Available online at www.joac.info

ISSN: 2278-1862

Journal of Applicable Chemistry

2021, 10 (5): 755-772 (International Peer Reviewed Journal)

Sampling in Mars (Sim) Jezero crater (1)

Part 1: Mars rock sample (Mrs)Perseverance collection-1(PC-1) KnowLab rsr.chem1979

K. Somasekhara Rao, Dept. of Chemistry, Acharya Nagarjuna Univ., Dr. M.R.Appa Rao Campus, h Nuzvid-521 201, I ndia R. Sambasiva Rao, School of Chemistry, Andhra University, Visakhapatnam 530 003, I ndia

Conspectus:

Mars-2020-Rover (Mr-2020)), a part of NASA Moon-to-Mars-Exploremission, landed on Mars Jezero crater on 18thFeb.2021. The given name was Perseverance (with pet name Percy or Mr.Percy) The launching was on 30thJuly, 2020, at 7:50 a.m. EDT f rom Launch Complex 41 at Cape Canaveral Air Force Station, Florida. Mr.Perseverance was launched on an Atlas V-541 rocket, one of the largest rockets available for interplanetary flights. Miss(Mars informative (intelligent) science system). Percy carried Ingenuity (first powered helicopter of 1.8 Kgs with four rotors) in its womb all the way from earth to Mars for feasibility study of flying on Mars with at extreme hostile temperatures, thin atmosphere and treacherous dust devils.

Helicopter Ingenuity (Hi) made the debut flight (IF-1) on April 2021 with a sequence of steps viz. Take-off from Mars surface -flying vertically 10 feet – hovering–landing by touching the ground surface. It covered zero feet of horizontal distance during flight. This historic achievement of powered robotic Chopper (without human intervention) flying for 39.1 sec on another planet in our solar system was a great gratification to the scientific-team at JPL-Caltech/NASA. Perseverance had functions all through the flight schedule (IF1 to IF9) of Ingenuity, the first being imaging of complete flight from take-off to landing. The other master piece job is to be not far away from ingenuity.

Perseverance started its preparations for executing exhaustive test bed of operations, functions of command-control chores, its science-doing modules, robotic operations of drilling holes, filling sample tubes with rock and regolith, sealing samplers and storing them back in their place. The first sampling operation was not successful in August 2021. The rover moved to a new area called "Citadelle". And SCS successfully filled the sample tube with Mars rock powder in this attempt in the first week of September, 2021.

	Layout
1.	Moon Exploration missions (Mem)
2.	NASA's Moon to Mars exploration (MME)
3.	Mars exploration (ME)
4.	Perseverance (Miss/Mr/Mrs Percy)
5.	Failure in First Rock sample (FRS) on Mars (Om)
6.	Successful Collection of First Rock sample (FRS) on Mars (Om)
7.	Sample Caching System
8.	Future course of action Mars mission
9.	Appendices

1 Moon Exploration missions (Mem): Of the twelve America's moonwalkers (the first two being astronauts of Apollo 11, NASA), four of are still alive. They are Aldrin (Apollo 11), David Scott (Apollo 15), Charles Duke (Apollo 16), and Harrison Schmitt (Apollo 17). Now, Artemis is an ongoing space mission run by NASA first crewed Moon mission since Apollo 17 in 1972. The target of Artemis mission (AM) is landing the first female astronaut and next male astronaut on the Moon's South Pole by 2024.

Apollo 8 (December 21–27, 1968): In the NASA propelled space exploration mission (SEM), Apollo-8 was the first human crewed space craft to leave low Earth orbit. Also, it is the first human spaceflight to reach another astronomical object, namely the only one-Moon-of-earth. The three astronauts—Frank Borman, James Lovell, and William Andersorbited the moon in Apollo-8 without coming out or landing on the celestial body. The Apollo-8 mission ended with success and peace reaching motherland on our planet earth.

