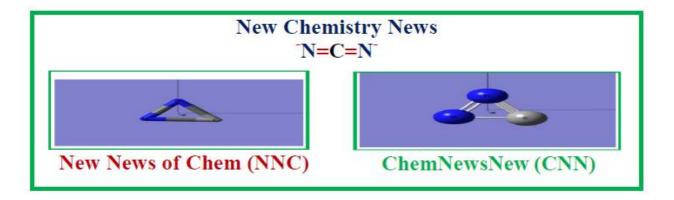
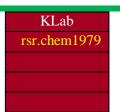
Available online at www.joac.info


ISSN: 2278-1862

Journal of Applicable Chemistry

2021, 10 (4): 488-558 (International Peer Reviewed Journal)



CNN -40: Halogen bond-Weak or strong?

Information Source	ACS.org ; sciencedirect.com
K. Somasekhara Rao,	R. Sambasiva Rao,
Dept. of Chemistry,	School of Chemistry,
Acharya Nagarjuna Univ.,	Andhra University,
Dr. M.R.Appa Rao Campus,	Visakhapatnam 530 003, I ndia
Nuzvid-521 201, I ndia	

I. Select Research Titles(2000 to 2021) in X-bonds

- II. Object oriented terminology (OOT) for X-bonds
- III. Supplementary Information: X-bonded chemical species

I. Select Research Titles (2000 to 2021) in X-bonds

y gi an tanàna manana kana kana kana kana kana kana	n an			
Interactions		If	Binary Solvent system: acetic acid + water	

	Then ATMBA forms a strong halogen bond with acetate ion					
		-	E E	6		
			ATMBA : alpha-(Trich)	loromethyl) benzyl a	cetate	
				jj		
Methods	Dadi	al distr	ibution function (PDE)	•		
wiethous	Radial distribution function (RDF);					
	MD evidence for a halogen bond between the solute and acetate ion					
KeyLrn_Bits , σ-profile analysis molecular dynamic simulation						

Deep analysis of the solubility behaviour mechanism The Journal of Chemical Thermodynamics, of alpha-(trichloromethyl) benzyl acetate in three 151(2020)106246 binary aqueous solvents doi.org/10.1016/j.jct.2020.106246 Ning Wei and Zeren Shang and Nuoyang Zhang and Jingkang Wang and Songgu Wu

Halogen bond-strong weak-- Halogen bond-strong weak-

yy fialan ha	halogen bonding
Synth	4-bromobenzaldehyde arylhydrazones + CCl4 +Cu catalyst \rightarrow
	1-Aryl-3-(4-bromophenyl)-4,4-dichloro-1,2-diazabuta-1,3- dienes
Interactions	Non-covalent ClBr interactions in the crystalline state
	\rightarrow formation of 3D supramolecular framework
Dichlorodiazadiene	Strong halogen bond donor
	DFT ; Bader's theory (QTAIM method)
Methods	X-ray diffraction
KeyLrn_Bits	Non-covalent interactions, crystal engineering

Supramolecular organic frameworks derived from Mendeleev Communications, 31(2021)191bromoaryl-substituted dichlorodiazabutadienes via 193 Cl...Br halogen bonding doi.org/10.1016/j.mencom.2021.03.015 Namiq G. Shikhaliyev and Abel M. Maharramov and Khanim N. Bagirova and Gulnar T. Suleymanova and Biligma D. Tsyrenova and Valentine G. Nenajdenko and Alexander S. Novikov and Victor N. Khrustalev and Alexander G. Tskhovrebov Halogen bond-strong weak-- Halogen bond-strong weak-

halogen bonding				
	Halophilic reac	tion		
Substrates	CBr4, Cl3CCN, Cl3CCOC	Cl, CCl4, Cl3CF		
Nucleophile	Cl-			
For halophilic reaction to occur	strong halogen bond is a	necessary but not sufficient condition		
On the role of halogen bond in	the halophilic reaction:	Journal of Molecular Structure: Theochem,		
A theoretical study		961,(2010)6-8		
		doi.org/10.1016/j.theochem.2010.08.039		
Yu Zhang				

Halogen bond-strong weak-- Halogen bond-strong weak-

		halogen bonding
Syr	nth	Dichloroacetylated prodrugs
		Control compounds
Interactio		

	17-O-dichloroacetylated 2-methoxyestradiol with GTP in the a-tubulin subunit
Methods	MD
KeyLrn_Bits	Anticancer agent : 2-methoxyestradiol

Synthesis and biotesting of new carrier prodrugs of 2methoxyestradiol

Mendeleev Communications, 30(2020)7-9 doi.org/10.1016/j.mencom.2020.01.002

Natalia A. Lozinskaya and Natalia A. Maximova and Daniil R. Bazanov and Sergey E. Sosonyuk and Birgit Wobith and Nikolay A. Zefirov and Elena V. Kharitonashvili and Olga N. Zefirova and Sergey A. Kuznetsov and Marina V. Proskurnina

Halogen bond-strong weak-- Halogen bond-strong weak-

	halogen bonding
Neutral heteroleptic cluster	Mo3(µ3-S)(µ-S2)3Br4(bpy)
Interactions	By Unsymmetrical substitution of the bromide ligands in [Et4N]2[Mo3(µ3-
	S)(µ-S2)3Br6] by the 2,2'-bipyridine(bpy)
, 	is responsible

Heteroleptic bipyridine complex: Synthesis, spectral and structural analyses, and interconversion of its	Journal of Molecular Structure, 1234(2021)130138		
{Mo3S7} core to {Mo3S4} core	doi.org/10.1016/j.molstruc.2021.130138		
Goutam Nandi and Sabyasachi Sarkar and Bezawada Sridhar Reddy and TaeYoung Kim and Kumud			
Malika Tripathi			

Halogen bond-strong weak-- Halogen bond-strong weak-

y falla ha	halogen bonding		
Copper-based antitumor	3-formylchromone pharmacophore Substituted with X ((F–, Br –)		
drug			
Structure detn	Spectroscopy; single X-ray crystallography		
Interactions	Strong halogen bonding		
Stability of X bond	Rationalized by sigma hole region of positive electrostatic potential		
	on surface of C-X covalent bond		
Methods DFT (B3LYP) gas phase computations			

Copper (II)-based halogen-substituted chromone antitumor drug entities: Studying biomolecular interactions with ct-DNA mediated by sigma hole	Bioorganic Chemistry, 104(2020)104327 doi.org/10.1016/j.bioorg.2020.104327		
formation and cytotoxicity activity			
FarukhArjmand and Salman khursheed and Thierry Roisnel and Hifzur R. Siddique			

Halogen bond-strong weak-- Halogen bond-strong weak-

		halogen bonding
Interactions	CI…Cl- halogen-bonding interactions	5
KeyLrn_Bits	✓ Halogen bonding	✓ Strong anion exchange
	 Solid phase extraction 	sorbent Perfluorinated
r A Di Walan Mahalan Mahalan Mahalan Mahalan		iodine alkanes

Halogen bonding: A new retention mechanism for the	Analytica Chimica Acta, 753(2012)48-56
solid phase extraction of perfluorinatediodoalkanes	doi.org/10.1016/j.aca.2012.09.024

Xiao Qing Yan and Qian Jin Shen and Xiao Ran Zhao and Hai Yue Gao and Xue Pang and Wei Jun Jin

Halogen bond-strong weak-- Halogen bond-strong weak--

	91 1091 1091 1091 1091 1091 1091 1091 1	halogen bonding	
		Strong halogen bonding	
Interactionsbetween Iodine atoms of TIP and iodide anionsXB energies are up to 4.3 kcal/mol.		between Iodine atoms of TIP and iodide anions	
		XB energies are up to 4.3 kcal/mol.	
	Methods	DFT	
	KeyLrn_Bits	Non-covalent interactions, Supramolecular chemistry	

	ta Halla	t gal had t dal t da	en a na a
		Synthesis	
• tr	i(n-propyl)ammonium (1) or	2,3,4,5-tetraiodopyrrole	hybrids CatI•TIP•xEtOH ($X = 0.5(1)$
• 1	,3,5-trimethylpyridinium (2)	(TIP)	and 0.33 (2)
ic	odides		i A deserver a server a

2,3,4,5-Tetraiodopyrrole as a building block for	Journal of Molecular Structure,	
halogen bonding: Formation of supramolecular hybrids	1230(2021)129931	
with organic iodide salts in solid state	doi.org/10.1016/j.molstruc.2021.129931	
Mikhail A. Bondarenko and Alexander S. Novikov and Pavel A. Abramov and Ilyas F. Sakhapov and		
Maxim N. Sokolov and Sergey A. Adonin		

Halogen bond-strong weak-- Halogen bond-strong weak-

		halogen bondin
Interactions	 Br atom in Li3Br is a stronger ha Cl atom in Li3Cl when it interacts Li3I is the strongest Lewis base 	
Li3M–XY	 M=Cl, Br, I; XY=ClCl, BrBr, ClF, BrCl, BrF 	
Methods	 MP2/aug-cc-pVTZ level 	
	 Natural bond orbital (NBO) Atoms in molecules (AIM) Energy decomposition 	 Formation of halogen bonding
KeyLrn_Bits	SuperatomOrbital interaction,	 LiCl, LiBr

Superalkali Li3M (M=Cl, Br, I) as a Lewis base in	Computational and Theoretical Chemistry,
halogen bonding: A heavier halogen is a stronger	1012(2013)41-46
Lewis base than a lighter halogen	doi.org/10.1016/j.comptc.2013.03.002
WenKai Tian and Qin Miao and QingZhong Li	and WenZuo Li and JianBo Cheng
Halogen bond-strong weak Hal	ogen bond-strong weak-

		un non a characharacharacharacharacharacharach
	System	1,8-naphthyridine + diiodine
	Non-Cov	 Hydrogen bond Tetrel bond
	bonds	Stacking interaction
<i>\$14\$14\$14</i>		

	N.	Cooperativity and anticooperativity between strong halogen bond and other noncovalent interactions	
Interactions Strong halogen bond		→ Strong halogen bond	
	meractions	N…I halogen bond interaction energy : -21.41 kcal/mol	
	KeyLrn_Bits	Organic semiconductor,	
		Strong halogen bond is useful	
		to design organic semiconductor materials	

Theoretical rationale for the role of the strong halogen
bond in the design and synthesis of organicComputational and Theoretical Chemistry,
1194(2021)113074
doi.org/10.1016/j.comptc.2020.113074

Yu Zhang and Weizhou Wang

Halogen bond-strong weak-- Halogen bond-strong weak-

a parta contracto en la contra Esta contracto en la contracto e		T ANG T	halogen bonding
System	N-bromosuccinimide + electron-donating groups		
Non-Cov			
bonds			
Interactions	AIM MD2/Lonl2D7*		gen-bonding than
Methods			
KeyLrn_Bits	KeyLrn_Bits Interaction energy		

Ab Initio Calculations on Halogen Bond Between N-	Chemical Research in Chinese Universities,	
Br and Electron-donating Groups	23(2007)355-359	
doi.org/10.1016/S1005-9040(07)60		
Yan-hua WANG and Xue-song CHEN and Jian-wei ZOU and Qing-sen YU		

Halogen bond-strong weak-- Halogen bond-strong weak--

		halogen bonding
System	Formamidine + XY	X=Cl, Br, I;
System		Y=F, CCH, CF3, CN, NC
Complexes	FA-(Z) through a halogen bond,	FA-(E) complex stabilized by both
Complexes		a halogen bond and X···H interaction.
Non-Cov	FA-(E) more stable than FA-(Z) counterpart with interaction energy of -3.4 to -23.4kcal/mol	
bonds		
Expl Stability of stronger halogen bonding is due to electrostatic and polarization energies		

Prediction and characterization of halogen bonds involving formamidine and its derivatives	Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 138(2015)195- 202
	doi.org/10.1016/j.saa.2014.11.064
Xiulin An and Lixia Jiang and Qingzhong Li	and Wenzuo Li and Jianbo Cheng
Halogen bond-strong weak Hal	ogen bond-strong weak-

		halogen bonding
KeyLrn_Bits	Human fertilization	Molecular design
	Calmodulin-dependent protein kinase	
Appl		

Design and verification of halogen-bonding system at
the complex interface of human fertilization-related
MUP PDZ5 domain with CAMK's C-terminal peptideComputational Biology and Chemistry,
72(2018)164-169
doi.org/10.1016/j.compbiolchem.2017.11.007Juan Wang and Yunjie Guo and Xue Zhang

Halogen bond-strong weak-- Halogen bond-strong weak-

10 10 10 10 10 10 10 1		halogen bonding			
System	14N2…ICF3	Symmetric-top complexes			
System	15N2…ICF3				
Interactions	Weak halogen bond				
	□ Distance rN…I=3.443(1)Å slightly <				
since	sum of the N and I van der Waals radii				
since	Intermolecular stretching force constant $k\sigma=2.94$ Nm -1 is small				
	Negligible charge redistribution on con	plex formation			
Methods Rotational spectroscopy					

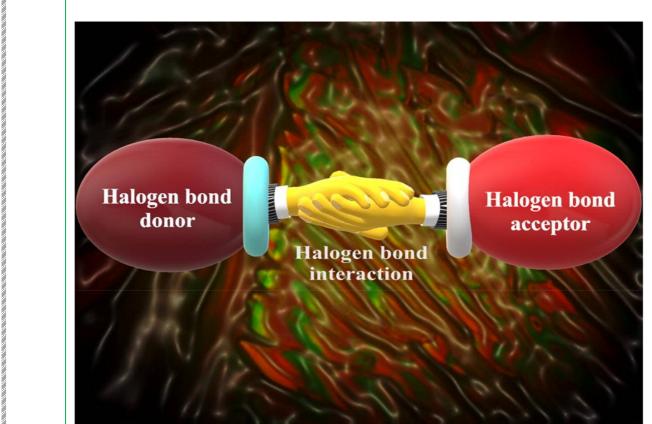
Characterisation of the weak halogen bond in N2…ICF3 by pure rotational spectroscopy	Chemical Physics Letters, 625(2015)179-185 doi.org/10.1016/j.cplett.2015.02.023				
Jonathan P. Anable and David E. Hird and Susanna L. Stephens and Daniel P. Zaleski and Nicholas					
R. Walker and Anthony C. Legon					

Halogen bond-strong weak-- Halogen bond-strong weak-

979 maa maa maa maa maa maa maa maa maa ma	AN A		halogen bonding				
System	Azaaromatic chloride crystals						
Synth		l]-6-chloro-[1,3,5]triazine (1)					
Synui	✓ bis-2,4-(4-carbomethoxypher	noxyl)-6-chloro-[1,3,5]triazine	e (2)				
	N…Cl halogen bonding						
Non-Cov	\rightarrow lone pair π interaction						
bonds	$\rightarrow \pi - \pi$ stack						
DOILUS	→ C-H…O hydrogen bonding						
	in the directionality of supramolecular self-assembly						
Interactions	Strong halogen bonding						
since	unusually short intermolecul	ar N····Cl distance of $3.095(2)$	and 3.088(3)Å				
Methods	Theoretical calculations						
KeyLrn_Bits	Directionality	DFT calculations					
	Site selectivity	Molecular electrost	atic potential				

Directionality and site selectivity of N…Cl halogen	Journal of Molecular Structure,
bonding in two azaaromatic chloride crystals	975(2010)274-279
	doi.org/10.1016/j.molstruc.2010.04.035
Yi-Min Zhu and Ti-Fang Miao and Yang-Yi Yang and	Dong-Yue Zhuang and Kang-Cheng Zheng
and Wing-Tak V	Vong
Halogen bond-strong weak Hal	ogen bond-strong weak-

