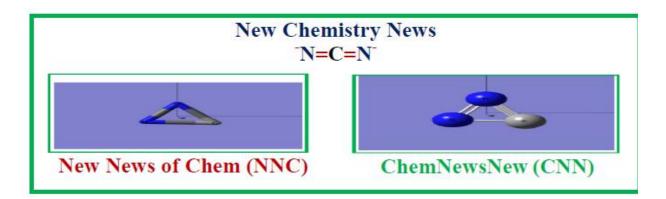
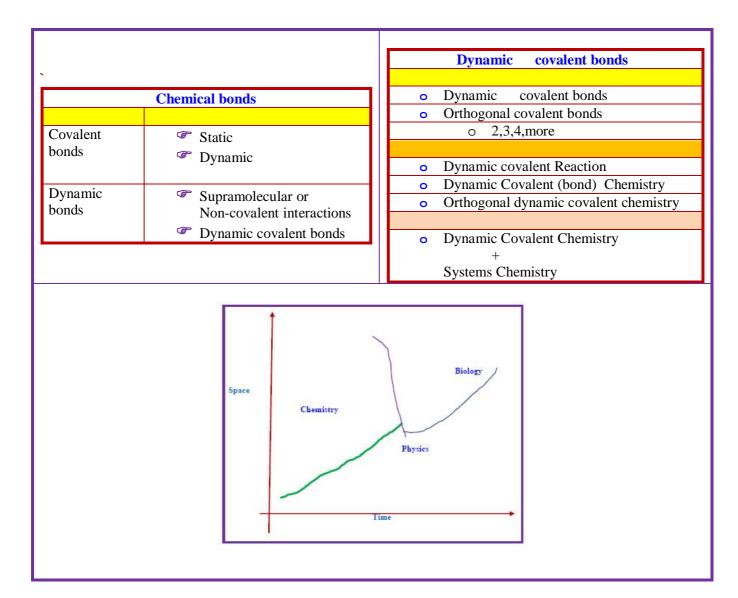
Available online at www.joac.info


ISSN: 2278-1862

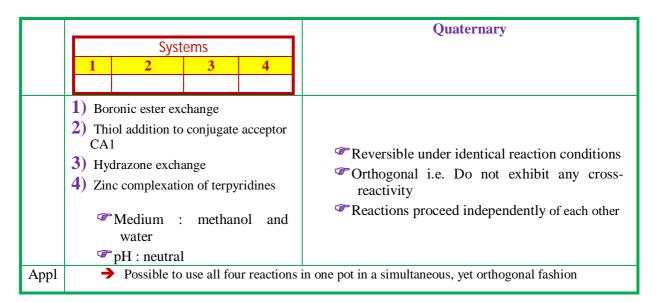
Journal of Applicable Chemistry

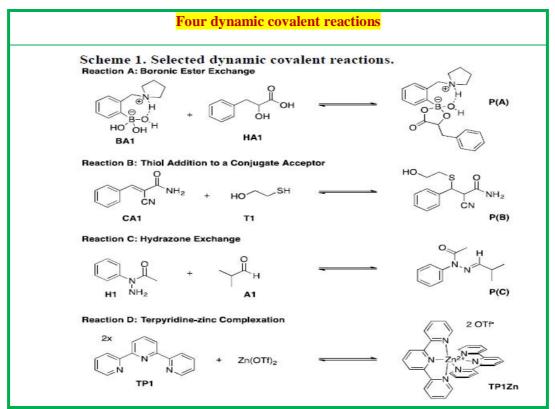
2021, 10 (3): 323-393 (International Peer Reviewed Journal)

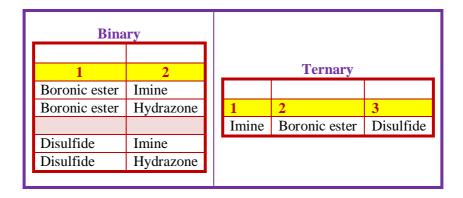
CNN–39 Dynamic covalent bonds (chemistry)

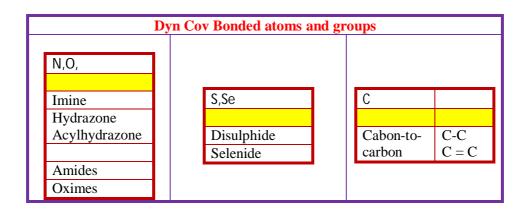

Information Source	ACS.org ; sciencedirect.com
K. Somasekhara Rao,	R. Sambasiva Rao,
Dept. of Chemistry,	School of Chemistry,
Acharya Nagarjuna Univ.,	Andhra University,
Dr. M.R.Appa Rao Campus,	Visakhapatnam 530 003, I ndia
Nuzvid-521 201, I ndia	

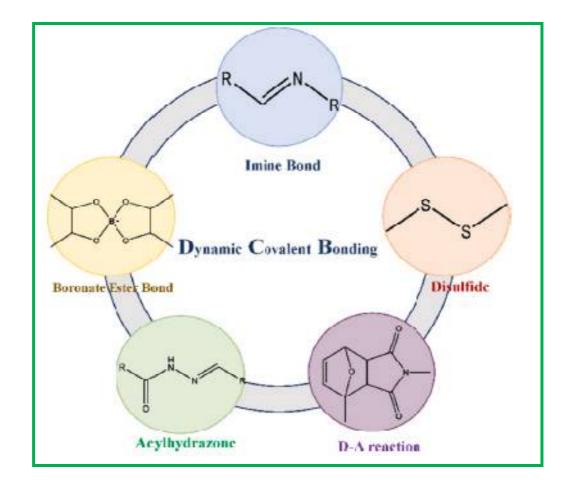
I. Object oriented terminology (OOT) for Dyn.Cov.Bond

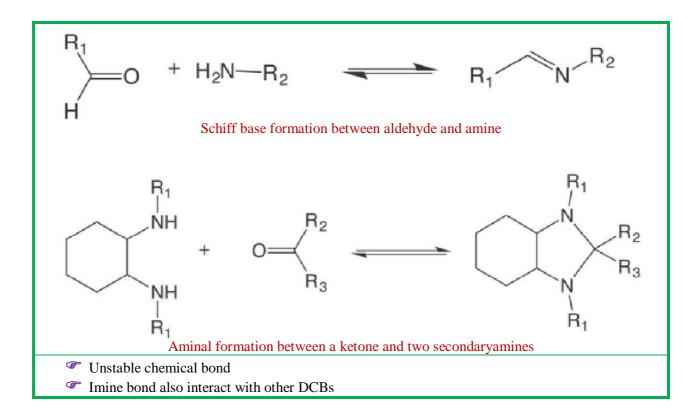

KLab rsr.chem1979


II. Select Research Titles(2000 to 2021) in Dyn.Cov.Bond


Dynamic Covalent Bonds




	Dyn Cov Bond	DCI
 These are covalent bonds molecules 	s that are capable of exchangi	ng or switching between several
 Dynamic bonds reversible to stimuli 	ly break and reform. They occ	cur autonomously or in response
✓ Use of dynamic na science,biomedical appl		organic synthesis, material
	es emerge [viz. self-heali	ing, shape-memory increased one macromolecular architecture
- certain grey area exists in	n the definition of the dynamic	c covalent bonds.
	Dyn Cov Bonds	



Imine bond: formed by the condensation of aldehydes or ketones with ammonia or primary amines or vicinyl secondary amine.

- ✓ These are considered as formation reactions.
- ✓ Schiff reported first the compound (later popular as Schiff's base) with imine bond.
- Many biocompatible materials like chitosan, gelatin collagen with imine bonds find biomedical applications

Hydrazonebonds: Hydrazone bonds are formed by polycondensation of aldehydes or ketones with hydrazine. The linkages in hydrazone structures are comparatively more complex than the imines

- These are one of the classical C-N dynamic covalent bonds extensively in use of fabrication of drug delivery systems.
- ✓ Hydrazones provide the acid-activatable property in drug conjugates.

Ex: A multicomponent system with three different DynCovBonds viz

✓ hydrazone, disulfide and borate, used in for optoelectronic signal generation/detection, interface, device manufacturing

Ex: Two dynamic cross-linking methods of acylhydrazone bond and Pluronic micellar cross-linking are made into a hydrogel system

- + Excellent mechanical properties and self-healing ability
- + Application: tissue engineering

Acylhydrazonebonds: formed from acylhydrazine and aldehydes or ketones in acidic medium or at high temperature in presence of a catalyst.