Apollo 11: The spacecraft with three astronauts, Neil Armstrong, (Command Module Pilot), Michael Collins (Command module pilot) and Edwin Buzz Aldrin (Lunar ModulePilot) blasted off towards the Moon on July 16, 1969. After four days, travelling 240,000 miles, Eagle lunar landing module, guided manually by Armstrong, touched the surface of moon. The landing site is on a plain near the southwestern edge of the Sea of Tranquillity (Mare Tranquillitatis). On 20th July, 1969, Armstrong stepped off the ladder onto the lunar surface, communicating his voice message ("That's one small step for (a) man, one giant leap for mankind.") back to Earth. This happened he being a commander of space ship. Aldrin followed Armstrong down the ladder20 minutes later. Two astronauts collected Moon rocks and brought the samples for analysis in laboratories. They walked upon it, installed scientific instruments and snapped many photos. They collected 21.6 kilograms of surface material, including 50 rocks, samples of the fine-grained lunar regolith (or "soil"). Also, two core tubes that included material from up to 13 centimeters below the Moon's surface were in the collection. Interestingly, they had a meal, slept for a few hours (nap) and rejoin Collins and the CSM in lunar orbit.

The trio returned from moon-orbit and reached safe to mother-Earth after splash down landing in Pacific Ocean about 800 nautical miles southwest of Hawaii and 12 miles from the recovery ship, the USS Hornet. The clock time elapsed for ever-memorable Apollo-11 journey from launching to landing was eight days, three hours, 18 minutes and 35 seconds.

The knowledge is instrumental in enduring scientific advancement and had impact in many fields of human endeavor. The name of Armstrong remains forever in annals of space book written on pages of time with golden nib as first person ever to plant boots on lunar surface, of course dusty.

2. NASA's Moon to Mars exploration (MME): Mars 2020 Perseverance mission is a current project and is part of MME approach. It includes Artemis (2024) missions to the Moon that will help to prepare for human exploration of the Red Planet.

3. Mars exploration (ME) :Curiosity and Perseverance are on-going NASA's missions exploring Mars. Perseverance rover with Ingenuity helicopter in it was launched on July 30, 2020. The self-driving six-wheeled robot after a 203-day journey of traversing 472 million kilometers landed on the red planet at Jezero Crater floor on February 18, 2021. The crater harbored a big lake and a river delta in the ancient past. This mission is first-of-its-kind to collect and cache Martian rock and regolith (broken rock and dust) in ultra-clean titanium-sample-tubes. The ulterior motto is achieving greatest benefit to humankind by seeking evidence for signs of ancient life on Mars.

4. Perseverance (Miss/Mr/Mrs Percy): The configuration of Perseverance is based on Mars Science Laboratory's Curiosity rover of 2012. Mr. Percy is a robotic Geo-scientist. The Superman is a carsized, about 10 feet long (not including 7 feet protruding robotic arm), 9 feet wide, and 7 feet tall, machine weighing 1,025 kilograms. This rover hosts set of state-of-knowledge-instruments and Sample Caching System (SCS), besides oxygen manufacturing unit from carbon dioxide [2,3].

Perseverance appears to be like one robot for a naked eye. But an expert perceives it as acollection of ensemble robots, sensors, cameras, diverse electronic gadgets working together in Mars-2020 rover with clock precision through his third eye. Tracing all eventual possibilities, hurdles, hazards and solutions for tasks is herculean job in real sense. But all most all have been tried first in JPL, NASA. If they don't work, the work flow was changed, altered or new one adopted because, no change is possible after launching of rover.

Metaphorically, rover modules are comparable in function to any living creature. On board Scientific instruments (MEDA, MOXIE, PIXL, RIMFAX, SHERLOC) and 23 state-of-artcameras (Mastcam-Z) view all (Siva) around and inside Martian rocks using different ranges of electro-magnetic radiation. This is, of course without need to collect the samples. The role of astronauts in Apollo-11 mission, is now played

lupar	Evol	oration Timeline					
Lunar Exploration Timeline (Let) -This decade							
		2021					
SELENE-3	2021	Orbiter and Lander with Rover plus sample return ascent vehicle					
Luna 26	2021	Orbiter					
		2022					
Luna 27	2022	Lander					
Artemis II	2022	Orbiter					
		2024					
Artemis III	2024	Lander					
2026							
Luna 28	2026	Lander					
	-	2028					
Luna 29	2028						

by Miss (Mars intelligent sampling system) Perseverance in reaching sampling site, drilling holes in rocks, sampling, sealing and storing. It carries out most complex operations in cleanest manner ever done on either on our mother earth or ano, ther planet.

