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ABSTRACT 
Thermal decomposition (TD) of ammonium per chlorate (AP) is the subject matter of this 
presentation. Various physical parameters influence the thermal decomposition of ammonium per 
chlorate. The focus in the present work is on the influence of sample heating rate (5C min-1 to 50C 
min-1) on TD of AP. Thermo-analytical techniques employed in this study include-Thermo gravimetric 
(TG), Derivative thermo gravimetric (DTG), and Differential Scanning Calorimetry (DSC), in an 
inert atmosphere of pure nitrogen, at a gas flow rate of 50 mL min-1. As expected, the reaction front 
moves forward towards higher temperature region with the increase in sample heating rate. At the 
sample heating rate of 10C min-1, the system shows maximum heat release of 623 J g-1 attributed to 
the attainment of system’s equilibrium. The observed heat releases at each sample heating rates (5, 
10, 15, 20, and 50C min-1) are in tune with the reported literature values.  
 
Graphical Abstract 
 
 

 
 

TG-Curves of pure ammonium per chlorate at different heating rates. 
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INTRODUCTION 
 

Ammonium per chlorate is a inorganic crystalline oxidizer extensively used in composite solid rocket 
propellants for space applications all over the world. It is a well established fact that, its thermal 
decomposition characteristics play a vital role on the combustion rates of composite solid rocket 
propellants based on this oxidizer [1, 2]. In spite of great amount of research on various aspects of 
thermal decomposition of AP, key aspects of the mechanism of the process remain controversial [3]. 
Many of the experimental and theoretical studies reviewed by Boldyrev [4] favour the proton – 
transfer hypothesis. Recent ab initio MD simulation indicated no proto-transfer in the ideal crystal 
structure [5, 6]. Since the first review on ammonium per chlorate by Hall and Pearson in 1967 [7], 
extensive studies both experimental and computational have been made. Yet, the exact decomposition 
mechanism and distinction between primary and higher order products have remained elusive 
[8].Therefore, the present study is an effort to understand in this direction.  

 
MATERIALS AND METHODS 

 
Ammonium per chlorate (AP) employed in this study was procured from Vikram Sarabhai Space 
Centre, Indian Space Research Organization, Department of Space, and Government of India. Thermo 
gravimetric (TG) and derivative thermo gravimetric (DTG) experiments on pure AP were conducted 
employing  DuPont -990 TA System, at sample heating rate of 10C min-1, in an inert atmosphere of 
pure nitrogen, at a gas flow rate of 50 mL min-1. 
 
      Detailed studies were carried out employing TA Instruments SDT Q600 Model (TGA); and DSC 
experiments were carried out on TA instruments - SDT DSC 250 Model. The sample heating rates 
maintained in this study are: 5, 10, 15, 20 and 50C min-1, respectively. 
 

RESULTS AND DISCUSSION 
 

Thermo gravimetric (TG) and derivative thermo gravimetric (DTG) curve for pure AP at a sample 
heating rate of 10C min-1, in an inert atmosphere of pure nitrogen are presented in figure 1. From figure 
1 it is clear that, AP undergoes low-temperature decomposition (LTD) with maximum decomposition 
rate peak appearing at 288C; and high-temperature decomposition (HTD) with its maximum rate of 
decomposition occurring at 430C.  
 

 
 

Figure 1. TG – DTG Curves of pure NH4ClO4 in pure N2 atmosphere. 
 

      During the LTD temperature regime only 28.2 percent of the material decomposes and the 
decomposition ceases for a while. In the HTD temperature regime, the remaining AP decomposes. The 
cessation of decomposition after an initial mass loss of 28.2 percent is in agreement with the literature 
[2, 9 - 11]. This is because, in the low-temperature regime, the decomposition nuclei begin at isolated 
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sites on the surface of the crystal and growth of three-dimensional nuclei leading to the reaction 
interface. When the reaction interface proceeds into the interior of the crystal lattice, the cessation of 
decomposition occurs. Jacobs et al [12] assumed that in the thermal decomposition of AP all the three 
processes take place by proton-transfer mechanism, according to the following reaction scheme:  

 
NH4

+ClO4
― ↔ NH3 . . . H . . . ClO4 ↔ NH3―HClO4 

             
      

                         Products           NH3 (ads) + HClO4 (ads) 
  
       

                                                                     Sublimate             NH3 (g)  +  HClO4 (g)   
 

It is assumed that the adsorbed HClO4 is more rapidly desorbed than the NH3. In other words, the 
oxidation of adsorbed ammonia is incomplete, and therefore as the reaction progresses the surface 
becomes saturated with ammonia, leading to the suppression of the decomposition. This explains the 
cessation of AP decomposition after an initial conversion of ~ 30 percent.  
 