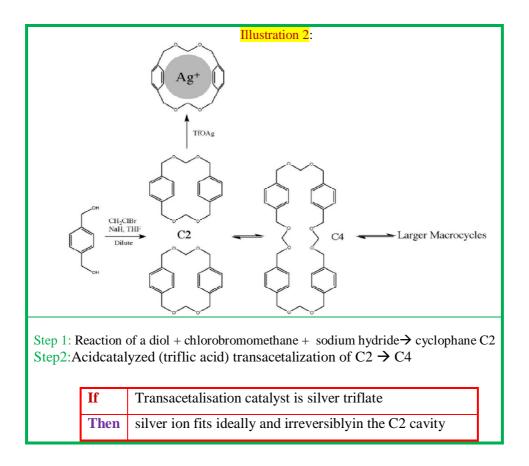
- Appl: preparation of DynCov BondedHydrogels
- Acylhydrazone-based drugs
 - o Nitrofurazone, nitrofurantoin, carbazochrome,
 - o Nifuroxazide, dantrolene, and azumolene

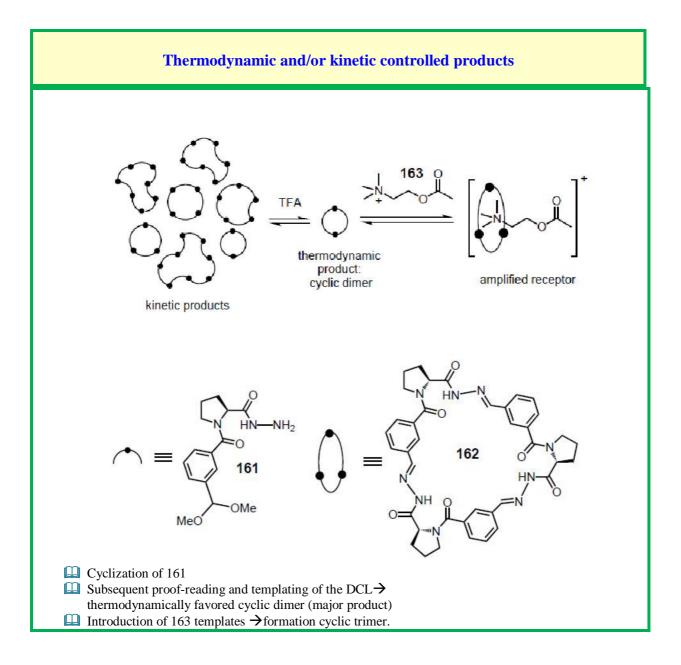
Amides: The amide linkers (cis-aconitamide, citraconamide, and maleamide containg maleic

acid derivatives) are acid-responsive

- Appl: Drug Delivery Systems
- **Ex:** polycaprolactone-modified cisplatin prodrug-conjugated poly(amidoamine) dendrimers
- ☞ →clustered Nano Particles formed
- Platinum prodrug-dendrimers released in the acidic microenvironment of tumor
- It penetrates deep into the tumor tissue efficiently
- With the enhanced uptake of tumor cells, the cisplatin restored from the prodrug by glutathione (GSH) reduction to perform antineoplastic activity

Oximes:Formed by condensation of aldehydes orketones with hydroxylamine or O-alkyl substituted compounds.


- Compared with imide / acylhydrazone bond, it has stronger stability and better mechanical properties
- Type: Used to develop acid-responsive Drug Deliv Syst.
- Ex: Gene therapy of cancer--- nucleic acids delivered into cells efficiently through the cell surface engineering. oxime bonds are present in nucleic acid/lipid nanocomplexes



Dynamic covalent Reaction	Dyn Cov React	DCR

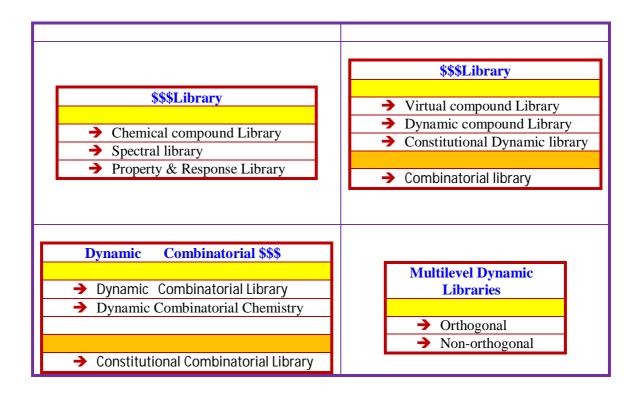
- Dynamic covalent reactions usually have slower kinetics
- Require catalysts to attain rapid equilibrium.
- + Scope of dynamic covalent reactions rapidly expanding
- Limitations: Reversible reactions suitable for DCvC
- are still very limited

Dynamic covalent Library	Dyn Cov Libr	DCL	
New research discipline	steps Includin	controlled chemical or physical g catalysis and autocatalysis +	
	• Dynamic covalent Librari	es	
	Thermodynamic template	effect in (macrocycle) synthesis	
Thermodynamic template			
	Illustration 1		
		Rate	
Effect of adding a templ species on free energy lan		binds to one of the equilibrating	

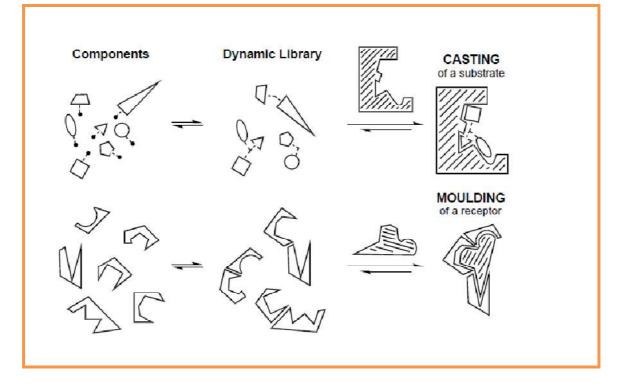
Dynamic Co	valent Chemistry	Dyn Cov Chem	DCC		
Dynamic Cov	Dynamic Covalent (bond)→Chemistry				
	in Dyn Cov Chem	is within molecules through			
		Reversible formation and			
		Breaking of covalent bonds under			
Dynamism		thermodynamic control			
	In Supramolecular	is chemistry is dynamic in the domain bey	yond		
	chemistry	molecules through			
		intermolecular non-covalent interactions	5		
	Dyn Cov Chem				
Deals with	reversible format	ion and breaking/scission of covalent bonds			
	not strong ones within molecules				

Based on	dynamic features of reversible covalent bonds
Combines features	Dyn Cov Chem the error-correction capability of supramolecularchemistry and the robustness of covalent bonding using bottom-up assembly.
Appl	 synthetic chemists' strategy to prepare complex supramolecular assemblies from discrete on homo-sequenced type molecular building blocks Majority of DCvC reactions rely of chemistry i.e. hetero-sequenced reactions relatively less explored
Appl	 Material science Molecular separation Chemical biology Medicine Drug discovery Biotechnology
Proof-of-	Delivered
concept	+ Sparkling exiting output
	+ Unexpected outcome+ Happened time and again
Limitations	 Early definitions of DCC considered only systems atequilibrium Functional properties exhibited by equilibrium systems are dwarfed by those of far-from equilibriumsystems.

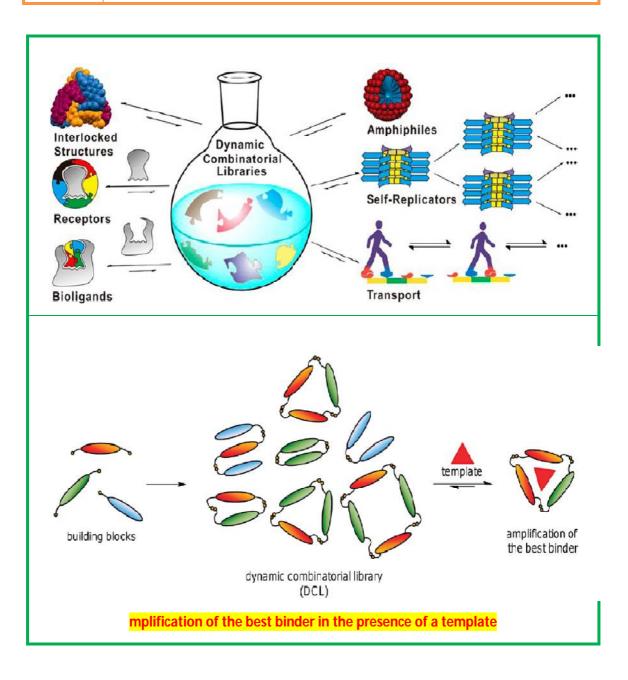
Orthogonal protective groups in org synthesis			Ortho Protect Group	OPG
Orthogonal protecting group strategy	Orthogonal • bo protecting • it group strategy iff g		both protective groups are present in the s it enables selective deprotection of one group for a reaction & second protected amino group remains unt	e protected amino

