
ISSN: 2278-1862

Journal of Applicable Chemistry

2021, 10 (4): 488-558 (International Peer Reviewed Journal)

CNN -40: Halogen bond-Weak or strong?

Information Source	ACS.org; sciencedirect.com
K. Somasekhara Rao,	R. Sambasiva Rao,
Dept. of Chemistry,	School of Chemistry,
Acharya Nagarjuna Univ.,	Andhra University,
Dr. M.R.Appa Rao Campus,	Visakhapatnam 530 003, I ndia
Nuzvid-521 201, I ndia	•

- I. Select Research Titles(2000 to 2021) in X-bonds
- II. Object oriented terminology (OOT) for X-bonds
- III. Supplementary Information: X-bonded chemical species

KLab rsr.chem1979

I. Select Research Titles (2000 to 2021) in X-bonds

C 1000 C 1000 C	तुरकारकारकारकारकारकारकारकारकारकारकारकारकार	halogen bonding			er i mer i mer i mer i 1995
00.000.000.0	Interactions		If	Binary Solvent system: acetic acid + water	
000.00					

	Th	en ATMBA forms a	strong halogen bond with acetate ion	
		ATMBA : alpha-	(Trichloromethyl) benzyl acetate	
		•		
Methods	Radial distribution function (RDF);			
	MD evi	dence for a halogen b	ond between the solute and acetate	ion 🕴
KeyLrn_Bits	n_Bits , σ-profile analysis molecular dynamic simulation			

Deep analysis of the solubility behaviour mechanism	The Journal of Chemical Thermodynamics,
of alpha-(trichloromethyl) benzyl acetate in three	151(2020)106246
binary aqueous solvents	doi.org/10.1016/j.jct.2020.106246
Ning Wei and Zeren Shang and Nuoyang Zhang	and Jingkang Wang and Songgu Wu

Halogen bond-strong weak-- Halogen bond-strong weak-

eg find had had had had had had had had had ha	halogen bonding
Synth	4-bromobenzaldehyde arylhydrazones + CCl4 +Cu catalyst →
	1-Aryl-3-(4-bromophenyl)-4,4-dichloro-1,2-diazabuta-1,3- dienes
Interactions	Non-covalent Cl···Br interactions in the crystalline state
	→ formation of 3D supramolecular framework
Dichlorodiazadiene	Strong halogen bond donor
	DFT; Bader's theory (QTAIM method)
Methods	X-ray diffraction
KeyLrn_Bits	Non-covalent interactions, crystal engineering

Supramolecular organic frameworks derived from	Mendeleev Communications, 31(2021)191-	
bromoaryl-substituted dichlorodiazabutadienes via	193	
Cl···Br halogen bonding	doi.org/10.1016/j.mencom.2021.03.015	
Namiq G. Shikhaliyev and Abel M. Maharramov and Khanim N. Bagirova and Gulnar T.		
Suleymanova and Biligma D. Tsyrenova and Valentine G. Nenajdenko and Alexander S. Novikov		
and Victor N. Khrustaley and Alexander G. Tskhovrehov		

Halogen bond-strong weak-- Halogen bond-strong weak-

Yy Haallaallaallaallaallaallaallaallaallaa	had kad kad kad kad kad kad kad kad kad k	halogen bonding
	Halophilic reac	tion
Substrates	CBr4, Cl3CCN, Cl3CCOC	I, CCI4, CI3CF
Nucleophile	Cl-	
For halophilic reactionto occur	strong halogen bond is a r	necessary but not sufficient condition
On the role of halogen bond in	the halophilic reaction:	Journal of Molecular Structure: Theochem,
A theoretical study	_	961,(2010)6-8
		doi.org/10.1016/j.theochem.2010.08.039
	Yu Zhang	

	11 mil 1	halogen bonding	
	Synth	Dichloroacetylated prodrugs	
	-	→ Control compounds	
	Interactions	Weak halogen bond formation between	
- 2			Ä

	11:01:01:01:01:01:01:01:01:01:01:01:01:0	17-O-dichloroacetylated 2-methoxyestradiol with GTP in the a-tubulin subunit	
	Methods	MD	
1/2	· J — · · ·	Anticancer agent : 2-methoxyestradiol	

Synthesis and biotesting of new carrier prodrugs of 2-methoxyestradiol

Mendeleev Communications, 30(2020)7-9 doi.org/10.1016/j.mencom.2020.01.002

Natalia A. Lozinskaya and Natalia A. Maximova and Daniil R. Bazanov and Sergey E. Sosonyuk and Birgit Wobith and Nikolay A. Zefirov and Elena V. Kharitonashvili and Olga N. Zefirova and Sergey A. Kuznetsov and Marina V. Proskurnina

Halogen bond-strong weak-- Halogen bond-strong weak-

y, to to the	latta Hadia Hadia Hatia Hadia Hadia Hadia Hadia H	halogen bonding
Neutral heteroleptic cluster	Mo3(μ3-S)(μ-S2)3B	r4(bpy)
Interactions	By Unsymmetrical s	ubstitution of the bromide ligands in [Et4N]2[Mo3(μ3-
	S)(μ -S2)3Br6] by th	e 2,2'-bipyridine(bpy)
<u></u>	is responsible	

Heteroleptic bipyridine complex: Synthesis, spectral	Journal of Molecular Structure,	
and structural analyses, and interconversion of its	1234(2021)130138	
{Mo3S7} core to {Mo3S4} core	doi.org/10.1016/j.molstruc.2021.130138	
C		

Goutam Nandi and Sabyasachi Sarkar and Bezawada Sridhar Reddy and TaeYoung Kim and Kumud Malika Tripathi

Halogen bond-strong weak-- Halogen bond-strong weak-

	halogen bonding	
Copper-based antitumor	3-formylchromone pharmacophore Substituted with X ((F-, Br-)	
drug		
Structure detn	Spectroscopy; single X-ray crystallography	
Interactions	Strong halogen bonding	
Stability of X bond	Rationalized by sigma hole region of positive electrostatic potential	
	on surface of C-X covalent bond	
Methods	DFT (B3LYP) gas phase computations	

Copper (II)-based halogen-substituted chromone antitumor drug entities: Studying biomolecular interactions with ct-DNA mediated by sigma hole formation and cytotoxicity activity	Bioorganic Chemistry, 104(2020)104327 doi.org/10.1016/j.bioorg.2020.104327	
FarukhArjmand and Salman khursheed and Thierry Roisnel and Hifzur R. Siddique		

VMI VMI V	HARARAKAN ARAKAN AR		halogen bonding
0.700.700	Interactions	CI···Cl- halogen-bonding interactions	S
200	KeyLrn_Bits		✓ Strong anion exchange
		Solid phase extraction	sorbent Perfluorinated
			iodine alkanes

Halogen bonding: A new retention mechanism for the	Analytica Chimica Acta, 753(2012)48-56
solid phase extraction of perfluorinatediodoalkanes	doi.org/10.1016/j.aca.2012.09.024

Xiao Qing Yan and Qian Jin Shen and Xiao Ran Zhao and Hai Yue Gao and Xue Pang and Wei Jun Jin

Halogen bond-strong weak-- Halogen bond-strong weak--

	71.071.071.071.071.071.071.071.071.071.0	halogen bonding	
Strong halogen bonding			
	Interactions	between Iodine atoms of TIP and iodide anions	
		XB energies are up to 4.3 kcal/mol.	
	Methods	DFT	
	KeyLrn_Bits	Non-covalent interactions, Supramolecular chemistry	

z antanana antanana antanana antanana antanana antanana. C	tjarianianianianianianianianianianianianiani	
	Synthesis	
tri(n-propyl)ammonium (1) or	2,3,4,5-tetraiodopyrrole	hybrids CatI•TIP•xEtOH ($X = 0.5 (1)$
1,3,5-trimethylpyridinium (2)	(TIP)	and 0.33 (2)
iodides		

2,3,4,5-Tetraiodopyrrole as a building block for halogen bonding: Formation of supramolecular hybrids with organic iodide salts in solid state

Journal of Molecular Structure, 1230(2021)129931 doi.org/10.1016/j.molstruc.2021.129931

Mikhail A. Bondarenko and Alexander S. Novikov and Pavel A. Abramov and Ilyas F. Sakhapov and Maxim N. Sokolov and Sergey A. Adonin

Halogen bond-strong weak-- Halogen bond-strong weak-

		halogen bonding
Interactions	 → Br atom in Li3Br is a stronger had Cl atom in Li3Cl when it interacts we → Li3I is the strongest Lewis base 	
Li3M-XY	M=Cl, Br, I;XY=ClCl, BrBr, ClF, BrCl, BrF	
Methods	 MP2/aug-cc-pVTZ level 	
	 Natural bond orbital (NBO) 	 Formation of halogen
	Atoms in molecules (AIM)Energy decomposition	bonding
KeyLrn_Bits	SuperatomOrbital interaction,	LiCl, LiBr

Superalkali Li3M (M=Cl, Br, I) as a Lewis base in halogen bonding: A heavier halogen is a stronger
Lewis base than a lighter halogen
WenKai Tian and Qin Miao and QingZhong Li and WenZuo Li and JianBo Cheng

(M) M() M()	halogen bonding
System	1,8-naphthyridine + diiodine
Non-Cov	Hydrogen bondTetrel bond
bonds	→ Stacking interaction

 Cooperativity and anticooperativity between strong halogen bond and other noncovalent interactions 		
Interactions	→ Strong halogen bond	
meractions	N···I halogen bond interaction energy : −21.41 kcal/mol	
KeyLrn_Bits	Organic semiconductor,	
Appl Strong halogen bond is useful to design organic semiconductor materials		

Theoretical rationale for the role of the strong halogen bond in the design and synthesis of organic semiconductor materials

Yu Zhang and Weizhou Wang

Computational and Theoretical Chemistry, 1194(2021)113074 doi.org/10.1016/j.comptc.2020.113074

Halogen bond-strong weak-- Halogen bond-strong weak-

TA FARREN HAR HAR FARREN HAR HAR FARREN HAR F De		Haillaillaillaillaillaillaillaillaillail	halogen bonding
System	N-bromosuccinimide + electron-donating	groups	
Non-Cov			
bonds			
Interactions	→ N—Br in H2N—BrNH3 form a much stronger halogen-bonding than C—Br.		
Methods	AIM	MP2/Lanl2DZ*	
KeyLrn_Bits Interaction energy			

Ab Initio Calculations on Halogen Bond Between N—
Br and Electron-donating Groups
Chemical Research in Chinese Universities,
23(2007)355-359
doi.org/10.1016/S1005-9040(07)60075-0

Yan-hua WANG and Xue-song CHEN and Jian-wei ZOU and Qing-sen YU

	187 188 1 188 1 188 1 188 1 188 1 188 1 188 1 188 1 188 1 188 1 188 1 188 1 188 1 188 1 188 1 188 1 188 1 188 1	ALEN ALEN ALEN ALEN ALEN ALEN ALEN ALEN	halogen bonding
	System	Formamidine + XY	X=Cl, Br, I;
			Y=F, CCH, CF3, CN, NC
	Complexes	FA-(Z) through a halogen bond,	FA-(E) complex stabilized by both
			a halogen bond and X···H interaction.
Non-Cov bonds FA-(E) more stable than FA-(Z) counterpart with interaction energy of -3.4 to -23.4kcal/mol		unterpart	
		23.4kcal/mol	
Expl Stability of stronger halogen bonding is due to electrostatic and polarization energ			due to electrostatic and polarization energies

Prediction and characterization of halogen bonds involving formamidine and its derivatives	Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 138(2015)195-
	202
	doi.org/10.1016/j.saa.2014.11.064
Xiulin An and Lixia Jiang and Qingzhong Li and Wenzuo Li and Jianbo Cheng	

Halogen bond-strong weak-- Halogen bond-strong weak-

		halogen bonding
KeyLrn Bits	Human fertilization	Molecular design
ReyEm_bits	Calmodulin-dependent protein kinase	
Appl		

Design and verification of halogen-bonding system at the complex interface of human fertilization-related MUP PDZ5 domain with CAMK's C-terminal peptide doi.org/10.1016/j.compbiolchem.2017.11.007

Computational Biology and Chemistry, 72(2018)164-169

Juan Wang and Yunjie Guo and Xue Zhang

Halogen bond-strong weak-- Halogen bond-strong weak-

		halogen bonding	
System	14N2···ICF3	Symmetric-top complexes	
System	15N2···ICF3		
Interactions	Weak halogen bond		
	Distance rN···I=3.443(1)Å slightly <		
since	sum of the N and I van der Waals radii		
Since	☐ Intermolecular stretching force constant kσ=2.94Nm−1 is small		
Negligible charge redistribution on complex formation			
Methods	Rotational spectroscopy		

Characterisation of the weak halogen bond in N2···ICF3 by pure rotational spectroscopy

Chemical Physics Letters, 625(2015)179-185 doi.org/10.1016/j.cplett.2015.02.023

Jonathan P. Anable and David E. Hird and Susanna L. Stephens and Daniel P. Zaleski and Nicholas R. Walker and Anthony C. Legon

Halogen bond-strong weak-- Halogen bond-strong weak-

		halogen bonding	
System	Azaaromatic chloride crystals		
Synth	 ✓ bis-2,4-[(2-formoyl)phenoxyl]-6-chloro-[1,3,5]triazine (1) ✓ bis-2,4-(4-carbomethoxyphenoxyl)-6-chloro-[1,3,5]triazine (2) 		
Non-Cov bonds	 N···Cl halogen bonding lone pair···π interaction π-π stack C-H···O hydrogen bonding in the directionality of supramolecular self-assembly 		
Interactions	Strong halogen bonding		
since	unusually short intermolecular N···Cl distance of 3.095(2) and 3.088(3)Å		
Methods	Theoretical calculations		
KeyLrn_Bits	DirectionalitySite selectivity	DFT calculationsMolecular electrostatic potential	

Directionality and site selectivity of N···Cl halogen bonding in two azaaromatic chloride crystals

Journal of Molecular Structure, 975(2010)274-279 doi.org/10.1016/j.molstruc.2010.04.035

Yi-Min Zhu and Ti-Fang Miao and Yang-Yi Yang and Dong-Yue Zhuang and Kang-Cheng Zheng and Wing-Tak Wong

II. Object oriented terminology (OOT) for X-bonds

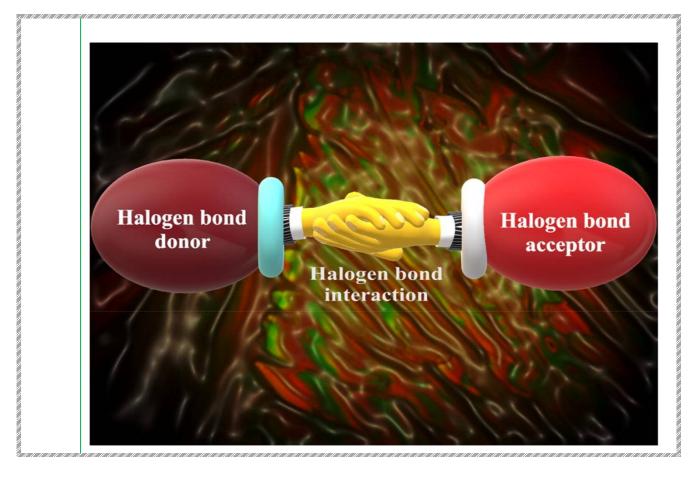
Interactions within in and between chemical moieties