      Thermo gravimetric (TG) curves of pure AP at heating rates of 5, 10 , 15, 20, and 50C min-1, 
using TA Instruments SDT Q600 Model are presented in figure 2. As expected, the reaction front 
moves forward towards higher temperature region. This is attributed to the fact that, the individual 
reactions didn’t have sufficient time to progress to completion, before which the rapidly rising 
temperature has already reached the initiation temperature of the subsequent higher temperature 
reaction.  

 

 
 

Figure 2. TG – Curves of pure ammonium per chlorate at different heating rates. 
 

       From the data in figure 2, it can be observed that, AP decomposes in two distinct stages identified 
as low-temperature decomposition (LTD) and high-temperature decomposition (HTD). The onset and 
end set of decomposition temperatures for both LTD and HTD are shown in table 1. 

 
Table 1. Onset and End set Temperatures of LTD and HTD of pure AP 

 
Sample  
Heading  
Rate (β) 

Low-temperature  
Decomposition (LTD) (C) 

High –temperature  
Decomposition (HTD) (C) 

Onset End-set Onset End-set 
5 266.7 283.2 349.8 395.5 
10 281.4 299.2 367.8 395.5 
15 287.4 305.3 372.8 436.0 
20 293.7 312.9 370.2 437.5 
50 309.0 333.8 385.5 474.0 
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      In the case of HTD, the influence of sample heating rates of 15 and 20C min-1 on both the onset and 
end set temperatures of decomposition is of the same order of magnitude. At other heating rates, the 
temperature is shifted towards high-temperature region. 
 
      The differential scanning calorimetric (DSC) curves for pure AP at sample heating rates of 5C min-1, 
10C min-1, 15C min-1, 20C min-1, and 50C min-1, in an inert atmosphere of pure nitrogen, at a gas 
flow rate of 50 mL min-1 are presented in figure 3. The endothermic peak temperature corresponding to 
crystallographic phase-transition from orthorhombic to cubic, and exothermic decomposition peaks 
corresponding to LTD and HTD of AP at different sample heating rates are summarized in table 2. From 
the total heat release data (Table 2) it can be inferred that, at the sample heating rate of 10C min-1 
maximum enthalpy output is obtained.   
 

 

 
 

Figure 4. DSC-Curves of pure AP at different heating rates. 
 

Table 2. DSC data for pure AP at different sample heating rates 
 

Heating Rate 
(β) (oC.min—1) 

 

Endothermic 
Peak 

Exothermic 
Peak-1 

Exothermic 
Peak-2 Total Heat 

Release (J/g) Temp. 
Heat 

Absorbed 
(J/g) 

Temp. 
Heat 

Released 
(J/g) 

Temp. 
Heat 

Released 
(J/g) 

5 241.4 78.6 277.7 305.5 385.5 250.0 555.5 
10 244.7 91.0 292.7 339.0 452.5 284.0 623.0 
15 247.2 84.4 302.6 342.2 388.4 115.6 457.8 
20 247.9 72.0 310.3 347.2 391.4 127.3 474.5 
50 254.0 53.0 334.6 216.6 473.0 93.0 309.6 

 
      Thus, from the above data it can be inferred that, the significant role played by the sample heating 
rate towards realising the maximum enthalpy output, and this is highly dependent on the nature of the 
material under consideration. In the case of ammonium per chlorate, competitive reactions play very 
important role, as both sublimation and decomposition processes are parallel.  The observed total 
exothermic heat release values of AP (Table-2) are justified in terms of the reported literature values 
of Wang et al [13] reported a heat release value of 450.3 J g-1; Hu et al [14] 378 J g-1; Wang et al [15] 
576 J g-1;  Farhadi et al [16] 409 J g-1; Hu et al [17] 768 J g-1; Li et al [18] 584 J g-1; Shalini et al [19] 
834 J g-1. 
 

APPLICATION 
 

The results are important with respect to assessing the performance of composite solid rocket 
propellants. 
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CONCLUSION 
 

 Selecting an appropriate sample heating rate for experimentation strongly depends on the nature of 
the sample under consideration.  

 For a given material, there is a specific sample heating rate at which optimum energy release is 
realized.  

 In the case of ammonium per chlorate, the optimum sample heating rate is 10C min-1 is the ideal 
one.   
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