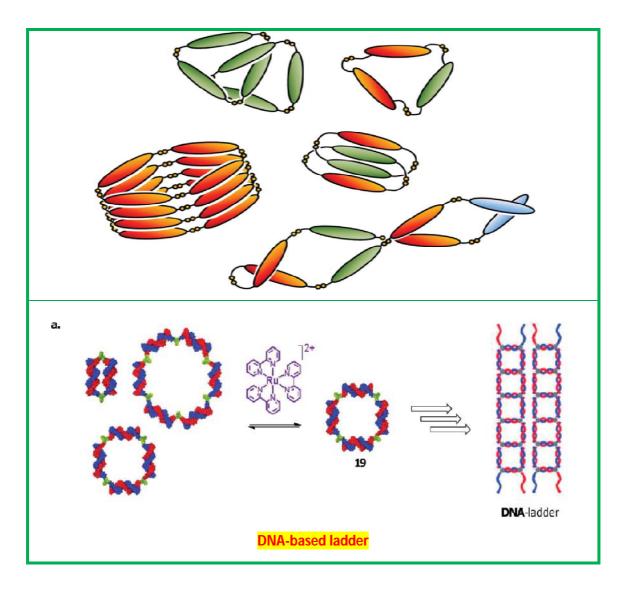

Orthogonal multilevel dynamic libraries			
Ortho		Reversible processes operate independently	
Multilevel Dyn Lib [#]	:66	Ex. imine formation + metal ion coordination	
	iff	Ex. imine formation + intramolecular	
		rearrangement	
Non- otho		Processes may interfere or cross over	
Multilevel Dyn Lib	iff	Ex:, imine formation and Michael addition	
#libraries are re	#libraries are referred to as orthogonal		
	since two processes do not interfere		
 Analogy: orthogonal protecting groups in organic chemistry 			

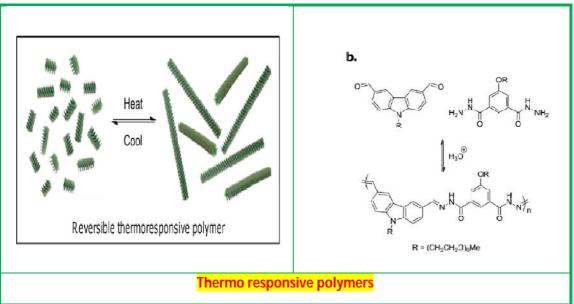
Orthogonal	Chemical Reactions	Ort	ho Chem React	OCR	
	-				
Def	 Orthogonal chemical reactions are those which do not interfere with each other Also, do not exhibit cross-reactivity Employed in reversible covalent and supramolecular chemistry 				
Orthogonality	imply that exchange o	f one without di	isturbing the others	occur	
of conditions	Ex. Pair of orthogonal exclusively under acid			lisulfides exchange	
	Ex: Three orthogonal I	Oyn Cov Bond r	reactions		
	$R^1-B \begin{pmatrix} 0 \\ 0 \\ R^2 \end{pmatrix} + H0 \end{pmatrix}$.R ³ A →	R ¹ -BOR ³ +	$HO = R^2$	
	R ¹ ∠N _N .R ¹ + H ₂ N _N H H	.R ² →	R¹ <mark>∠N_N.</mark> R² + H₂N. H	N ^{.R1} H	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
	Orthogonality of boron Selective exchange und → Enables constru functional syst	der conditions A action and oper	A, B, and C	l disulfides, f doubly dynamic	
Orthogonality in protecting group chemistry	Here, each orthogonal conditions without alte	•	emoved inany orde	er depending on the	


Orthogonal	dynamic covalent chemistry	Ortho.Dyn.Cov.Chem	ODCC
	 molecular systems are th Ortho.Dyn.Cov.Chem is Chem. Methodology of ODCC tolerance, general reaction 	, two or more DCvC reactio hesis. The high yield con e end products. s less utilized in comparison is in its infancy Ex. for	ns are combined applex structured a with Dyn Cov unctional group
Future	Tools : MultidisciplinaryPredicting exactly where the second s		ettle
Possibilistic outcomes	Discovery of new phenomReinterpretation of existin	nena or solutions for today's ag systems	riddles

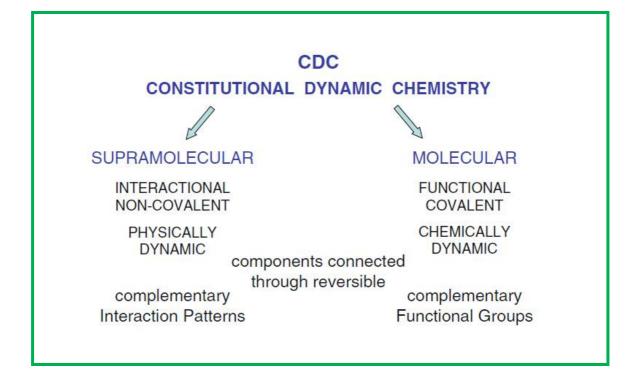
 Bridging different as yet poorly connected fields Development work-flow-line of field Most exciting features of Dyn Cov Chem Proven time and again, is its ability to deliver Unexpected exiting, sparkling output 	
--	--


Dynamic Covalent Chemistry +	Dyn Cov Chem +	DCC			
Systems Chemistry	Syst Chem	+ SC			
(Super) Hybrid approach					
→ Hyper connection nets betwee	en				
chemistry, biology, nanotech	chemistry, biology, nanotechnology				
+ Nature mimic development of research work-method-flow					
+ Complexity, emergence of unforeseen outcome					
 Complement to a traditional (but advanced matured to human limits)practices in chemistry where 					
[emphasis being on sing	[emphasis being on single, high yield, pure compounds]				

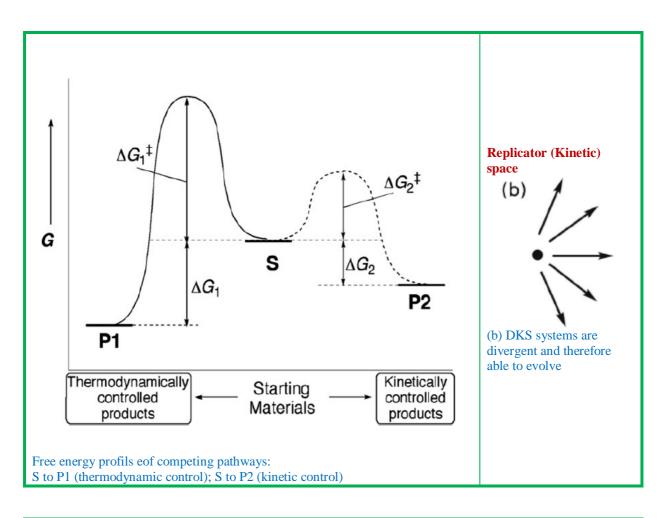


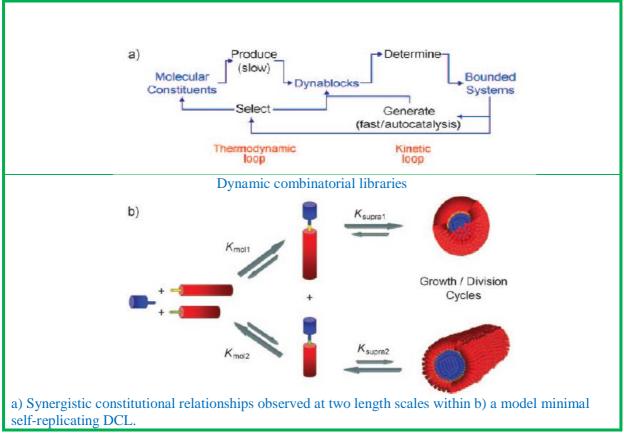

Dynamic	Combinatorial Library	Dyn Comb Lib	DCombLib
	-	•	
	A library of reversibly interconverting building blocks generated through DynCovChem		
Def	 Collection of reversible assemblies of a series of building blocks which undergo Thermodynamic exchange with each other 		
	Library members interconvert		
Mechanism Influence of	 species ✓ addition of a proper thecomponent that (thermodynamic templ ✓ when equilibrium is ess stop equilibration. ✓ optimal binder for the to mixture by normal lab. The property of self-assembly useful in supramolecular chem 	template is then extracted oratory procedures. and error-correcting that istry rely on the dynamic p	equilibrium toward higher stability tions are altered to from the reactional allow DCvC to be property
experimental conditions	alter stability of the library members \rightarrow alter composition of the library.		
Application	DynCombChem enabled combinatorial pools of candidates to be established through reversible connections, either by usingcovalent or noncovalent chemistry.		
Caution	! Dynamic combinatorial chemistry and dynamic covalent chemistry are not synonymous		
	dynamic combinatorial chemistry concerns both dynamic covalent hemistry and dynamic noncovalent (supramolecular) chemistry		

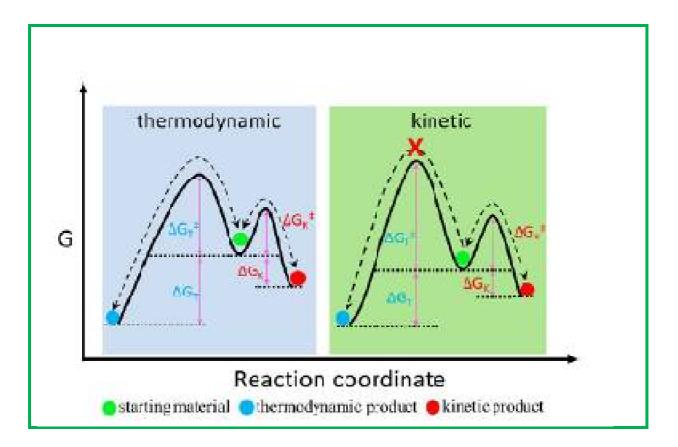
Casting	A macromolecule provides a cavity within which theoptimum ligand may be trapped
Moulding	Ligand collects the optimum receptor around itself