- ! |chemical biological|
- | Vander_wall dispersion stacking hydrophobic
- |quantum ||relativistic|| nano || gravity||

Interactions	Energy (kcal/mol) in biomolecules	
Van der Waals contact	<1	
Hydrophobic force	1.5–2	
Salt-bridge	0.5–5	
Stacking	5–7	
H-bonding	0.25–40	
Xbonding	1–40	
Covalent bond	>80	
Electrovalent	>700	

Classification of

non-covalent interactions


ì	Class	sificati	tion of interactions			IUP recomn	Noble gas bond	
) bond	Spodium bond (this work)	Triel	Tetrel	Pnictogen bond	Chalcogen	Halogen	NgB Group
	gium	puo	TrB	TtB	PnB	ChB	НаВ	18
	Coinage (regium) bond	dium b	Group 13	Group 14	Group 15	Group 16	Group 17	He Hellum
7	CO.	Spo	В	С	N	O	F	Ne
	CiB	SpB	Boron	Carbon	Nifrogen	Oxygen	Fluorine	Neon
	Group 11	Group 12	AI Aluminum	Sil con	P Phosphorus	Sulfur	CI	Ar Argon
	Cu	Zn Zinc	Ga	Ge	As Arsenic	Se Selenium	Br Bromine	Kr Krypton
	Ag	Cd Cadmium	In	Sn	Sb Antimony	Te Telurium	lodine	Xe
	Au	Hg Meroury	TI Thallium	Pb Lond	Bi	Po Polonium	At Astatine	Rn Redon
	Rg Roentgenium	Cn	Nh Nihonium	FI	Mc Moscovium	Lv Livermorium	Ts Tennessine	Og

	Bond No_Bo	lo_Bond		
	Bond	CovBNonCovBElectroStatic		
Interaction		ion-ion, ion-		
	IDla atua atati al	Multi_poleMultipole_multipole		
	Electrostatic	Multipole : dipole		
		hexadecapole		
LA NCB LB		NCB: Non-covalent bond		
NCB	HB XB [G11	-G18] B		
HB	HB invHB			
XB	F Cl Br I At			

Lewis acid (LA)	Lewis base (LB)				
Hard acid (HA)	Hard base (HB)				
Electrophile	Nucleophile				
Cation	Anion				
σ-hole	Base				
Acid	σ-hole				
σ-hole positive	σ-hole negative				
Electron density	Electron density				
acceptor	donor				

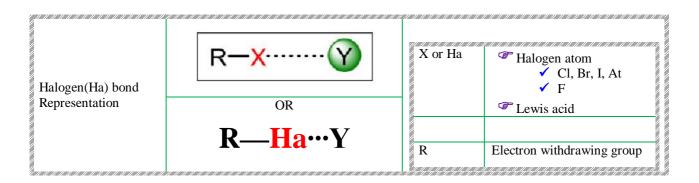
# column of		97 1881 1881 1881 1881 1881 1881 1881 1881 1881 1881 1881 1881 1881 1881 1881
Chem elements	Abbrev	\$\$ Bonds
in periodic table		

0 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1	18G	NgB	Nobel gas	g me cane cane
	17G @	HaB	Halogen	
	16G @	ChB	Chalcogen	
	15G	PnB	Pnicogen or Pnictogen	
	14G	TTb	Tetrel	
	13G	TrB	Triel	
	12G	SPb	Spodium	
	11G	CiB or Rg	Regium or Coinage	
	1G	НВ	Hydrogen	
			@ IUPAC recommened	

	halogen bond		
Synonyms	Halogen		
	Halogen	molecule bridges	
Abbreviation	HaB	IUPAC approved	
		Group 17 in 18Column-Periodic table	
	XB	popular	Group 17 in recording refronte tueste

Chem Elements in Halogen (X) group	[F, Cl, Br, I] [At] [Ts]	

Halogen atom	Plays the role of electron acceptor to electron donor atoms in a molecule (NH3) Ex: nitrogen, oxygen, even anions such as halides
Halogen atom	Plays the role of electron density donor to electron acceptor atoms in a molecule
	A specific subset of inter- and intramolecular interactions
Halogen bonding	Attractive interaction
Tranogen bonding	Non-covalent interactions
	$\ \ $ A subset of σ -hole interactions
	Halogen bonds are a highly directional class of bonds
	Reason: X- bonds formed in line with the halogen's molecular bond (R-X)
	Hydrogen bonds on the other hand, are non-directional
	A halogen bonded molecular system consists one of halogen atoms and has a σ-hole in one
Halogen bond	moiety and a base in other species in inter-molecular interaction associated with energy
<u></u>	transactions.
	A halogen atom (Hal) in one molecule and an atom or a group of atoms with rich electron
	density (Y) in another molecule


77 .		
X-atom	Behaves as	Complex
<u> </u>		
Electrophile	When there is positive ESP region (σ -	Halogen bond XY
•	hole)	
Nucleophile	When there is negative ESP region	Halogen atoms have high
	_	electronegativity. Thus, they behave as
		electron rich (nucleophilic) sites
		Ex: A halogen atom functions as hydrogen
		bond acceptor
Both electrophile	When there is negative ESP region and	One halogen bond and another
and nucleophile	also positive ESP region (σ-hole) on the	halogennucleophile complex
	same halogen atom	_

	Type I	✓ Net attractive interaction between		
		An electrophilic region associated with a halogen and		
Halogan		Electrophile region of another molecule		
Halogen bond	Type II	✓ Net attractive interaction between		
		A nucleophilic region associated with a halogen atom (σ-hole) in a molecular entity/fragment and		
		A nucleophilic region of another molecule (Lewis base) or		
		the same, molecular entity		

Origin of electrophilic region		when a halogen atom makes a covalent bond in a molecule		
on halogen		Then electron distribution density around the atom shifts a bit toward the bond		
SVIIII VIIII VIIII		Consequence: This leaves an area (opposite the bond)—of diminished of		
Name of the least		electron density, which is christened as the σ-hole.		
- 2				

Halogen bond 'donor'	Halogen bearing molecule	
Halogen bond 'acceptor'	Nucleophilic molecule	

GANANANANANANANANANANANANANANANANANANAN	Applications of X-bonded systems	100110011
Crystal engineering	Designed Mechanical properties	
	☐ Co-crystals with specific desired features of structure and composition →	
	Non-linear optical activity	
	Enhanced conducting properties	
Liquid crystals	Dimeric	_
	Trimeric	
Materials	Soft, Smart	
	Magnetic	
	Conducting	
	Supramolecular polymers	
Electronics	Magnetic and conducting materials	
	Liquid-crystal displays	
	Organic semiconductors	
Biomedicine	Biological Systems	
	Functional systems	
	Rational drug design	
	Anion binding	
Recognition	Molecular	
	Anion	
Chemistry	Macromolecular chemistry	
	Supramolecular chemistry	
	Supramolecular host-guest complexes	
	Interlocked XB host molecules	
	Biochemistry	
	Solid state chemistry	
	Organic synthesis, catalysis Separation science	
	Separation science	
		emment.

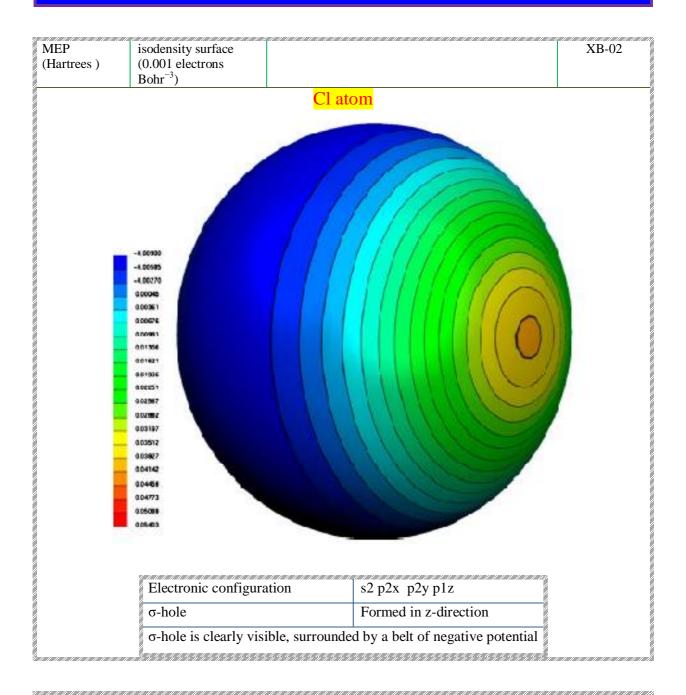
gunnen minima minima Minima minima		R-X	R is covalently bonded to X	
		Y	✓ Lewis base	
			✓ Halogen bond acceptor	
			possessing at least one	
			nucleophilic (electron	
			rich) region.	
	1 au 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			41. m. 2

Chemical species with X-bond	Molecular entity or any constitutionally or isotopically distinct atom, molecule, ion, ion pair, radical, radical ion, complex, conformer etc., which is detectable and can be quantified as a distinct entity
Evidence for X-bond	 Experimental CQC (Computational quantum chemistry) Combination of both
	 Greater the number of features satisfied ✓ More reliable is characterization of interaction as a halogen bond

Features	$R-X+Y \rightarrow R-XY$
	Geometric characteristics
Interatomic distance between XY	Greater than covalent bond distance
	Less than sum of van der Waals radii
Angle R–X…Y	→ Nearer to 180°
	i.e., the halogen bond acceptor Y
	→ Approaches X along the extension of R–X bond
Length of the R–X covalent	→ More than bond distance in simple R–X
bond in R–XY	

อาการและเกิดเกิดเกิดเกิดเกิดเกิดเกิดเกิดเกิดเกิด				
Infrared	Absorption	Formation of the XY bond results in new vibrational		
Raman scattering		modes		
UV-vis	Absorption bands	Of halogen bond donor shifts to shorter wavelengths		
X-ray photoelectron	Binding energies of	Complex shift to lower energies relative to unbonded X		
spectrum	peaks			
NMR(@)	Chemical shift values	Of nuclei in both R-X and Y, in solution as well as in		
		solid state change		
(@) NMR spectroscopy requires high concentrations (up to ~1 M) of solute for signal measurement				
+ It had advantage that weaker interactions also can be detected at higher concentrations.				

Ha-Bond strength	Bond strength of XY in $R-XY-Z$
Forces in Ha-Bond	→ Electrostatic
	→ Polarization
	Charge transfer
	→ Dispersion
Correlated	Function of (magnitudes of the positive and negative electrostatic potentials of
	σ-hole and the negative site)


Variation	Highly variable over a wide range of energies	
Decreases as	Electronegativity of X increases	
	Electron withdrawing ability of R decreases	

Strength of XB	Changes with	
Increases	 ✓ Size and polarizability of atoms (Cl < Br < I < At) ✓ Size of σ-hole 	
Increases	Increasing the electron withdrawing ability of covalently bonded R group Ex: $C(sp)-X > C(sp2)-X > C(sp3)-X$.	
Depends on nature of halogen atom	Greater in order of F < Cl < Br < I < At	
Depends on nature of Lewis bases	 ✓ Conventional electron donors such as oxygen- And nitrogen-containing molecules ✓ Aromatic compounds, metal hydrides, radicals ✓ Carbenes 	

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
R–X	CBr4, CHI3, CnF2n+1I	Haloalkane
	Iodobenzene, halopyridinium And haloimidazolium cations	Haloalkane Haloarene or haloheteroarene
	Diiodoacetylene	1-haloalkyne
	Diphenyliodonium or bromonium derivatives	Halonium ion
	N-bromo- or N-iodosuccinimide	Halonium ion Haloimide Dihalogen molecule
	I2, Br2, ICl, ClF	Dihalogen molecule
	CBr4, CHI3, CnF2n+1I	
Y	lone pair	Possessing atom N atom of a pyridine or an amine
	O atom of a	Carbonyl group
	Pi system	Double or triple bonds, arene moiety
	anion	S

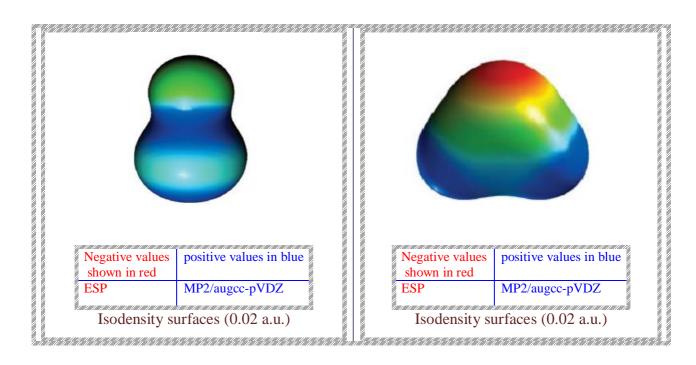
III. Supplementary Information X-bonded chemical species

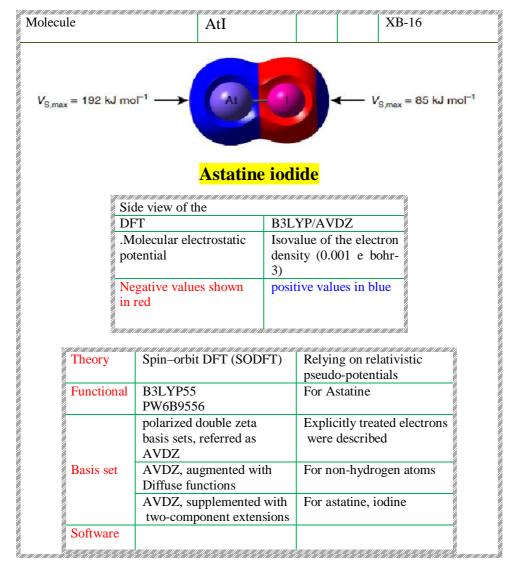
Sup Inf 1: σ-hole in Single atom

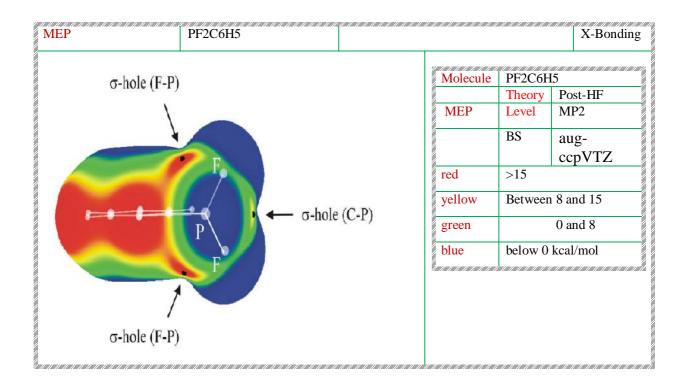
σ-hole in X atoms of molecules—Positive ESP region

- \rightarrow σ -hole is due to the anisotropy of the atom's charge distribution
- The three pairs of unshared electrons on the halogen atom X form a belt of negative electrostatic potential around its central region.
- \rightarrow It leaves a positive " σ -hole" on the outermost portion of its surface centered around the R-X axis.
- This region of lower electron density is known as the σ -hole.
- o Its position accounts for the highly directional interaction with the XB acceptor, and the stricter

preference for linear interactions of XB in comparison to HB


Calculated molecular electrostatic potential surfaces of these R—X bonds show a clear anisotropic distribution of electrons, with a highly localised region of positive electrostatic potential positioned on the halogen atom at the head/terminal end of the R—X bond


