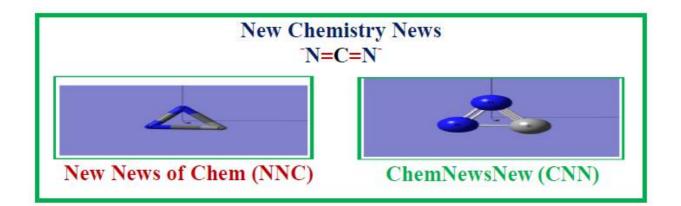
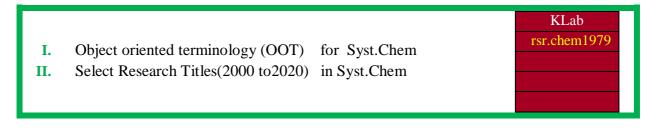
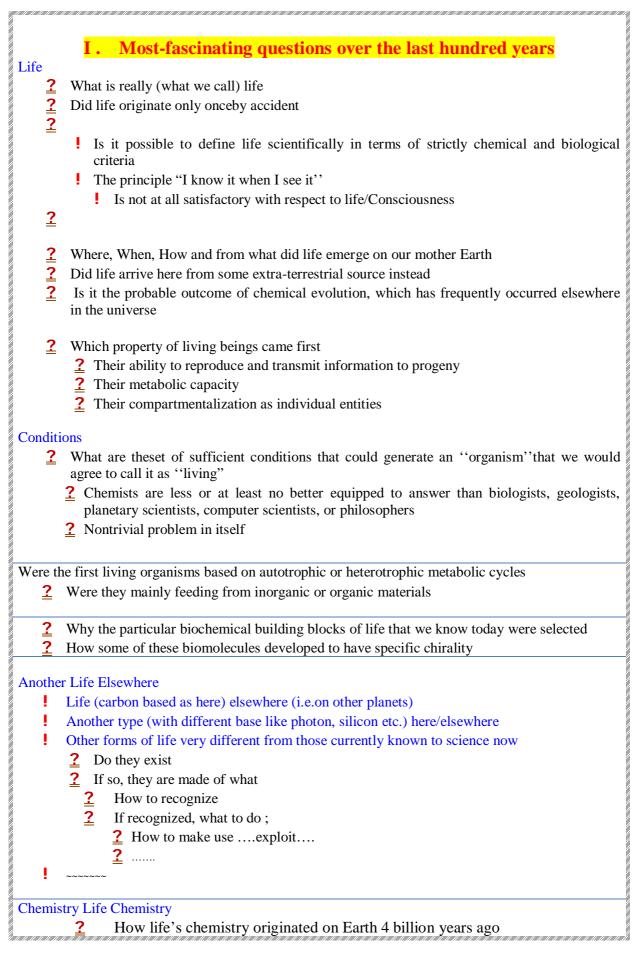
Available online at www.joac.info


ISSN: 2278-1862

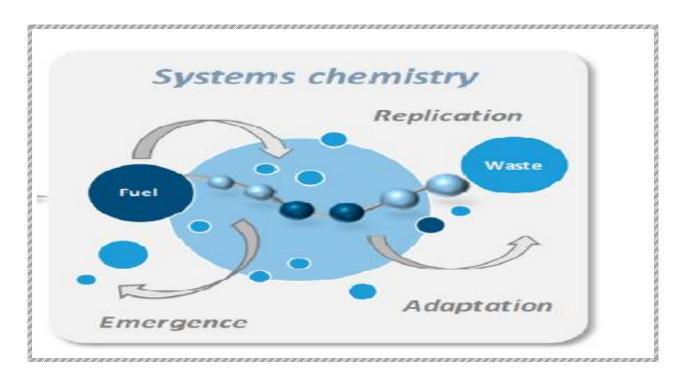
Journal of Applicable Chemistry


2021, 10 (1): 70-107 (International Peer Reviewed Journal)



CNN – 37 Systems Chemistry (Syst.Chem., SC)-I

Information Source	ACS.org ; sciencedirect.com
K. Somasekhara Rao,	R. Sambasiva Rao,
Dept. of Chemistry,	School of Chemistry,
Acharya Nagarjuna Univ.,	Andhra University,
Dr. M.R.Appa Rao Campus,	Visakhapatnam 530 003, I ndia
Nuzvid-521 201, I ndia	


<u>?</u> ? How it evolved over 1 billion years in the first phase

- How evolution over last ca 3 billion years resulted in homo sapiens (wise men)
- 2 How last ca 100K years evolution finetuned homo sapiens into modern species with slow/little evolution rate

A grand challenge in today's science			
Li	ving species from chemical systems		
Living systems	 Possible pathways for Lifeless chemical soup (inanimate matter) →living systems 		
	 Transition of chemistry into biology Acquisition of function characteristics To replicate To metabolize To be spatially segregated from its environment Functional integration of all of these characteristic 		
	 + Active + Dynamic + Achieved sophisticated function ! Life manages to stay far from equilibrium ! Since equilibrium is death 		
Complex Chemical systems inspiredby Living species			
Man-made chemical systems	 Still less functional Passive and static ! Reason: limited complexity and insufficient kinetic control 		

Complex chemistry in nature		
Biosphere. Natural selection		
Giant molecular clouds in interstellar space. –		
natural selection does not apply		
Oceanand atmospheric chemistry		
Biology		
Biochemistry of metabolic pathways		
Fates of individual actors' networks determined by		
System as a whole		
A Not just by the independentmerits of the actor itself		

Systems Chemistry			
Dynamic supersystem (chemical pendant)Integrating(in a Bottom-up approach) well- established branches of Science with an undercurrent of chemistry			
Definition	 Pre-biotic/supramolecular chemistry Theoretical chemistry Autocatalysis 	• Theoretical biology	 Computer Science Complex Systems

Inspiration	 A System Biology; System Analysis A Simple Chemical Blocks A Synthetic Biology A BioBricks50 → to develop functional biological circuits from standardized parts
	Origin and synthesis of life
Goal	 What is achievable with systems chemistry is limited by the creativity of the chemist

	Development of complex synthetic systems displaying emergent properties
	To develop experimental/ theoretical frameworkswithin systems chemistry approach
Aims/objectives	 Holistic study of mixtures of simpler chemical components (as building blocks) in pre-biotic environment for very long period

	 To explore/understand how interactions give rise to unexpected, novel and useful properties Characteristic only of the systems as a whole Cannot be traced back to an individual component
Aims/objectives	 Systems chemistry follows a bottom-up strategy by i.e. complex systems are assembled from simple components To explore the chemical space of appropriate initial conditions Energy supplies for chemical mixtures to maintain a dynamic state of chemical substances thatspontaneously grow in numbers as time goes by

Aims/objectives	 To capture the complexity and emergent phenomena prevalent in the life sciences within a wholly synthetic chemical framework Unveil complex reactions networks Building minimal complex systems from their elementary components in a bottom-up approach To develop new functional materialswith enhanced physical properties To design systems with specific properties and functions from novel, minimalistic buildingblocks
-----------------	--

