability high			
Stability constants	ML(l); ML(l)H(h);			
Symbolic; numerical;				
Parameters: Stat.beta; residual ; graphical				
	Sensitivity analysis: errors (ingredient; data accuracy)			
	Improvement: Experimental Design (ingredient concentration;			
	number of experiments)			
	Probes (GE Spectral, NMR)			

Subtle differences between AI and xAI processing of Bigdata tasks					
Software M					
xAI	Integration of AI related technologies	(Challenging) Task			
Knowledge graph embedded Sequence Learning (using LSTMs)	 Deep Learning + Recurrent NN semantics-augmented case-based reasoning Natural Language Processing 	 Airline caused delays Globally 323,454 flights are delayed every year. totaled 20.2 million minutes last year 			
Knowledge graph embedded Random Forrest	 MachineLearning, Reasoning, Natural Language Processing for building robust model 	Accenture manages every year more than 80,000 opportunities and 35,000 contracts			
Knowledge graph embedded Ensemble Learning	• Google Knowledge Graph, DBPedia (relational DataBase version of Wikipedia)	Predicting and explaining abnormally high employee expenses (Ex,:high accommodation price in 1000+ cities).			
 Post-hoc explanation Local explanation Counterfactuals Interactive explanations 	 Supervised learning Binary classification 	Loan applications			
Interactive explanationsMultiplerepresentations	• Competing riskanalysis	Different treatments for Early invasive breast cancer			

ACS.org ;sciencedirect.com : Information Source

R. Sambasiva Rao, School of Chemistry Andhra University, Visakhapatnam rsr.chem@gmail.com