Diatomic halogen molecule



Number σ-holes in O Elements in groups 16, 15, and 14 of the periodic table have					
	atom \checkmark two, three, and four σ -holes				
\circ if hypervalent, even more σ-holes					
%			UKARAN KANAKAN	ż	

	ESP of single	e ClF	XB-121	SP	of	single	NH3		XB-121	
	molecules			mol	ecules					
9		6666666666		46666	5 5 5 5 5	3333333	333333	4.6.6	34444444	4444444

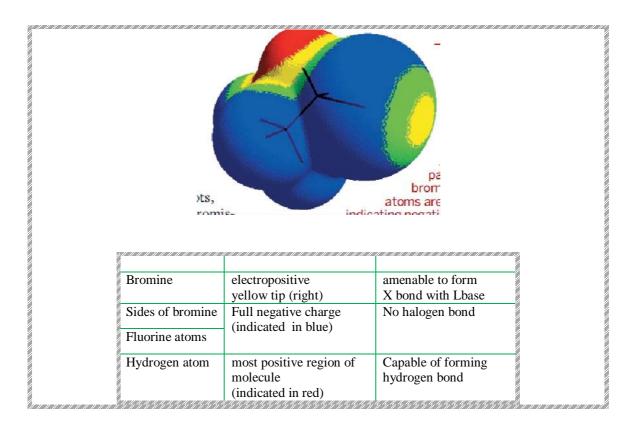
0000	σ-hole	However, the σ -hole model does not show the complete picture of the halogen bond,			
limitations		Future and the exact nature of the bonding interaction has yet to be confirmed			
9	}				

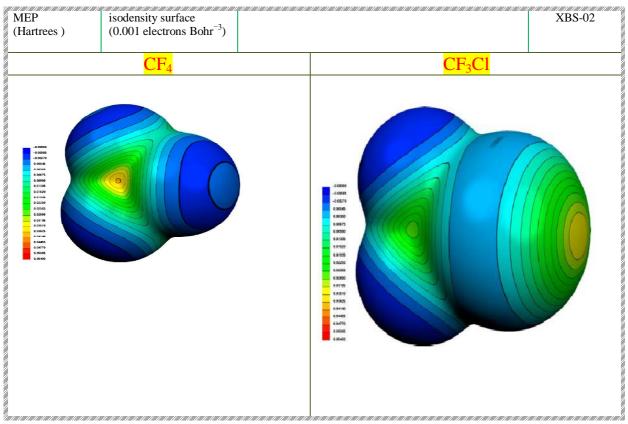
If	electron-attracting power of X is greater than that of the remainder of its molecule (R)		
Then halogen atom may gain enough electronic charge to neutralize the σ-hole			
Why	Fluorine does not participate in halogen bonding		
Because	sp-hybridization of the unshared s-valence electrons of F neutralization of the σ-hole		
Why	σ-hole is observed for the Cl in CF3Cl σ-hole is not observed for the Cl in CH3Cl		
Because	 Cl, Br and I atoms in these molecules closely approximate the s2p2x p2y p1z configuration, where the z-axis is along the R-X bond. The three unshared pairs of electrons produce a belt of negative electrostatic potential around the central part of X, leaving the outermost region positive, the σ-hole. 		
	This is not found in the case of fluorine, for which the combination of its high electronegativity plus significant sp-hybridization \rightarrow causes an influx of electronic charge that neutralizes the σ -hole		
Trend	These factors become progressively less important in proceeding to Cl, Br and I,		

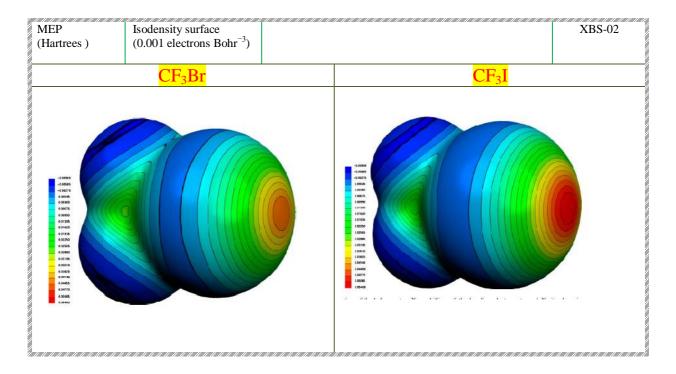
Why	σ-hole not found CF4
Because	higher electronegativity of fluorine gives it a disproportionately large share of the σCX bonding electrons

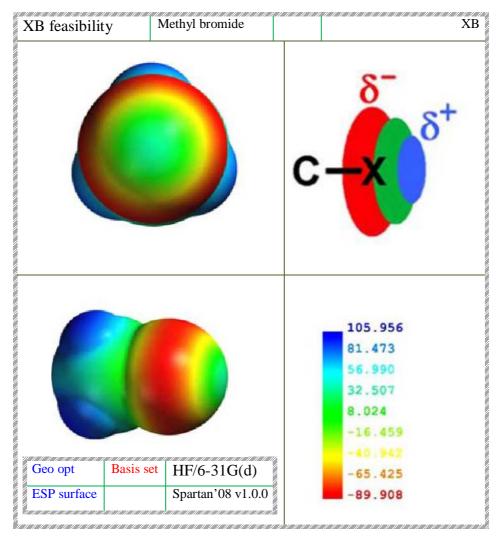
	\rightarrow leads to neutralize the σ -hole \rightarrow does not form halogen bond
Why	CH3Cl does not form halogen bond
Because	CH3Cl does not have a σ-hole
Why	CF3Cl form X-bond
Because	Electronattracting power of the chlorine is overwhelmed by that of the three fluorines.

		it's much more difficult in the protein to establish a strong halogen bond than a strong hydrogen bond	
	Because	halogen bonds have a strong geometric requirement	
1			9

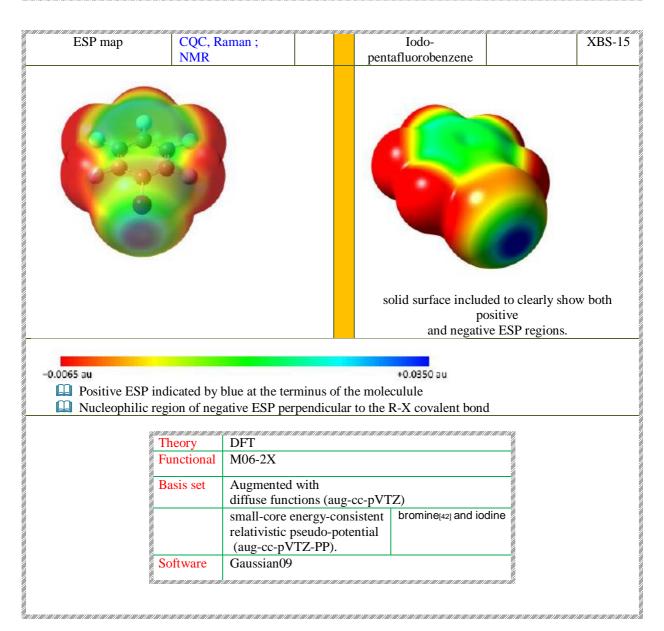

Tuning of	This r-hole can be tuned through substitution of atoms or chemical groups in the
σ-hole	vicinity of a halogen
	Ex: bromine in 5-bromo-4,6-dicyano pyrimidine shows a more positive σ-hole than
	the corresponding one in 5-bromopyrimidine

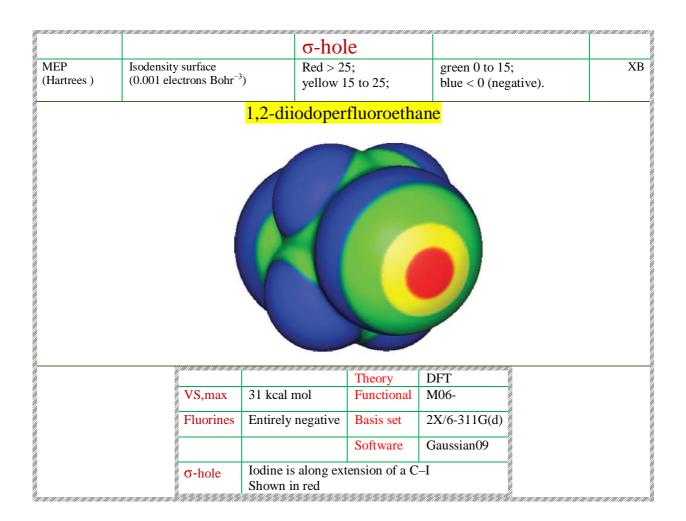

σ -hole A σ -hole bond is a noncovalent interaction between a covalently-bonded atom of Groups IV					
	bond	VII and a negative site			
XB-24 e.g. of negative site: a lone pair of a Lewis base or an anion.					
It involves a region of positive electrostatic potential, labeled a σ-hole, on the extension of		It involves a region of positive electrostatic potential, labeled a σ-hole, on the extension of one			
of the covalent bonds to the atom.					
2					

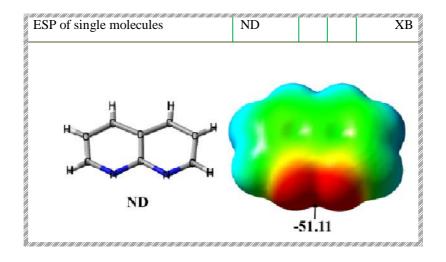

		ARRICH KRIKARIA KARAKARIA KARAKARIA KARAKARIA KARAKARIA KARAKARIA KARAKARIA KARAKARIA KARAKARIA KARAKARIA KARA	1111
3	Number of X-bonds	$=$ number of σ -holes in X atom of Lewis acid (LA)	- 5
ã	Trainioci of 11 contas	number of a notes in 11 atom of Lewis acid (E11)	3
%			%


Single molecules containing halogen atoms

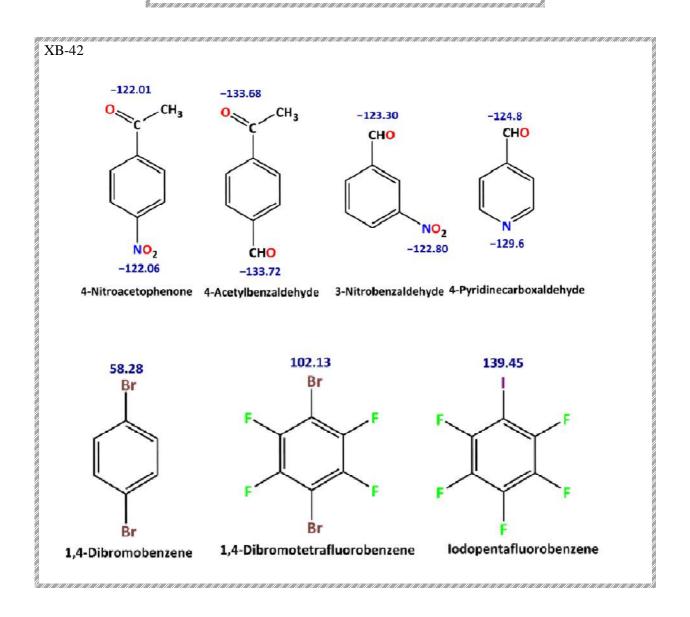
Molecule	CF3CH2Br	314131313131313131313131313131313131313	HEMEMEMEMEMEMEMEMEMEMEMEMEMEMEMEMEMEMEM	XB

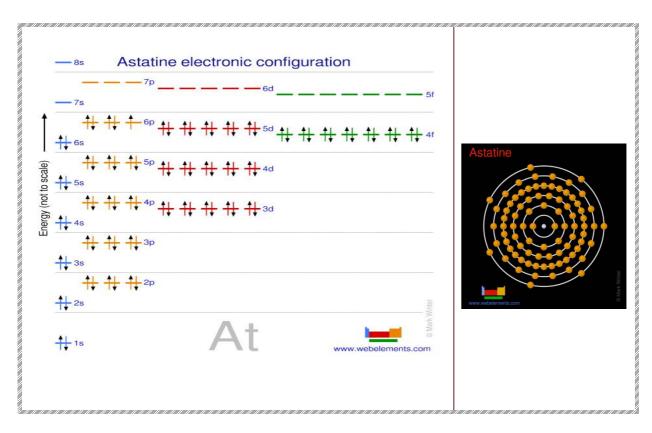


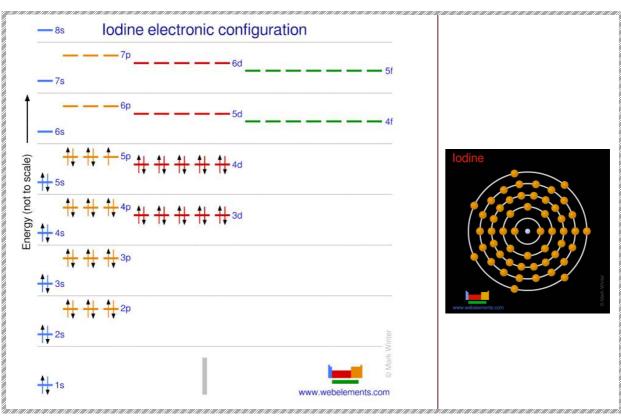


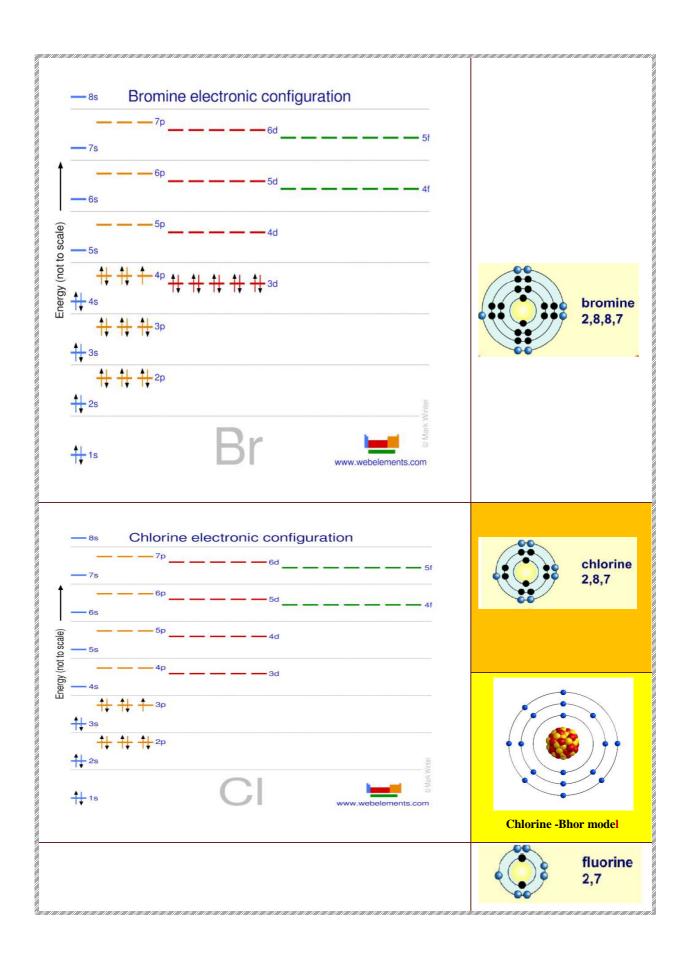


ESP map Blue:positive Red: negative Iodo-pentafluorobenzene B97D3/Def2- TZVP XB					
Red: negative benzene TZVP	ESP map	Blue:positive	Iodo-pentafluoro-	B97D3/Def2-	XB 🏽
$F + \downarrow F$	1	Red: negative			
			F\	FFF	