II. Object oriented terminology (OOT) for Xbonds


Intera	n <mark>ctions within in and between chemical moieties</mark>
i	chemical biological
ļ	Vander_wall dispersion stacking hydrophobic
!	quantum relativistic nano gravity
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Interactions	Energy (kcal/mol) in biomolecules
Van der Waals contact	<1
Hydrophobic force	1.5–2
Salt-bridge	0.5–5
Stacking	5–7
H-bonding	0.25–40
Xbonding	1–40
Covalent bond	>80
Electrovalent	>700

Classification of Classification of the contract of the contra	
non-covalent interactions	

	Classification of interactions						IUF	PAC		1		
		puod (	Class puod (miniba) Bisterio CiB Group 11 Cupper Ag Siliver Au Gold Rg Reentgerium		Triel bond	Tetrel bond	Pnictogen bond	Chalcogen bond	Halogen bond	B B bond bond		
		Coinage (regium) bond	Spodium bond (this work)	TrB Group	TtB Group	PnB Group	ChB Group	HaB Group	18 He			
		Coinage	Spodiu	13 B	14 C	15 N	16 <b>O</b>	17 F	Helium			
		CiB	SpB	Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon			
		Group 11	Group 12	Al Aluminum	Sil con	Phosphorus	S Sulfur	Cl	Ar Argon			
		Cu	Zn	Galium	Germanium	As Arsenic	Selenium	Br	Krypton			
		Ag Silver	Cd Cadmium	In Indium	Sn ^{Tn}	Sb Antimony	Te	lodine	Xe			
		Au	Hg Marcury	TI	Pb	Bismuth	Po	At	Radon			
		Rg	Cn	Nh	FI	Mc	Lv	Ts	Og			
NER IN											HANANANANANANANANANANANANANANANANANANAN	
LA   Interact												
		l No_Bo	nd				-			ctions		
	Bond			CovBNonCovBElectroStatic			Lewis acid (LA)			Lewis	s base (LB)	
Interaction	1	1	ion-io				- Ha	Hard acid (HA)			base (HB)	
1				Multi_poleMultipole_multipole				Electrophile			ophile	
	Electi	rostatic	Multip	Multipole :  dipole				Cation			l	
			h	exadecap	ole		σ-h	ole		Base		
							Ac	id		σ-hole	;	
LA   NCB   LB NCB : Non-covalent bond					nd	σ-h	ole posi	tive	σ-hole	e negative		
NCB							ctron de	nsity		on density		
HB		nvHB						eptor	1911 1911 1911 1911 1911 1911 1911	donor		
XB	F Cl	Br I At										
11 11 11 11 11 11 11 11 11 11 11 11 11	1001100110011001100110011		Ch	column o nem elem periodic	ents A	Abbrev	\$\$ Bond	S	100110011001100110011001100	1611161116111611161116		

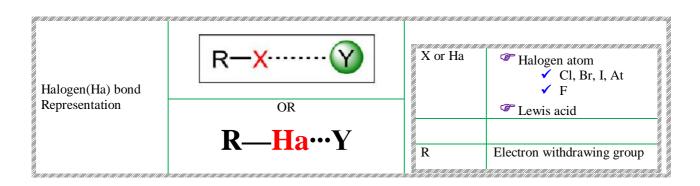
18G	NgB	Nobel gas	
17G @	HaB	Halogen	
16G @	ChB	Chalcogen	
15G	PnB	Pnicogen or Pnictogen	
14G	TTb	Tetrel	
13G	TrB	Triel	
12G	SPb	Spodium	
11G	CiB or Rg	Regium or Coinage	
1G	HB	Hydrogen	
		@ IUPAC recommened	



			halogen bond				
Synonyms		Halogen bond					
	Halogen	Halogen molecule bridges					
Abbreviation	HaB	IUPAC approved					
<u>.</u>			Group 17 in 18Column-Periodic table				
	XB	popular					

Chem Elements in Halogen (X) group	[[F, Cl, Br, I] [At] [Ts]]
t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	n a se a constant a const

Halogen atom	<ul> <li>Plays the role of electron acceptor to electron donor atoms in a molecule (NH3)</li> <li>Ex: nitrogen, oxygen, even anions such as halides</li> </ul>
	Plays the role of electron density donor to electron acceptor atoms in a molecule
	A specific subset of inter- and intramolecular interactions
Halogen bonding	Attractive interaction
Halogen bonding	Non-covalent interactions
	$\checkmark$ A subset of $\sigma$ -hole interactions
	Halogen bonds are a highly directional class of bonds
	<b>Reason:</b> X- bonds formed in line with the halogen's molecular bond (R-X)
	Hydrogen bonds on the other hand, are non-directional
	A halogen bonded molecular system consists one of halogen atoms and has a $\sigma$ -hole in one
Halogen bond	moiety and a base in other species in inter-molecular interaction associated with energy
	transactions.
	A halogen atom (Hal) in one molecule and an atom or a group of atoms with rich electron
	density (Y) in another molecule


X-atom	Behaves as	gen an
Electrophile	When there is positive ESP region ( $\sigma$ -	Halogen bond XY
_	hole)	_
Nucleophile	When there is negative ESP region	Halogen atoms have high
		electronegativity. Thus, they behave as
		electron rich (nucleophilic) sites
		Ex: A halogen atom functions as hydrogen
		bond acceptor
Both electrophile	When there is negative ESP region and	One halogen bond and another
and nucleophile	also positive ESP region ( $\sigma$ -hole) on the	halogennucleophile complex
	same halogen atom	

	и и и и и и и и и и и и и и и и и и и	✓ Net a	ttractive interaction between
			An electrophilic region associated with a halogen and
Halogen			Electrophile region of another molecule
bond	Type II	🗸 Net a	ttractive interaction between
bolid		=	A nucleophilic region associated with a halogen atom (σ- hole) in a molecular entity/fragment and
			A nucleophilic region of another molecule (Lewis base) or
			the same, molecular entity

2 V0002 V000 V00	Origin of electrophilic region	when a halogen atom makes a covalent bond in a molecule
o 1 0000. 1 0000 1 000	on halogen	Then electron distribution density around the atom shifts a bit toward the bond
A A 0000A A 0000 A 0000		Consequence: This leaves an area (opposite the bond)-of diminished of
· · · · · · · · · · · · · · · · · · ·		electron density, which is christened as the $\sigma$ -hole.
	r 1971 - Mart Mart Mart Mart Mart Mart Mart Mart	19 H H SH

Halogen bond 'donor'	Halogen bearing molecule
Halogen bond 'acceptor'	Nucleophilic molecule
, , , , , , , , , , , , , , , , , , , ,	•

	Applications of X-bonded systems	
Crystal engineering	Designed Mechanical properties	
	Co-crystals with specific desired features of	
	structure and composition $\rightarrow$	
	Non-linear optical activity	
	Enhanced conducting properties	
Liquid crystals	Dimeric Dimeric	
	Trimeric	
Materials	🛄 Soft, Smart	
	Magnetic	
	Conducting	
	Supramolecular polymers	
Electronics	Augmetic and conducting materials	
	Liquid-crystal displays	
	Organic semiconductors	
Biomedicine	Biological Systems	
	Functional systems	
	Rational drug design	
	Anion binding	
Recognition	🛄 Molecular	
	Anion	
Chemistry	Macromolecular chemistry	
	Supramolecular chemistry	
	Supramolecular host-guest complexes	
	Thterlocked XB host molecules	
	Biochemistry	
	Solid state chemistry	
	Organic synthesis, catalysis	
	Separation science	



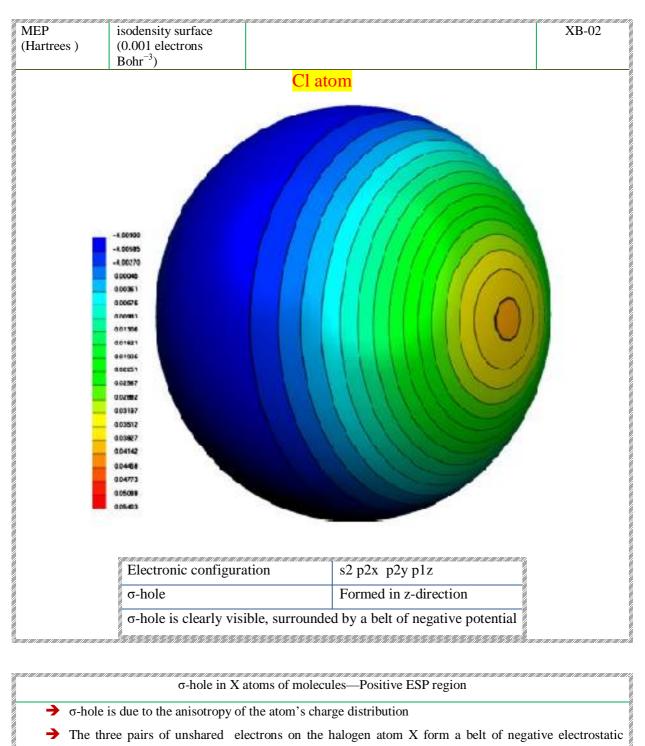
an a	R-X R is covalently bonded to X	
	Y ✓ Lewis base ✓ Halogen bond acceptor	
	possessing at least one	
	nucleophilic (electron rich) region.	

Chemical species with X-bond	Molecular entity or any constitutionally or isotopically distinct atom, molecule, ion, ion pair, radical, radical ion, complex, conformer etc., which is detectable and can be quantified as a distinct entity
Evidence for X-bond	<ul> <li>Experimental</li> <li>CQC (Computational quantum chemistry)</li> <li>Combination of both</li> </ul>
n h Taranan an	<ul> <li>Greater the number of features satisfied</li> <li>More reliable is characterization of interaction as a halogen bond</li> </ul>

Features	$\mathbf{R}\textbf{-}\mathbf{X} + \mathbf{Y}  \mathbf{R}\textbf{-}\mathbf{X} \mathbf{Y}$
	Geometric characteristics
Interatomic distance between XY	<ul> <li>Greater than covalent bond distance</li> <li>Less than sum of van der Waals radii</li> </ul>
Angle R–X…Y	<ul> <li>Nearer to 180°         <ol> <li>i.e., the halogen bond acceptor Y</li> <li>Approaches X along the extension of R–X bond</li> </ol> </li> </ul>
Length of the R–X covalent bond in R–XY	➔ More than bond distance in simple R-X

n de la constance de la constan Spectral response			
Infrared	Absorption	Formation of the XY bond results in new vibrational	
Raman scattering	-	modes	
UV–vis	Absorption bands	Of halogen bond donor shifts to shorter wavelengths	
X-ray photoelectron	Binding energies of	Complex shift to lower energies relative to unbonded X	
spectrum	peaks		
NMR(@)	Chemical shift values	Of nuclei in both R-X and Y, in solution as well as in	
		solid state change	
(@) NMR spectroscopy requires high concentrations (up to ~1 M) of solute for signal measurement			
+ It had advantage that weaker interactions also can be detected at higher concentrations.			
en an			

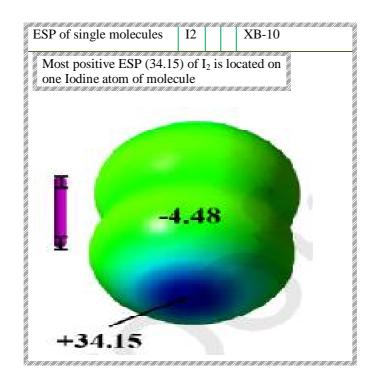
Ha-Bond strength	Bond strength of XY in R-XY-Z
Forces in Ha-Bond	Electrostatic
	➔ Polarization
	Charge transfer
	Dispersion
Correlated	Function of (magnitudes of the positive and negative electrostatic potentials of
) In an	$\sigma$ -hole and the negative site)


Variation	Highly variable over a wide range of energies	
Decreases as	Electronegativity of X increases	
	Electron withdrawing ability of R decreases	

Strength of XB	Changes with
Increases	<ul> <li>✓ Size and polarizability of atoms (Cl &lt; Br &lt; I &lt; At)</li> <li>✓ Size of σ-hole</li> </ul>
Increases	Increasing the electron withdrawing ability of covalently bonded R group Ex: $C(sp)-X > C(sp2)-X > C(sp3)-X)$ .
Depends on nature of halogen atom	Greater in order of $F < Cl < Br < l < At$
Depends on nature of Lewis bases	<ul> <li>Conventional electron donors such as oxygen- And nitrogen-containing molecules</li> <li>Aromatic compounds, metal hydrides, radicals</li> <li>Carbenes</li> </ul>

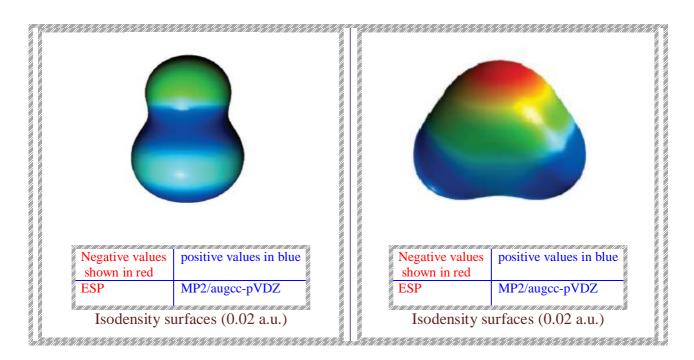
		L. N.
R–X	CBr4, CHI3, CnF2n+1I	Haloalkane
	Iodobenzene, halopyridinium And haloimidazolium cations	Haloarene or haloheteroarene
	Diiodoacetylene	1-haloalkyne
	Diphenyliodonium or bromonium derivatives	Halonium ion
	N-bromo- or N-iodosuccinimide	Haloimide
	I2, Br2, ICl, ClF	Dihalogen molecule
	CBr4, CHI3, CnF2n+1I	Haloalkane
Y	lone pair	Possessing atom N atom of a
	O atom of a	pyridine or an amine Carbonyl group
	Pi system	Double or triple bonds, arene moiet
	anion	S

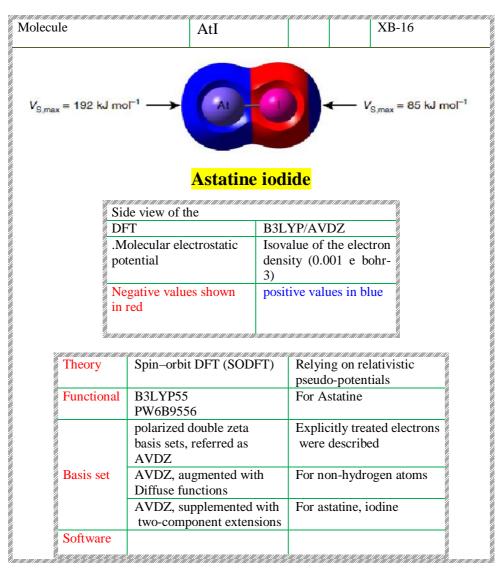
## III. Supplementary Information X-bonded chemical species


## Sup Inf 1: $\sigma$ -hole in Single atom



- potential around its central region.
- $\rightarrow$  It leaves a positive " $\sigma$ -hole" on the outermost portion of its surface centered around the R–X axis.
- This region of lower electron density is known as the  $\sigma$ -hole.
- Its position accounts for the highly directional interaction with the XB acceptor, and the stricter


preference for linear interactions of XB in comparison to HB
Calculated molecular electrostatic potential surfaces of these R-X bonds
show a clear anisotropic distribution of electrons, with a
highly localised region of positive electrostatic potential positioned
on the halogen atom at the head/terminal end of the R—X
bond


# Diatomic halogen molecule



Number σ-holes in	• Elements in groups 16, 15, and 14 of the periodic table have
atom	✓ two, three, and four $\sigma$ -holes
	• if hypervalent, even more $\sigma$ -holes