Rover journey from landing site to sampling spot

Mr. Perseverance moved towards south from landing site "Octavia E. Butler".

Reconnaissance Orbiter ; September 10, 2021

5. Failure in First Rock sample (FRS) on Mars (Om): It's attempt to collect rock sample from at a drill hole called "Roubion" in first week of August was a failure.

Left: Drill hole from Perseverance's first sample-collection attempt and shadow of the rover; borehole: 2.7 centimeters in diameter. image-grapher: rover's navigation camera Right image ;: composite image of Perseverance's first borehole on Mars; generated using multiple images taken by the rover's WATSON imager

Credits: NASA/JPL-Caltech/MSSS.

Roubion - The Problematic Weathered Paver Stone Perseverance Failed to Core

✓ Transferred the sample tube from the Corer to the ACA

JPL

✓ **HEs**:confirmed

Percy to JPL

- ✓ Sealed the sample tube
- Successfully placed it in storage –

JPL

- ! **HEs**:a huge first-time success
- I The team was elated.

Percy to JPL

? Volume measurement and post-measurement image arrived indicating that the sample tube was empty

JPL

- Reality is no rock- in sample tube
- Team quickly transitioned to investigation mode
 - **?** It is the basis of science and engineering
- Combing data and adding more observations

THES:

- **Inferences**
- ✓ Corer performance during both the abrasion and coring activities: There are no unusual responses. The comparison was made with data from successful Earth-based testing (> 100 cores drilled in a range of test rocks
- ✓ Some material is visible in the bottom of the hole.
- ✓ The material from the desired core is likely either in the bottom of the hole, in the cuttings pile, or some combination of both.
- ✓ No clear-cut furtherdistinction due to measurement uncertainty
- **? Opinion**: Science and engineering teams believe that the uniqueness of this rock and its material properties are the dominant contributor to the difficulty in extracting a core from it
- ✓ It appears that the rock was not robust enough to produce a core.
- **?** Conclusion: The hardware performed as commanded but the rock did not cooperate this time

JPL future plan of Percy activity

✓ Head to the next sampling location in South Seitah,

	A PRIMARIA P
	• the farthest point of this phase
 ✓ 	Hope:Based on rover and helicopter imaging to date, there is a likelihood tocome across
	sedimentary rocks there that are anticipated
	• They will align better with earlier Earth-based test experience.
Small	failure but big success! or Small success but big failure?
✓	A specific result is never guaranteed no matter how much one prepares
✓	Science and engineering have progressed
	• First complete autonomous sequence of sampling system on Mars within the time
	constraints of a single Sol. achieved
✓	Positive thinking: This bodes well for the pace of remaining science campaign
	Credit: Chief Engineer for Sampling & Caching at NASA/JPL

The task of Mrs.SCSis 'not the hole-in-one' typeactivity, and it is breaking new ground in fact. Thus, risks and failures are passing clouds in nature's course. The post-mortem investigations brought to light many eye-opening bits of knowledge, one being that rock material was too crumbly to provide a core sample. Telemetry data revealed that the drill and bit were engaged as planned, post-coring the sample tube was processed as intended, and even moved to seal area. But no rock was collected during the initial sampling activity. There are many such great surprises in Mars exploration in yesteryears.

Earlier similar dead-ends, road-blocks traffic-jams: In 2008, the Phoenix mission sampled soil that's "sticky" and difficult to move into onboard science instruments. Multiple tries of course resulted in success. Curiosity has drilled into rocks that turned out to be harder and more brittle than expected. The heat probe on the InSight lander, known as the "mole," was unable to penetrate the Martian surface as planned.