ESP of Single Molecules LA and LB →RX...YZ



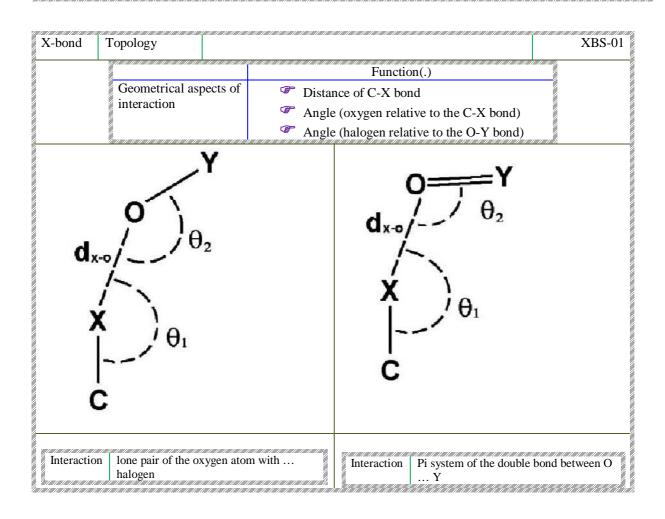

Most negative ESP (-51.11) of ND is located at the middle point between two N atoms

Electronic configuration of Halogen atoms

Sup Inf 2: Molecular structures of X-bonded chemical species

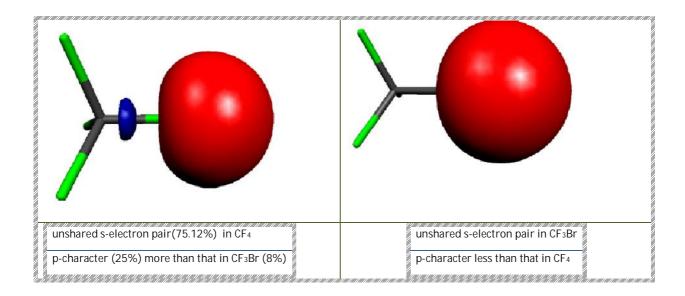
ggananananananana P	unannananannananananananananananananana
	✓ Topology
	✓ Orbital character
X-bond formation	sup inf.1
necessary conditions	✓ Molecular Electro-static potential
necessary conditions	✓ Electron density
	✓ Hundred years time line of
	Hydrogen-, Halogen-,
	no-bonding Interactions

Chemical Systems with X-bonding			
Intra-molecular X-bond			
Homo-dimer molecu	Homo-dimer molecules		
Single crystal			
C 1	Binary		
Co-crystals	Ternary		
Liquid-crystals			
Super-atoms/molecules			
Linear chains			
Molecular tapes			

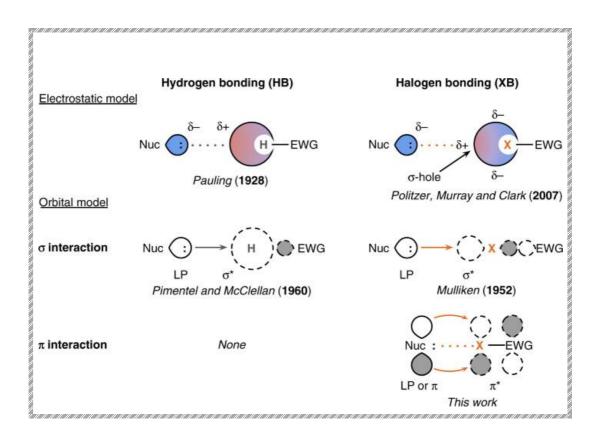

	Binary			
Adducts (complexes)	Ternary			
	Fluorine	F		
	Chlorine	Cl		
Halogen (F, Cl, Br, I, At)-bonding	Bromine	Br		
	Iodine	Ι		
	Astatine	At		
Rotaxane X-complexes				

Bio-Molecules
Bio-systems

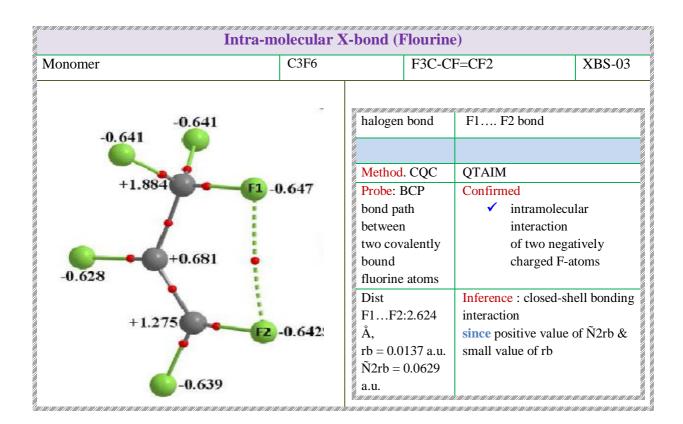
X-bonding + Another non-covalent bonding

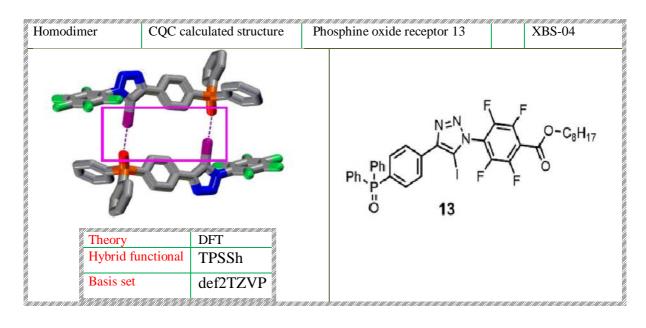

sup inf.3
H...bonds
Weak.....Interactions

X...bonds topology

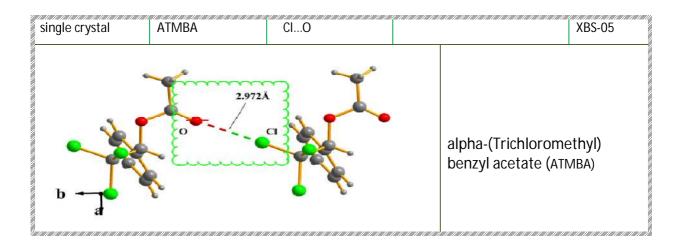


Orbital character

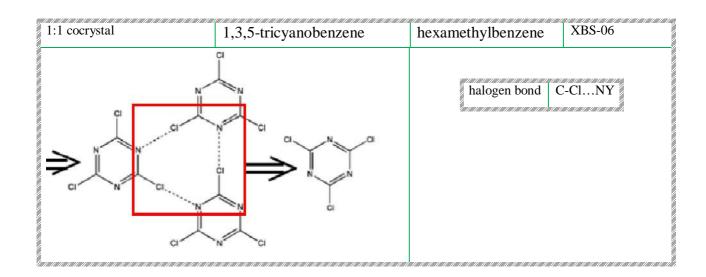

CF3X		XBS-02
CF ₄	CF ₃ Br	

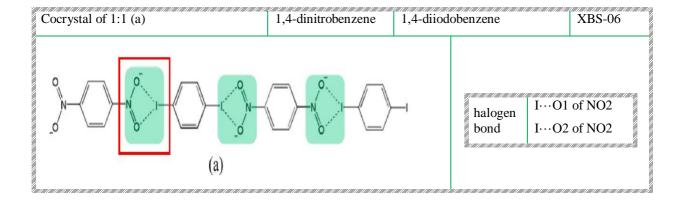

Hundred years Time line of H-, Ha-, no-bonding Interactions

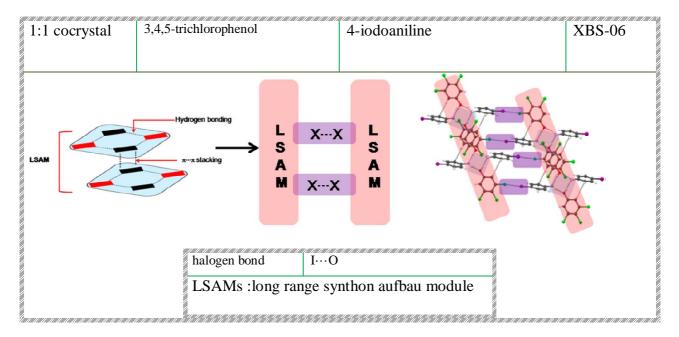
Chemical Systems with X-bonding

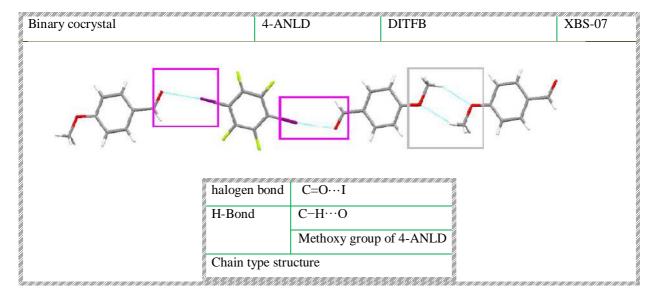


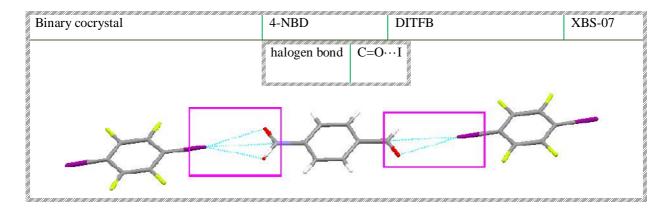
Homo-dimer molecules

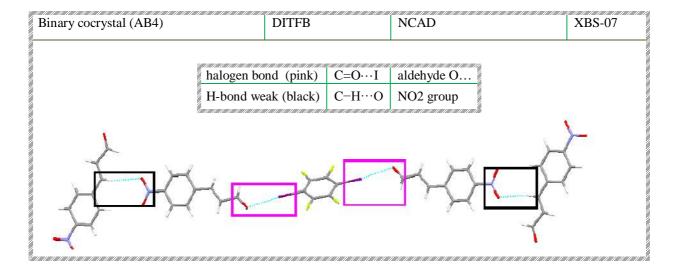


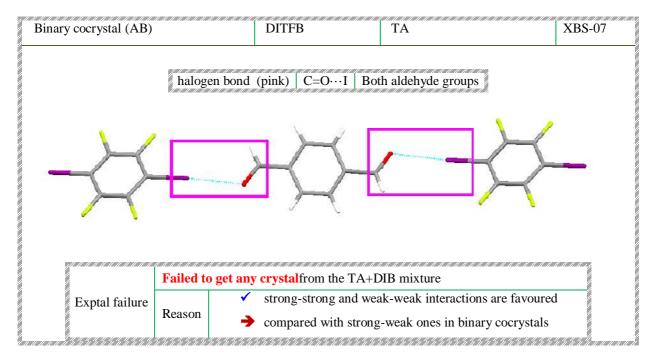

Crystal	Chemical species	
✓ Single crystal	Monomer	
✓ Cocrystal	→ Adduct	→ Binary
		→ Ternary

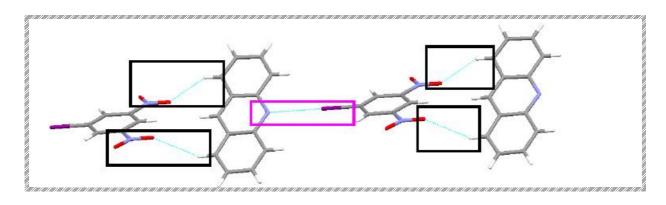

Single crystal



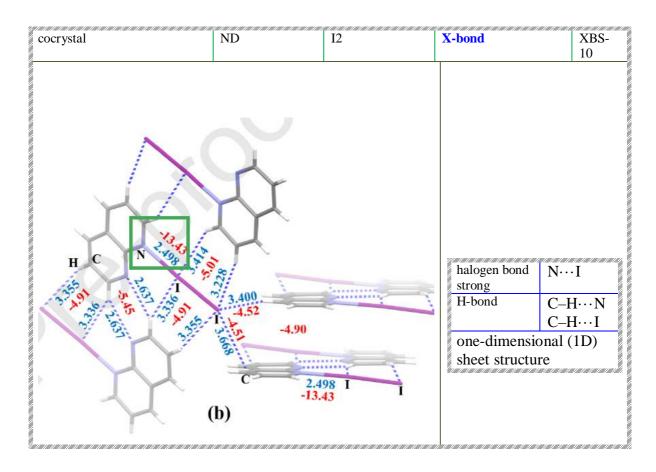

Co-crystals binary

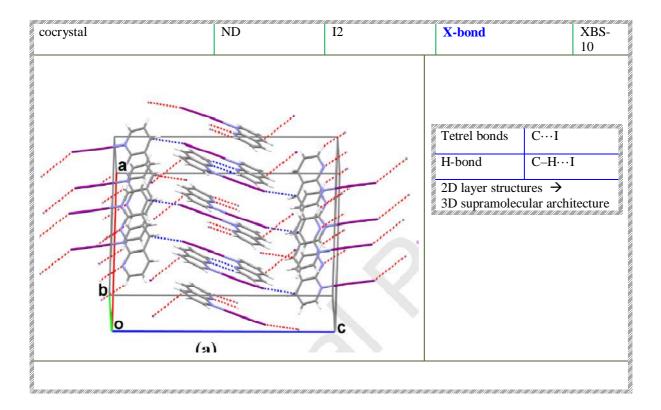


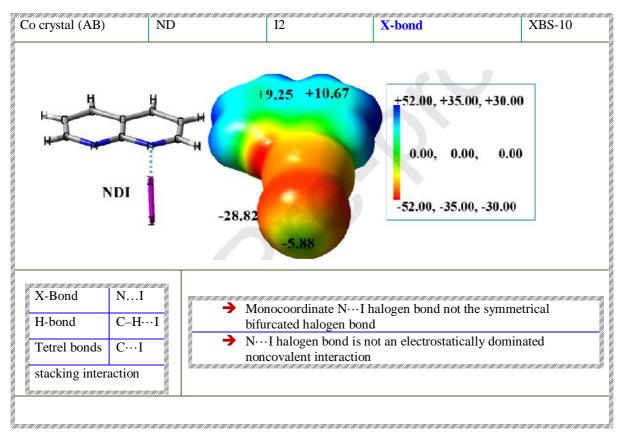



Binary cocrystal	4-NBD	DIB	XBS-07
halogen bond (pink	s) C=O···I		00 100 100 100 100 100 100 1
	I of DIB m O of CHO		
H-bond weak (black	k) C–H···O		
	oxygen ato	om of (CHO/	NO2)
7			
1000 E 1000	100 100 100 100 100 100 100 100 100 100		/ 1007 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 /