			(111/111/111/111/111/111								halla ha ha ha ha ha h		
	911091109110911091				Q 1.001100110010011001100110011001100				(7) (17) (17) (17) (17)				un ciji
ESP	of	single	ClF		XB-121	SP	of	single	NH3		XB-121		
molec	ules					mole	cules						
				24,24,24,24			4.4.4.4.	. 4., 4., 4., 4., 4., 4.	1. 1. 1. 1. 1. 1. 1.	1424244	1. 1. 1. 1. 1. 1. 1. 1.	h, 4, 4, 4, 4, 4, 4, 4, 4	William de





MEP	PF2C6H5				X-Bonding
σ-hole (F-P)			Molecule	PF2C6H	
\			MEP	Theory Level	Post-HF MP2
				BS	aug- ccpVTZ
			red	>15	· •
	🛶 🦷 σ-hole	$(C_{\bullet}P)$	yellow	Between	1 8 and 15
	P	(0-1)	green		0 and 8
	F		blue	below 0	kcal/mol
				999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	
/					
σ-hole (F-P)					
l L L M M M M M M M M M M M M M M M M M M	un na				

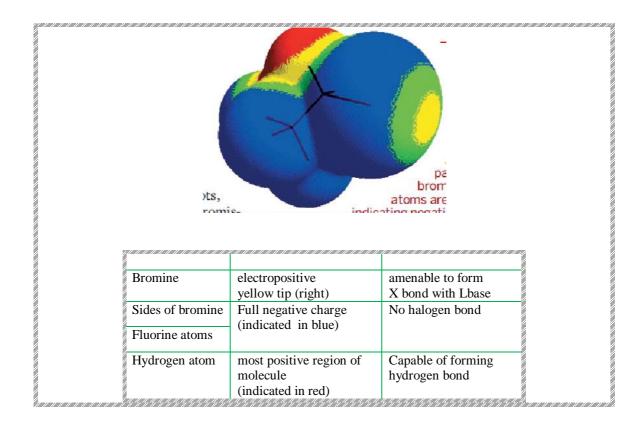
. 1 4000 1 4000. 1 4000	σ-hole	However, the $\sigma$ -hole model does not show the complete picture of the halogen bond,	
1 - 000 - 1 - 000 - 1 - 000	limitations	Future and the exact nature of the bonding interaction has yet to be confirmed	
1			

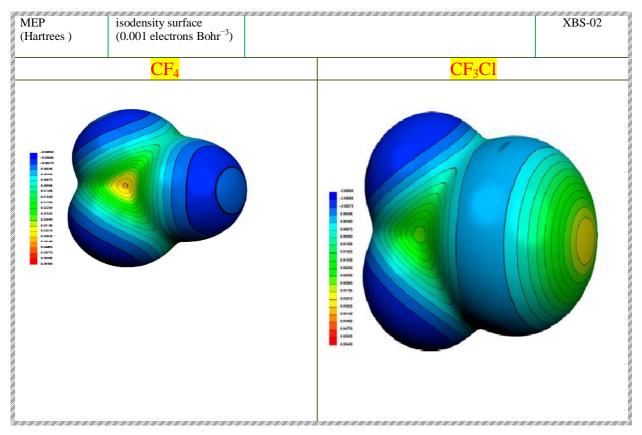
If	electron-attracting power of X is greater than that of the remainder of its molecule
	(R)
Then	halogen atom may gain enough electronic charge to neutralize the $\sigma$ -hole
Why	Fluorine does not participate in halogen bonding
Because	sp-hybridization of the unshared s-valence electrons of F neutralization of the $\sigma$ -hole
Why	σ-hole is observed for the Cl in CF3Cl
-	$\sigma$ -hole is not observed for the Cl in CH3Cl
Because	→ Cl, Br and I atoms in these molecules closely approximate the s2p2x p2y p1z configuration, where the z-axis is along the R-X bond.
	→ The three unshared pairs of electrons produce a belt of negative electrostatic potential around the central part of X,
	leaving the outermost region positive, the $\sigma$ -hole.
	This is not found in the case of fluorine, for which the combination of its high
	electronegativity plus significant sp-hybridization $\rightarrow$ causes an influx of electronic
	charge that neutralizes the $\sigma$ -hole
Trend	These factors become progressively less important in proceeding to Cl, Br and I,

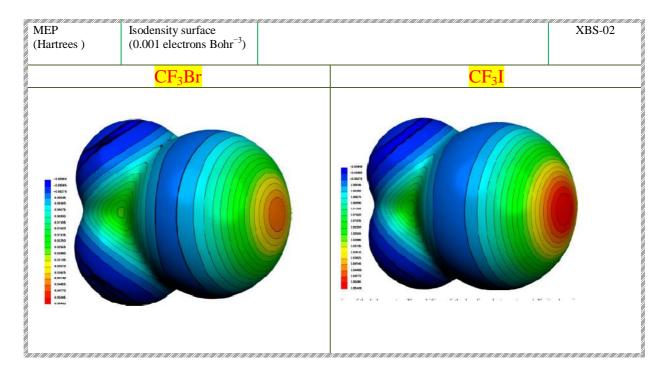
Why	σ-hole not found CF4
Because	higher electronegativity of fluorine gives it a disproportionately large share of the $\sigma CX$ bonding electrons

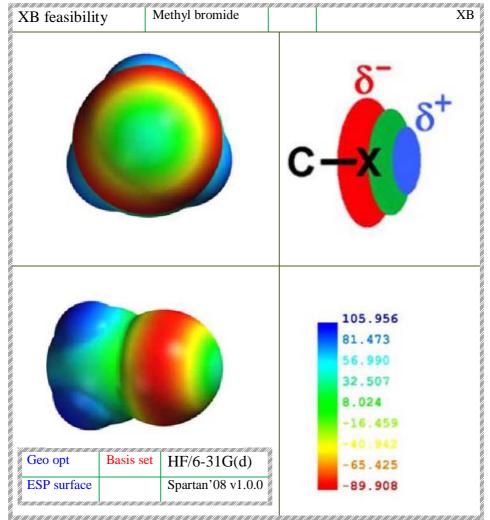
	→ leads to neutralize the $\sigma$ -hole → does not form halogen bond
Why	CH3Cl does not form halogen bond
Because	CH3Cl does not have a σ-hole
Why	CF3Cl form X-bond
Because	Electronattracting power of the chlorine is overwhelmed by that of the three fluorines.

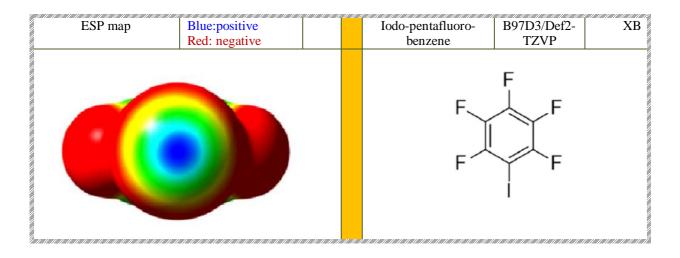
		it's much more difficult in the protein to establish a strong halogen bond than a strong hydrogen bond	
	Because	halogen bonds have a strong geometric requirement	1
1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	J.

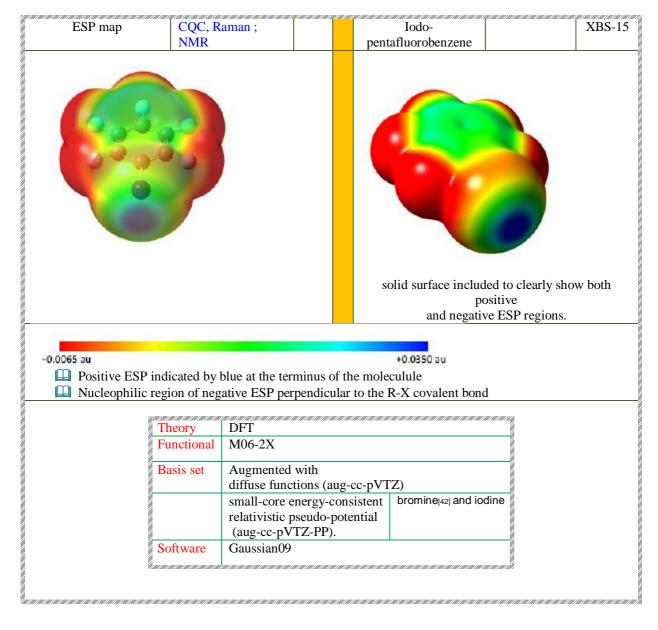

Tuning of $\sigma$ -hole	This r-hole can be tuned through substitution of atoms or chemical groups in the vicinity of a halogen
	Ex: bromine in 5-bromo-4,6-dicyano pyrimidine shows a more positive $\sigma$ -hole than
	the corresponding one in 5-bromopyrimidine

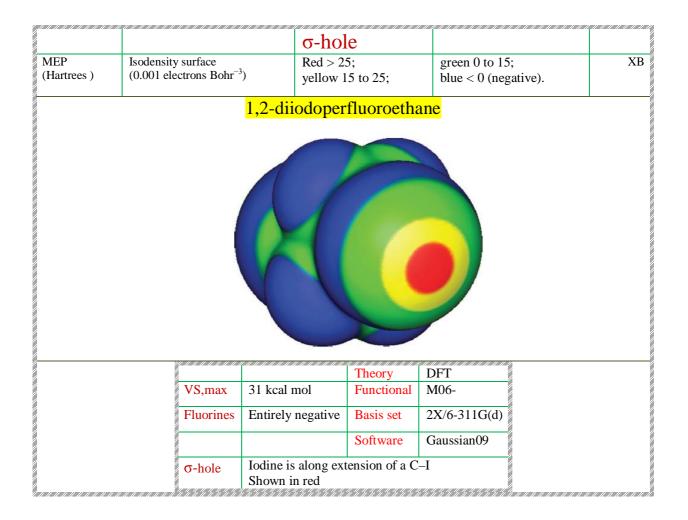

σ-hole	A $\sigma$ -hole bond is a noncovalent interaction between a covalently-bonded atom of Groups IV–			
bond	VII and a negative site			
XB-24	e.g. of negative site: a lone pair of a Lewis base or an anion.			
	It involves a region of positive electrostatic potential, labeled a $\sigma$ -hole, on the extension of one			
	of the covalent bonds to the atom.			


2		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1111/1
	Number of X-bonds	$=$ < number of $\sigma$ -holes in X atom of Lewis acid (LA)	
			8

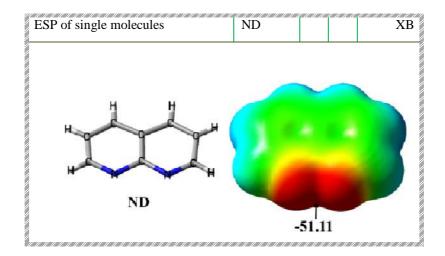

# Single molecules containing halogen atoms


Molecule	CF3CH2Br	rga han han han han han han han han han ha	fallalaina hailaina hailaina hailaina hailaina hailaina ka ka ka ku X	В
la tha tha tha tha tha tha tha tha tha th				

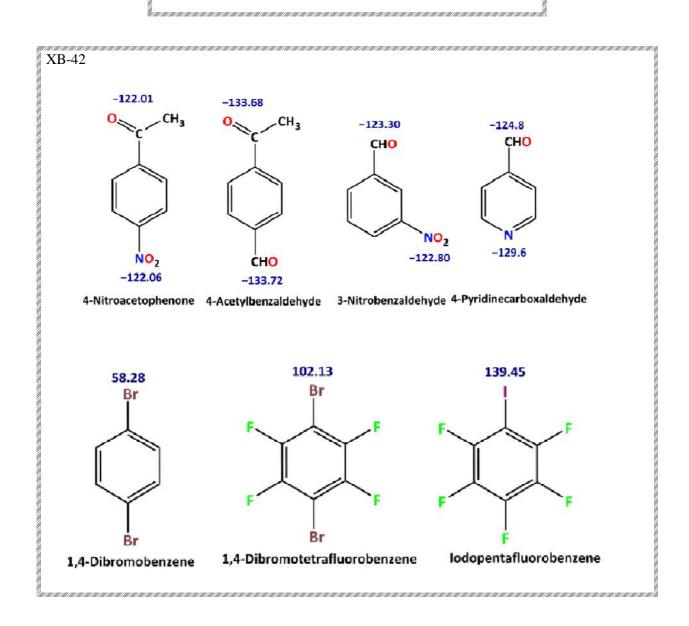


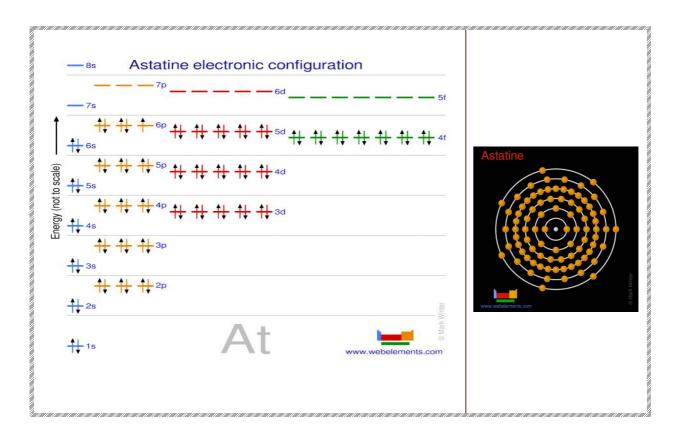


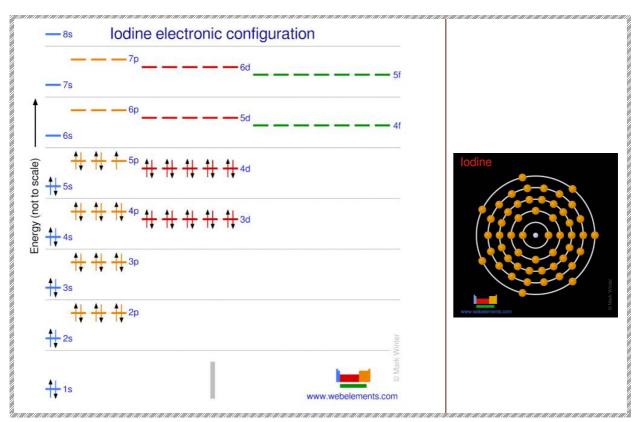



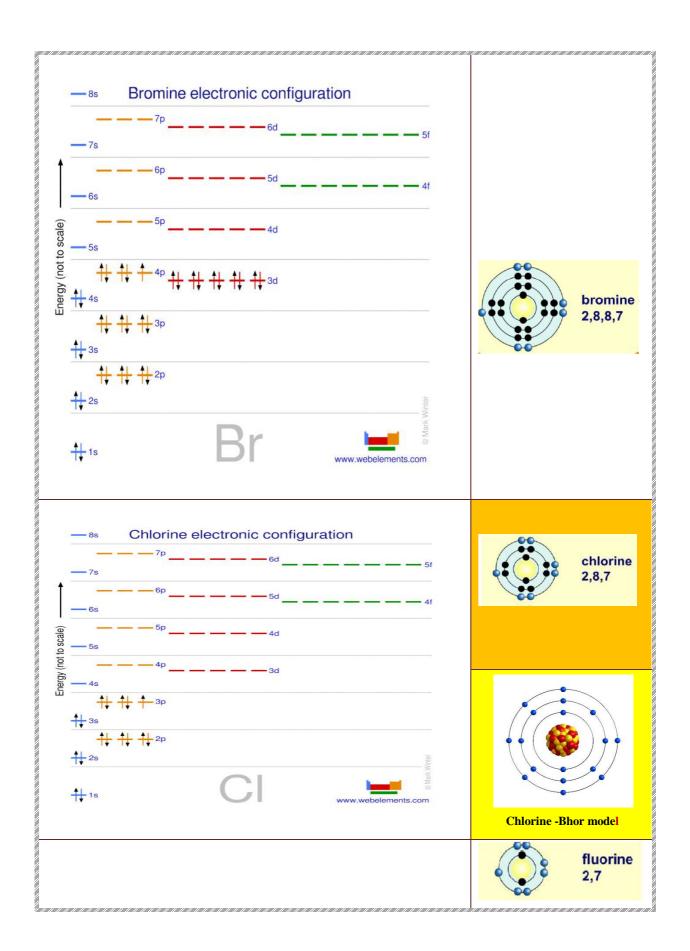


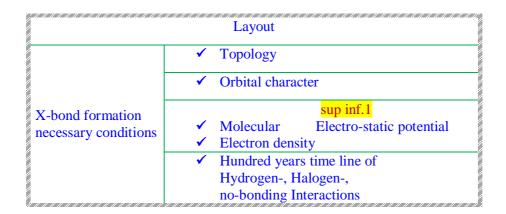


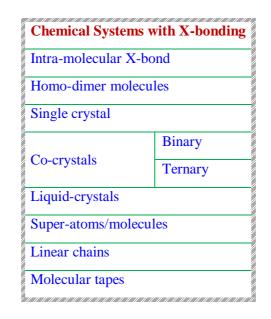


# ESP of Single Molecules LA and LB $\rightarrow$ RX...YZ





Most negative ESP (-51.11) of ND is located at the middle point between two N atoms