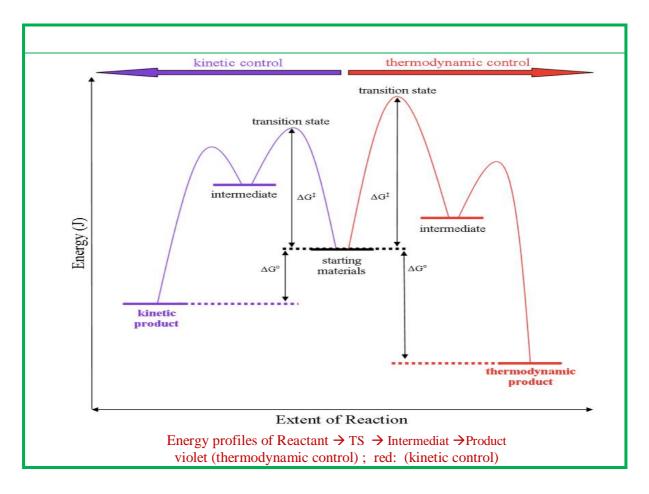


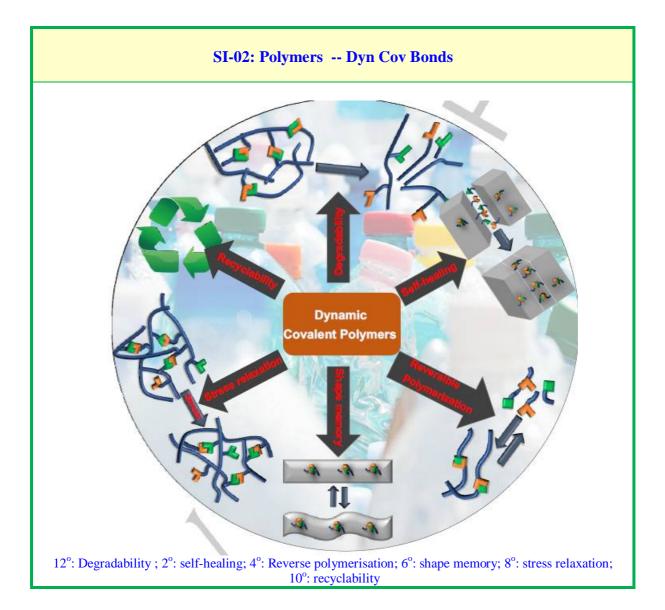
Dynam	ic Combinatorial Chemistry	Dyn CombChem	DCombC
Def	 Dynamic Combinatorial Chemistry attained thermodynamic equilibri chemistry. Sanders group and Lehn re- o It is also called combinatorial 	um. It is a is a subset search school introduced it rial supramolecular or mol	of combinatorial
exploits	under thermodynamic control Reversiblecovalent chemistry to generate combinatorial libraries		
exploits	that are under thermodynamic control		
Concerns	only covalent bonding interactions		
with	- As such, it only encompasses a subset of supramolecular chemistries		
Implies	library members interconvert conti each other	nuously by exchanging bui	lding blocks with

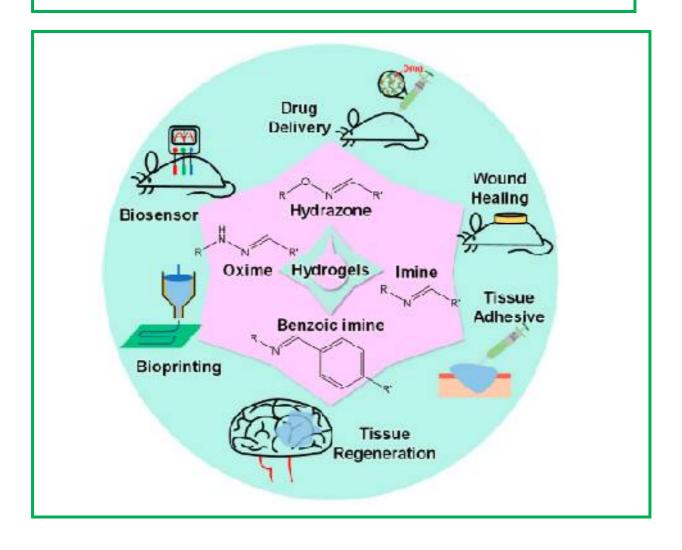

Constitutional C	Combinatorial Library	Const Comb Lib	ConstCombL
	1		
Molecules	Constitutional dynamic l		
	interconverting supramole	cular or molecular entitie	8
Combinome	The full ensemble of all co	onstituents, i.e., of all pos	sible combinations of
	the components		
Genotype	Genotype of the dynam	nic system comprise of	f components under
	consideration		
Phenotypes	The sets of constituents generated from these components under given		
	conditions its phenotypes		
Modification of	Relative amounts of its constituents influenced by parameters:		
composition	conversion, viz.composition, and expression		
Constitutional	Timplies changes in constitution i.e. nature, number, and		
dynamics	arrangement of the components of molecular or supramolecular		
	entities		
	Contract of the second		
		composition, recombina	tion, reorganization,
	construction, de		, , ,
	by either extern	al (incorporation, decorp	oration, exchange of
	-	r Internal (rearrangen	<u> </u>
	components) pro		Ũ

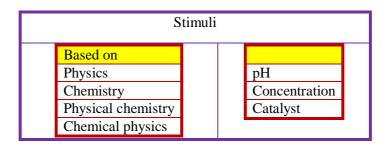


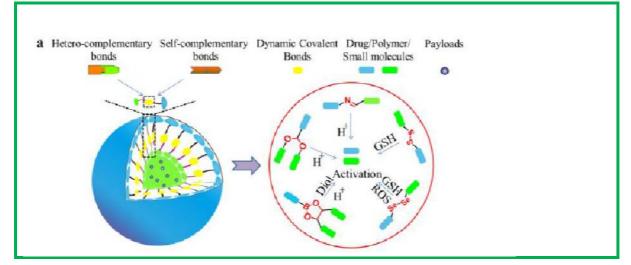

Supplementary information (SupInf)

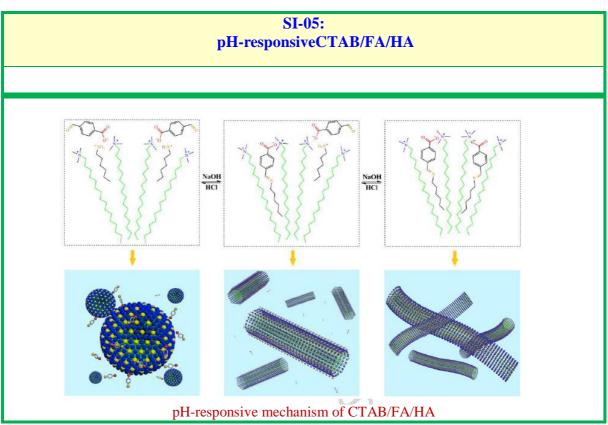

SI-01: thermodynamic and/or kinetic controlled chemical reactions

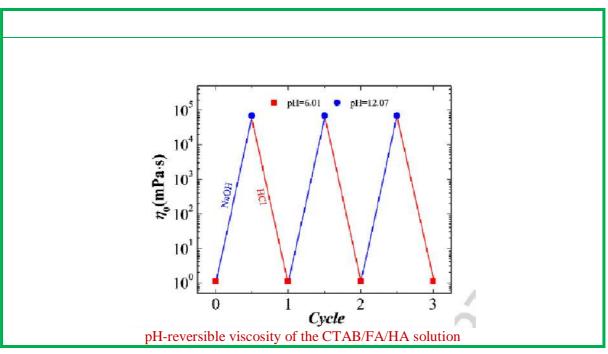

		Regular thermodynamic space
Stability	Dynamics	(a) \
Equilibrium	Thermodynamic Control	Thermodynamic
Irreversible	Kinetic Control	<i>x</i> ,
Far from equilibrium	Life processes	
		(a) Standard chemical systems are convergent in
 Entropy C 	Control	
✓ Thermody	ynamic and kinetic control	