6. Successful Collection of First Rock sample (FRS) on Mars (Om): Mr. Perseverance started the walk towards northwest along "Artuby" ridge and reachedthe area "Citadelle".

The first core was tried from a block of rock named Rochette," at the drill hole called "Montdenier". NASA scientists confirmed the successful sampling operation from several images transmitted to ground (earth) station by Mr. Percy.

Mile stones in robotic-operations in FRS by SCS

✓ Perseverance drilled the hole called "Montdenier" in the rock nicknamed "Rochette"

- Acquired the rock core
 - It is slightly thicker than a pencil
- Rover vibrated it to clear any material stuck between coring bit and sample tube within bit
- Rover then conducted additional imaging to double-check that it retained the rock
- ✓ This image processed to enhance contrast

- ! Two holes; rover's drill obtained chalk-size samples from rock nicknamed "Rochette."
- Hole on the left side: known as "Montagnac" ; drilled on Sept. 7,2021
- Hole on the right : known as "Montdenier"; drilled on Sept. 1,2021.
- Round spot under right hole: place where the rover abraded part of the rock's surface, nicknamed "Bellegarde,"
- Tailings (or cuttings) from the Montdenier coring activity slid over Bellegarde

Image-grapher (IG): NASA's Perseverance rover on Sept. 7, 2021, PDT

The complete automatic collection of rock-samples on another planet with robots is first-in-the-human-Science-history. This is a remarkable success of 2.7 billion USD saga of NASA to probe into secrets of nature. The outcome shed light on nature with ingenious perseverance of human brain through STEM(science technology evolution/engineering mathematics/methods). The entire task, from autonomously drilling a hole up to sealing sample tubes and keeping them back in rack, is commendable.

The communication transmitting time from earth to Mars is more than 5-20 (8 on average) minutes either to send commands or receive telemetric data/status report in case of catastrophic movements. Thus, real time human modification of operations or intervention when once perseverance procedure starts is not possible in this mission.

The second, or paired, sample of Montdenier was taken out at the drill hole called "Montagnac." "Séítah". This will be a future terrane area of Mars-2020-rover for exploration in the first few weeks.

7. Sample Caching System: SCS comprises of three-robots. It is the most complicated, sophisticated and complex robotic system ever built. This gives a first impression of a steamer-trunk-sized labyrinthine collection of motors, planetary gearboxes, encoders and other devices all meticulously functioning together at Swiss watch precision. The subtle contrast is that the chronometer has around 400 components while SCS contained 3000 modules.

JPL (NASA) brought out two identical pieces viz. engineering test model (ETM) and flight model (FM) with seven years effort. It is true that equipment wears out or breaks faster on Earth than on Mars. The test team has a high priority task of putting ETM through its paces. The un-successful target of breaking functionality at end of the day is a testimony and message to its twin SCS-FM about its robustness and sustainability on better land (Mars surface). The engineering test model remained here (JPL, USA) on Earth and the flight model travelled all the way to Jezero crater on Mars to do Science.

Function: Sample Caching System will collect 35 core rock samples each of 15gms from the rocky surface of Mars. It carefully seals them in very sterile, clean sample tubes and leave them there in depots. The eventual transport to Earth will be in future mission of NASA and ESA by the year 2026.

Anatomy of SCS:

Robot-1: It has a vividly eye-catching 7-foot-long five-jointed arm bolted to the front of the rover's chassis. The arm carries a large turret including a rotary percussive drill which collects core samples of Mars rock and regolith (broken rock and dust). Then, we put that core sample in the bit carousel.

Robot-11:The second robot called bit carousel built into the front of the rover and does the job of ultimate middleman for all Mars sample transactions. It will provide drill bits and empty sample tubes to the drill. Later, thismoves the sample-filled tubes into the rover chassis for assessment and processing. For appearance, it looks like a small flying saucer or an extra-terrestrial version of a 1960s slide projector.