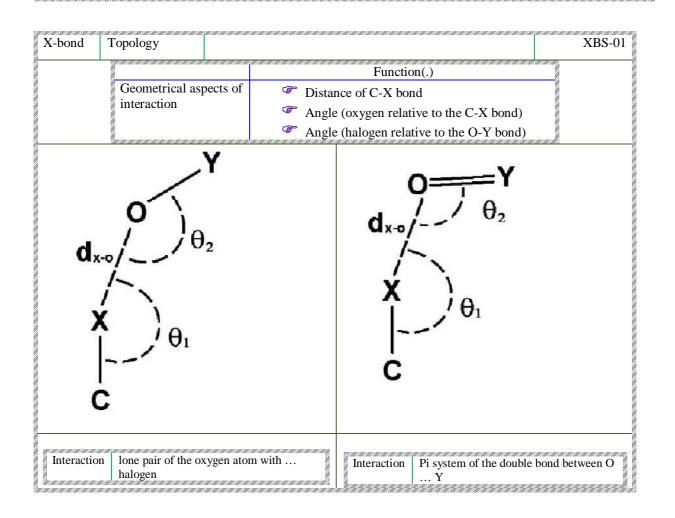

## Electronic configuration of Halogen atoms








## Sup Inf 2: Molecular structures of X-bonded chemical species

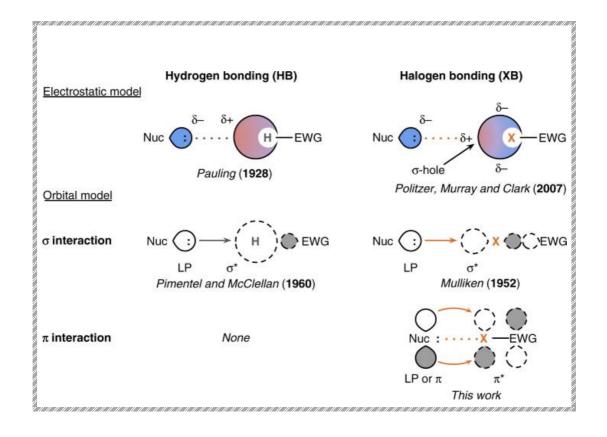




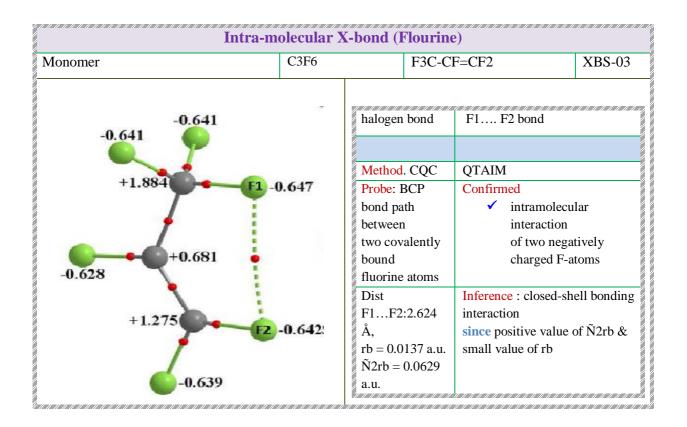

, , , , , , , , , , , , , , , , , , ,	Binary		
Adducts (complexes)	Ternary		
	Fluorine	F	
	Chlorine	Cl	
Halogen (F, Cl, Br, I, At)-bonding	Bromine	Br	
	Iodine	Ι	
	Astatine	At	
Rotaxane X-complexes			

Bio-Molecules	
Bio-systems	
X-bonding + Anot	ner non-covalent bonding
sup inf.3	
Hbonds	
WeakInter	ractions

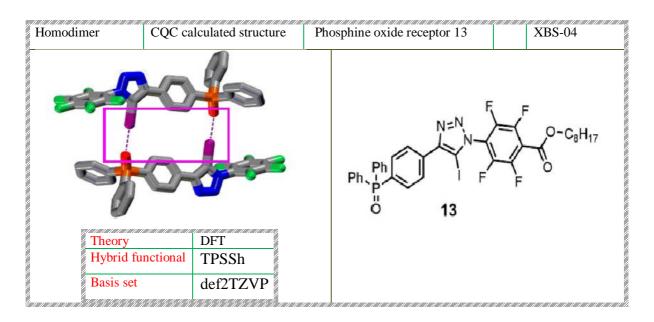
## X...bonds topology




## **Orbital character**

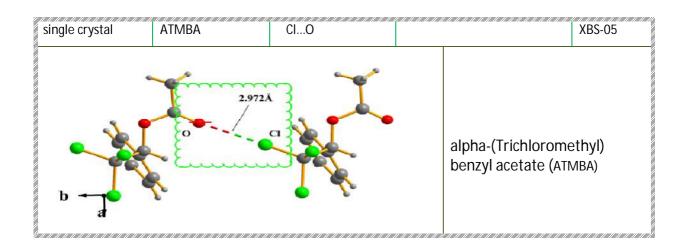

ng fan	CF3X	uaanaan maaanaan maaanaan maaaan	XBS-02
	$CF_4$	<mark>CF₃Br</mark>	

unshared s-electron pair(75.12%) in CF ₄	unshared s-electron pair in CF ₃ Br
p-character (25%) more than that in CF ₃ Br (8%)	p-character less than that in CF4
	unannan kuun kuun kuun kuun kuun kuun ku

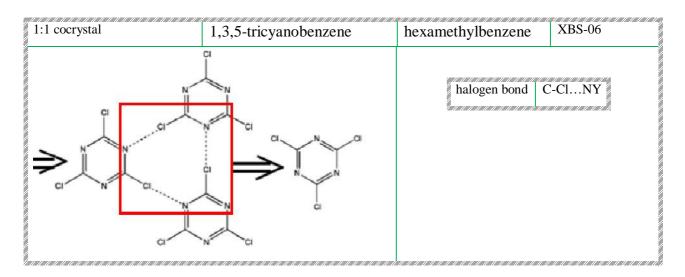

## Hundred years Time line of H-, Ha-, no-bonding Interactions

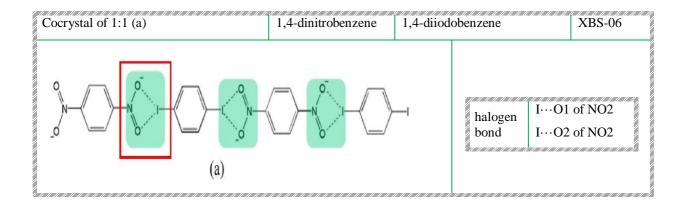


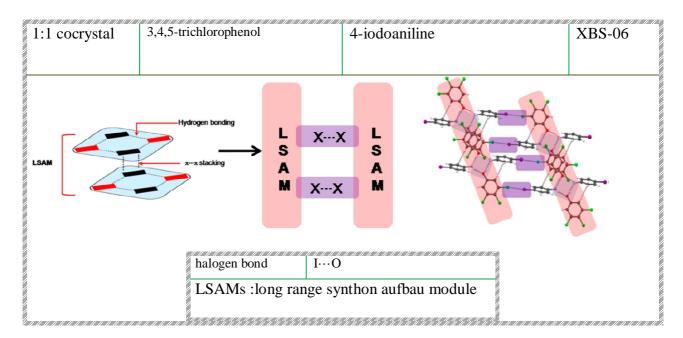
# Chemical Systems with X-bonding

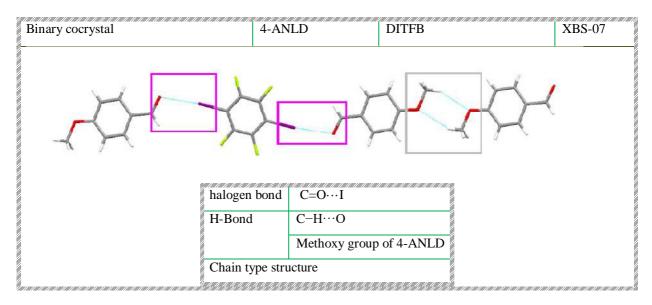


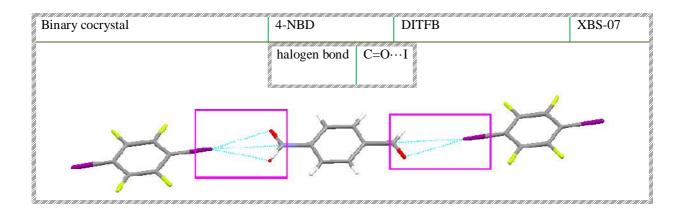

## Homo-dimer molecules

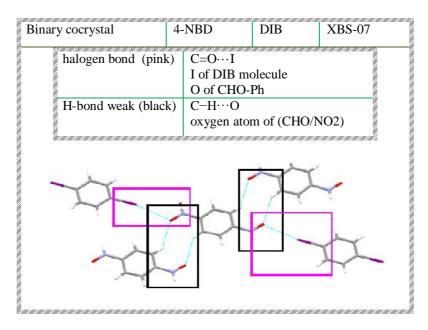


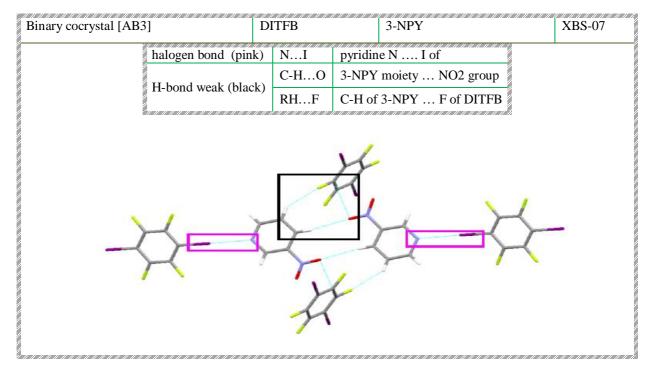


Crystal	Chemical species	
✓ Single crystal	Monomer	
✓ Cocrystal	➔ Adduct	➔ Binary
		→ Ternary