Subfields

Equilibrium

Salient features

- Continuously maintaining chemical systems away (or far-off)from thermodynamic equilibrium
- Pushing replication chemistry away from equilibrium

Networks

- Design and analysis of replication networks far from chemical equilibrium
- Compartmentalised chemical networks
- Incorporating feedback loops
- Chemically fuelled molecular motion
- Designed oscillators creating concurrent formation–destruction system

Kinetics

- □ Kinetic stability
- Self-assembly
- Design of self-synthesizing materials

Evolution

- Controlling supramolecular interactions
- Den-ended evolution with synthetic replicators
- Coupling/ integrating individual subsystems at various levels

Tools. Systems Chemistry

- Out-of-equilibrium systems
- Feedback loops
- Communication between
 - Components in multicomponent systems
 - Analysis of materials on different scales

- Chemical descriptors
- Upcoming integration of heterogeneous Knowledge of chemical biology
- Polypharmacology
- Clinical information

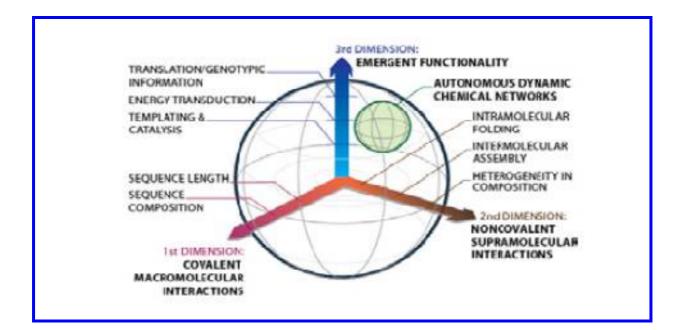
Additional tools. Systems Chemistry

- Systems chemistryalone is not sufficient for everything

Remedy:Forces operating in addition to chemistry(playing crucial roles)

- Mechanical forces
- External electromagnetic fields
- Phase separation
- Different modes of transport
 - Diffusion

ο


- Convection
- Osmosis— gradients

Challenges for Tools

- Minimum human intervention after initiation
- Technical novelty compared to traditional approaches in chemistry
- Analytical handling of complex mixtures without separation
- Deep understanding of origins of biological complexity
 - Sought-for next "quantum leap"
 - To generate self-evolving properties \rightarrow self-evolving behavior
- ! The "Holy Grail" is to create new (??) life from inert matter

Outcome	Examples: Macroscopic emergent behaviors like
	Global warming ; climate change
	Trending phenomena on social networks
	Stock market crashes
	Feedback loops in predator populations

	 Output of complex chemical systems Result from the interactions between components of chemical networks assembled from the many predesigned components
Emergent properties	 Unprecedented properties unique to these complex entities Properties that go beyond the sum of the characteristics of the individual constituents of the system Cannotbe attributed to any of these individual components acting in isolation

Timeline. Systems Chemistry

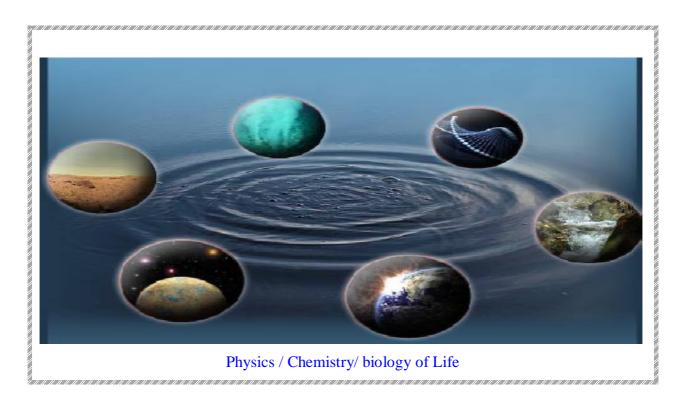
1986	Günter von Kiedrowski	0	First experimental discovery of Autocatalytic self-replication of a self-complementary hexadeoxyribonucleotide
2005	Günter von Kiedrowski	0	"Systems chemistry" term inventor
		0	Described kinetic and computational analysis
			of a nearly exponential organic replicators
1927–2007	Leslie Eleazer Orgel	0	Prophet
			ן אד היה ארוכי אר

2005 2005 2007	Workshop Conference
	Conference
2007	-
2008	Maratea, Italy
2009	Balatonfüred
	Hungary
2011	
2009 Centre for Systems Chemistry started at University of Groningen, Netherlands	
1	2008 2009 2011

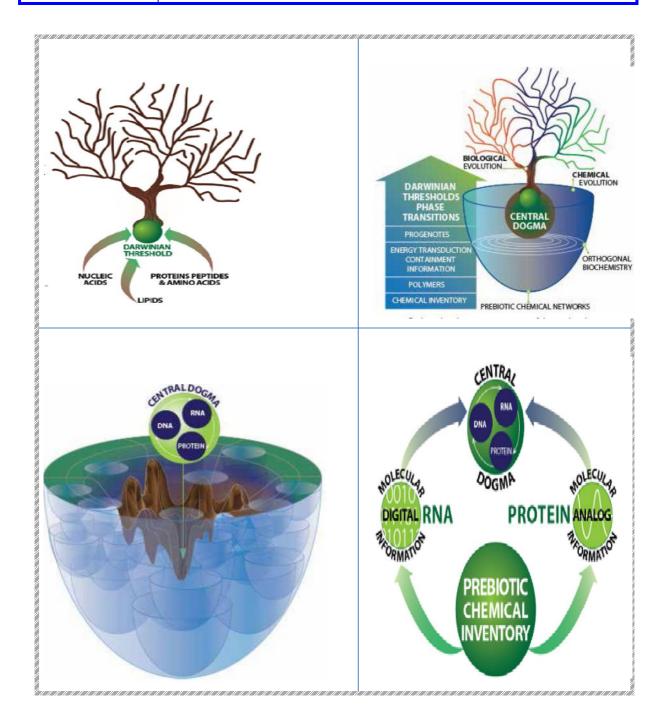
4

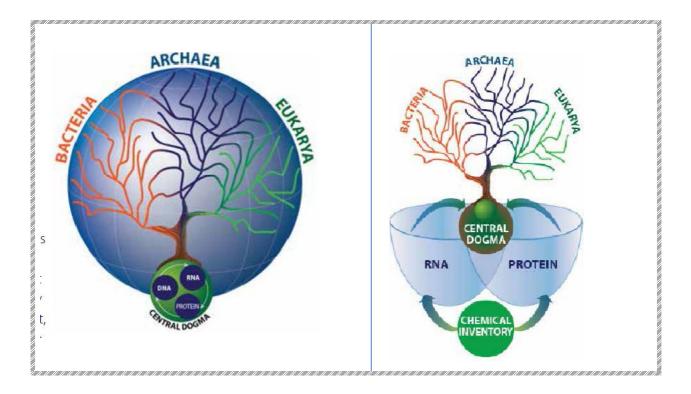
een nan nan nan nan nan nan nan 1 1 1	Journals
2010-2018.6	Open access Journal of Systems Chemistry launched ((von
	Kiedrowski et al.)through Chemistry Central platform now part
	of the Springer publishing house.
2019	ChemSystemsChem, Wiley online journal