Robot-1II: It is the 1.6-foot-long sample handling arm ("*T. rex* arm"). Located in the belly of the rover. This robot picks up where the bit carousel leaves off, moving sample tubes between storage and documentation stations as well as the bit carousel.

8. Future course of action -- Mars mission: The samples return saga from Mars to earth in 2026 and follow-up Humans exploring on Mars will be the first-leap, The (multi-dimensional) dream (with third eye open) of habituality of humans on Mars may turn in to reality in the next century.

References

1.K. Somasekhara Rao, R. Sambasiva Rao, Ingenuity flights (If) on Mars (oM), Part 1; Ingenuity flew (If 1-5) on Mars (oM), J.Appl.Chem., 2021, 10 (3): 409-436; see 423-426 Part 2; Operations Demonstrations (OD, If 5-9), J.Appl.Chem., 2021, 10 (4): 569-589, see 576-579

2. Kenneth A. Farley Kenneth H. Williford Kathryn M. Stack Rohit Bhartia3, Al Chen Manuel de la Torre Kevin Hand YuliaGoreva, Christopher D.K. Herd4, icardo Hueso5 Yang Liu Justin N. Maki, German Martinez6 Robert C. Moeller Adam Nelessen, Claire E. Newman7, Daniel Nunes Adrian Ponce Nicole Spanovich Peter A. Willis, Luther W. Beegle James F. Bell III8 Adrian J. Brown Svein-Erik Hamran, Joel A. HurowitzSylvestre Maurice1 David A. Paige, Jose A. Rodriguez-Manfredi Mitch Schulte Roger C.Wiens, Mars 2020 Mission Overview, Space Sci Rev (2020) 216:142, https://doi.org/10.1007/s11214-020-00762-y

3.J.N. Maki D. Gruel C. McKinney M.A. Ravine M. Morales D. Lee, R. Willson D. Copley-Woods M. Valvo T. Goodsall J. McGuire R.G. Sellar, A. Schaffner M.A. Caplinger J.M. Shamah A.E. Johnson H. Ansari, K. Singh T. Litwin R. Deen A. Culver N. Ruoff D. Petrizzo D. Kessler . C. Basset T. Estlin F. Alibay A. Nelessen S. Algermissen, The Mars 2020 Engineering Cameras and Microphone, on the Perseverance Rover: A Next-Generation Imaging, System for Mars Exploration, ,Sci Rev (2020) 216:137, https://doi.org/10.1007/s11214-020-00765-9

Videos	11
https://mars.nasa.gov/system/video_items/5953_JPL-20200529- MARSf-0001-Mars_Sample_Caching-MEATBALL-1080.mp4	2min sampling -three robot system of SCSMSc
https://youtu.be/yqqaW8DCc-I	Insane Engineering of the
	Perseverance Rover
	NASA's Perseverance Mars
https://youtu.be/j3Q-roxYkkY	Rover Equipped with Ultra-
	Clean Sample Tubes

Mars-2020 rover	Perseverance : Given Name Percy: Pet name Mr Percy is younger brother of Curiosity	MrsMars rock samplingMrMars roverMissMars intelligent sampling system
Mars-2020- Helicopter	Ingenuity,	Sample catch system (SCS)
Mr.	Mars rover. Perseverance	Mars rover Percy
Mrs	Mars rock sampling. Perseverance	Mars rock sampling. Percy
· · · · · ·	Mars rock sampling. Perseverance	

9. Appendices

	Land marks in Annals of NASA						
Mark	Machine	On	Year	by			
First	Aeroplane	Earth	1903	Flying in air		Wright brothers [Wilbur, Orville Wright]	
	Wrightserved on NACA for was created from the Nation		y Comm	ittee on Aeronautics in	n 1958		
			After	<mark>60+ years</mark>			
First	Apollo-8	Moon	1967		NASA		
First				Stepping on Moon surface			
First	Apollo-11	Moon	1969	Astronauts collection of rock samples on moon	NASA	Neil Armstrong B	
First				Bringing them to earth analysed			
	After 50+ years						
First	Ingenuiity – Mars Helicopter	Mars Jezero	2021	Controlled power Flying in Martian air	Mara- 2020- Rover +	No Human presence, intervention or	
First	Perseverance— Complex robotic	crater		Mars Rock sampling	Quad copter	supervision	