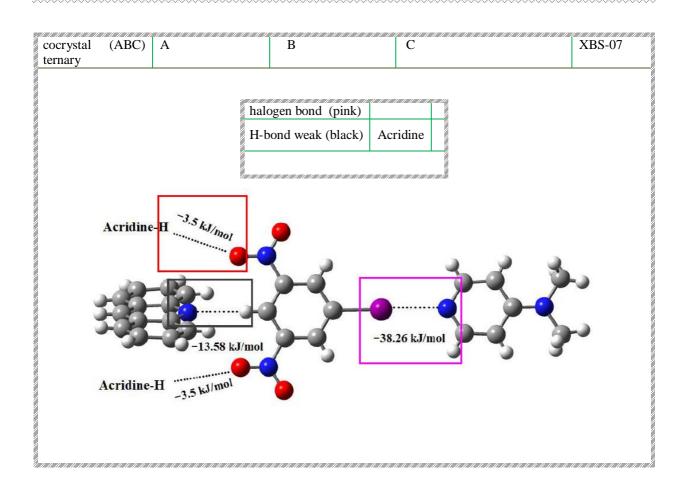
Binary cocrystal [AB3]	DITFI	B		3-NPY	XBS-07
halogen bond (pi	ink) N.	I	pyridin	e N I of	
H-bond weak (bl	C-	-НО	3-NPY	moiety NO2 group	ρ
H-bolid weak (bia	RF	HF	C-H of	3-NPY F of DITF	В

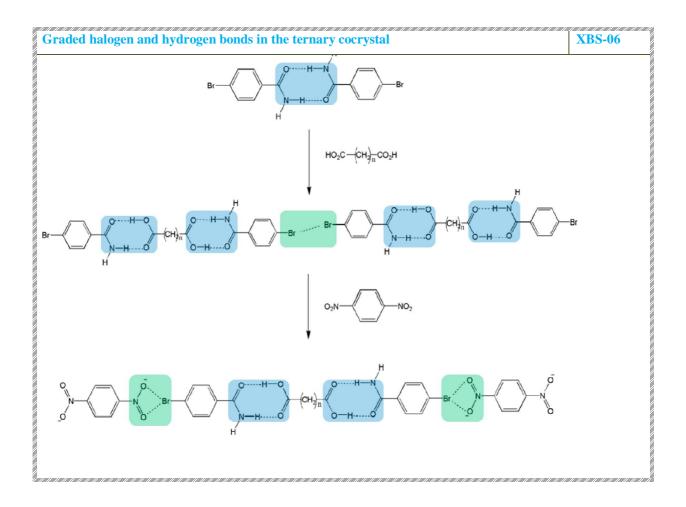


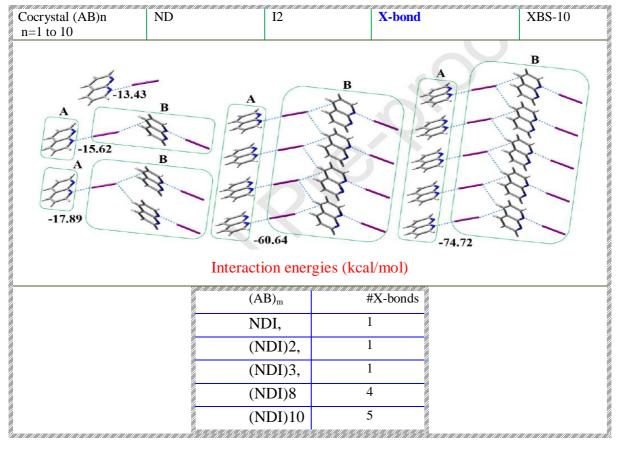



Binary co	ocrystal (AB)	IDNB:	1884 1888 1888 1888 1888 1888 1888 1888 1888 1888 1888 1888 1888 1888 1888 1888	allia la dia dia dia dia dia dia dia dia dia di	XBS-07
		halogen bond (pink)	C=N···I	N atom of	FACR I-atom of IDNB	
		H-bond weak (black)	С–Н…О	phenyl H-	atom O of NO2 group	
		! two molecule	s are not pla	ınar		-
bisect each other at an angle of 35.38°						

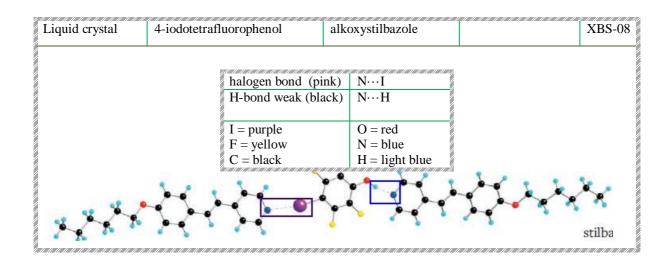
Probe: CQC	XBS-07
→ Geo.optimization→ Electronic energy	Theory DFT Functional wB97XD Basis set def2-TZVP Software Gaussian09
Proton affinity (PA)	Same level as opt
→ ESP	Geometry opt: wB97XD Software: WFA-SAS software
→ Charges on individual atoms	Natural Bond Orbital (NBO) analysis
→ Interaction energy of ternaries (only involving halogen bonds)	Optimized geometries

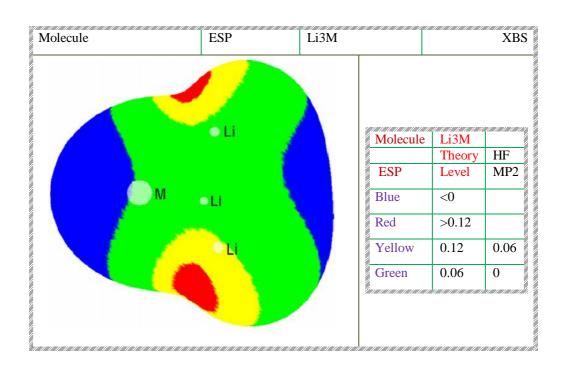


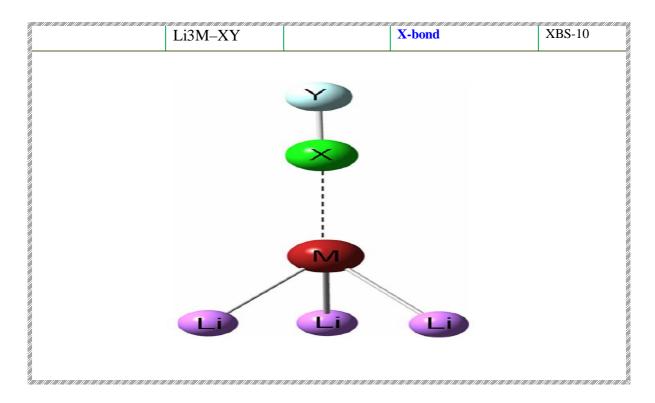


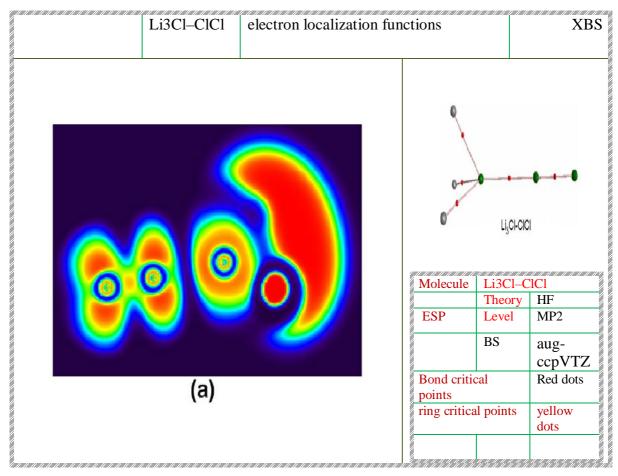

N...I halogen bond

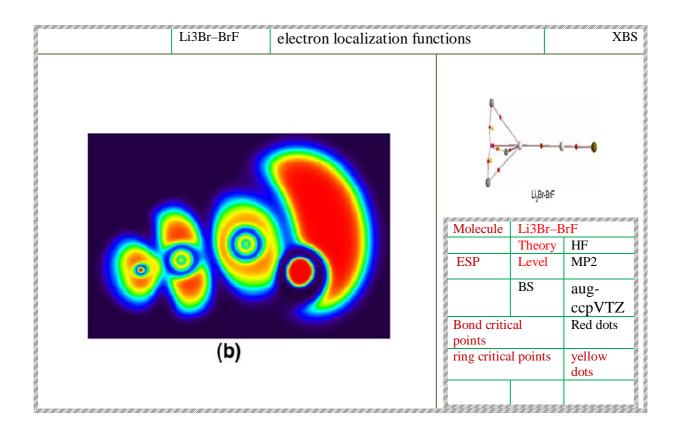
- ☐ Upon the formation of the halogen-bonded complex NDI
 - \checkmark of hole of the other I atom of I2 is changed from positive to negative
 - ✓ same time the electrostatic potentials on the C atoms of the aromatic ring become more positive
 - → This explains the formation of C···I tetrel bond in crystal structure
- ☐ The electrostatic potentials around the two I atoms of NDI are much negative ⇒ supports formation of the C–H···I hydrogen bonds in the crystal structure.


Co-crystals ternary

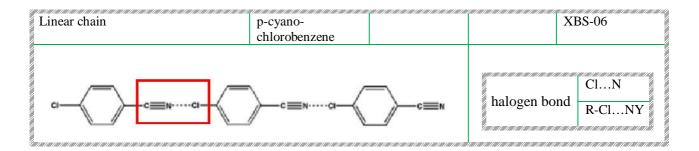


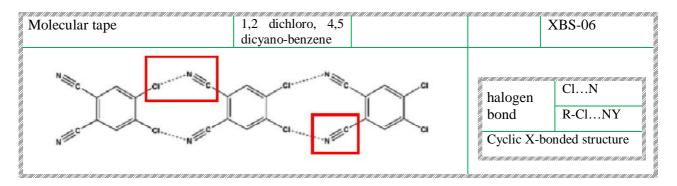


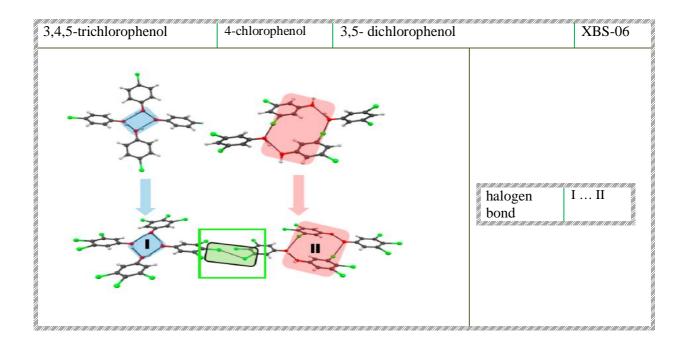

Liquid-crystals



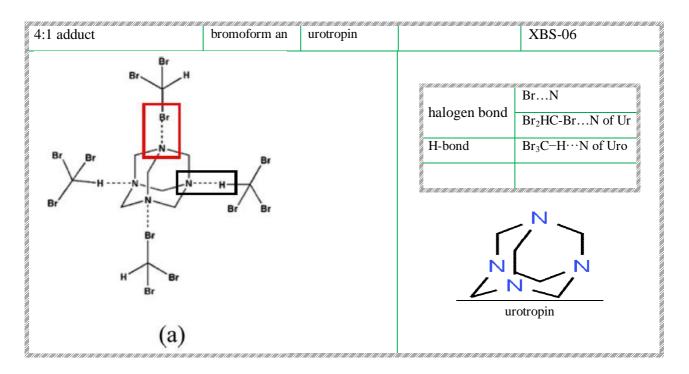
Super-atoms/molecules



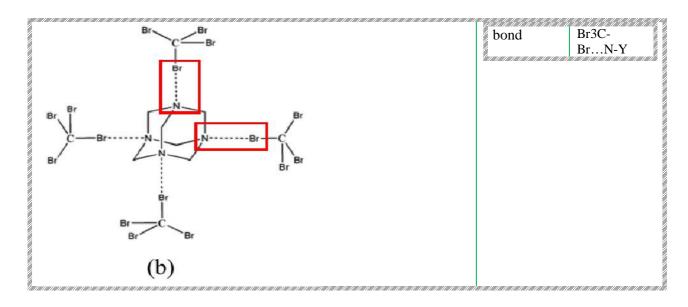


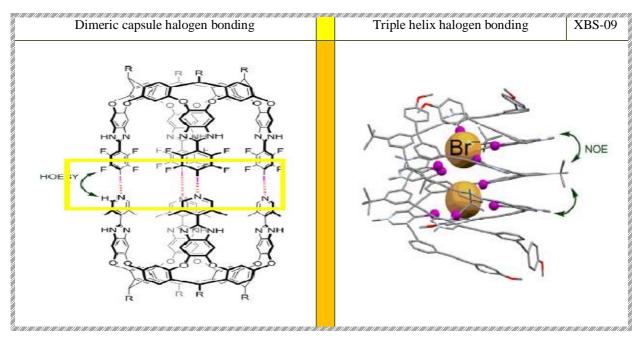


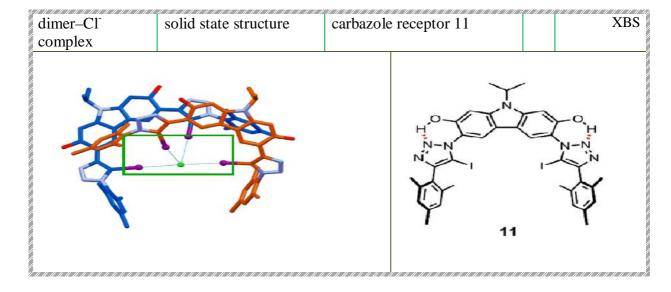
Linear chains

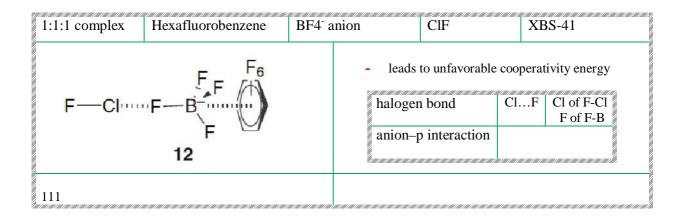


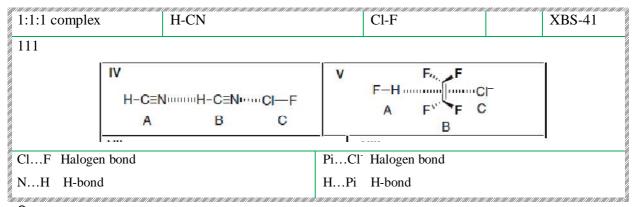
Molecular tapes



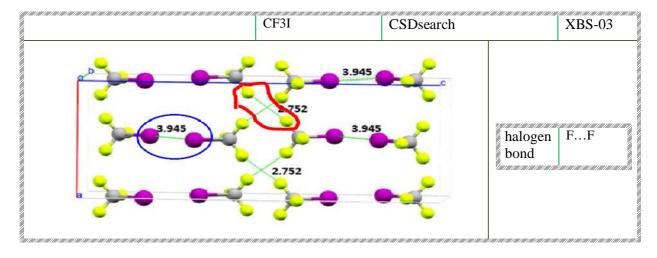


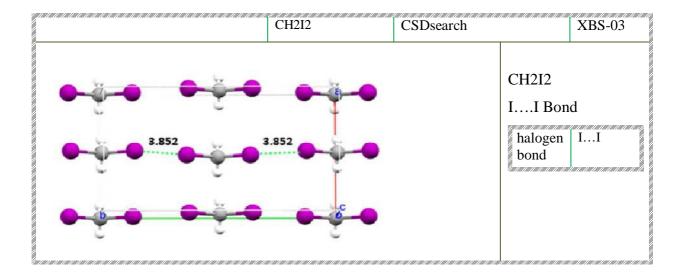

Binary adducts (complexes)