	Thermodynamics Kinetics Chemical process (es) Nature Man-made systems			
If	Non-living (inanimate matter) systems			
Then	Thermodynamic considerations dominate &			
	Kinetics remain playing secondary role			
If	Living systems			
Then	Kinetic state of matter matters &			
	Do not tend towards equilibrium i.e. Maintain a far-from-equilibrium state			
	by continuous exploitation of an external energy source			

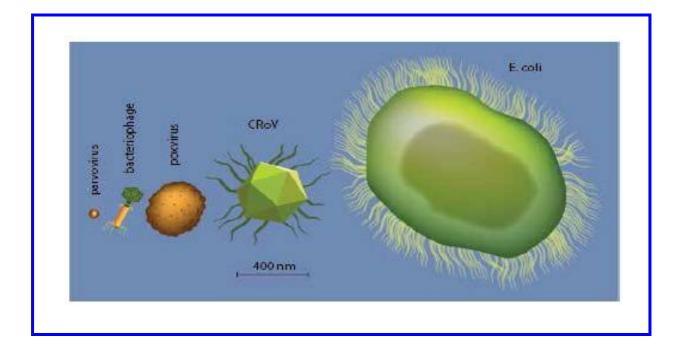

	Complex chemical systems thermodynamic models
If	A minimum energy state is reached
Then	Systems are under thermodynamic control
If	Propelled by continuous energy input
Then	Systems sustained far-from-equilibrium
If	Out-of-equilibrium networks
Then	Exhibit unique functions
	Examples:
	 Selective information storage and propagation
	 Molecular oscillation
	Fuelled unidirectional macromolecular motions
If	Trapped in local kinetic minima or
	driven by irreversible biological processes
Then	Systems are under kinetic control
If	Reaction networks involves kinetic feedback loops
Then	They outcome exhibits adaptive behaviours
9	

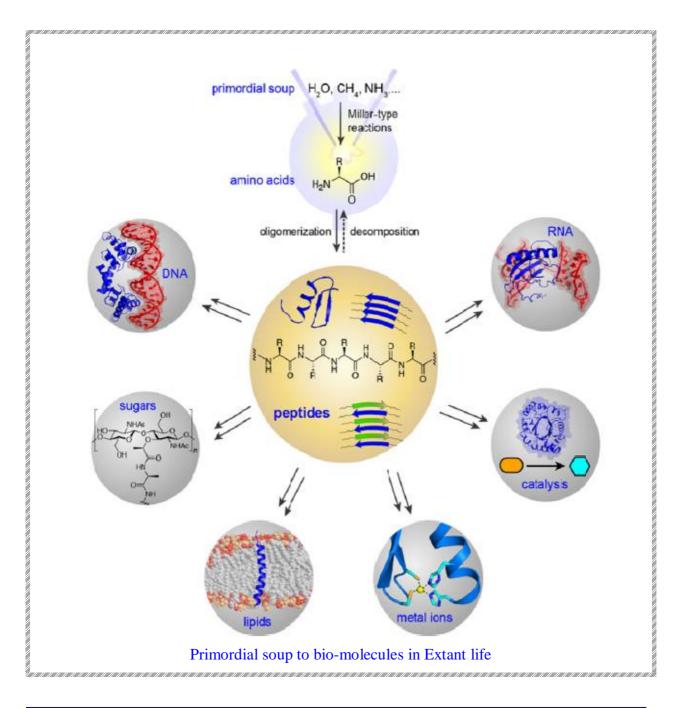
gun an	unannannannannannannannannannannannannan	anang (
kinetically trapped System	In a local thermodynamic minimum O	r
killeneurly uupped bysterii	Far-from-equilibrium state Or	r
, , , , , , , , , , , , , , , , , , , ,	Reside in a metastable state	


y <u>den na na anna na anna na anna anna an</u> An A	 Maintenance requires continuous input of fuel
	Pseudo-dynamic combinatorial libraries
	Autocatalytic reactions
	Self-sorting processes
	Oscillating reactions
Kinetic control in the scope of	Self-replicating systems
systems chemistry	Dynamic molecular networks
	Self-assembly networks of autocatalytic
	and replicating compounds
	Self-replicating systems with dynamic
, , , , , , , , , , , , , , , , , , , ,	molecular networks and self-assembly


Experimental work	Comprises of	
on systems	0	Dynamic combinatorial libraries
chemistry	0	Oscillating reactions
	0	Replicating networks
	0	Self-assembling systems

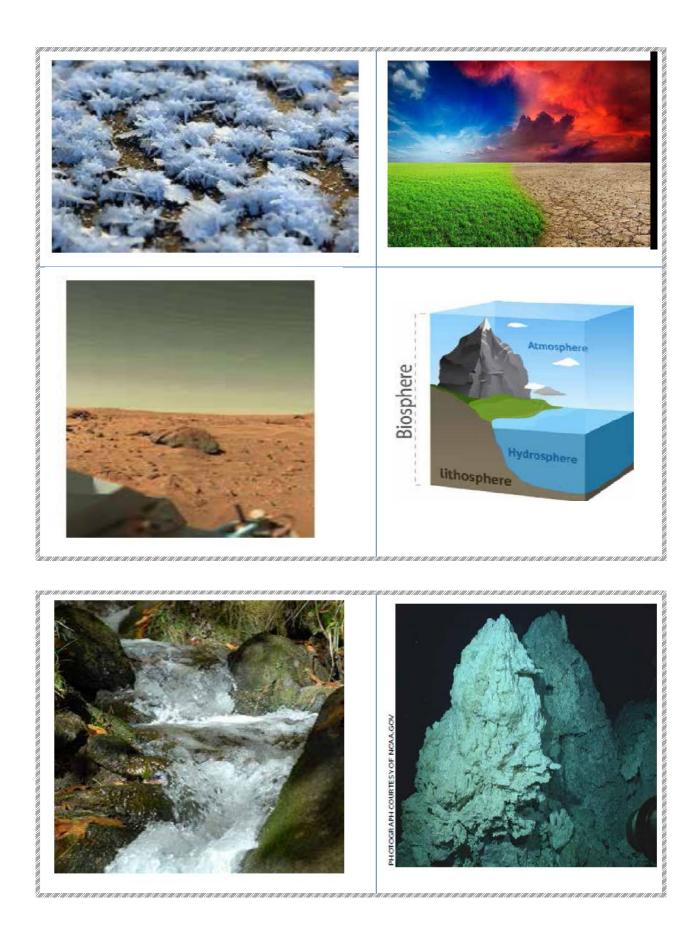
	Incredibly complex functional molecular system
	Comprises of complex, heterogeneous, massively parallel molecular reactions/ interactions
Life	$^{\textcircled{T}}$ That take place in non-equilibrium, dissipative conditions \rightarrow
	Connections and interactions give rise to a highly dynamic and functional whole




Pre-biotic era	 Approximately 3 billion year ago What was going on earth surface, ocean bed or up in the surrounding atmosphere for a period of over one billion years
	- Correct mapping untrusty

Living organism	 Mainly composed of water and organic molecules Molecular mechanisms that are much more diverse, complex Based on quasi-equilibrium structures extrapolating extant biological complexity backwards to ca 4 billion years (in time) into simple chemical transformations Misleading
-----------------	---

	combine self-organization and self-assembly processes keeping many of the resulting molecular ensembles (i.e., polymers, membranes, etc.)
Life operates	 Far from equilibrium Kinetically controlled networks have greater relevance to biology What most researchers agree upon is that a combination of thermodynamic and kinetic processes


Life operates	 Autonomous entities with the capacity for open-ended evolution Stability to process Transmits heritable information to progeny (i.e., a genetic mechanism); Ability to capture energy and material resources Staying away from thermodynamic equilibrium (i.e., metabolic machinery); Ability to keep its components together Distinguish itself from the environment (i.e., cell membrane).