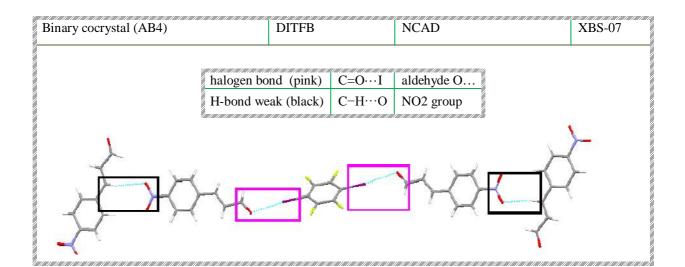

# Single crystal

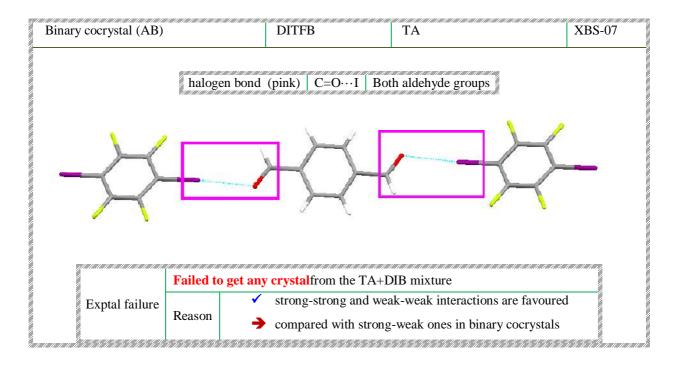


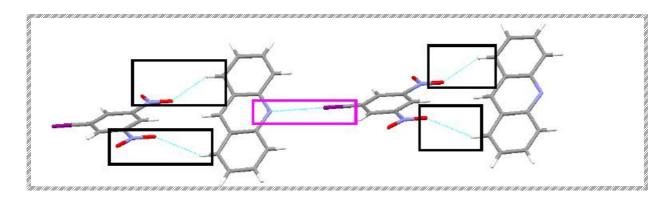



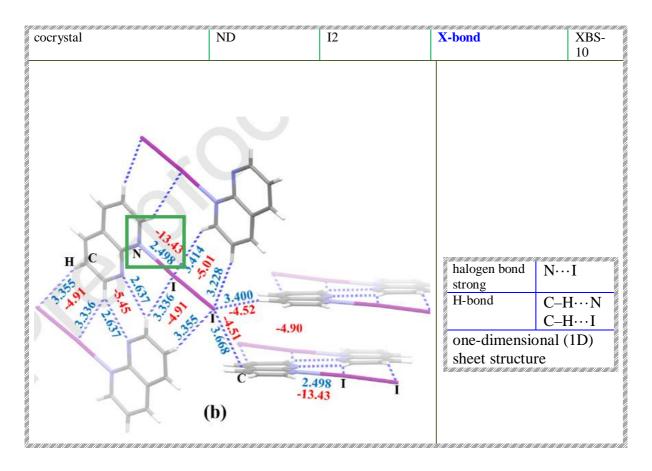



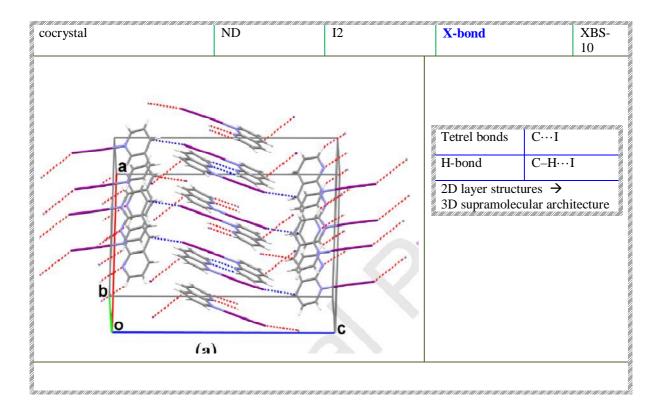



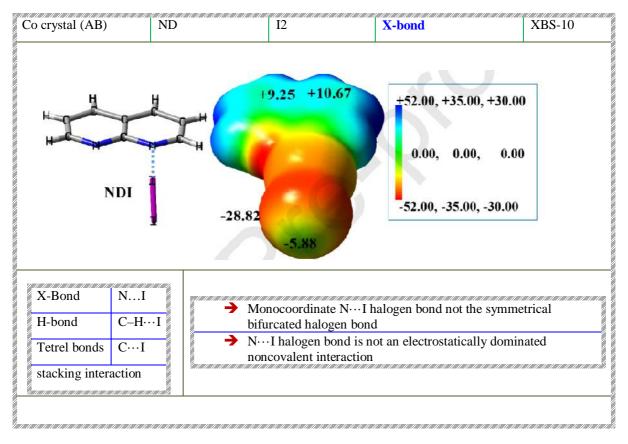




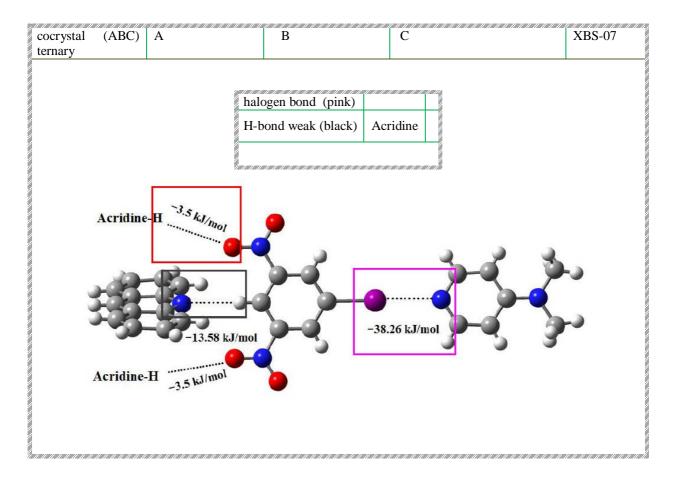



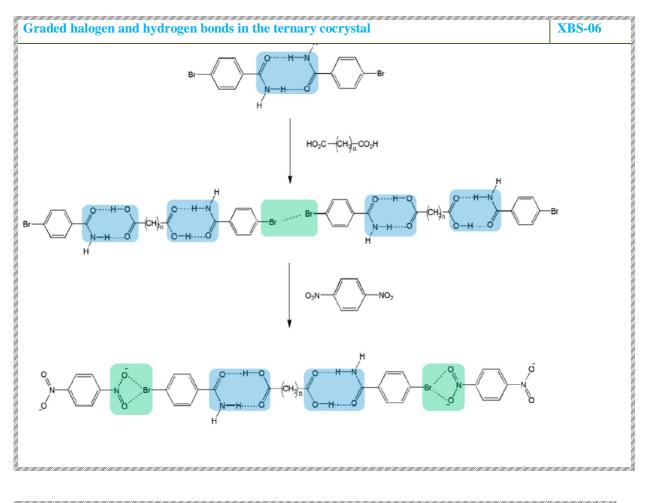



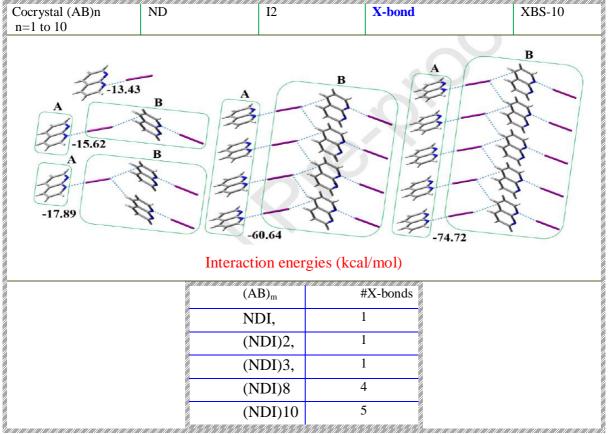


Binary cocrystal (	(AB) $(AB)$	IDNB:		ACR	987   987   987   987   987   987   987   987   987   987   987   987   987   987	XBS-07
	halogen bond (pink)	C=N…I	N atom of	f ACR I-atom	n of IDNB	
	H-bond weak (black)	С−н…о	phenyl H	atom O of NO	D2 group	
	two molecule	es are not pla	inar			
bisect each other at an angle of 35.38°						



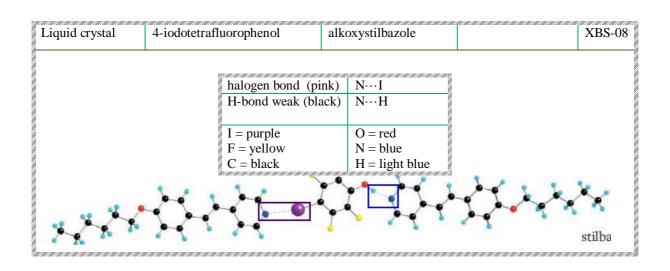
Probe: CQC	XBS-07
<ul> <li>Geo.optimization</li> <li>Electronic energy</li> </ul>	TheoryDFTFunctionalwB97XDBasis setdef2-TZVPSoftwareGaussian09
Proton affinity (PA)	Same level as opt
→ ESP	Geometry opt: wB97XD Software: WFA-SAS software
<ul> <li>Charges on individual atoms</li> </ul>	Natural Bond Orbital (NBO) analysis
<ul> <li>Interaction energy of ternaries (only involving halogen bonds)</li> </ul>	Optimized geometries



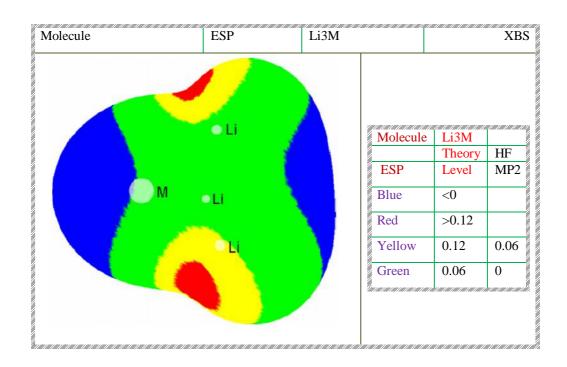



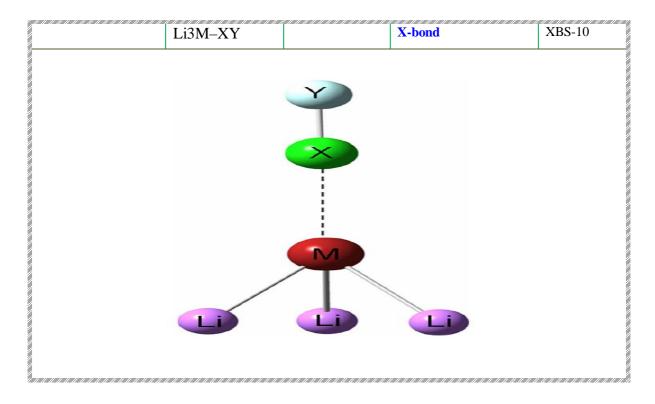





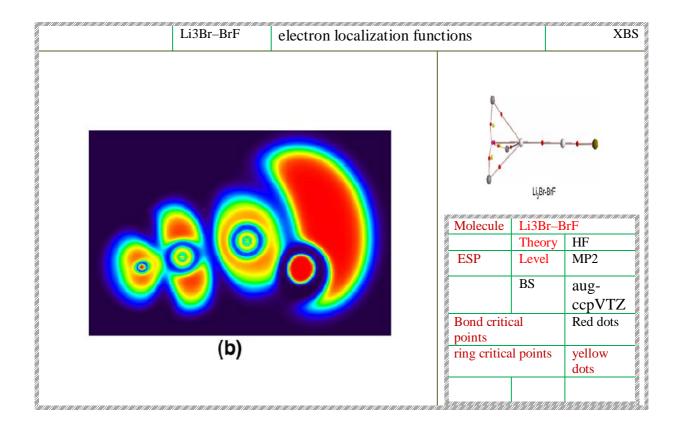





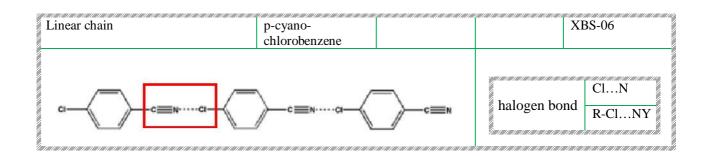



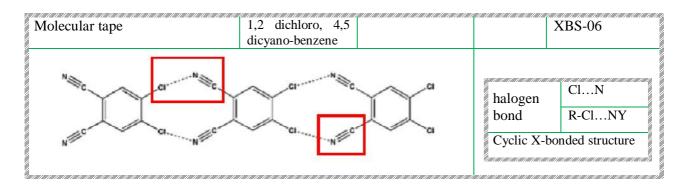

### **Liquid-crystals**

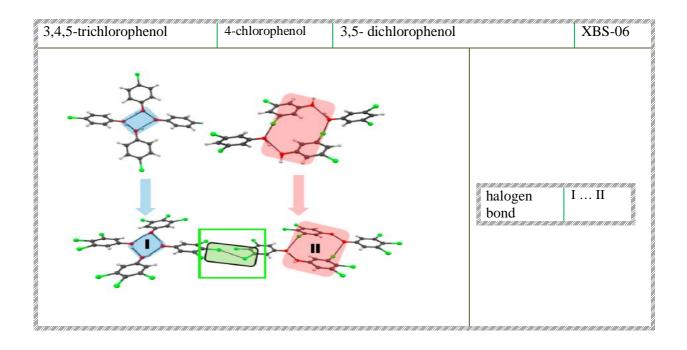



# Super-atoms/molecules

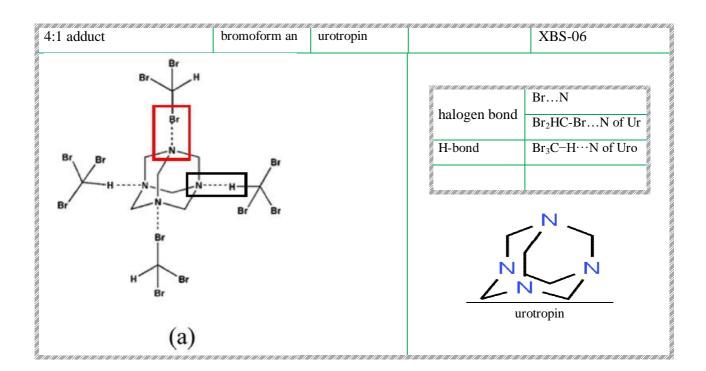




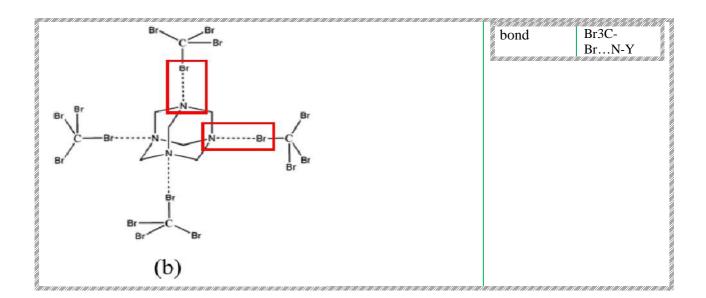


Li3Cl-ClCl	electron localization fun			XBS
			Ligot-cic	
		Molecule	Li3Cl-C Theory	HF
		ESP	Level	MP2
	<u> </u>		BS	aug- ccpVTZ
(a)		Bond critic	cal	Red dots
(u)		points ring critica	l points	yellow dots

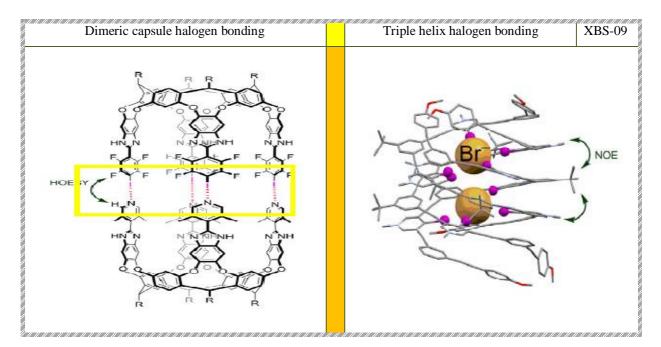


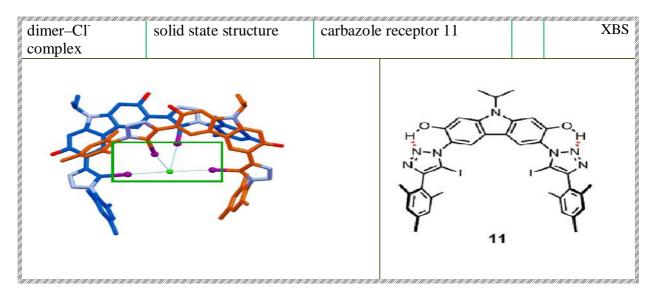

### Linear chains



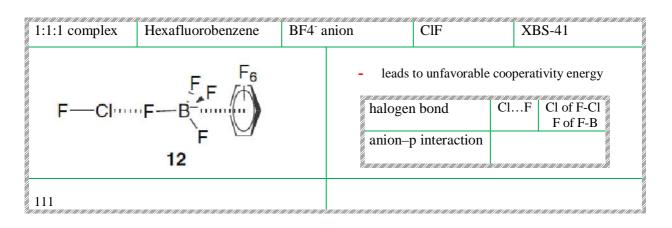

### **Molecular tapes**

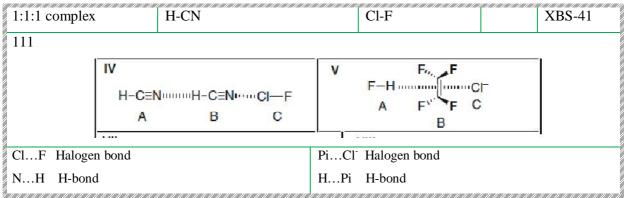




### **Binary adducts (complexes)**




4:1 adduct	carbon tetrabromide	urotropin		XBS-06
, , , , , , , , , , , , , , , , , , , ,			halogen	BrN

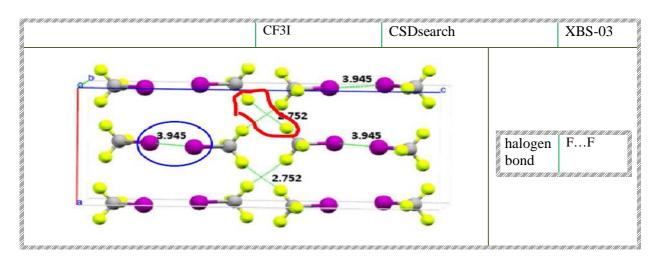


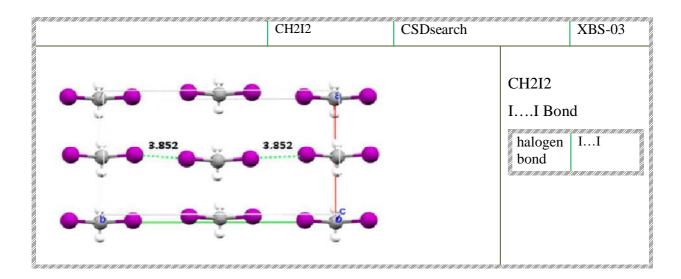


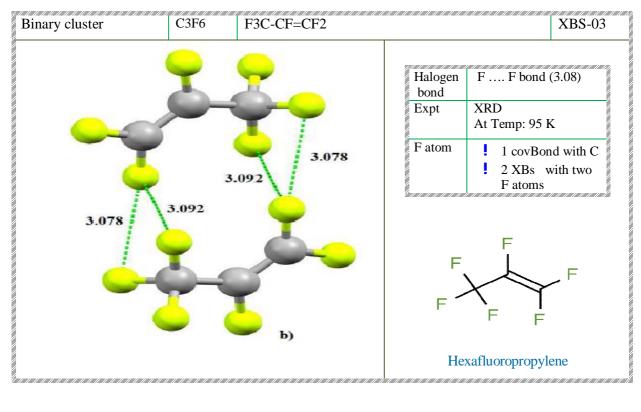



### **Ternary molecular adducts (complexes)**







Omom


# Flourine

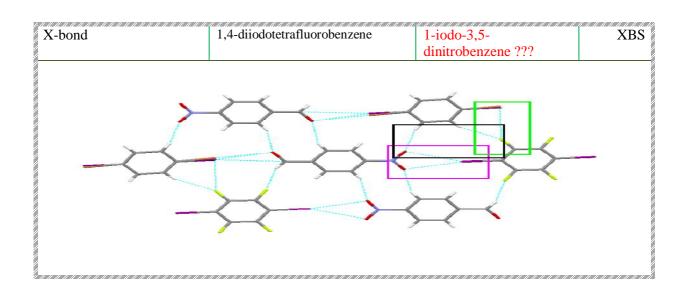
# Halogen (X)