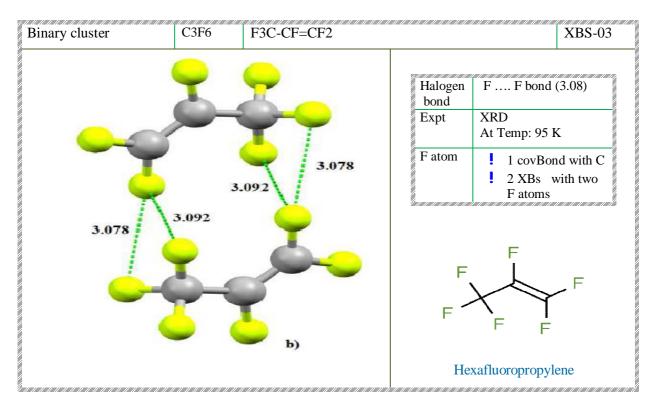

4:1 adduct	(C) 1	XBS-06		
			halogen	BrN



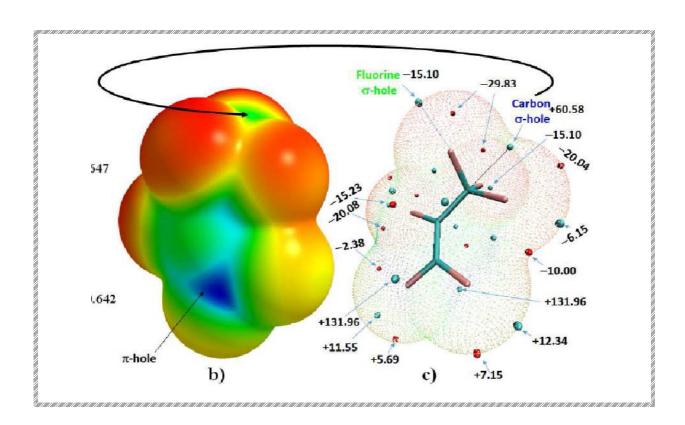
Ternary molecular adducts (complexes)

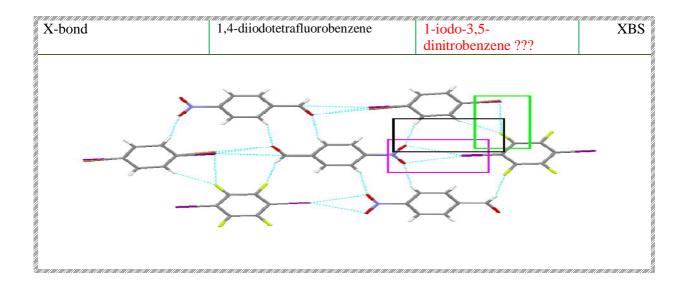




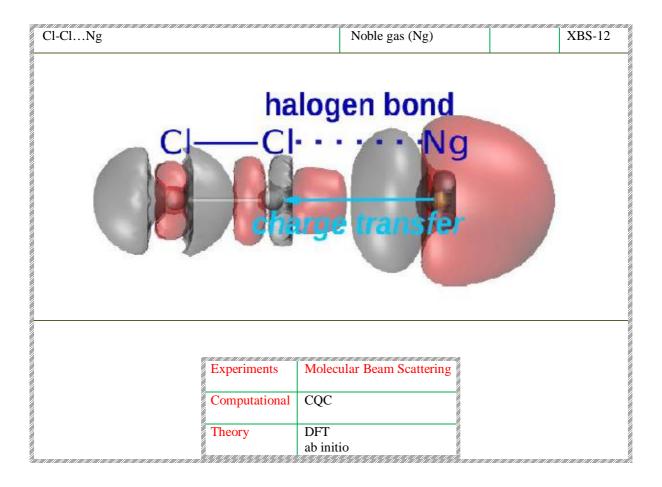

Omom

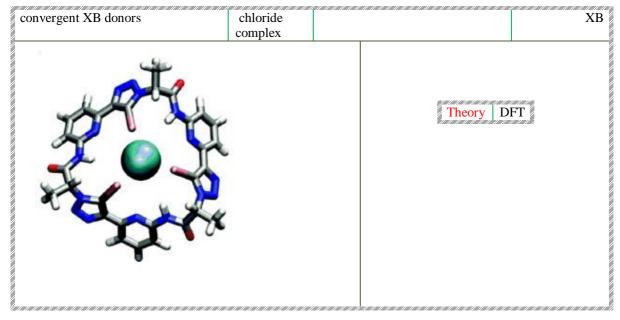
Flourine

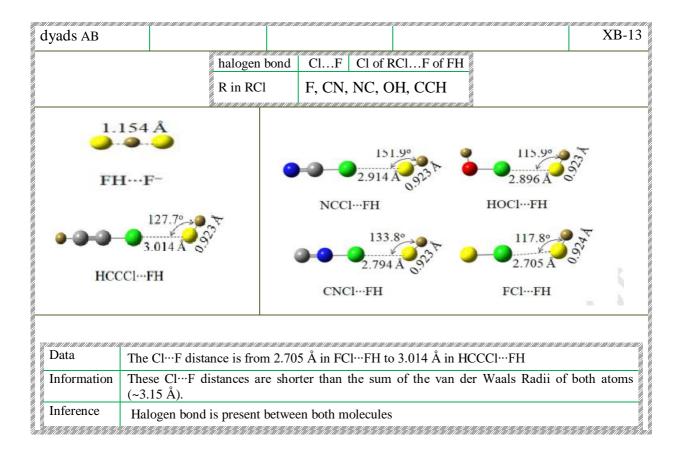

Halogen (X)

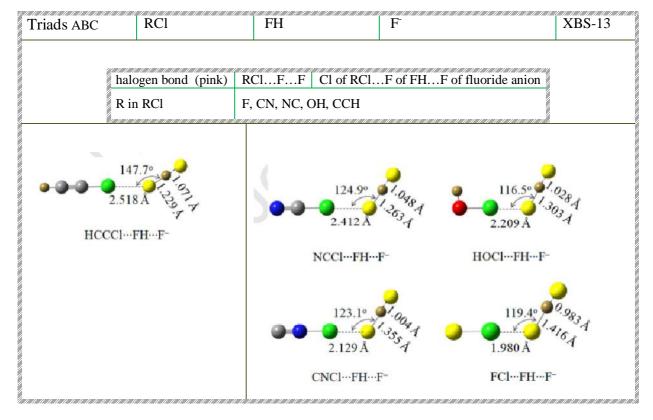

MESP	C3F6	XBS
MESI	C31 0	ADS
	monomer	

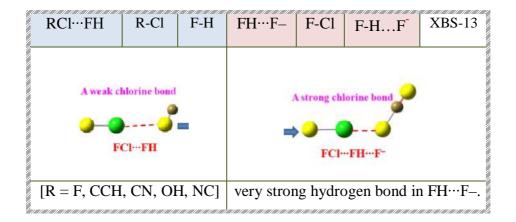
QTAIM based

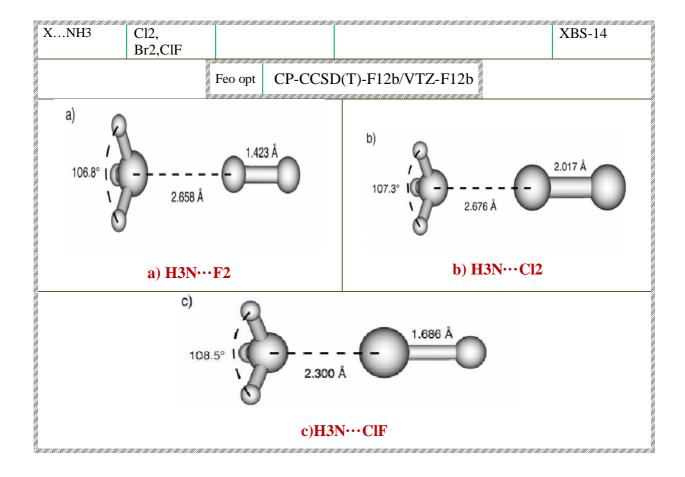

M06-2X/6-311++G(2d,2p) molecular graph for the C3F6 monomer, showing the

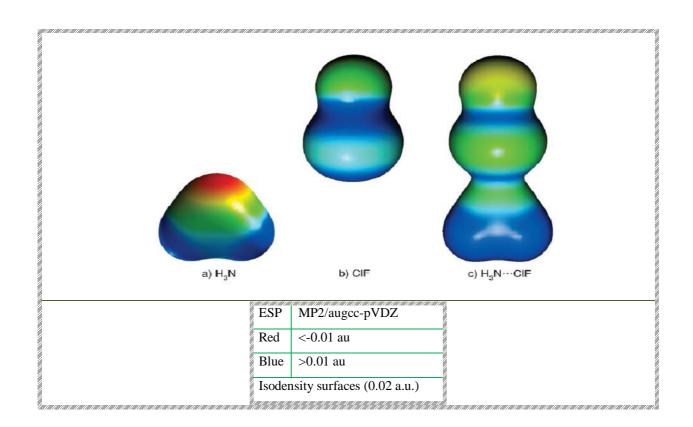

- Bond critical points as tiny spheres in red
- Bond paths (solid and dotted lines in atom color; fluorine: green; carbon: dark-gray).
- Atomic charges are given in e.
- **!** b) and c: solid and dotted versions of the 0.001 a.u. (electrons bohr–3) isodensity map of the molecular electrostatic surface potential of C3F6

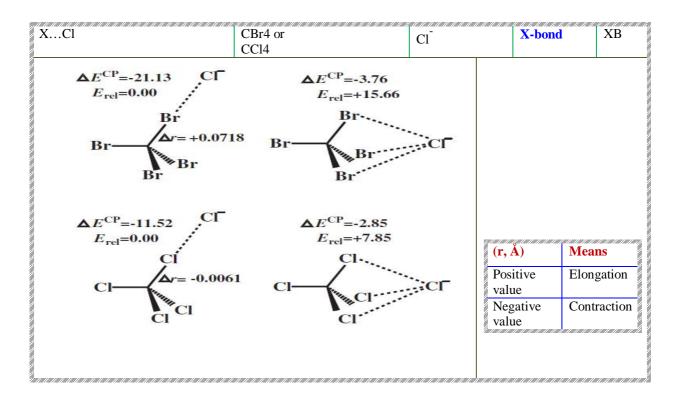



Chlorine


Halogen (X)

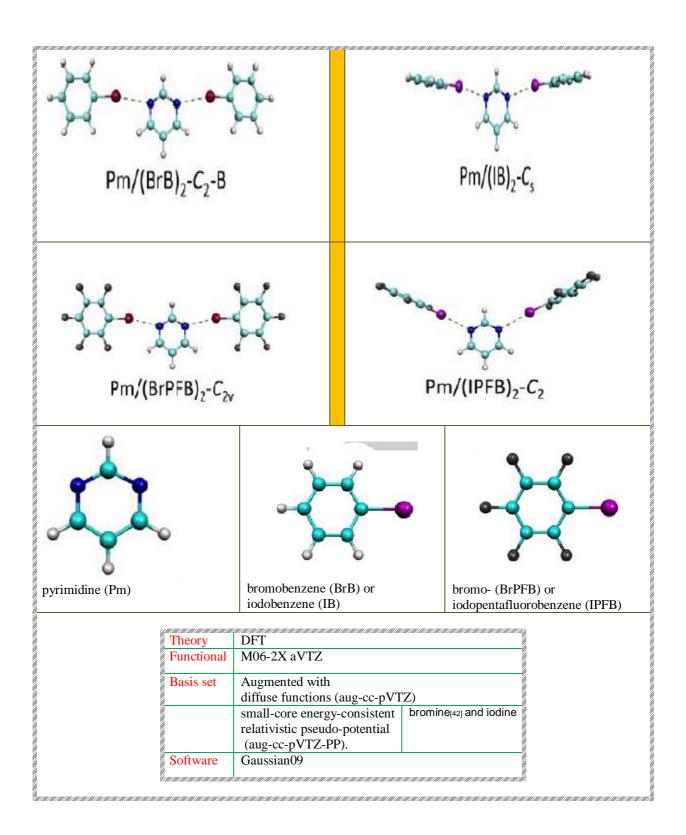


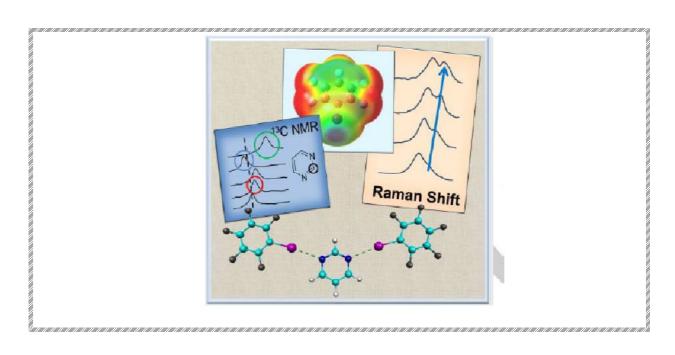


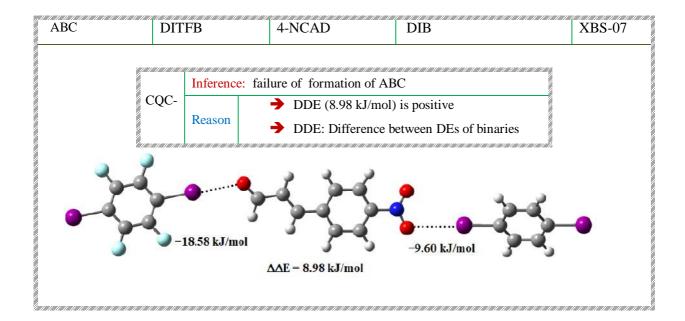

Theory	DFT	XBS-25
Functional	B3LYP	
Basis set	6-311+G(d)	CF4 CF3Cl CF3Br
	DGDZVP	CF3I
Software		