Dynamic combinatorial libraries (DCLs)	 Molecular networks where network members exchange building blocks Distribution of resulting product is under thermodynamic control Addition of a guest or template molecule shifts The equilibrium towards compounds that are receptors for the guest
--	--

Dynamic combinatorial chemistry (DCC)	 Powerful approach To create complex synthetic chemical systems Response of mixtures to external stimuli For exploration of functionality For similarity assessment Identification of new receptors not trivial through rational design
DCC Thermodynamically controlled DCC	 Complexity can be enriched with more Types of reversible reactions Complexed environments The energy surfaces connecting the different local minima are shallow Easily traversed

AAA→CNN →Systems Chemistry

Recent advances	 Spontaneous synchronization of oscillating reactions New methodology for developing chemical systems exhibiting reaction-diffusion patterns
	Chiral symmetry breaking in dispersions of crystals
	Emergence of self replicators from molecular networks
	Self-assembly under kinetic control
	Ex: Stoddart's Borromean rings (beautiful symmetric structures)

Chemical replicator system	 Is still thermodynamically driven system Implies reaction will continue only until the equilibrium concentrations of the replicating molecule and its building blocks are reached
Living self- replicating chemical systems	 ✓ High kinetic stability ✓ Keep far from equilibrium →Implies thermodynamically unstable

Applications. Systems Chemistry		
Drug discovery	 Intensive acceleration of Pharmaceutical development 	

Materials Science	To design new functions complementary to those present in Nature	
	 Smart materials Catalysts Materials with life-like characteristics 	
Model synthetic systems	 With properties that could reflect aspects of prebiotic biogenesis Development of replicators and self-assembling membranes 	

Trans-disciplinary	\rightarrow To synthesize interface between supramolecular chemistry and
research	biology

To explain	 What made transformation of a complex mixture of chemical compounds on prebiotic Earth into a life (living chemical system) possible Why the particular biochemical building blocks of life that we know today were selected
	 How some of these biomolecules developed to have specific chirality? How emergent function arises in synthetic, simplified mixtures obtained through bottom-up approaches

Prospects.Systems Chemistry

Systems Chemistry as a tool

Origin of life

- To probe into chemistry \rightarrow to \rightarrow biological molecules \rightarrow to \rightarrow life
- To go back from extant biology (i.e.today's human visual reality) →to → pre biotic primordial chemical world
 - The Reduces gap between life's chemistry, complex chemistry and system's chemistry

De novo synthesis of life

Systematically study how simple biomolecules interact to give rise to novel functions

Chemical factories

- Self-synthesizing
- Self-repairing

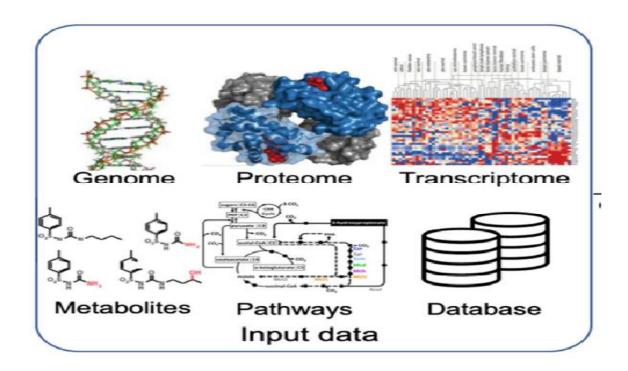
- Binding by a single receptor will provide only very limited information,

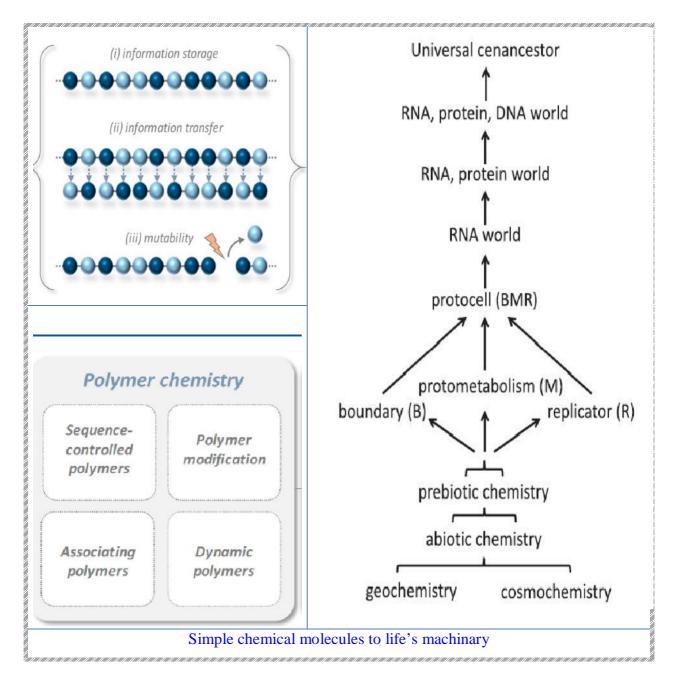
 Remedy: More comprehensive description of the molecular structure using a systems chemistry

Origins of life-theories

- Traditional dichotomy of metabolism-first and gene-first
 - Can be quite misleading because both theories appear to be too "kinetically fragile" in that they easily revert to a thermodynamic minimum

Remedy:a systems-level approach

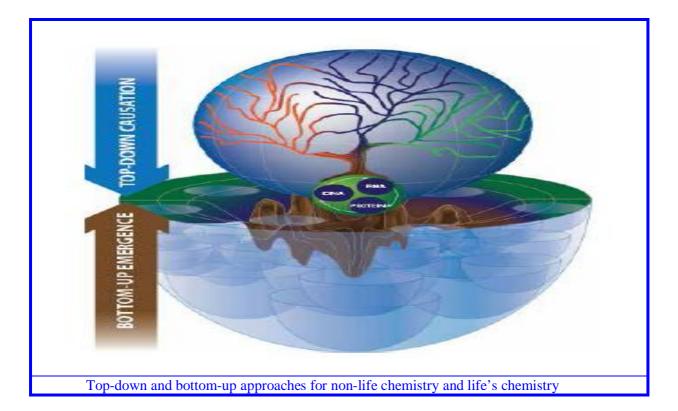

- ✓ Both metabolism and information transfer evolved roughly simultaneously
- ✓ Evolution of cellular boundaries that prevented dilution of this reactive far-from-equilibrium