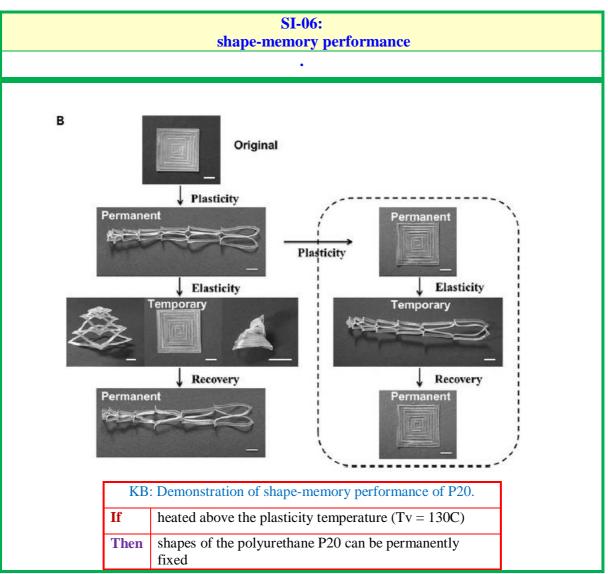


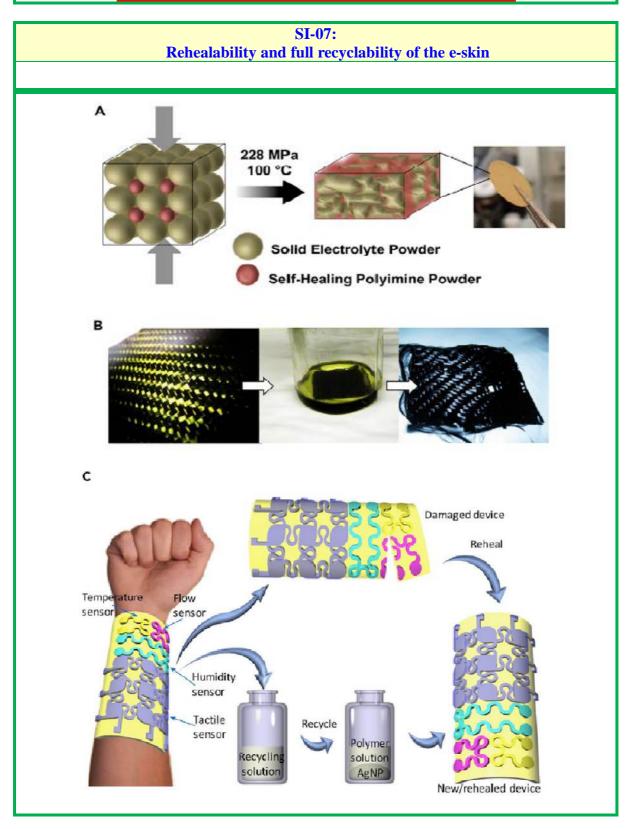


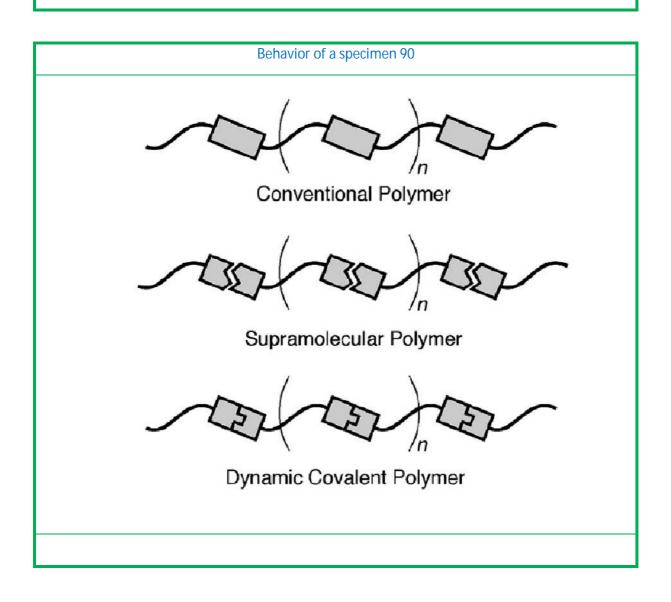


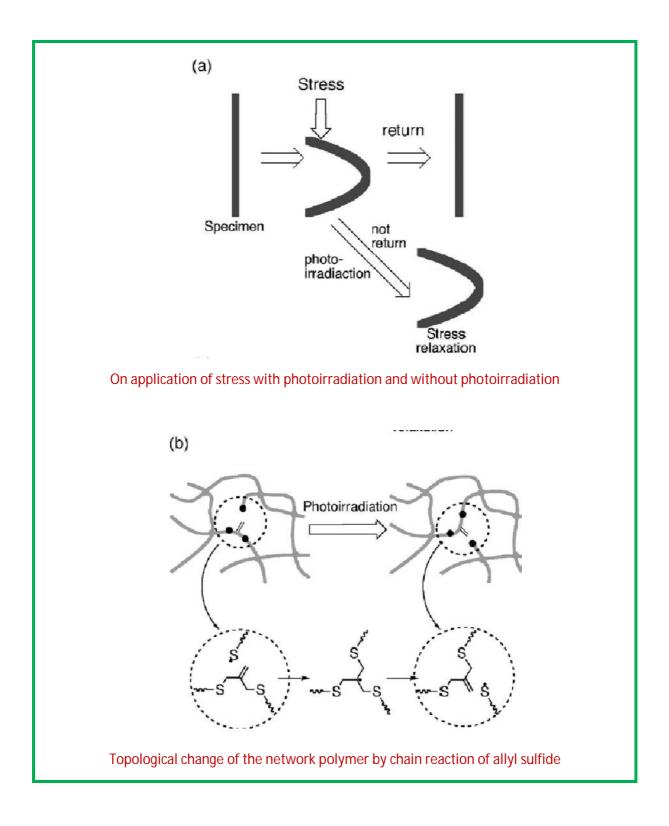

SI-03: Biomedical Applications Hydrogels based on Schiff base linkages

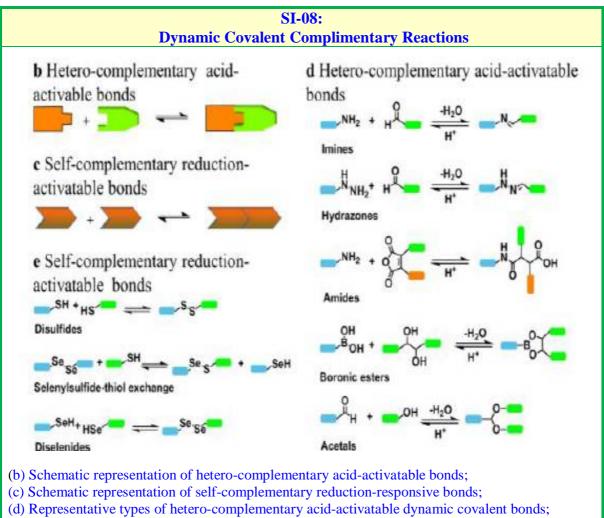



SI-04: Stimuli-responsive Drug Delivery systems



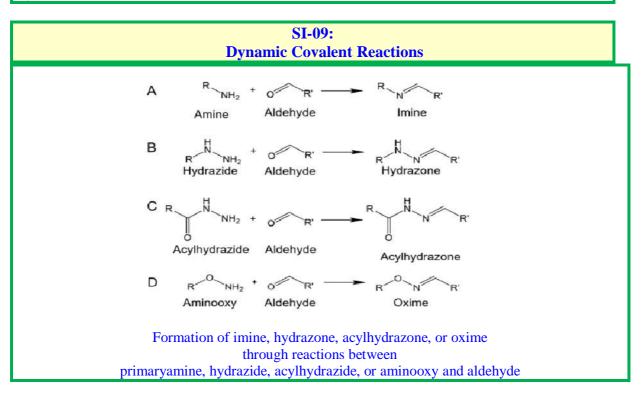


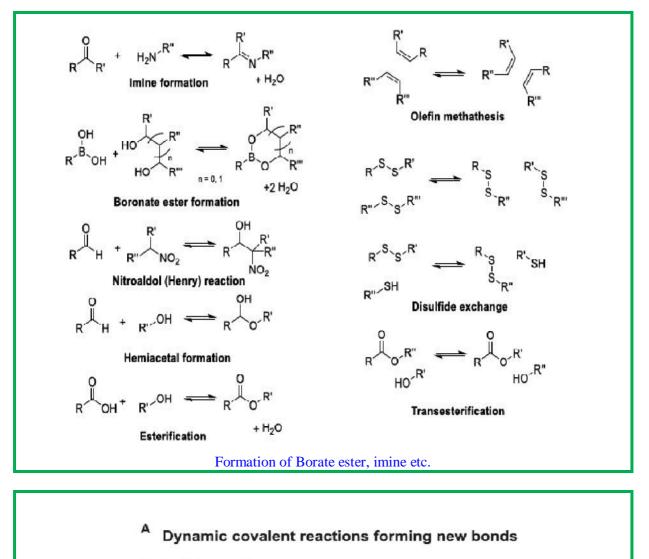

If	heating above Tg OR
	below Tv
Then	They deform to various temporary shapes

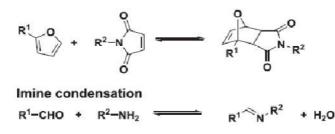


Applications of Malleable Polyimine Thermoset

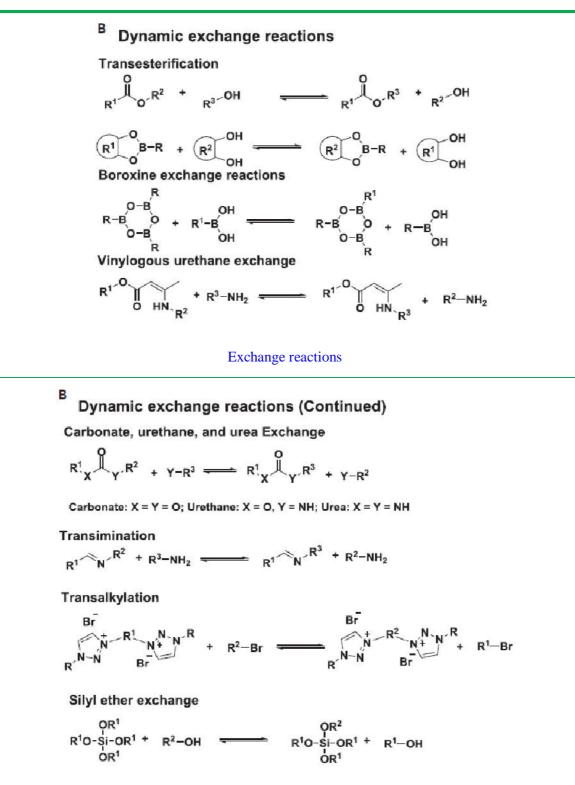
- (A) Schematic presentation of the formation of a solid electrolyte-in-polymer matrix membrane
- (B) Recycling of full-length carbon fibers from CFRC by simple soaking in neat 34a
- (C) Schematic illustration of rehealability and full recyclability of the e-skin