	machine ever made						
After 5+ years							
	Rovers Landers	Mars to earth	2026		NASA + ESA	Bringing Rock samples of 2021 to Earth	
	Hexa copter		20??		NASA	Aerial exploration Science probes	
			After	<mark>10+ years</mark>			
	Fliers	Mars	> 2030		NASA	Humans explore science	

	missions on Mars
P	Astrobiology
	<u>2</u> Signs for ancient microbial life
!	Geology of Mars inlezero region
!	Past climate
!	Pave way to human exploration of red planet
!	Contemplated Human life style of Emerging Kid(s)
	on Moon, Earth, Mars (Mem) etc.
✓	At the moment : To collect and cache Martian
	Rock regolith (broken rock and dust)
	Outcome
	Jaw-dropping discoveries,
	Eye brow-rising inventions,
	Mind-blocking futurology,
	Obsessive sensuous comforts,
	Unperturbed psychological peace,
	Balanced food, health and environment,
	pareto-optical ambitionsImpact on PCB Sets

Timeline of Mars Samples collection and						
samples Return to earth Program						
Phase I	Perseverance	Flying to Mars with catching robots	NASA			
		Sample collection				
Phase II	Estal Davan	Retrieve collected samples	NASA + ESA			
	Fetch Rover + Rocket	Package them into orbit				
Phase III	KOCKCI	! Capture the orbiting package	NASA + ESA			

(j) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100		ter han a state of the state of
	Return it to earth	
Phase IV	🚨 Analysis	
	Interpretation	
	🛄 Future mission designs	
"[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	n na

	Autonomous drilling Task
	Drilling hole in rock
m	The number of operations robotic arm rover features a
	Coring drill which cut out cylindrical core samples from Martian surface.
	Sample Storing immediate
m	Sample collection
	ROBOT head mates drill bit carousel,
	Robot transfers the bit and sample tube into rotating carousel Takes it to belly of rover
	Here another robot arm resides
	Arm pulls sample tube out of drill bit Takes multiple images of sample tube before and calculating the volume of the sample
	Takes multiple images of sample tube before and calculating the volume of the sample
m	Sample Storing long term
	It stores sample tube in one of the 42 slots under the belly of the rover,
bd	Sample tubes with samples will remain until the rover deposits them at a designed catchin
	spot on the surface of Mars
	Samples transfer Mars \rightarrow Earth
!	Another rover, designated by ESA, will be sent to Mars in 2026
1	Perseverance (the current rover) will deliver the samples back to its NASA designed
•	LANDER
τ.	NASA designed lander will load them into a MARS ascent vehicle.
÷	-
5	Blasting the samples into orbit, %% where ESA earth return vehicle will be waiting for it
!	Rock samples will be broght to earth from Mars
1	State-of-knowledge (Physical chemical bio-chemical) analysis

! State-of-knowledge (Physical, chemical, bio-chemical) analysis

Functional modules in robot-computer-machine vs living human						
expert						
Function	Human (Living creature)	Perseverance				
Structure that protects functional modules (organs)	Body	Material body				
To process information	Brain	Computers				
Temperature controls	Bio sensors physiology	Internal heaters, a layer of insulation etc				
Movement of head	Neck and head	A mast for the cameras to give the rover a human-scale view				
Seeing Hearing	Eyes and ears	Cameras and instruments that give the rover information about its environment				
A way to extend its reach and	Arm and hand	Robotic arm and "hand"				

collect rock samples for study		
Parts for mobility	Legs	Wheels and legs:
Electrical power	Metabolism	Batteries and solar power
Communications	Tongue	Antennas for "speaking" and "listening"

To drill a hole into the rock with SCSon Mars

Autonomous	sample collection
Automotious	sample concellon

Trilling a hole into Mars rock

- Pulling out intact core samples
- Sealing them hermetically in hyper-sterile vessels