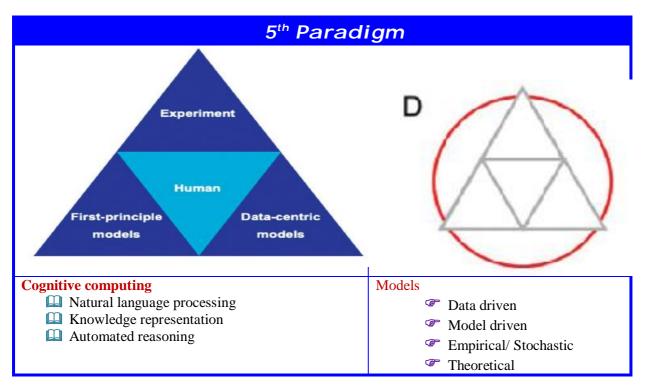

Complex Systems Analysis + Chemistry+ Life→ Systems_Chemistry

AAA→CNN →Systems Chemistry

Chemical world ~~~~ Life Evolution Extant Biology...

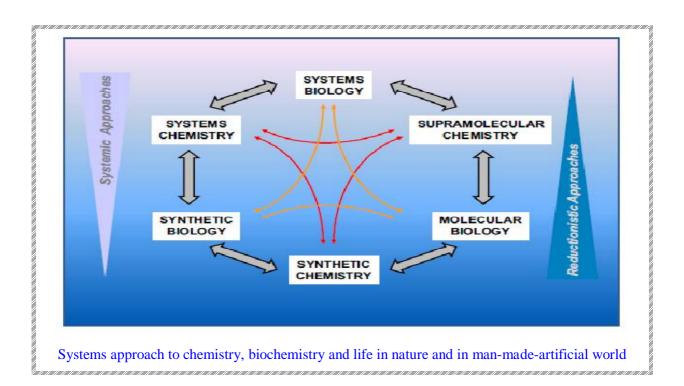
Non-life to Life				
Formation atoms	• Hydrogen, Carbon, Nitrogen, Oxygen, Phosphorus, Sulfur			
Prebiotic soup	• Hot dilute soup of organic substances for oceanic water containing mixture of simple organic compounds.			
Abiotic	 Synthe 	• Synthesis of monomers, oligomers, and supramolecular systems		
Organic/inorganic compounds	 Methane (CH₄) was probably the first organic compound Hydrogen cyanide (HCN)was formed later Water (H₂O) 			
Formation of complex organic molecules	Prebiotic Syn Monomers: Polymers: Coevolution Chirality	nthesis Lipids Amino Acids Nucleotides Peptides,Proteins RNA; DNA Synthesis ofNucleic Acid Homochirality	<mark>\$\$\$ World</mark> Protein Lipid (high-probability) RNA (low probability) DNA	




Cooperative interactionsat a system level	Functional cooperation and coevolution among these diverse classes of molecules from the earliest times
Prebiotic synthesis	 Amphiphiles Total synthesis of racemic and enantiopure phospholipids Evolvable molecular systems Synthesis of fluorescent clickable probes Synthesis of glycolipids
Life	Emergence of the first living entities

Chemistry of life	Relies on biopolymers (proteins, nucleic acids) folding into specif conformations that dictate their properties	
	Complex folded structures encountered in biology are the result of millions of years of evolution	
Origin of life model	? Seek to replicate extant biochemistry (e.g., in alkaline hydrothermal vents) or	
	To create the molecules of life by using more traditional synthetic chemistry	

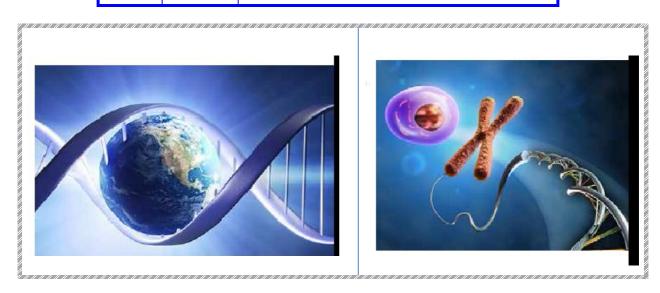
Foreseeable Future. Systems Chemistry		
Next generation	 Chemists (The systems chemists) Tools Theories, Models Pragmatic module 	
Next generation	 Systems chemistry researchers Interdisciplinary expertise Trans-disciplinary working knowledge Grasp of rare/ cutting edge technologies Open-minded approach 	

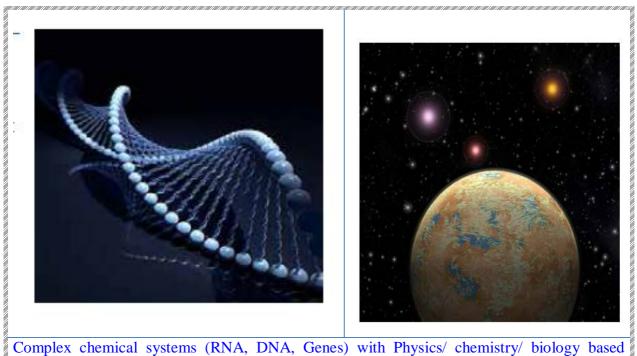

Tools	 Working with strict "bottom-up" designs i.e., avoiding recurrent viz. use of enzymes or other complex biomolecules "Top down" approach Viz. combinations of functional components that should integrate those intermediate Many of these hypothesis-driven attempts will unfortunately fail Repetition with refined blue-print
-------	--

Data Numerical Boolean Literal			DataMassaging Data/varial Noise filter Clustering/or recognition	nental design ble transformation ing classification/Pattern
	Paradigm	Tool	S	
	1^{st}	Human observation	of natural world	
	2^{nd}	Directed experiment	tation	
	3^{rd}	In silico testing		
	4^{th}	Data-centric models		
	5^{th}	Cognitive computin	g	

Open mind	Start Cycle Test→ Failure → redesign → Failure Near success Refine Go back to cycle
Future goals	 Preliminary road-map Extant life Artificial life supporting modules
Target	 Extending today's creativity from isolated molecules to molecular networks → New molecular systems with unique and exciting properties Approaches to characterizing individual building blocks utilized in living systems
Challenge	 To find the right initial conditions for system, of course, supplying it with energyvery often such that system prevails "on its own" for a maximally long period of time

Outcome	 New design rules Design emergent behaviour Synthetic systems Design of artificial cells Capture many of the individual characteristics of life Compartmentalization Replication Metabolism Integration under far-from-equilibrium conditions Pareto-optimality – Thermodynamic & Kinetic stability De novo synthesis of life Process of manufacturing of chemicals Nano- or microscale self-synthesizing tools of future Energy efficient and clean chemical
	 Nano- or microscale self-synthesizing tools of future Energy efficient and clean chemical factories Capable of regulating and repairing themselves
Today	- StillSystems Chemistry is in its infancy


Metaphors for Systems Chemistry				
Bioorganic	Mother		Artificial-intelligence Philosophy, cosmology	Second- and third-degree cousins,
Prebiotic	Father		Systems chemistry	Got married to a foreigner
Homochirality	Sister		Supramolecular	Her maiden name