## **Non-covalent Bond**





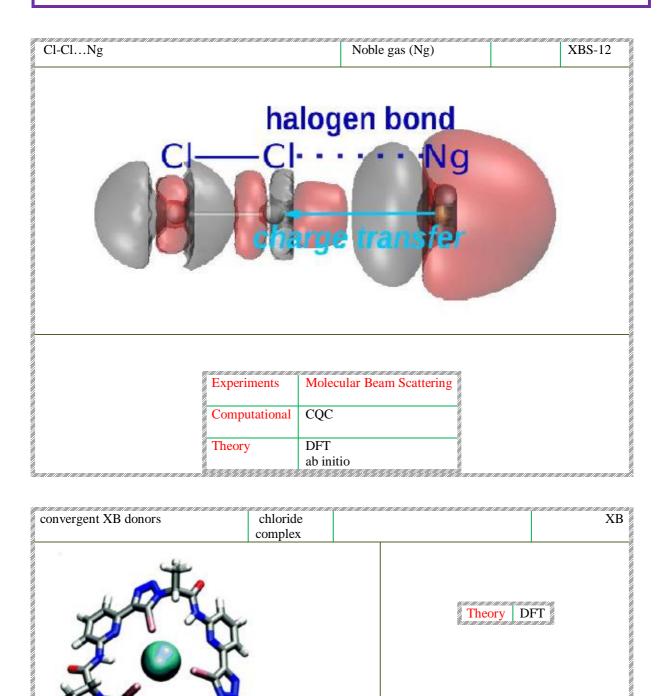


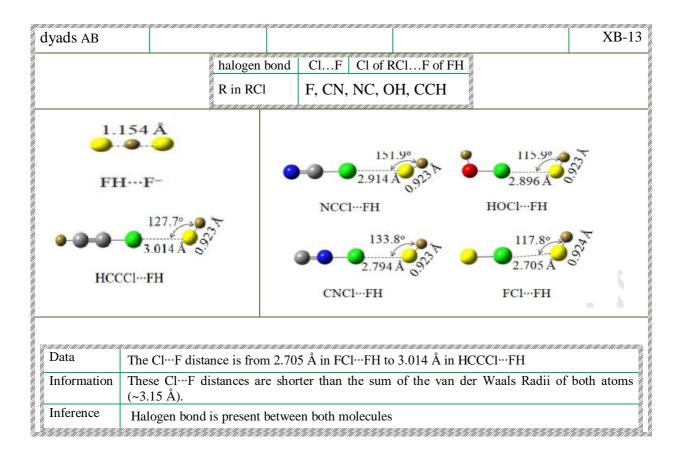

1	2011/11/11/11/11/11/11/11/11/11/11/11/11/	(1) ( (1) ( ((1) ((1) ((1) ((1) ((1) ((	le de	/10/11/11/11/11/11/11/11/11/11/11/11/11/	
	MESP	C3F6		VBS	
	MESI	0.51.0			
		monomer			
				han an an an an an an an Alb	

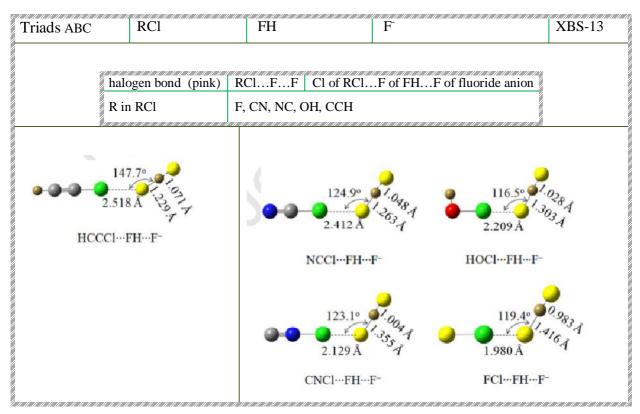


### QTAIM based

M06-2X/6-311++G(2d,2p) molecular graph for the C3F6 monomer, showing the

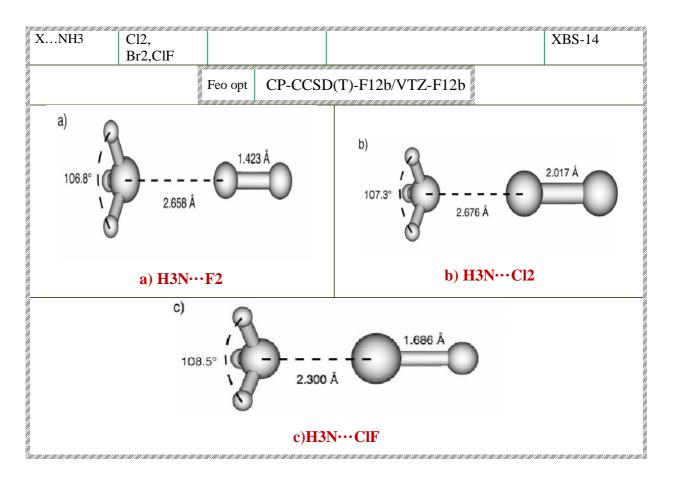

- ! Bond critical points as tiny spheres in red
- ! Bond paths (solid and dotted lines in atom color; fluorine: green; carbon: dark-gray).
- ! Atomic charges are given in e.
- b) and c: solid and dotted versions of the 0.001 a.u. (electrons bohr–3) isodensity map of the molecular electrostatic surface potential of C3F6

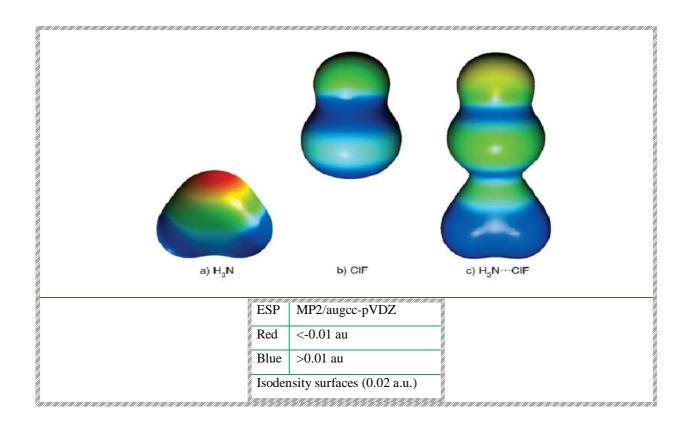




### Chlorine

Halogen (X)

## **Non-covalent Bond**



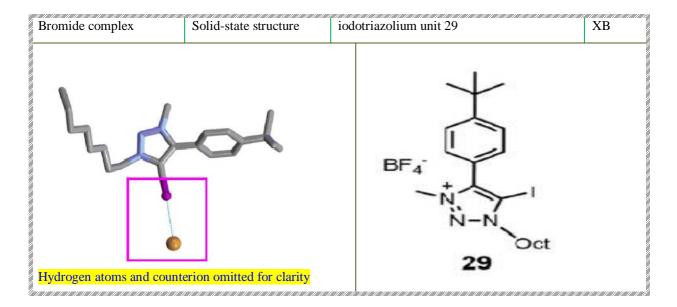



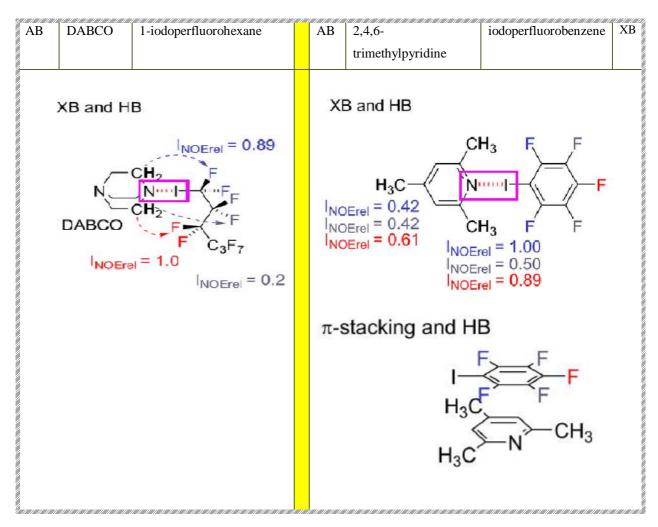


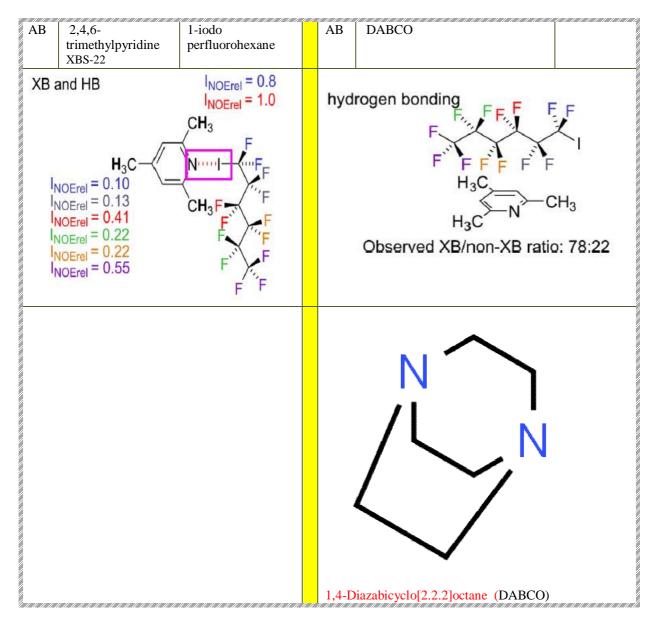

RCl…FH	R-Cl	F-H	FH…F–	F-Cl	F-HF	XBS-13
9-9	hlorine bond		⇒	-	orine bond	
[R = F, CCH, CN, OH, NC]		very stron	ig hydro	ogen bond ii	n FH…F−.	

DFT	XBS-25
B3LYP	
	CF4
6–311+G(d)	CF3Cl
	CF3Br
DGDZVP	CF3I
	B3LYP 6–311+G(d)

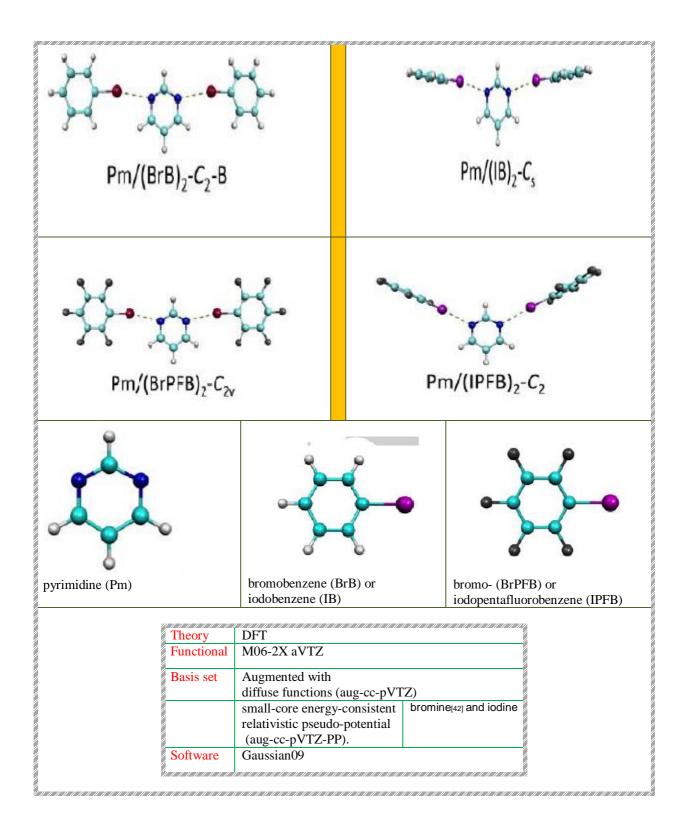


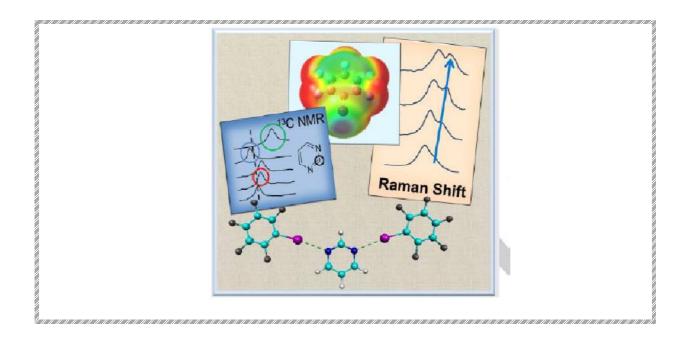




## Bromine


# Halogen (X)

## **Non-covalent Bond**

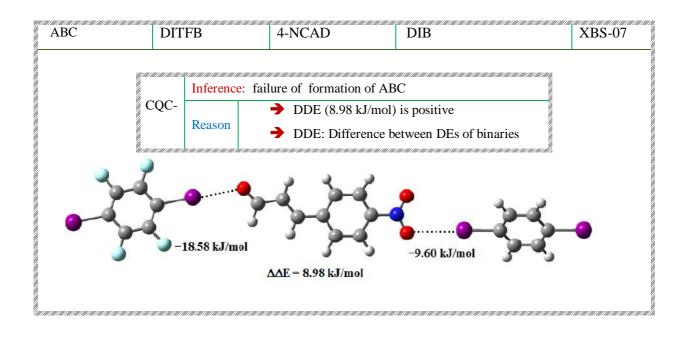

KCl	CBr4 or CCl4	CI	nno ; nno ; nno ; nno ; nno ; ntiti ; htiti	X-bond	XB
$\Delta E^{CP} = -21.13$ $E_{rel} = 0.00$ Br $Br$ Br $Br$ Br	+0.0718 Br—	$E^{CP} = -3.76$ $E_{rel} = +15.66$ Br Br Br	cr		
$\Delta E^{\rm CP} = -11.52$ $E_{\rm rel} = 0.00$ CI	-0.0061	$E^{CP} = -2.85$ $E_{rel} = +7.85$ $Cl \cdot \cdot \cdot \cdot$	(r,		ans ngation