Step-by-Step robotic-operations in SCS

Drilling & sampling

- Rotary percussive drill takes a core sample
- Tt will turn around
- Dock with one of the four docking cones of the bit carousel
- Bit carousel rotates that mars-filled drill bit and a sample tube down inside the rover to a location

Moving **SA**mple Tube (Sat)

- Sample handling arm can grab it.
- *Arm* pulls the filled sample tube out of the drill bit
- Takes it to a camera inside the Sample Caching System

Image of Sat

Sample tube is imaged

Volume assessment

- Small robotic arm moves it to the volume assessment station
- A ramrod pushes down into the sample to gauge its size
- Go back
- Take another image

Pickup plug for Sat

- Pick up a seal a little plug for the top of the sample tube
- 🖉 go back
- Take yet another image

Sealing

- Sample Caching System places the tube in the sealing station
- Seals the tube with the cap hermetically
- Take the tube out

Return Sat to sample rack

Return it to storage from where it first began.

Bit carousel of Mars	sample acquisition and surface		
2020-	analysis		
➔ Nine drill bits			
%% Abı of	rader bit is used to scrape top layers		
rocks	to expose un-weathered surfaces % abrading		
place Ma	ring and regolith bits are used to artian samples an sample collection tube %		
One forSix for c	regolith (rock and soil) coring.		

		Knowledge based Expert system		
		for robotic work flow		
If		Rover (Mr. Percy) is ready to drill		
Then	Carous	Carousel whirrs into action		
If	Core s	ampling		
Then	A sam	ple tube is inserted inside the appropriate bit		
	Carous	sel moves the combination into position for the drill		
	If	Sample tube has been filled		
	Then	Robotic arm returns the drill bit and tube to the carousel	&	
		they wend their way to processing stations and storage		
	end			
end				
If		goal is to abrade		
Then		carousel maneuvers the appropriate bit into position	&	
		drill at the end of the rover's robotic arm can extract it		
	If	Drilling's done		
	Then	Bit goes back into carousel		
	end			
end				

Typical Vehicles of NASA in astronomical explorations

NASA National Aeronautics and Space Administration

JPL	Jet propulsion Laboratory	Jet Propulsion Laboratory California Institute of Technology	Satellites ⁽¹⁾ Orbiters	
			C	
				surface
			Landers	
ESA	European Space Agency	esa	Rovers	
		And the second second		
			Air	
			Ingenuity	
			Hexacopters	
				launched into space) which
			-	in the orbit of a planet (or
			moon)	
		Knowledge	e flow	
	М	oon-Explore-Mars	Mem	
	М	ars-Explore-Moon	Mem	
	Μ	em to Mem	Mem2 Mem	
	Μ	oon-Earth	Me	
		ars-Earth	Me	
		e to Me	Me2Me	
	Μ	e2Mem2Me		

Rovers on Mars	raannaannannaannaan Li	anders on Mars	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	UNNNNNNNN
Curiosity NASA Perseverance	Curiosity	Rover	_	2011
Zhurong CNSA#	InSight Mars Lander	Rover	NASA	2018
# : China National Space Administration	Perseverance rover	Rover		2021
	Tianwen-1	China		2021
High-t	ech instruments on Perseve	rance rover (PR)	
MEDA	Mars Environmental Dynam	nics Analyzer		
MOXIE				
PIXL				
RIMFAX	Radar Imager for Mars' Sub	surface Experime	ent	
SHERLOC	Scanning Habitable Environ		an &	
	Luminescence for Organics			
Mastcam-Z	Mastcam-Z Placed in rover's head-like mast; Z stands for zoom			

Orbiter Mars	Odyssey-2001
Mission Facts	
Mission Status	Currently Operating, 22Sep,2021; 13:35
Mars Orbit Insertion	October 24, 2001
Launched	April 7, 2001
Launch Site	Cape Canaveral Air Force Station, Florida
Time in orbit lapsed	19Y 10M 29D 05H 45min 35 Sec