AAA→CNN →Systems Chemistry

Composomedynamic- kinetic	Twins	Spatiotemporal	Extravagant auntie
Metabolism	Uncle	Nano-tech Single-molecule,	Far-out twins
Compartment	Auntie	Ms. Bz (Belousov–zhabotinsky)	Wet nurse
Evolutionary-genetics	Grandma	If it's a girl	Systems chemistry and
Synthesis	Only grandpa	her name will be kinetic asymmetry	supramolecular are in expectancy
, , , , , , , , , , , , , , , , , , , ,		If it's a boy Kay ratchet	

Systems

	🏾 For	omplex unity med of many diverse modules ving a common purpose
System	Examples:	[[Society, Stock Markets] [WWW; web-based social networks] [Echosystems [Climate]] [Economics, Urban Planning, Ecology] [Biology, Physics, Chemistry] [Metabolic Path Ways] [Engineering, Computer Science, Mathematics]]

Complex chemical systems (RNA, DNA, Genes) with Physics/ chemistry/ biology based interactions in start-of-life and its sustainance, propagation, evolution and termination

Complex + Systems (Energy {material {Life; Non-life}; Non-material}) + Analysis→ Systems_Analysis

	Chemistry	
Low energy	Green	High energy

	Conventional (or reductionist or as-it-is-in 2020) chemistry
Chemistry	 Focused on the challenges of forming covalent/mechanical bonds Determining the structure of chemical molecules/species Emphasis on synthesis of pure (natural, exotic) compounds Requires highly knowledgeable human intervention

Chemists' Practice	 Most chemists have been conditioned to study substances in isolation
	 Reason:For a long time, complex mixtures were intractable

	Reagents purified Experimental control • Temperature, pressure, and humidity
+	Experimental durations • Shorter than grant cycles
+	External influences o Avoided minimized
+	Replication If feasible and reproducible
+	 Precise knowledge Properties of individual molecules, bulk one-to-one interactions
+	Synthetic approaches mixtures of compounds are treated as an unwanted feature that must be eliminated

Extant chemists	 Ability to design and create new molecules Purely chemical approach not likely to yield life-like modules Remedy:a holistic approach is key to help unravel such systems and to experimentallyaddress questions related to the chemicalorigins of life
-----------------	---

Chemical Evolution	Chemical element, chemical energy
	Chemical engineering
	Chemical equation, chemical equilibrium,
	🚇 Chemical fingerprint, Chemical Mace, chemical machining, chemical
	name, chemical peel
	-

	Biology
	 ✓ Network of atomic interactions → o Conformation or folding of bio-macromolecules (ex: proteins)
Biology is immensely complex at almost every level	 Organisation of Biomolecules into cells Cells to higher organisms
	 Network of interactions Between different organisms and surroundings (ecology)

Biological systems	Plethora of
	Complex interconnected signaling systems
	Metabolic networks
	With
	Multiple checkpoint controls
	E Feedback loops
	\rightarrow
	Allowing biological systems to adapt and respond rapidly to external stimuli

Microorganisms to h	a na a a chana a a chana a chana <mark>umans</mark> a a a a a a a a a a a a a a a a a a a	****
Simplest microorganisms known onEarth	Breathtakingly complex	, , , , , , , , , , , , , , , , , , ,
Complex life systems Human being	Zillion fold complex	

, , , , , , , , , , , , , , , , , , ,	Systems biology
	 Deals with relation between Function of a biological system (a cell/specific cellular process) & Interactions between various molecular components
Systems biology	Focuses on deconvoluting complexityfrom already existing superstructures encountered In a human cell, some 25,000 genes
	 Cycles linking spontaneous and non-spontaneous chemical and physicalprocesses Build rough copies of themselves

Aim	Topredict, repair, control design and realize a biologicalsystem	
What is possible today?	Understanding improving at systems level	
Tools	• DNA sequencers	
	• Microarray analysis	
	• Mass spectrometry	
Trans-disciplines	• Genomics	
	• Proteomics	
	• Metabolomics	
Complex Systems Analysis + Biology + Life->		
Systems_Biology		

II . Select Research titles (2000 to 2020).SytemsChemistry.....

	Review
Systems chemistry	
Chem. Soc. Rev. 2017	GonenAshkenasy, Thomas M. Hermans, Sijbren Otto
DOI: 10.1039/c7cs00117g	Annette F. Taylor
Systems Chemistry — [Complex Chemistry]	/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons —

Electromagnetic — Electrical — Quantum — gravity

	Review
Prebiotic Systems Chemistry: New Persp	ectives for the Origins of Life
Chem. Rev. 2014, 114, 285–366	Kepa Ruiz-Mirazo, Carlos Briones,
dx.doi.org/10.1021/cr2004844	Andrés de la Escosura

Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons — Electromagnetic — Electrical — Quantum — gravity

	Chapter
Systems Chemistry Sketches, Chapter 17	
ACS Symposium Series, Vol. 981, Chemical Evolution across Space &	Stuart A. Kauffman
Time. Chapter 17, pp 310–324	
DOI: 10.1021/bk-2008-0981.ch017.	
	•

Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons — Electromagnetic — Electrical — Quantum — gravity

	Review
Prebiotic Peptides: Molecular Hubs	in the Origin of Life
Chem. Rev. 2020, 120, 11, 4707–4765	Moran Frenkel-Pinter, MousumiSamanta,
doi.org/10.1021/acs.chemrev.9b00664	GonenAshkenasy, Luke J. Leman

	Review
Systems chemistry	
Chem. Soc. Rev., 2008, 37, 101–108	R. Frederick Ludlow and Sijbren Otto
DOI: 10.1039/b611921m	

Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons — Electromagnetic — Electrical — Quantum — gravity

The Beginning of Systems Chemistry	Datan Strazaviale
Life 2019, 9, 11	Peter Strazewski
doi:10.3390/life9010011	

Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons — Electromagnetic — Electrical — Quantum — gravity

	Review
Achieving biopolymer synergy in systems chemistry	
Chem. Soc. Rev., 2018,47, 5444-5456	Yushi Bai, Agata Chotera, Olga Taran, Chen
DOI: 10.1039/c8cs00174j	Liang, GonenAshkenasy and David G. Lynn

Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons — Electromagnetic — Electrical — Quantum — gravity

Review
Self-Replicators
Sijbren Otto

	Review
Small-Molecule Systems Chemistry	
Chem 2, 502–524, April 13, 2017	Ognjen S. Miljanic

Reviewed advances in systems-level understanding of
(1) Dynamic combinatorial libraries
(2) Autocatalysis
(3) Oscillatory reactions
(4) Chemical reactivity at origin of life
Nascent efforts in areas that have traditionally not used syst.chem.approach
(5) Reaction discovery
(6) Synthesis & functional utilizationof complex molecules

Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons — Electromagnetic — Electrical — Quantum — gravity

 Review

 Prebiotic Systems Chemistry: Complexity Overcoming Clutter

 Chem 2, 470–501, April 13, 2017
 Saidul Islam and Matthew W.