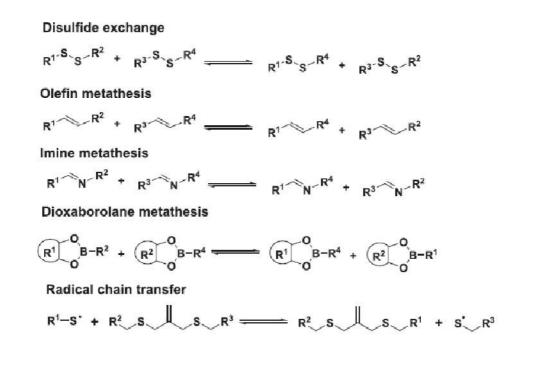



(e)Representative types of self-complementary reduction-responsive

dynamic covalent bonds



Boronic ester condensation


$$R_1 - B \begin{pmatrix} OH \\ HO \end{pmatrix} + \begin{pmatrix} HO \\ R^2 \end{pmatrix} \longrightarrow R^1 \cdot B \begin{pmatrix} O \\ O \end{pmatrix} R^2 + H_2O$$

Urethane bond dissociation

$$\begin{array}{c} R^{1} N \stackrel{\frown}{\longrightarrow} R^{2} \stackrel{\frown}{\longrightarrow} R^{1} - N = C = 0 + HN \stackrel{\frown}{\longrightarrow} R^{2} \\ H \stackrel{\frown}{\longrightarrow} Formation of new bonds$$

Exchange reactions

Exchange reactions

II. Select Research titles (2000 to 2021). Dyn.Cov.Bonds

Contributions of Nobel Laureatures

Rev		Dyn. Cov.Chem
	Catenanes	Combinatorial chemistry
	Rotaxanes	Macrocycles
KeyLrn_Bits	Supramolecular chemistry	
	Polymers	
	-	

Dynamic Covalent Chemistry	Angew. Chem. Int. Ed. 41(2002), 898-952		
Stuart J. Rowan, Stuart J. Cantrill, Graham R. L. Cousins, Jeremy K. M. Sanders			
and J. Fraser Stoddart			
Dyn.Cov.BondsDyn.CovChemOrthogonal.Dyn.Cov.Chemnon_cov_Int			

Biaryl, lactone4		Dyn Cov Bond
-		Dyn Cov Chem,
		System Chemistry
KeyLrn_Bits	 Molecular machines 	 Chemical energy
	 Molecular motor 	 Unidirectional
	 Out-of-equilibrium 	rotation
		 Isomerization
		 Chirality
Ingenious molecular	 Motility 	 Out-of-equilibrium
machines present in living	 Responsiveness 	behaviour
organisms enabling	-	
Chemically (biaryl	 Allows complete 360° 	 Based on simple
structures) powered rotary	unidirectional rotation	esterification
molecular motors		chemistry
Future vision	 Design of more sophisticated 	 Driven solely by
	future artificial machine systems	chemical energy

A Chemically Driven Rotary Molecular Motor Based on Reversible Lactone Formation with Perfect Unidirectionality Yu Zhang and Zhe Chang and Heng Zhao and Stefano Crespi and Ben L. Feringa and Depeng Zhao

Dyn.Cov.Bonds--Dyn.Cov.Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Reviews

Rev	Functional systems	Orth. Dyn. Cov. Bonds	
to build Functional molecular systems	 Quite unusual Very demanding highly original 	 Self-sorting Self-healing Self-repair Exchange Replicate 	 Transcribe Adapt Adaptive self-sorting Even walk and "think" (logic gates)

Functional systems with orthogonal dynamic covalent bonds	Chem. Soc. Rev., 43(2014)1948 DOI: 10.1039/c3cs60342c		
Adam Wilson, Giulio Gasparini and Stefan Matile			

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Covalent organic framework	 Class of porous crystalline polymers Composed of light-weight elements Constructed via strong covalent bonds 		Dyn Cov Chem
KeyLrn_Bits	 Porphyrin Phthalocyanine 		CatalysisOptoelectronic devices
Rev* Highlights			
Earlier research		Summarised	
2D porphyrin- or phthalocyanine-based		Highlighted Synthesis Through Dynamic Covalent	
COFs		Reactions	
		 Potential Applications 	
Dynamic covalent chemistry		Leads to Formation of Covalent Bonds With	
		• Error Checking	
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	• Proof-Reading	

Two-dimensional porphyrin- and phthalocyanine-based	Chinese Chemical Letters, 27(2016)1376-
covalent organic frameworks	1382
	doi.org/10.1016/j.cclet.2016.05.020

Hongmin Wang and Huimin Ding and Xiangshi Meng and Cheng Wang

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Tut Rev	Den normalise and the second	
Highlights	Dynamic covalent reactionsDifferent varities	
rev	Thermodynamically controlled process – their Characteristic features	
	Applications	
	 Organic 2-D and 3-D molecular architectures 	
	• Responsive polymers;	

n dynamic covalent chemistry Chem. Soc. Rev.,	2013	
DOI: 10.1039/c3cs60	044k	
Yinghua Jin, Chao Yu, Ryan J. Denman and Wei Zhang		
Yinghua Jin, Chao Yu, Ryan J. Denman and Wei Zhang		

Dyn.Cov.Bonds--Dyn.Cov.Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Tut Rev	Disulfide	Dyn. Cov.Chem	
	 Disulfide exchange reaction mechanism and scope Structural supramolecular chemistry 		
	 ✓ Concept of dynamic covalent chemistry exploration ✓ Equilibria of reversible disulfide reactions sensitivity to weak non-covalent interactions, ✓ Several non-covalent interactions acting in concert → outcome of structural 		
KeyLrn_Bits	 and constitutional systems. Kinetic as well as thermodynamics effects, - lead to unexpected products 	\rightarrow influence reaction pathways \rightarrow	
 Hydrophobic effects Interactions Cation-π Hydrogen bonding Aromatic donor-acceptor Metal-ligand 		In dynamic disulfide chemistry	

Disulfide exchange: exposing supramolecular reactivity	Chem. Soc. Rev,(2013) DOI: 10.1039/c3cs60326a
through dynamic covalent chemistry	
Samuel P. Black, Jeremy K. M. Sanders and Artur R. Stefankiewicz	

Dyn.Cov.Bonds--Dyn.Cov.Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

		ya ha
Rev	Stable radical species	Dvn. Cov.Bonds
Rev	Studie rudieur species	Dyn. Cov.Donus
[120] 120] 120] 120] 120] 120] 120] 120]		

Dynamic covalent bonds: approaches from stable radical species	Mater. Chem. Front., 2019, 3, 2270 DOI: 10.1039/c9qm00488b
Daisuke Sakamaki, Samrat Ghosh and Shu Seki	

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

DCB-122	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ann a reachan an a reachan an ar reachan an ar reachan an ar reachan an ar reachan an an ar reachan an ar reach Tha
MIni rev	Polymeric materials	Dyn. Cov.Bonds
Highlights	Powerful dcbs	
Rev*	"click" reactions	Powerful materials that can result
	Challenges	from these bonds
	Potential future	
	developments	ה ער הארוני ארוני אר

Dynamic Covalent Bonds in Polymeric Materials	Chem. Int. Ed. 10.1002/anie.201813525,	
Progyateg Chakma and Dominik Konkolewicz Angew		
Dyn.Cov.BondsDyn.CovChemOrthogonal.Dyn.Cov.Chemnon_cov_Int		

Dynamic Covalent Chemistry Principles, Reactions,	Chem. Int. Ed. 57(2018)2
and Applications (book rev)	DOI: 10.1002/anie.201801152
Wei Zhang and Yinghua Jin. John Wiley and Sons,	

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Kinetic and Thermodynamic Control

Kinetic and Thermodynamic Control in Dynamic		dynamic covalent chemistry
Covalent Synthesis		Covalent Organic Frameworks
Rev		
Synthesis	Synthesis of increasingly complex cyclooligomers, polymers, and diverse compound libraries	
Highlights: Interplay between thermodynamic and kinetic considerations in planning a DCC synthesis. Computational models reaction thermodynamics moderate success		
Future: Robust computational To predict product distributions in DCC reactions		

Kinetic and Thermodynamic Control in Dynamic	Trends in Chemistry, 2(2020)1043-1051		
Covalent Synthesis doi.org/10.1016/j.trechm.2020.09.005			
Andrew J. Greenlee and Chloe I. Wendell and Morgan M. Cencer and Summer D. Laffoon and			
Jeffrey S. Moore			

Dyn.Cov.Bonds--Dyn.Cov.Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Modular 4D Printing

Shape-memory polymer Metamaterial	non-nananananananananananananananananana		
Multifunctional devices	 Depend upon challenging complex shapes for their consequent functions 		
3D printing	 Is solution Limited by the fabrication speed and/or Material diversity 		
Digitally controlled 2D-to-3D transformation printing	 Advantageous in speed Accessible shapes are limited Integration of multiple materials is difficult 		
4D printing + modular assembly	 ✓ Step 1: 4D photo-printed structures prepared based on dynamically crosslinked polymers ✓ Step 2: Assembled in a modular fashion by interfacial bond exchange → Complex 3D objects with tailorable multiple materials are consequently produced. 		