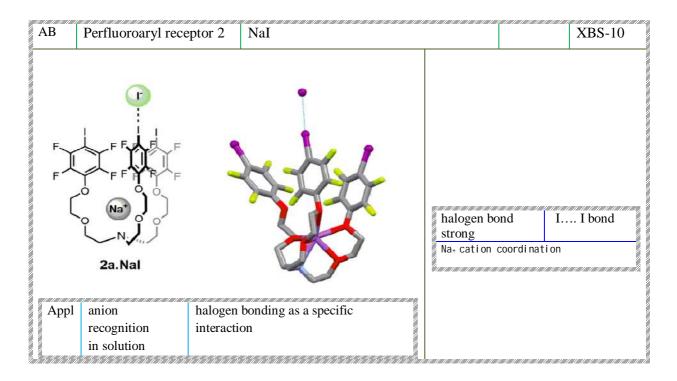


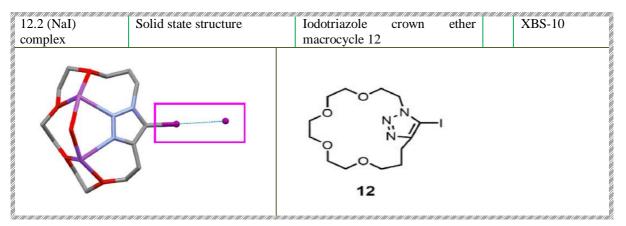


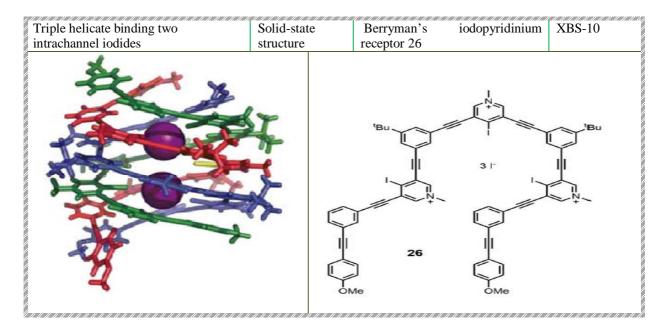



	CQC, Raman ;	Iodo- pentafluorobenzene	pyrimidine	XBS-15
Pm/BrB-C _s	Pm/IB-C _s	Pm/BrPFB-C _s	Pm/IPF	B-C _s
1 2 4				



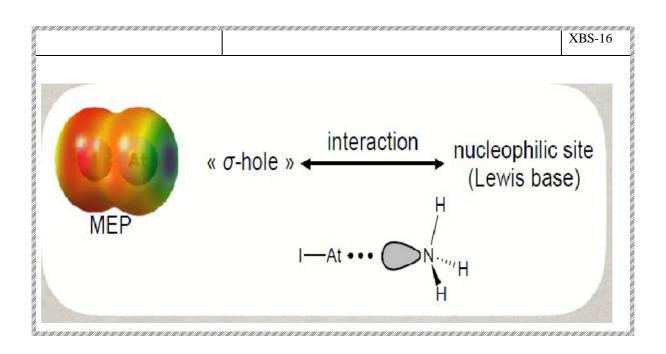


## lodine

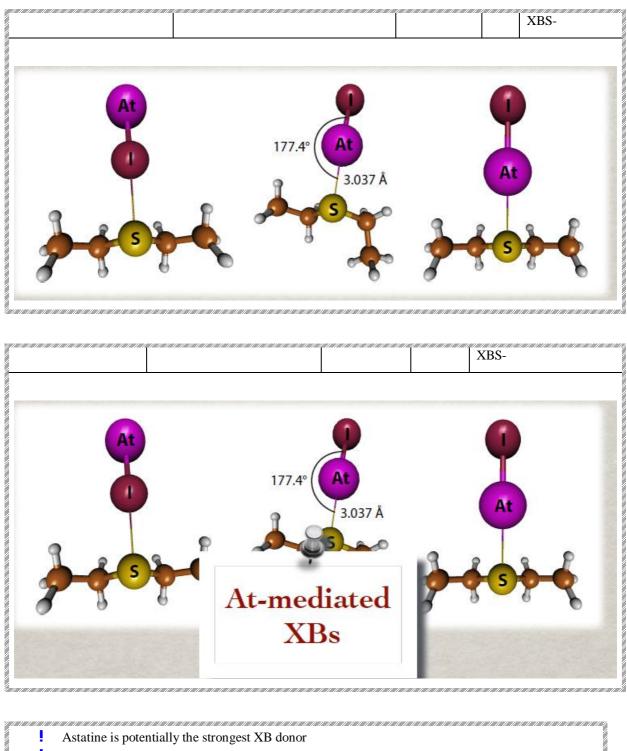

# Halogen (X)

### **Non-covalent Bond**



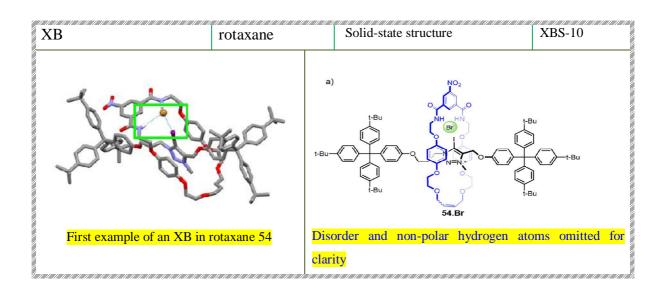




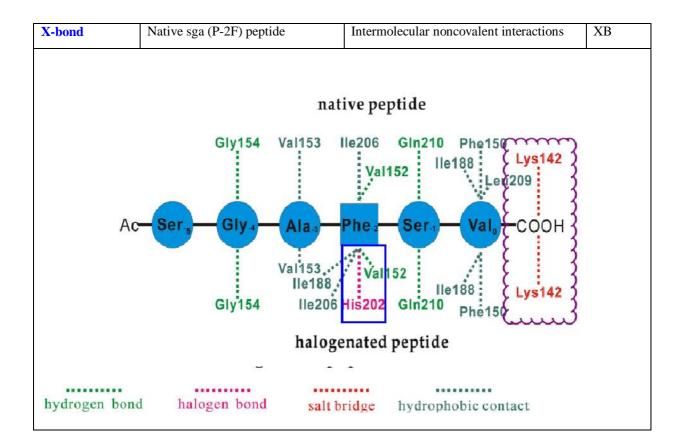

gyr i ar i	Fact base. $\sigma$ -bond
CF ₄	fluorine hemispheres are negative
CF ₃ Cl	<ul> <li>positive potential develops on the outermost portion of its surface, around its intersection with the C-Cl axis.</li> <li>This positive region, which is centered on the C-X axis, as the "σ-hole" in the belt of negative potential that encompasses the chlorine</li> </ul>
CF ₃ Br CF ₃ I	$\rightarrow$ $\sigma$ -holes on the bromine and the iodine are progressively larger and more positive
$\stackrel{\text{Consequence}}{\rightarrow}$	these positive regions that are responsible for the halogen-bonding capabilities of CF3Cl, CF3Br and CF3I, as well as other halogen-bearing molecules
	halogen bonding by CF3Cl, CF3Br and CF3I is greatly enhanced by the three electron withdrawing fluorines
CH ₃ Cl	CH3Cl does not even have a $\sigma$ -hole [13, 15–17],
CH ₃ Br	$\sigma$ -hole on the bromine and iodine &
CH ₃ I	σ-hole in CH3Br and CH3I are much weaker
CH ₄	

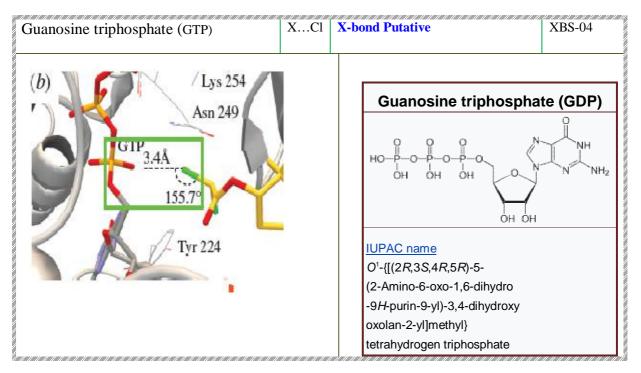
### Astatine


# Halogen (X)

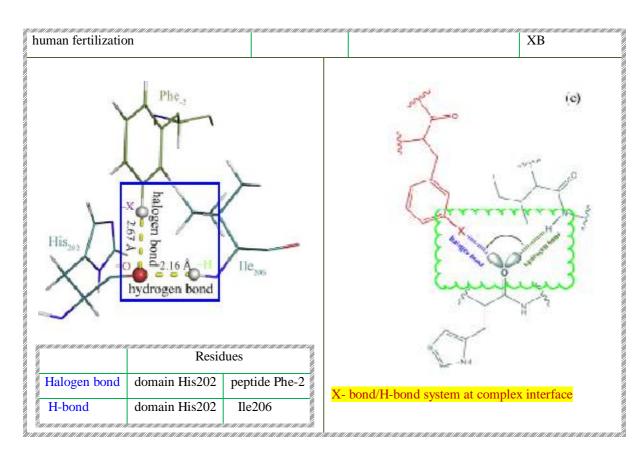






- Extend the range of the XB basicity scale
- Influence of relativistic effects on At-mediated XBs
- At-mediated XBs relevant to targeted alpha immunotherapy

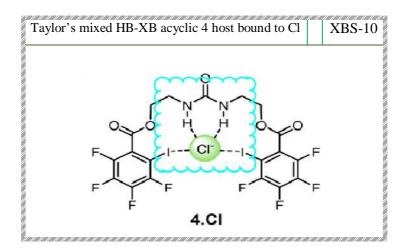

### **Rotaxane X-complexes**

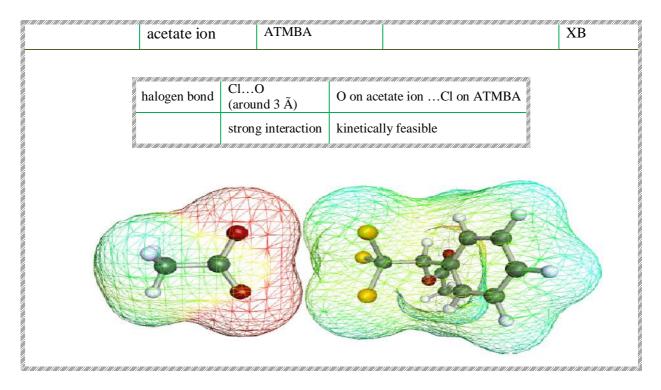


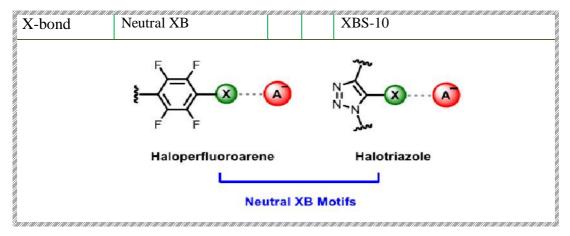

## Bio-systems Bio-Molecules



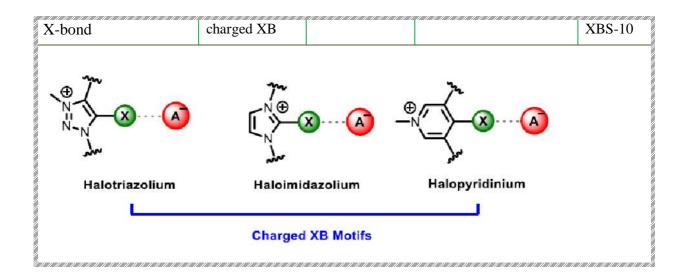




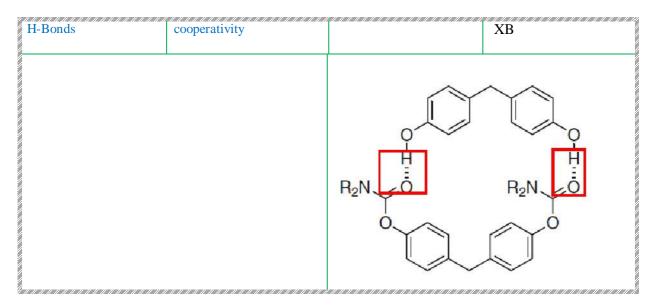



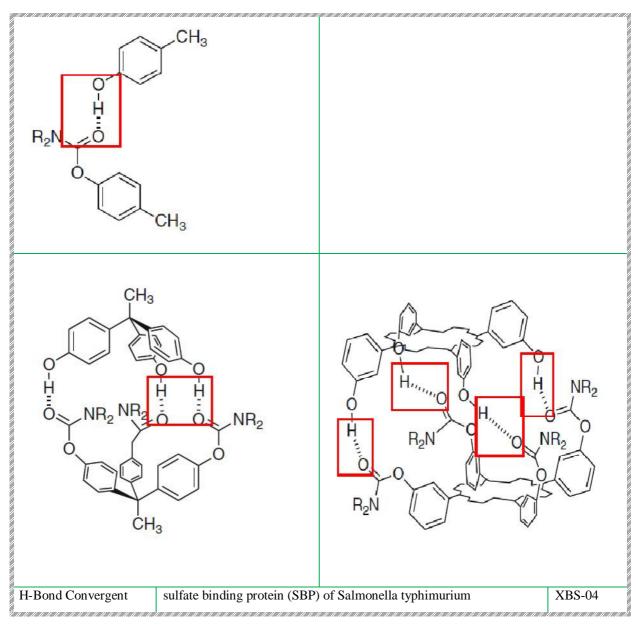

x Interactions → H-bon	π-π		XB
c-Ser_5-Gly_4-Ala_3-Phe_2-Ser_1-Val_0-COOH	Pepti	de	
	ortho	meta	para
	Н	Н	Н
	F	Н	Н
para ortho -Br	C	Н	Н
	Br	Н	Н
meta	I	Н	н
	н	F	н
	н	CI	Н
	н	Br	н
	н	1	н
	н	Н	F
	н	H	Cl
	Н	Н	Br
	н	Н	1