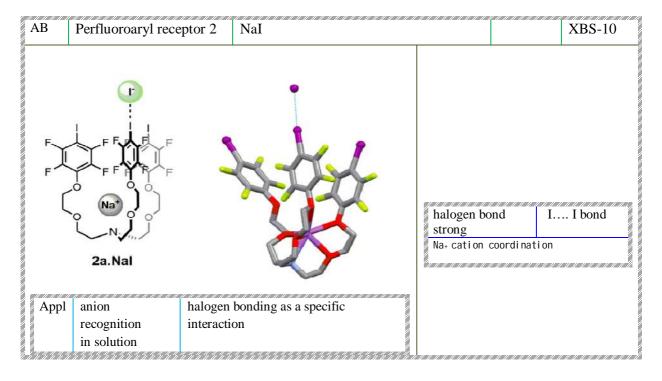
Bromine

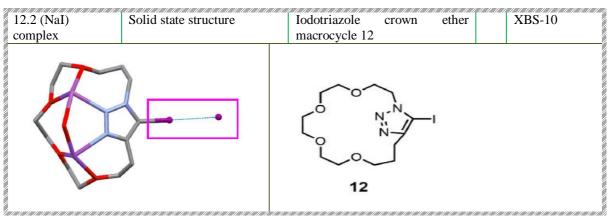
Halogen (X)

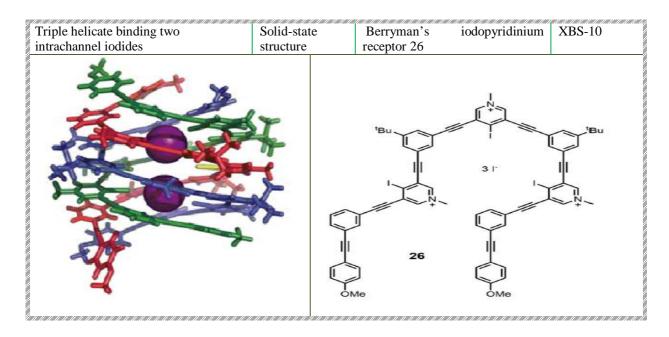


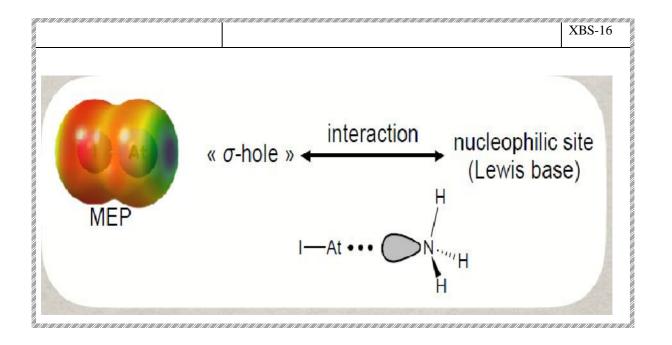

Bromide complex	Solid-state structure	iodotriazolium unit 29	XB
4	01	BF ₄	
Hydrogen atoms and coun	terion omitted for clarity	N-N 29	

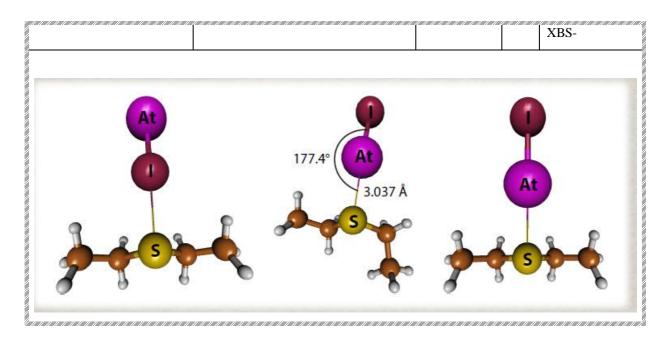

AB	DABCO	1-iodoperfluorohexane	AI	3	2,4,6- trimethylpyridine	iodoperfluorobenzene	XB
	XB and HB			ΧE	3 and HB		
	DABCO F CH ₂ F CH ₂ F CH ₂ F CH ₂ F NOErel = 1.0		11	NO NO	H ₃ C N DErel = 0.42 DErel = 0.42	H ₃ F F H ₃ F F rel = 1.00 rel = 0.50 rel = 0.89	
			π	:-8	stacking and H I— H ₃ C H ₃ C	B F F F CH ₃	

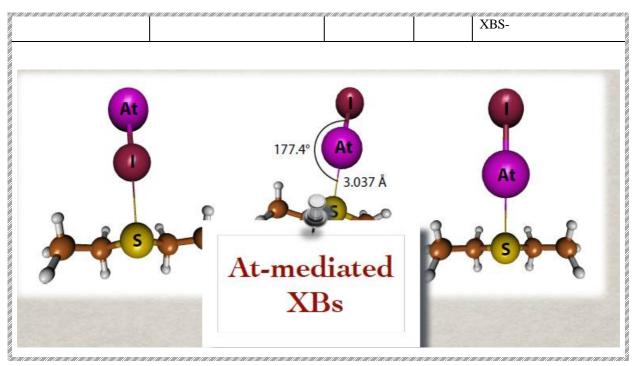

AB	2,4,6- trimethylpyridine XBS-22	1-iodo perfluorohexane	A	В	DABCO
	H ₃ C NOErel = 0.10 NOErel = 0.13 NOErel = 0.41 NOErel = 0.22 NOErel = 0.22 NOErel = 0.55	INOErel = 0.8 INOErel = 1.0 CH ₃ F CH ₃ F F F F F F F	h	ydı	rogen bonding F F F F F F F F F F F F F F F F F F
			1,	4-D	iazabicyclo[2.2.2]octane (DABCO)


	CQC, Raman ; IMR	Iodo- pentafluorobenzene	pyrimidine	XBS-15
Pm/BrB-C _s	Pm/IB-C _s	Pm/BrPFB-C _s	Pm/IPFI	₽ - <i>C</i> _s



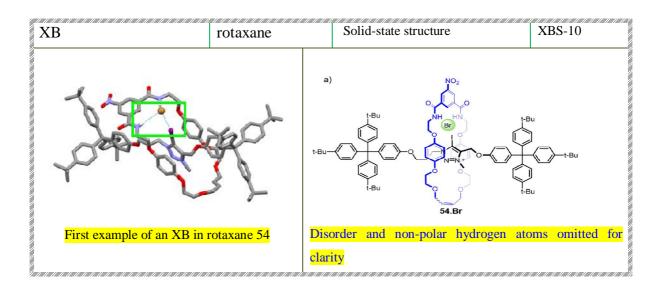


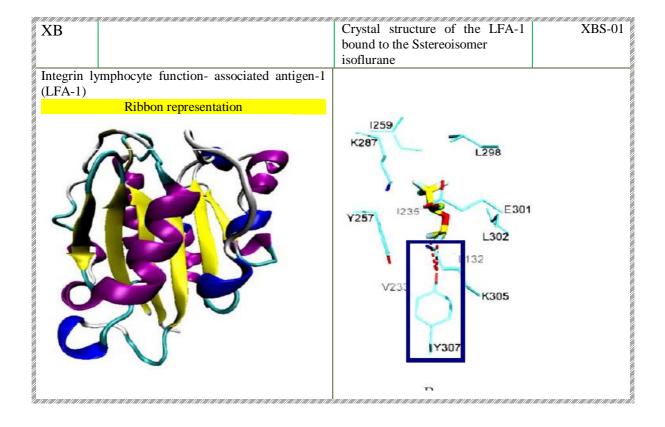


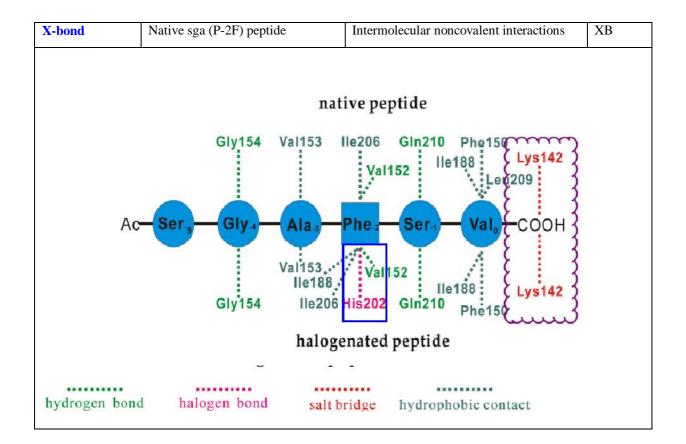

(g) (ad	Fact base. σ -bond
CF ₄	fluorine hemispheres are negative
CF₃Cl	 positive potential develops on the outermost portion of its surface, around its intersection with the C-Cl axis. This positive region, which is centered on the C-X axis, as the "σ-hole" in the belt of negative potential that encompasses the chlorine
CF ₃ Br CF ₃ I	• σ-holes on the bromine and the iodine are progressively larger and more positive
Consequence →	these positive regions that are responsible for the halogen-bonding capabilities of CF3Cl, CF3Br and CF3I, as well as other halogen-bearing molecules
	halogen bonding by CF3Cl, CF3Br and CF3I is greatly enhanced by the three electron withdrawing fluorines
CH ₃ Cl	CH3Cl does not even have a σ-hole [13, 15–17],
CH ₃ Br	σ-hole on the bromine and iodine &
CH₃I	σ-hole in CH3Br and CH3I are much weaker
CH ₄	

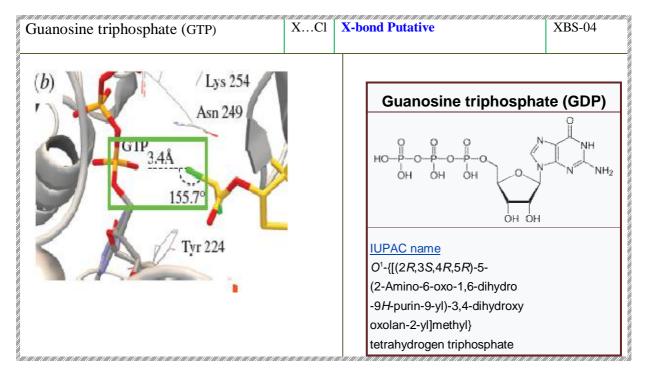
Astatine

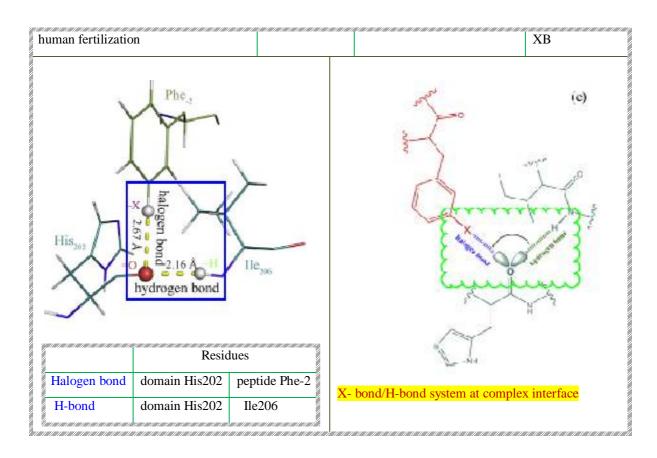
Halogen (X)



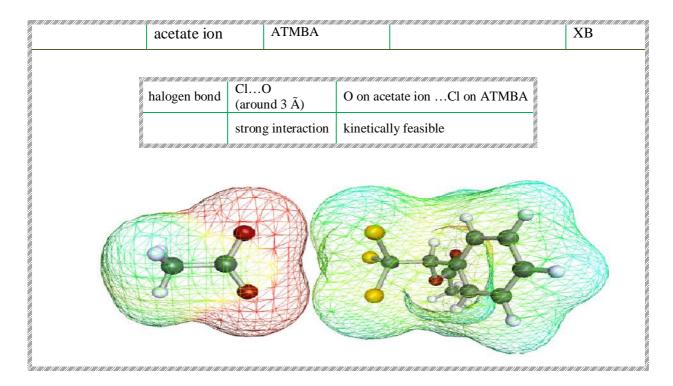


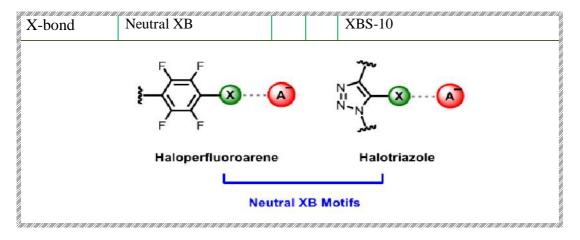

- Astatine is potentially the strongest XB donor
- Extend the range of the XB basicity scale
- Influence of relativistic effects on At-mediated XBs
- At-mediated XBs relevant to targeted alpha immunotherapy

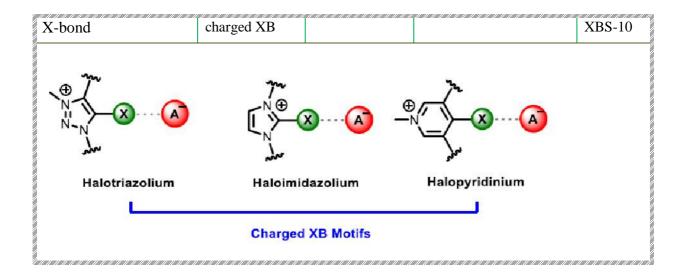

Rotaxane X-complexes



Bio-systems Bio-Molecules

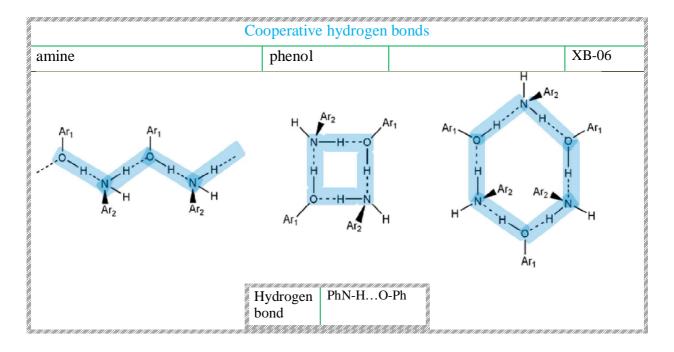


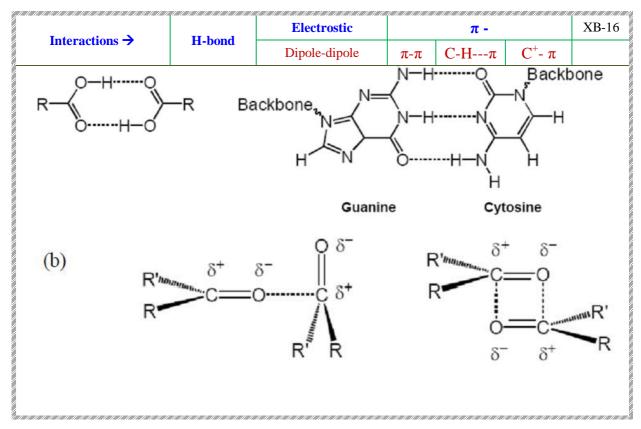


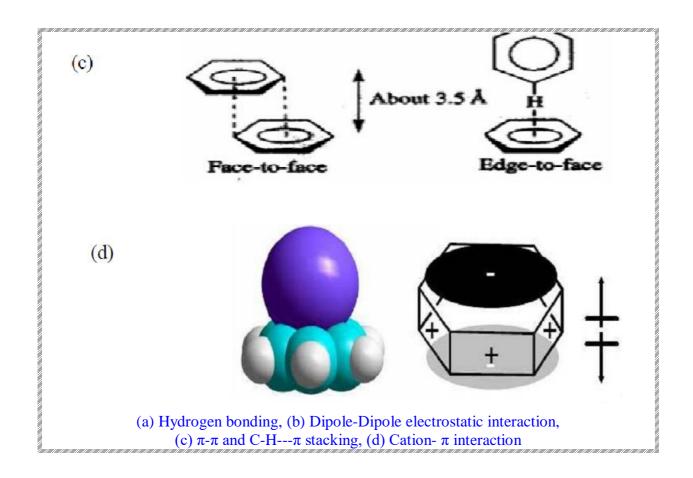


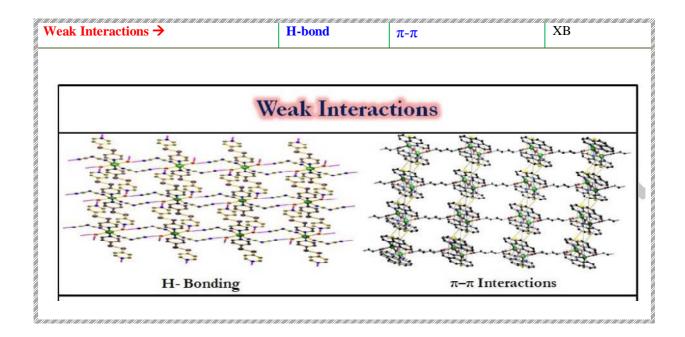
ak Interactions >	H-bond π	-π		XB
c-Ser_5-Gly_4-Ala_3-Phe_2-Se	r ₋₁ -Val ₀ -COOH	Peptide	•	
	0.02	ortho	meta	para
	—н	Н	Н	Н
		F	H	Н
para ortho	—Br	Cl	H	H
para	_i	Br	H	Н
meta	2.0	1	H	Н
		Н	F	Н
		H	Cl	H
		H	Br	H
		H	1	Н
		H	H	F
		H	H	Cl
		H	Н	Br
		Н	Н	I