Matter, 2(2020)1187-1197			
doi.org/10.1016/j.matt.2020.01.014			
e Jin and Jingjun Wu and Qian Zhao and Tao			
Xie			

Dyn.Cov.Bonds--Dyn.Cov.Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Orth. Dyn. Cov. Reactions

Ortho.Dyn.Cov.Reactions	Chapter	Dyn. Cov.Bond
KeyLrn_Bits	Self-Organization	1
	Supramolecular C Chemistry	Chemistry to Constitutional Dynamic
	Adaptation in Co	nstitutional Dynamic Systems
	Multiple Dynami	cs and Dynamic Networks
- ??		

Constitutional Dynamic Chemistry: Bridge from Supramolecular Chemistry to Adaptive Chemistry	Top Curr Chem, 322 (2012)1–32 DOI: 10.1007/128_2011_256		
Jean-Marie Lehn			

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Ort	ho.Dyn.Cov	Dyn. Cov.Bond		
Rea	ctions			
	KeyLrn_Bits	Switchable orthogonal dynamic covalent chemistry		
		Combination of the orthogonality + differential reactivity		
		Sulfonamides as well as nucleophiles		
		Opportunities for future		
		! DCC and systems chemistry endeavors		

Three Switchable Orthogonal Dynamic Covalent		J. Org. Chem,2018	
Reactions and Complex Networks Based on the		DOI: 10.1021/acs.joc.8b01332	
Control of Dual Reactivity			
Yu Hai, Hanxun Zou, Hebo Ye, and Lei You			
Dyn.Cov.BondsDyn.C	CovChemOrthog	onal.Dyn.Cov.Chemnon_cov_Int	
Ortho.Dyn.Cov.Reactions	Rev	Dyn. Cov.Bond	
KeyLrn_Bits Non covalent interactions			
ReyLIII_DIts	Non cov	alent interactions	
Keyeni_bis	Non cov	alent interactions	
Orthogonal Dynamic Covalent		in Dynamic Covalent Chemistry: Principles,	
u an		nan an	
Orthogonal Dynamic Covalent		in Dynamic Covalent Chemistry: Principles, Reactions, and Applications, First Edition	
Orthogonal Dynamic Covalent		in Dynamic Covalent Chemistry: Principles, Reactions, and Applications, First Edition John Wiley & Sons Ltd (2018)	

Self-Assembly Using Alkene/Imine Orthogonal	B.S. Tulane University, New Orleans, LA,	
Dynamic Covalent Chemistry and Arylene-Ethynylene	Ph.D thesis (2016)	
Macrocycle/DNA Hybrids		
Kenji D. Okochi		

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Four - Orth. Dyn. Cov. Bonds

y johan an a	na n		
	dynamic covalent reactions		
Dream properties	Those react reversibly under identical reaction conditions		
	Do not exhibit any cross-reactivity		
	Four reactions in one pot in a simultaneous,		
	Tet orthogonal fashion.		
	Possibilities for the pre-programmed formation of complex		
Tean tain tain tain tain tain tain tain ta	thermodynamic assemblies		

Four Simultaneously Dynamic Covalent	J. Am. Chem. Soc.,2016	
Reactions. Experimental Proof of Orthogonality.	DOI: 10.1021/jacs.6b04532	
Helen M. Seifert, Karina Ramirez Tr	ejo, and Eric Van Anslyn	

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Three - Orth. Dyn. Cov. Bonds

Three Dynamic Equilibria	Disulfide ; Imines	Dyn. Cov.Chem	
KeyLrn_Bits	Coordination chemistr	у.	
	Dynamic combinatoria	Dynamic combinatorial chemistry	
	Self-assembly ·	Self-assembly ·	
r A Gunananananananananan	Systems chemistry	y A Abisa a a a a a a a a a a a a a a a a a a	

Disulfides, Imines, and Metal Coordination within a Single System: Interplay between Three Dynamic Equilibria Chem. Eur. J. 13(2007)9542-9546 DOI: 10.1002/chem.200701228

Rupam J. Sarma, Sijbren Otto and Jonathan R. Nitschke

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

	Three dynamic covalent reactions	
	 Disulfide exchange under basic conditions Hydrazone exchange under acidic conditions Boronic ester exchange under neutral conditions These reactions do not proceed simultaneously The centrelled to coloritize turn on only one reaction of a 	
PH controlled to selectively turn on only one reaction at a time		
Zhang, K.D.; Matile, S. Angew. Chemie Int. Ed. 2015, 54, 8980–8983. Zhang, K.D.; Sakai, N.; Matile, S. Org. Biomol. Chem. 2015, 13, 8687–8694. Rocard, L.; Berezin, A.; De Leo, F.; Bonifazi, D. Angew. Chemie Int. Ed. 2015, 54, 15739–15743. Lascano, S.; Zhang, KD.; Wehlauch, R.; Gademann, K.; Sakai, N.; Matile, S. Chem. Sci. 2016, 00, 1-5 Wong, CH.; Zimmerman, S. C. Chem. Commun. 2013, 49, 1679–1695.		

Complex Functional Systems with Three Different		Angew. Chem. Int. Ed. 2015, 54, 8980 –8983	
Types of Dynamic		DOI: 10.1002/anie.201503033+	
Covalent Bonds			
Kang-Da Zhang and Stefan Matile			
Dyn.Cov.BondsDyn.CovChemOrthogonal.Dyn.Cov.Chemnon_cov_Int			
To demonstrate existence and construction disulfides, hydrazones and Orth. Dyn. Cov. Bon			
Functional systems with three orthogonal boronate esters,		ters,	
dynamic covalent bonds of			

The third orthogonal dynamic covalent bond [†]	Chem. Sci., 7(2016) 4720 DOI: 10.1039/c6sc01133k
Santiago Lascano, Kang-Da Zhang, Robin Wehlauch, Karl Gademann, Naomi Sakai and Stefan Matil	
Dum Con Bonda - Dum Con Chom Orthog	anal Dum Cour Chamnon dour Int

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_In

chemical recycling

	 Sustainable plastics 		
	 Chemical recycling 		
	 Dynamic polymers 		
Synth	Poly(disulfide) polymer	Dyn.Cov.Chem	
	natural small molecule, thioctic acid used		
	Mild and complete depolymerization into monomers in diluted alkaline		
	aqueous solution \rightarrow yields of recovered monomers up to 86%.		
🖉 Dy	namic covalent ring-opening polymerization		
🖉 Sus	stainable functional plastics		
	I		
o Inti	• Intrinsically recyclable and reconfigurable		
o Me	chanically robust ionic films		
o Sel	f-healing elastomers		

Dual closed-loop chemical recycling of synthetic polymers by intrinsically reconfigurable poly(disulfides)			
Qi Zhang and Yuanxin Deng and Chen-Yu Shi and Ben L. Feringa and He Tian and Da-Hui Qu			
Dyn.Cov.BondsDyn.CovChemOrthogonal.Dyn.Cov.Chemnon_cov_Int			

✓ Imine	 ✓ Stress relation ✓ Stress interview 		anananananananananana	Dyn Cov Chem
Reversible covalent		IIsincation		
 Elastomers with reprocessability and recyclability 				
Prep Small-molecular aldehydes and + with abundant dynamic				
amines \rightarrow polyimine elastomer (PIE) reversible imine bonds				
from				

Network reconfiguration and unusual stress intensification of a dynamic reversible polyimine elastomer	Polymer, 186(2020)122031 doi.org/10.1016/j.polymer.2019.122031		
Yufeng Lei and Shijie Shan and Yali	ng Lin and Anqiang Zhang		
Dyn.Cov.BondsDyn.CovChemOrthog	onal.Dyn.Cov.Chemnon_cov_Int		
Hydrogels			
neurona de la construcción de la	Dyn Cov Bonds		

	aterials of DCB hydrogels
Applicatio	n
o B	iomedical
0 01	nart materials

Advances in hydrogels based on dynamic covalent European Polymer Journal, 139(2020)110024 bonding and prospects for its biomedical application doi.org/10.1016/j.eurpolymj.2020.110024 Jing Ye and Shuwen Fu and Shiya Zhou and Mohan Li and Kaiyu Li and Wei Sun and Yinglei Zhai