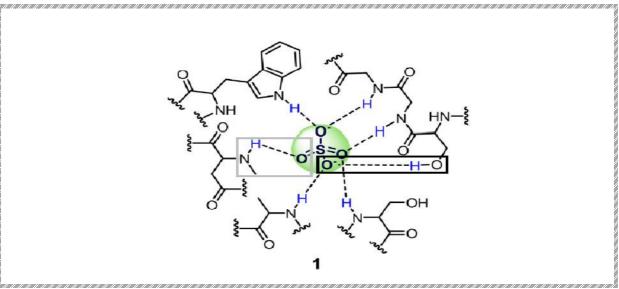

### X-bonding + Another non-covalent bonding

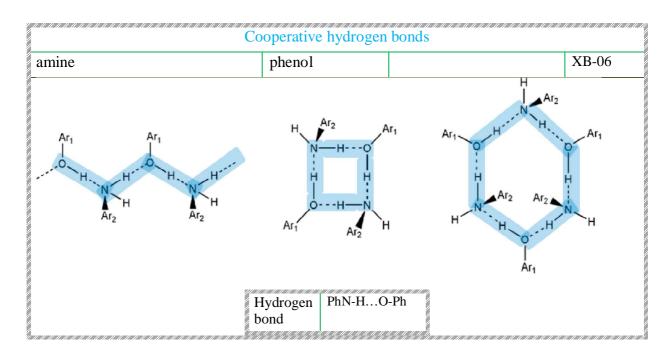


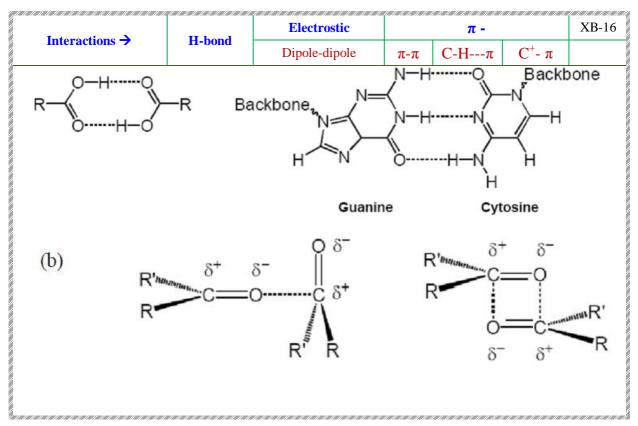


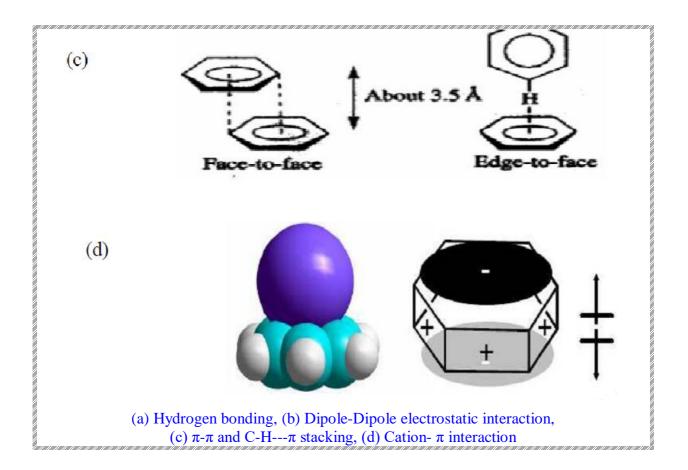




 $AAA \rightarrow CNN \rightarrow$  Ha-Bond

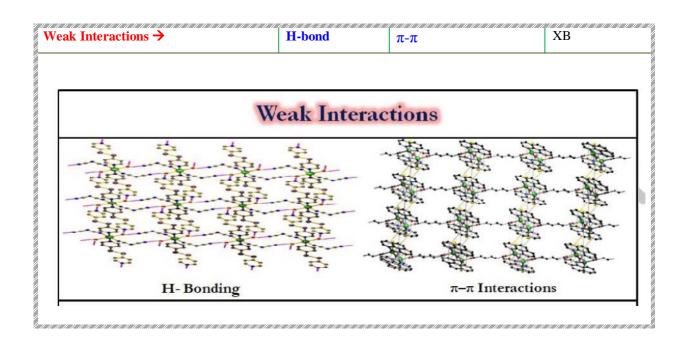


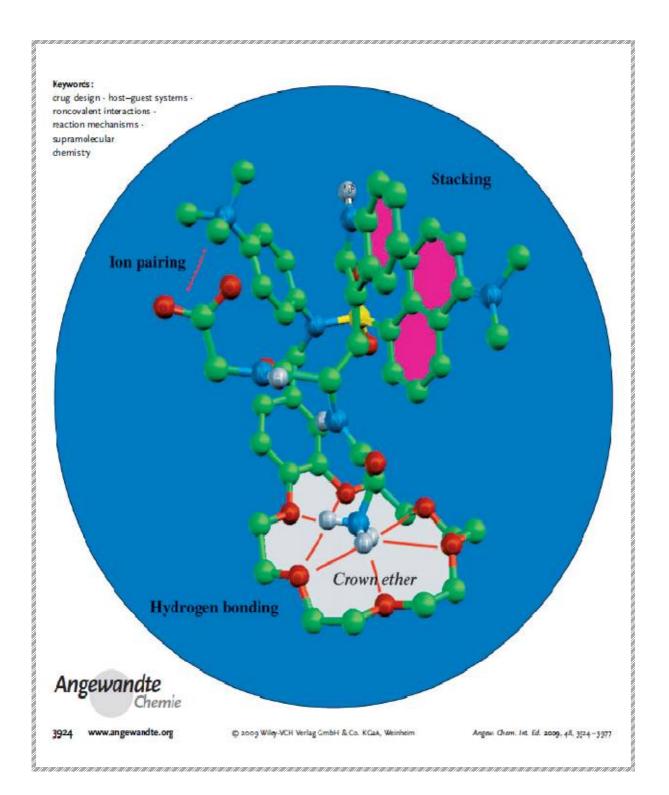





Hbonds				
Co-operative				
Weak				
Strong				
Convergent				










### Weak... ... ... Interactions





### Sup I nf 4: Supplementary References

	XBS-01				
Halogen Atoms in the Modern Medicinal Chemistry:	Current Drug Targets, 2010, 11, 303-314				
Hints for the Drug Design					
Marcelo ZaldiniHernandes*,1, Suellen Melo T. Cav	alcanti1, Diogo Rodrigo M. Moreira 1,2,				
Walter Filgueira de Azevedo Junior 3 and Ana Cristina Lima Leite					
Halogen bond-strong weak Halogen bond-strong weak					

XBS-02				
J Mol Model (2007) 13:291–296				
DOI 10.1007/s00894-006-0130-2				
Timothy Clark & Matthias Hennemann& Jane S. Murray & Peter Politzer				

#### Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-03
Nature of Halogen-Centered Intermolecular	Journal of Computational Chemistry
Interactions in Crystal Growth and Design: Fluorine-	39(23):1902-1912
Centered Interactions in Dimers in Crystalline	
Hexafluoropropylene as a Prototype	
Arpita Varadwaj, Helder M. Marques and Pradeep R. Varadwaj	
Weleger hand strong useh . Weleger hand strong useh	

#### Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-04
Halogen bonding motifs for anion recognition	Coordination Chemistry Reviews, 2020 doi.org/10.1016/j.ccr.2020.213281
Jessica Pancholi, Pau	al D. Beer

#### Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-05
Deep analysis of the solubility behaviour mechanism	J. Chem. Thermodynamics 151 (2020)
of	106246
alpha-(trichloromethyl) benzyl acetate in three binary	doi.org/10.1016/j.jct.2020.106246
aqueous solvents	
Ning Wei, Zeren Shang, Nuoyang Zhang, Jingkang Wang, Songgu Wu	
Uplogen bend strong week Upl	and hand atmospheric

	XBS-06
Halogen Bonds in Crystal Engineering: Like Hydrogen	Acc. Chem. Res, 47(2014) 2514–2524
Bonds yet Different	dx.doi.org/10.1021/ar5001555
Arijit Mukherjee, Srinu Tothadi, and Gautam R. Desiraju	

Halogen bond-strong weak-- Halogen bond-strong weak-

	XBS-07
Synthetic Approaches to Halogen Bonded Ternary	Angew Chem., (2021)
Cocrystals	doi.org/10.1002/anie.202103516
Harsh Jain, Dipankar Sutradhar, Sourav Roy, and Gautam R. Desiraju	

Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-08
HALOGEN BONDING BEGINS TO FLY ACS MEETING NEWS: Noncovalent interaction akin to hydrogen bonding is becoming an important tool for chemists	WWW.CEN-ONLINE.ORG 39 SEPTEMBER 21, 2009
STEPHEN K. RITTER , C&EN WASHINGTON	

#### Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-09
Halogen bonding in solution: NMR spectroscopic approaches	Coordination Chemistry Reviews, 407 (2020) 213147 /doi.org/10.1016/j.ccr.2019.213147
Daniel von der Heiden, Alan Vanderkooy, MátéErdélyi	

Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-11
Cooperativity in multiple unusual weak bonds	Theor Chem Acc (2010) 126:1–14 DOI 10.1007/s00214-009-0690-1
IbonAlkorta, Fernando Blanco, Pere M. Deya, Jose´ Elguero, Carolina Estarellas, Antonio Frontera, David Quin~onero	

	XBS-12
An Insight Into The Halogen-Bond Nature Of Noble Gas-Chlorine Systems By Molecular Beam Scattering Experiments, Ab-Initio Calculations And Charge Displacement Analysis	Phys. Chem. Chem. Phys.,21(2019) 7330- 7340 DOI: 10.1039/C9CP00300B
F. Nunzi, D.Cesario, L. Belpassi, F. Tarantelli, L. F. Roncaratti, S. Falcinelli, D. Cappelletti and F. Pirani,	

### Halogen bond-strong weak-- Halogen bond-strong weak-

	XBS-13
Strengthening of halogen bond in XCl…FH…F– through cooperativity with a strong hydrogen bond and proton transfer	Journal of Molecular Graphics and Modelling,2020 https://doi.org/10.1016/j.jmgm.2020.107673
Z. Li, X. An	

Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-14
Synthetic Approaches to Halogen Bonded Ternary Cocrystals	AngewandteChemie, 60(2021) 12841-12846 doi.org/10.1002/anie.202103516
Harsh Jain, Dr. Dipankar Sutradhar, Dr. Sourav Roy, Prof. Gautam R. Desiraju	

Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-15
Quantifying the Effects of Halogen Bonding by	ChemPhysChem, 18 (2017)
Haloaromatic Donors on the Acceptor Pyrimidine	DOI:10.1002/cphc.201700114
Thomas L. Ellington, Peyton L. Reves, Briana L. Simms, Jamey L. Wilson, Davita L. Watkins,	
Gregory S. Tschumper and Nathan I. Hamme	

#### Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-16
Experimental and computational evidence of halogen (At) bonds involving astatine	Nature Chem, 10(2018) 428–434 doi.org/10.1038/s41557-018-0011-1
Guo, N., Maurice, R., Teze, D.	

Halogen bond-strong weak-- Halogen bond-strong weak-

	XBS-17
Quantum calculations of At-mediated halogen	New J. Chem., 42(2018) 10510-10517
bonds: on the influence of relativistic effects	DOI: 10.1039/c8nj00484f
N. Galland, G. Montavon, J.Y. Le Questela and J. Graton	
Halagan band-strong weak Halagan band-strong weak	

#### Halogen bond-strong weak-- Halogen bond-strong weak-

XBS-18
Coordination Chemistry Reviews, 413
(2020) 213243
/doi.org/10.1016/j.ccr.2020.213243
Bonifazi

	XBS-19
Weak interactions: the architect behind the structural	InorganicaChimica Acta,2019
diversity of coordination polymer	doi.org/10.1016/j.ica.2019.01.008
Ananta Ghosh, Abhijit Hazra, Amita Mondal and Priyabrata Banerjee	

### Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-20
The Halogen Bond	Chem rev Special Issue: Frontiers in
	Macromolecular and Supramolecular
	Science, 2015
	DOI: 10.1021/acs.chemrev.5b00484
Gabriella Cavallo, PierangeloMetrangolo, Roberto Milani, TullioPilati, ArriPriimägi,	
Giuseppe Resnati and Giancarlo Terraneo	

### Halogen bond-strong weak-- Halogen bond-strong weak-

	XBS-21
Halogen bonding and other r-hole interactions:	Phys. Chem. Chem. Phys, 2013
a perspective	DOI: 10.1039/c3cp00054k
Peter Politzer, Jane S. Murray and Timothy Clark	

### Halogen bond-strong weak-- Halogen bond-strong weak-

	XBS-22
Semicoordination Bond Breaking and Halogen Bond	Crystal Growth & Design
Making Changes the Supramolecular Architecture of	DOI: 10.1021/acs.cgd.0c00999
Metal-containing Aggregates	
Lev E. Zelenkov, Daniil M. Ivanov, Evgeniy K. Sadykov, Nadezhda A.	
Bokach, BartomeuGalmés, Antonio Frontera, and Vadim Yu. Kukushkin	
Halagan band-strong weak Hal	agen hand streng weak

#### Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-23
Definition of the halogen bond (IUPAC	Pure Appl. Chem., 85 (2013) 1711–1713
Recommendations 2013)*	doi.org/10.1351/PAC-REC-12-05-10
Gautam R. Desiraju, P. Shing Ho, Lars Kloo, Anthony C. Legon, Roberto Marquardt,	
PierangeloMetrangolo, Peter Politzer, Giuseppe Resnati, and Kari Rissanen	
Halogen bond-strong weak Halogen bond-strong weak	

XBS-24
WWW.CEN-ONLINE.ORG
(2012)36

	XBS-25
Emergence of anion-p interactions: The land of	Coordination Chemistry Reviews, 415 (2020)
opportunity in supramolecular chemistry and beyond	213327
	doi.org/10.1016/j.ccr.2020.213327
Ishfaq Ahmad Rather, Shafieq Ahmad Wagay, Rashid Ali	
Nologon bond strong wool - Nologon bond strong wool	

#### Halogen bond-strong weak-- Halogen bond-strong weak-

	XBS-26
Computer Modeling of Halogen Bonds and Other -Hole Interactions	arXiv:1708.09244v 30 th [Physics.chem-ph] Aug 2017
Michal H. Kolar and Pavel Hobzay	

### Halogen bond-strong weak-- Halogen bond-strong weak-

	XBS-27
An overview of halogen bonding	J Mol Model, 13 (2007) 305–311
	DOI 10.1007/s00894-006-0154-7
Peter Politzer & Pat Lane & Monica C. Concha & Yuguang Ma & Jane S. Murray	
Halogen bond-strong weak Halogen bond-strong weak	

### Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-28
Halogen bonds in biological molecules	PNAS, 101(2004) 16789-16794
	doi10.1073pnas.0407607101
Pascal Auffinger, Franklin A. Hays, Eric Westhof and P. Shing Ho	
Halogen bond-strong weak Halogen bond-strong weak-	

	XBS-29
Halogen-water-hydrogen bridges in biomolecules	Journal of Structural Biology, 169 (2010)
	172–182
	doi:10.1016/j.jsb.2009.10.006
Peng Zhou, Jing Lv, Jianwei Zou, Feifei Tian, Zhicai Shang	

	XBS-30
$\pi$ covalency in the halogen bond	Nat Commun, 11(2020) 3310 doi.org/10.1038/s41467-020-17122-7
Cameron W. Kellett, Pierre Kennepohl& Curtis P. Berlinguette	
Halogen bond-strong weak Halogen bond-strong weak	

	XBS-31
Topological Definition of Crystal Structure:	Acta Cryst., A51 (1995) 143-153
Determination of the Bonded Interactions in Solid	doi.org/10.1107/S0108767394009463
Molecular Chlorine	
BY V. G. TSRELSON, P. F. Zoo, T.H. TANG AND R. F. W. BADER	

#### Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-32
Halogen bonding in crystal structure of 1-	Journal of Molecular Structure, 829 (2007)
methylpyrrol-2-yl trichloromethyl ketone	208–211
	doi:10.1016/j.molstruc.2006.06.032
ElrbietaBilewicz, Agnieszka J. Rybarczyk-Pirek, Alina T. Dubis, Siawomir J. Grabowski	
Halogen bond-strong weak Halogen bond-strong weak-	

XBS-33An up-to-date review on halogen-bonded liquid<br/>crystalsJournal of Molecular Liquids,<br/>333(2021)115961

### Deepak Devadiga, T.N.Ahipa Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-34
The role of architectural engineering in	Progress in Polymer Science, 103(2020),
macromolecular self-assemblies via non-covalent	101230
interactions: A molecular LEGO approach	doi.org/10.1016/j.progpolymsci.2020.101230
ZebinSu, Ruimeng Zhang, Xiao-YunYan, Qing-YunGuo, JiahaoHuang, WenpengShan, YuchuLiu,	
TongLiu, Mingjun Huang, Stephen Z.D.Cheng	

#### Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-35
A "nucleophilic" iodine in a halogen-bonded iodonium complex manifests an unprecedented $I+\cdots Ag+$ interaction	Chem, 7(2021) 948-958 doi.org/10.1016/j.chempr.2021.01.003
Shilin Yu and Parveen Kumar and Jas S. Ward and Antonio Frontera and Kari Rissanen	

Halogen bond-strong weak-- Halogen bond-strong weak--

	XBS-36
Implications of hydrogen/halogen-bond in the	Journal of Molecular Structure, 1108(2016)
stabilization of confined water and anion-water clusters	298-306
by a cationic receptor	doi.org/10.1016/j.molstruc.2015.12.035
Md. Najbul Hoque and Gopal Das	