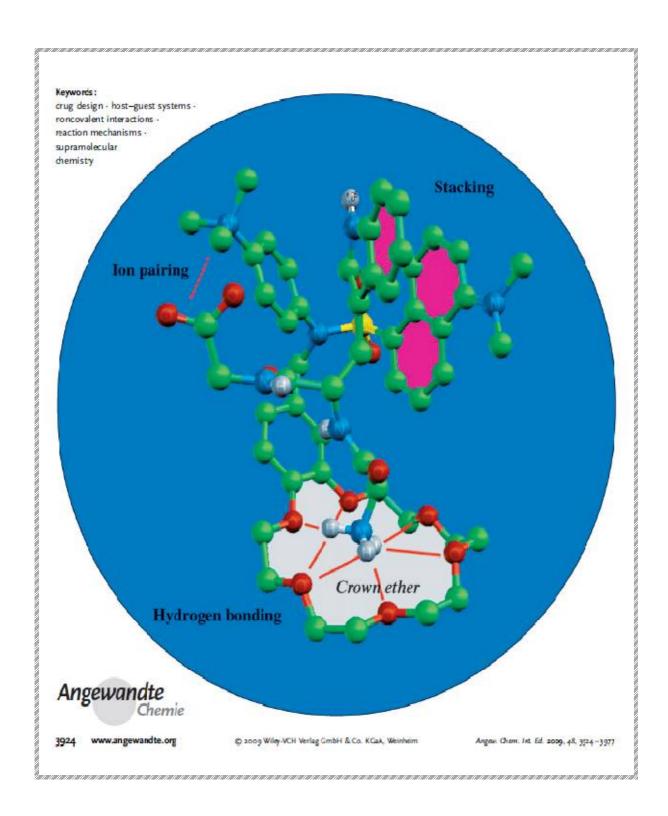
X-bonding + Another non-covalent bonding








H...bonds Co-operative Weak Strong Convergent



Weak... Interactions

Sup I nf 4: Supplementary References

	XBS-01			
Halogen Atoms in the Modern Medicinal Chemistry: Hints for the Drug Design	Current Drug Targets, 2010, 11, 303-314			
Marcelo ZaldiniHernandes*,1, Suellen Melo T. Cavalcanti1, Diogo Rodrigo M. Moreira 1,2, Walter Filgueira de Azevedo Junior 3 and Ana Cristina Lima Leite				

Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-02			
Halogen bonding: the σ-hole Proceedings of "Modeling interactions in biomolecules II	J Mol Model (2007) 13:291–296 DOI 10.1007/s00894-006-0130-2			
Timothy Clark & Matthias Hennemann& Jane S. Murray & Peter Politzer				

Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-03		
Nature of Halogen-Centered Intermolecular	Journal of Computational Chemistry		
Interactions in Crystal Growth and Design: Fluorine-	39(23):1902-1912		
Centered Interactions in Dimers in Crystalline			
Hexafluoropropylene as a Prototype			
Arpita Varadwaj, Helder M. Marques and Pradeep R. Varadwaj			

Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-04
Halogen bonding motifs for anion recognition	Coordination Chemistry Reviews, 2020
	doi.org/10.1016/j.ccr.2020.213281
Jessica Pancholi, Paul D. Beer	

Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-05
Deep analysis of the solubility behaviour mechanism	J. Chem. Thermodynamics 151 (2020)
of	106246
alpha-(trichloromethyl) benzyl acetate in three binary	doi.org/10.1016/j.jct.2020.106246
aqueous solvents	
Ning Wei, Zeren Shang, Nuoyang Zhang, Jingkang Wang, Songgu Wu	

	XBS-06
Halogen Bonds in Crystal Engineering: Like Hydrogen	Acc. Chem. Res, 47(2014) 2514–2524
Bonds yet Different	dx.doi.org/10.1021/ar5001555
Arijit Mukherjee, Srinu Tothadi, and Gautam R. Desiraju	

Halogen bond-strong weak-- Halogen bond-strong weak-

	XBS-07
Synthetic Approaches to Halogen Bonded Ternary Cocrystals	Angew Chem., (2021) doi.org/10.1002/anie.202103516
Harsh Jain, Dipankar Sutradhar, Sourav Roy, and Gautam R. Desiraju	

Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-08
HALOGEN BONDING BEGINS TO FLY ACS MEETING NEWS: Noncovalent interaction akin to hydrogen bonding is becoming an important tool for chemists	WWW.CEN-ONLINE.ORG 39 SEPTEMBER 21, 2009
STEPHEN K. RITTER , C&EN WASHINGTON	

Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-09
Halogen bonding in solution: NMR spectroscopic approaches	Coordination Chemistry Reviews, 407 (2020) 213147
	/doi.org/10.1016/j.ccr.2019.213147
Daniel von der Heiden, Alan Vanderkooy, MátéErdélyi	

Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-11
Cooperativity in multiple unusual weak bonds	Theor Chem Acc (2010) 126:1–14 DOI 10.1007/s00214-009-0690-1
IbonAlkorta, Fernando Blanco, Pere M. Deya, Jose´ Elguero, Carolina Estarellas, Antonio Frontera,	
David Quin onero	

	XBS-12
A I CLUB THE INT. D. INC. OCN 11	N CI CI N 21/2010\ 7220
An Insight Into The Halogen-Bond Nature Of Noble	Phys. Chem. Chem. Phys.,21(2019) 7330-
Gas-Chlorine Systems By Molecular Beam Scattering	7340
Experiments, Ab-Initio Calculations And Charge	DOI: 10.1039/C9CP00300B
Displacement Analysis	
F. Nunzi, D.Cesario, L. Belpassi, F. Tarantelli, L. F. Roncaratti, S. Falcinelli, D. Cappelletti and F.	
Pirani,	

Halogen bond-strong weak-- Halogen bond-strong weak-

	XBS-13
Strengthening of halogen bond in XCl···FH···F–	Journal of Molecular Graphics and
through	Modelling,2020
cooperativity with a strong hydrogen bond and proton	https://doi.org/10.1016/j.jmgm.2020.107673
transfer	
Z. Li, X. An	

Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-14
Synthetic Approaches to Halogen Bonded Ternary	AngewandteChemie, 60(2021) 12841-12846
Cocrystals	doi.org/10.1002/anie.202103516
Harsh Jain, Dr. Dipankar Sutradhar, Dr. Sourav Roy, Prof. Gautam R. Desiraju	

Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-15
Quantifying the Effects of Halogen Bonding by Haloaromatic Donors on the Acceptor Pyrimidine	ChemPhysChem, 18 (2017) DOI:10.1002/cphc.201700114
Thomas L. Ellington, Peyton L. Reves, Briana L. Simms, Jamey L. Wilson, Davita L. Watkins, Gregory S. Tschumper and Nathan I. Hamme	

Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-16
Experimental and computational evidence of halogen (At) bonds involving astatine	Nature Chem, 10(2018) 428–434 doi.org/10.1038/s41557-018-0011-1
Guo, N., Maurice, R., Teze, D.	

Halogen bond-strong weak-- Halogen bond-strong weak-

	XBS-17
Quantum calculations of At-mediated halogen bonds: on the influence of relativistic effects	New J. Chem., 42(2018) 10510-10517 DOI: 10.1039/c8nj00484f
N. Galland, G. Montavon, J.Y. Le Questela and J. Graton	

Halogen bond-strong weak-- Halogen bond-strong weak-

	XBS-18
Chalcogen-bond driven molecular recognition at work	Coordination Chemistry Reviews, 413 (2020) 213243 /doi.org/10.1016/j.ccr.2020.213243
Nicolas Biot, Davide Bonifazi	

	XBS-19
Weak interactions: the architect behind the structural diversity of coordination polymer	InorganicaChimica Acta,2019 doi.org/10.1016/j.ica.2019.01.008
Ananta Ghosh, Abhijit Hazra, Amita Mondal and Priyabrata Banerjee	

Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-20
The Halogen Bond	Chem rev Special Issue: Frontiers in
	Macromolecular and Supramolecular
	Science, 2015
	DOI: 10.1021/acs.chemrev.5b00484
Gabriella Cavallo, PierangeloMetrangolo, Roberto Milani, TullioPilati, ArriPriimägi,	
Giuseppe Resnati and Gian	ncarlo Terraneo

Halogen bond-strong weak-- Halogen bond-strong weak-

	XBS-21
Halogen bonding and other r-hole interactions: a perspective	Phys. Chem. Chem. Phys, 2013 DOI: 10.1039/c3cp00054k
Peter Politzer, Jane S. Murray and Timothy Clark	

Halogen bond-strong weak-- Halogen bond-strong weak-

	XBS-22
Semicoordination Bond Breaking and Halogen Bond	Crystal Growth & Design
Making Changes the Supramolecular Architecture of	DOI: 10.1021/acs.cgd.0c00999
Metal-containing Aggregates	
Lev E. Zelenkov, Daniil M. Ivanov, Evgeniy K. Sadykov, Nadezhda A.	
Bokach, BartomeuGalmés, Antonio Frontera, and Vadim Yu. Kukushkin	

Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-23
Definition of the halogen bond (IUPAC Recommendations 2013)*	Pure Appl. Chem., 85 (2013) 1711–1713 doi.org/10.1351/PAC-REC-12-05-10
Gautam R. Desiraju, P. Shing Ho, Lars Kloo, Anthony C. Legon, Roberto Marquardt, PierangeloMetrangolo, Peter Politzer, Giuseppe Resnati, and Kari Rissanen	

	XBS-24
HALOGEN BONDING DEFINED	WWW.CEN-ONLINE.ORG
IUPAC effort sets parameters for STRUCTURAL	(2012)36
INTERACTION seen in materials science and biology	

Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-25
Emergence of anion-p interactions: The land of opportunity in supramolecular chemistry and beyond	Coordination Chemistry Reviews, 415 (2020) 213327
	doi.org/10.1016/j.ccr.2020.213327
Ishfaq Ahmad Rather, Shafieq Ahmad Wagay, Rashid Ali	

Halogen bond-strong weak-- Halogen bond-strong weak-

	XBS-26
Computer Modeling of Halogen Bonds and Other -Hole Interactions	arXiv:1708.09244v 30 th [Physics.chem-ph] Aug 2017
Michal H. Kolar and Pavel Hobzay	

Halogen bond-strong weak-- Halogen bond-strong weak-

	XBS-27
An overview of halogen bonding	J Mol Model, 13 (2007) 305–311 DOI 10.1007/s00894-006-0154-7
Peter Politzer& Pat Lane & Monica C. Concha & Yuguang Ma & Jane S. Murray	

Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-28
Halogen bonds in biological molecules	PNAS, 101(2004) 16789-16794
	doi10.1073pnas.0407607101
Pascal Auffinger, Franklin A. Hays, Eric Westhof and P. Shing Ho	

Halogen bond-strong weak-- Halogen bond-strong weak-

	XBS-29
Halogen–water–hydrogen bridges in biomolecules	Journal of Structural Biology, 169 (2010)
	172–182
	doi:10.1016/j.jsb.2009.10.006
Peng Zhou, Jing Lv, Jianwei Zou, Feifei Tian, Zhicai Shang	

	XBS-30
π covalency in the halogen bond	Nat Commun, 11(2020) 3310 doi.org/10.1038/s41467-020-17122-7
Cameron W. Kellett, Pierre Kennepohl& Curtis P. Berlinguette	

Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-31
Topological Definition of Crystal Structure:	Acta Cryst A51 (1005) 142 152
Determination of the Bonded Interactions in Solid	Acta Cryst., A51 (1995) 143-153 doi.org/10.1107/S0108767394009463
Molecular Chlorine	S
BY V. G. TSRELSON, P. F. Zoo, T.H. TANG AND R. F. W. BADER	

Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-32
Halogen bonding in crystal structure of 1- methylpyrrol-2-yl trichloromethyl ketone	Journal of Molecular Structure, 829 (2007) 208–211 doi:10.1016/j.molstruc.2006.06.032
ElrbietaBilewicz, Agnieszka J. Rybarczyk-Pirek, Alina T. Dubis, Siawomir J. Grabowski	

Halogen bond-strong weak-- Halogen bond-strong weak-

	XBS-33
An up-to-date review on halogen-bonded liquid crystals	Journal of Molecular Liquids, 333(2021)115961
Deepak Devadiga, T.N.Ahipa	

Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-34
The role of architectural engineering in	Progress in Polymer Science, 103(2020),
macromolecular self-assemblies via non-covalent	101230
interactions: A molecular LEGO approach	doi.org/10.1016/j.progpolymsci.2020.101230
ZebinSu, Ruimeng Zhang, Xiao-YunYan, Qing-YunGuo, JiahaoHuang, WenpengShan, YuchuLiu,	
TongLiu, Mingjun Huang, Stephen Z.D.Cheng	

Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-35
A "nucleophilic" iodine in a halogen-bonded iodonium complex manifests an unprecedented I+···Ag+ interaction	Chem, 7(2021) 948-958 doi.org/10.1016/j.chempr.2021.01.003
Shilin Yu and Parveen Kumar and Jas S. Ward and Antonio Frontera and Kari Rissanen	

	XBS-36
Implications of hydrogen/halogen-bond in the	Journal of Molecular Structure, 1108(2016)
stabilization of confined water and anion-water clusters	298-306
by a cationic receptor	doi.org/10.1016/j.molstruc.2015.12.035
Md. Najbul Hoque and Gopal Das	

Halogen bond-strong weak-- Halogen bond-strong weak--