 doi.org/10.1016/j.chempr.2017.03.001
 Powner

 Systems Chemistry – [Complex Chemistry]/ Systems – Non-Bonding – Physics – Biology – Photons – Phonons – Electromagnetic – Electrical – Quantum – gravity

	Mini Review	
Systems Biology and Systems Chemistry:New Directions for Drug Discovery		
Chemistry & Biology 19, January 27, 2012,23-28	J.B. Brown and Yasushi Okuno	
Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons — Electromagnetic — Electrical — Quantum — gravity		

	eview	
The evolution of metabolism: How to test evolutionary hypotheses at the genomic level		
Computational and Structural Biotechnology	Federico ScossaAlisdair R. Fernie	
JournalVolume 18, 2020, Pages 482-500		

	Review
Toward Self-Constructing Materials: A Systems Chemi	stry Approach
Acc. Chem. Res. 2012, 45, 12, 2178–2188 doi.org/10.1021/ar2002655	Nicolas Giuseppone

Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons — Electromagnetic — Electrical — Quantum — gravity

	Review	
Chemical Origins of Life: Its Engagement with Society		
Trends in Chemistry, Volume 2, Issue 5, May 2020,	Ramanarayanan Krishnamurthy	
406-409		
doi.org/10.1016/j.trechm.2020.02.011		
Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons —		

Electromagnetic — Electrical — Quantum — gravity

			Perspectives
I Toward a general theory of evolution: Extending Darwinian theory to inanimate matter			
Journal of SystemsChemistry	2011	2:1,	Addy Pross
doi:10.1186/1759-2208-2-1			

Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons — Electromagnetic — Electrical — Quantum — gravity

	Encyclopedia
Systems Chemistry	
Encyclopedia of Astrobiology	Jan W. Sadownik and <mark>Sijbren Otto</mark>
DOI 10.1007/978-3-642-27833-4_1095-2	

General Strategies for Exploring Functions from Dynamic Combinatorial Libraries		
Chem Systems Chem 2020, 2, e2000019 (2 of 11)	Chunman Jia, Dawei Qi, Yucang	
doi.org/10.1002/syst.20200001	Zhang, Kari Rissanen and Jianwei	
	Li	
Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons —		
Electromagnetic — Electrical — Quantum — gravity		

Recent highlights in systems chemistry	
Current Opinion in Chemical Biology 2009, 13:705–713	Jerome JP Peyralans and Sijbren Otto

Systems Chemistry – [Complex Chemistry]/ Systems – Non-Bonding – Physics – Biology – Photons – Phonons – Electromagnetic – Electrical – Quantum – gravity

Complex Molecules That Fold Like Proteins Can Emerge Spontaneously	
J. Am. Chem. Soc. 2019, 141, 1685–1689,	Bin Liu, Charalampos G. Pappas, Ennio
DOI: 10.1021/jacs.8b11698	Zangrando, Nicola Demitri, Piotr J.
	Chmielewski, and Sijbren Otto
Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons —	

Electromagnetic — Electrical — Quantum — gravity

Systems chemistry: using thermodynamical	y controlled networks to assess molecular
similarity	
Journal of Systems Chemistry 2013 4:2.	Vittorio Saggiomo Yana R Hristova R
doi:10.1186/1759-2208-4-2	Frederick Ludlow and Sijbren Otto
Sentence Chamister [Complex Chamister]/Sentence New Dev	ding Dission Bislam Distance Discourse

Systems Chemistry – [Complex Chemistry]/ Systems – Non-Bonding – Physics – Biology – Photons – Phonons – Electromagnetic – Electrical – Quantum – gravity

A.delaEscosura, C. Briones, KepaRuiz-Mirazo
l

Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons — Electromagnetic — Electrical — Quantum — gravity

Given the systems chemistry and foundational theoretical biologist: Tibor Gánti(1933–2009)	
Journal of Theoretical Biology 381 (2015) 2-5	EörsSzathmáry
http://dx.doi.org/10.1016/j.jtbi.2015.04.037	
Systems Chemistry – [Complex Chemistry]/ Systems – Non-Bonding – Physics – Biology – Photons – Phonons –	

Electromagnetic — Electrical — Quantum — gravity

EssayThe Essence of Systems Chemistry	
Life 2019, 9, 60	Peter Strazewski
doi:10.3390/life9030060	
	· · · · · · · · · · · · · · · · · · ·

Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons — Electromagnetic — Electrical — Quantum — gravity

From chemical systems to systems chemistry: Patterns in space and time		
CHAOS 25, 097613 (2015)	Kenneth Showalter and Irving R. Epstein	

Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons — Electromagnetic — Electrical — Quantum — gravity

Emergence of a New Self-Replicator from a Dynamic Combinatorial Library Requires a		
Specific Pre-Existing Replicator		
J. Am. Chem. Soc. 2017, 139, 13612–13615	Yigit Altay, MenizTezcan and Sijbren Otto	
DOI: 10.1021/jacs.7b07346		

Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons — Electromagnetic — Electrical — Quantum — gravity

Welcome Home, Systems Chemists! Editori Journal of Systems Chemistry 2010, 1:1, 2-6	Günter von Kiedrowski, Sijbren Otto, Piet
doi:10.1186/1759-2208-1-1	Herdewijn

Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons — Electromagnetic — Electrical — Quantum — gravity

Complexity in Chemistry	
Science VOL 284 2 APRIL 1999,89-92	George M. Whitesides and Rustem F. Ismagilov
Sentence Chamister ICanadar Chamister // Sentence	Les Deudes - Dielese - Diedeus - Dieses

Reaction: Thinking-Species Chemistry and the World's Problems		
Chem 2, 155–159, February 9, 2017,158-159	Sijbren Otto	

Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons — Electromagnetic — Electrical — Quantum — gravity

Systems chemistry: using thermodynamicall	y controlled networks to assess molecular
similarity	
Journal of Systems Chemistry 2013, 4:2	Vittorio Saggiomo Yana R Hristova R
doi:10.1186/1759-2208-4-2	Frederick Ludlow and Sijbren Otto

Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons — Electromagnetic — Electrical — Quantum — gravity

Perspective Biology-Inspired Supramolecular Peptide Systems	
Chem 6, 1222–1236, June 11, 2020	Ayala Lampel

Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons — Electromagnetic — Electrical — Quantum — gravity

The Origin and Evolution of Organic Matter in Carbonaceous Chondrites and Links to Their	
Parent Bodies	
Primitive Meteorites and Asteroids, Book chapter,	Daniel P. Glavin, Conel M.O'D. Alexander,
pages 205-271	José C. Aponte, Jason P. Dworkin, Jamie E.
DOI: 10.1016/B978-0-12-813325-5.00003-3	Elsila, HikaruYabuta,
Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons —	

Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons — Electromagnetic — Electrical — Quantum — gravity

Directed Non-targeted Mass Spectron	netry and Chemical Networking for Discovery of
Eicosanoids and Related Oxylipins	
Cell Chemical Biology 26, 2019, 433–442	JeramieD.Watrous, T.J. Niiranen, Kim A.
doi.org/10.1016/j.chembiol.2018.11.015	Lagerborg, E.A. Dennis, S. Cheng, Mohit Jain

Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons — Electromagnetic — Electrical — Quantum — gravity

Reaction: A Plea for Hypothesis-Driven Research in Prebiotic Systems Chemistry	
Chem 5, 2019, August 8, 1917–1923	Kepa Ruiz-Mirazo
Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding —	Diversion Distance Distance Diversion

Electromagnetic — Electrical — Quantum — gravity

Systems biology approaches integrated with artificial in	telligence for optimized food focused
metabolic engineering	
Metabolic Engineering Communications, Vol. 11, December	Mohamed Helmy, Derek Smith,
2020, e00149	Kumar Selvarajoo
doi.org/10.1016/j.mec.2020.e00149	

Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons — Electromagnetic — Electrical — Quantum — gravity

The nature and mathematical basis for materialstability in the chemical and biological worlds	
Journal of Systems Chemistry 2014, 5:3	Robert Pascal and Addy
doi:10.1186/1759-2208-5-3	Pross

Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons — Electromagnetic — Electrical — Quantum — gravity

On the divide between animate and inanimate	
Journal of Systems Chemistry (2015) 6:2, 1-3	ArtoAnnila and ErkkiKolehmainen
DOI 10.1186/s13322-015-0008-8	

Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons — Electromagnetic — Electrical — Quantum — gravity

Life

Understanding the Origins of Life - the Constituents of InterstellarMedium as the Source of	
Life's Building Blocks	
Biophysical Journal 118(3):339a-340a	Anita Ra´gyanszki, Hongchen Ji, Rene
DOI: 10.1016/j.bpj.2019.11.1891	Fournier

Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons — Electromagnetic — Electrical — Quantum — gravity

100th Anniversary of Macromolecular Science Viewpoint: TowardArtificial Life-Supporting	
Macromolecules	
ACS Macro Lett. 2020, 9, 185–189	Jean-François Lutz
doi.org/10.1021/acsmacrolett.9b00938	
	· · · · · · · · · · · · · · · · · · ·

Reaction:Life Is Messy	
Chem 5, August 8, 2019,1917–1923	Irving R. Epstein
doi.org/10.1016/j.chempr.2019.05.004	

Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons — Electromagnetic — Electrical — Quantum — gravity

Introduction—Panspermia,2020;106:1-4	
Advances in Genetics, 2020	Edward J. Steele
doi.org/10.1016/bs.adgen.2020.04.001	
· · · · · · · · · · · · · · · · · · ·	

Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons — Electromagnetic — Electrical — Quantum — gravity

Estimating Equilibrium Constants for A	ggregation from the Product Distributionof a
Dynamic Combinatorial Library	
Organic Letters 2009, Vol. 11, No. 22, 5110-5113	Rosemary A. R. Hunt, R. Frederick Ludlow and
	Sijbren Otto

Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons — Electromagnetic — Electrical — Quantum — gravity

Synthesis of the First Triphosphabutadiene"	
Chem. Inf. Ed. Engl. 25 (1986) No. 10, 932-935	By Rolf Appel, Barbel Niemann, Winfried
	Schuhn, and Falk Knoch Angew.

Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons — Electromagnetic — Electrical — Quantum — gravity

Systems Chemistry: Kinetic and Comput	ational Analysis of a Nearly Exponential
OrganicReplicator	
Chem. Int. Ed. 2005, 44, 6750 –6755	MaikKindermann, Insa Stahl, Malte Reimold,
DOI: 10.1002/anie.200501527	Wolf Matthias Pankau, and Gnter von
	Kiedrowski Angew.

New concept for quantification of similarity relates entropy and energy	ergy of o	objects:	First	and
Second Law entangled, group behavior of microblack holes expected	1			

Journal of Systems Chemistry 2010, 1:2, 2-10	Journa	of Systems	Chemistry	2010.	1:2, 2-10
--	--------	------------	-----------	-------	-----------

Petr Zimak, Silvia Terenzi, Peter Strazewski

Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons — Electromagnetic — Electrical — Quantum — gravity

Spontaneous Emergence of Self-Replicating Molecules Containing Nucleobases and Amino Acids

Strategies using DCA for fabrication of chimeric amino acid/nucleobase

- ✓ Mixing nucleobase- and peptide-based building blocks → ligation of these two gives rise to →highly specific chimeric ring structures
- Starts from peptide nucleic acid building blocks
- ^C Earlier report: Nucleic acid-based self-replicating systems
 - Relies on pre-synthesis of (short) oligonucleotide sequences
 - Self-assembly, spontaneously giving rise to an ordered one-dimensional arrangement of nucleobase nanostructures

Self-replication

1		
Schaeffer, Christoph Jurissek, Priscilla F. Pieters, Meniz		
Altay, Ivana Marić, Marc C. A. Stuart, and Sijbren Otto		
n		

Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons – Electromagnetic — Electrical — Quantum — gravity

The Lipid world				
Origins of Life and Evolution of the Biosphere 31: 119–145, 2001 Daniel Segré, Dafna Ben-Eli,				
	David W. Deamer And Doron			
	Lancet			
Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physic				

ystems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Physics — Biology — Photons — Phonons — Electromagnetic — Electrical — Quantum — gravity

A speculative review of factors controlling the evolution of phytoplankton during Paleozoic		
time		
Journal of Micropaleontology, 51 (2008) 9-	Paul K. Strother	
21doi:10.1016/j.revmic.2007.01.007		

Solvent Composition Dictates Emergence in Dynam	nic Molecular Networks Containing
Competing Replicators	
J. Am. Chem. Soc. 2015, 137, 5, 2067–2072	Giulia Leonetti and Sijbren Otto
DOI: 10.1021/ja512644f	
Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Ph Electromagnetic — Electrical — Quantum	
Electromagnetic — Electrical — Quantum	— gravity
Is the transition from chemistry to biology amystery?	
Journal of Systems Chemistry 2010, 1:3	Hans Kuhn
Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Ph	
Electromagnetic — Electrical — Quantum	— gravity
Suitable energetic conditions for dynamic chemical com	plexity and the living state
Journal of Systems Chemistry 2012, 3:3	Robert Pascal
Systems Chemistry — [Complex Chemistry]/ Systems — Non-Bonding — Ph Electromagnetic — Electrical — Ouantum	
Electroniagnetic — Electrical — Quantum	— gravity

Catalyst: Can Systems Chemistry Unravel the Mysteries of the Chemical Origins of Life?			
Chem 5, 1917–1923, August 8, 2019 Daniela Kroiss, GonenAshkenasy, Adam B.			
Braunschweig, Tell Tuttle, and Rein V. Ulijn			
stems Chemistry — [Complex Chemistry]/ Systems — N	on-Bonding — Physics — Biology — Photons — Phonons —		

Information Source	ACS.org ; sciencedirect.com
K. Somasekhara Rao,	R. Sambasiva Rao,
Dept. of Chemistry,	School of Chemistry,
Acharya Nagarjuna Univ.,	Andhra University,
Dr. M.R.Appa Rao Campus,	Visakhapatnam 530 003, I ndia
Nuzvid-521 201, I ndia	