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Rev	hydrogels	Dyn. Cov.Bonds
Highlights	Dynamic covalent crosslinks	Properties viz. Self-healing, shape
	Functional systems	memory, stimuli-induced stiffness
	Future developments of	changes
	dynamic covalent hydrogels	ananananananananananananananananananan

Dynamic covalent bonds in self-healing, shape memory, and controllable stiffness hydrogels	The Royal Society of Chemistry (2020) DOI: 10.1039/c9py01694e	
M. Mario Perera and Neil Ayres		
Dyn Coy BondsDyn Coy Chem Orthog	onal Dyn Coy Chemnon coy Int	

ov.cnem--non cov int -Dyn.Cov.. -.Orthogonal

Hydrogels	lar har har har har har har har har har h	ining a new particular and the second sec	
 Rev	Highlight Synthetic biometer	als dynamic machanical properties of	
Rev	Highlight: Synthetic biomaterials dynamic mechanical properties of soft tissues		
	Future: Development and application of viscoelastic biomaterials		
Mechanobiology	To elucidate		
Matrix biology	how the ECM (extracellular matrix) mechanical environment		
	influences cell fate and function		
	• both in vitro and in vivo		
KeyLrn_Bits	 Biomaterials 	 Covalent adaptable networks 	
 Viscoelasticity, Mechanotransduction 			

Dynamic covalent hydrogels as biomaterials to mimic Progress in Materials Science, (2020)100738 the viscoelasticity of soft tissues doi.org/10.1016/j.pmatsci.2020.100738 Shengchang Tang and Benjamin M. Richardson and Kristi S. Anseth

Hydrogel.Adaptab	le	Dyn Cov Chem	
KeyLrn_Bits	✓ Dyn mech	✓ Yes-associated protein	
	microenvironment	 Regenerative medicine 	
	 Supramolecular chemistry 	y	
Hydrogels	- Three-dimensional platforms		
	- Serve as substitutes for native extracellular matrix.		

regenerative medicine	Hydrogels play keyrole due to similarities to native matrix in water content and flexibility	
Highlights of Rev	Strategies to design adaptable hydrogel network with reversible linkages	
	 Based on knowledge of supramolecular chemistry and dynamic covalent chemistry 	
	Mechanism of dynamic mechanical microenvironment	
	Influences on and of cell behaviors and fateState-of-knowledge of bioprinting	
	 Limitations and challenges for adaptable hydrogel Perspectives for future research and goals 	

Adaptable hydrogel regenerative medic microenvironment for	ine: Dynamic	linkages for mechanical	
Zongrui Tong and Lulu Jin and Joaquim Miguel Oliveira and Rui L. Reis and Qi Zhong and Zhengwei Mao and Changyou Gao			

Hydrogel.Adaptable	U U U U U U U U U U U U U U U U U U U	Dyn Cov Chem	
KeyLrn_Bits	✓ Adaptable polymer networks	 Polymer engineering 	
	✓ Soft matter	 Biomedical material 	
Thermosets &	- limited by the static materials prope	erties	
thermoplastics			
Highlights of Rev	Design of dynamic covalent networks		
	Gels using boronic ester cross-links.		
	Boronic ester chemistry –influence of synthetic modifications		
	Influence of network topology& connectivity on		
	Macroscale properties of the assembled networks		
Future scenario	\square Todays design principles \rightarrow will aid		
Valla ha	Galaxies Fabrication of next-generation boronic ester-based biomaterials		

Design of moldable hydrogelsfor biomedicalMaterials Today Chemistry, 12(2019)16-33applications using dynamic covalent boronic estersdoi.org/10.1016/j.mtchem.2018.12.001B. Marco-Dufort and M.W. Tibbitt

Hydrogels,		Dyn Cov Chem
KeyLrn_Bits	Stimuli-responsive polymers	+ Drug delivery,
	Smart polymers	+ Controlled release
	Stimuli-responsive materials	
Stimuli-responsive	Changes in pH	Thiol-responsive
polymers for	Temperature	Redox-responsive polymers
, , , , , , , , , , , , , , , , , , , ,	Electrolyte concentration	Porymers

 Future perspectives and recent advances in stimuliresponsive materials
 Progress in Polymer Science, 35(2010)278-301

doi.org/10.1016/j.progpolymsci.2009.10.008

Debashish Roy and Jennifer N. Cambre and Brent S. Sumerlin

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Hydrogels Adaptable Elastin-like protein-hyaluronic acid (ELP-HA)		Dyn Cov Chem
KeyLrn_Bits• Chemical recycle• Sustainable, plastics		Ring-opening polymerizationDepolymerization,Polythioester
 Dynamic covalent chemistry Goal: To access infinitely recyclable plastics Approach: to design thermodynamically neutral systems based on dynamic covalent bond, Ex: synthesis of polythioesters PNR-PenTE with tailored properties From penicillamine-derived β-thiolactones and Depolymerization under mild conditions 		
 Mechanism : The gem-dimethyl group adjusts the thermodynamics of (de)polymerization to near equilibrium, Confers better (de)polymerization control by reducing the activity and conformational possibilities of the chain-end thiolate groups, stabilizes the thioester linkages in the polymer backbone 		

Geminal Dimethyl Substitution Enables Controlled
PolymerizationChem, 6(2020)1831-1843
doi.org/10.1016/j.chempr.2020.06.003Thiolactones and Reversed Depolymerizationβ-
doi.org/10.1016/j.chempr.2020.06.003Wei Xiong and Wenying Chang and Dong Shi and Lijiang Yang and Ziyou Tian and Hao Wang and
Zhengchu Zhang and Xuhao Zhou and Er-Qiang Chen and Hua Lu

 o Gels ✓ Supramolecular gels, ✓ Molecular gels, o Materials ✓ Porous 	Dyn Cov Chem
To understand the dynamic covalent bonding	 Dynamic covalent cross-linked polymers - act as gelators Illustrate structure–property relationships of these dynamic covalent gels
Highlights of rev	 Dynamic covalent reactions used in gels from small molecules Structure–property relationships in dynamic covalent gels Sets of dynamic covalent gels based on Nature of gelators Interactions between gelators

Dynamic	covalent	gels	assembled	from	small	Chinese Chemical Letters, 28(2017)168-183
molecules:	from discr	ete gel	lators to dyn	amic co	valent	doi.org/10.1016/j.cclet.2016.07.015
polymers						
Jian-Yong Zhang and Li-Hua			Zeng and Juan Feng			

Gels; nanopartic		Kallalan Kallalan Kallalan Kallalan Kallalan Kallalan Kal	Dyn. Cov.Chem
KeyLrn_I	Bits 🛛 🗸	Polymers	Self-healing materials
	4	Responsive materials	

Dynamic Covalent Polymers	Journal of polymer science, part a: polymer
	chemistry,54(2016)3551–3577
	DOI: 10.1002/pola.28260
Fatima Garcia, Maarten M	A. J. Smulders

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Hydrogel	Rev	Dyn. Cov.Bond		
	✓ Schiff base	✓ Self-healing;		
	 Click chemistry 	 Tissue engineering 		
	biomedical applications of hydrogels			
ghts Rev*	 Drug delivery Tissue regeneration Wound healing 	 Tissue adhesives Bioprinting biosensors 		
	 Design and preparation of hydrogels base 	ed on various types of Schi base linkages		

Hydrogels Based on Schi Base Linkages for	Molecules, 24(2019)3005;
Biomedical Applications	doi:10.3390/molecules24163005
Junpeng Xu, Yi Liu and Shan-hui Hsu	

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Sector and the first function of the first function of the first function of the first function of the first fi	Dyn. Cov.Bonds
	Excellent mechanical properties
Dream properties	Remarkable self-healing ability

Ultrastretchable, Self-Healable Hydrogels Based on	Peng Wang, Guohua Deng, Lanying Zhou,
Dynamic	Zhiyong Li, and Yongming Chen
Covalent Bonding and Triblock Copolymer	ACS Macro Lett. 2017, 6, 881-886
Micellization	DOI: 10.1021/acsmacrolett.7b00519

- og en sen en e		100 100 100 100 100 100 100 100 100 100			Dyn boronic ester bonds
Glucose-	3-acrylamidophenyl	boronic	acid	+	Rapid increase in equilibrium
responsive	copolymerized	with	2-		of swelling, which was up to
hydrogels Prep	lactobionamidoethyl	metha	crylate		1856% after incubation with
	(p(APBA-b-LAMA))				aqueous solution

A glucose-sensitive block glycopolymer hydrogel based on dynamic boronic ester bonds for insulin delivery Carbohydrate Research, 445(2017)32-39 doi.org/10.1016/j.carres.2017.04.006

Baoqi Cai and Yanping Luo and Qianqian Guo and Xinge Zhang and Zhongming Wu

Dyn.Cov.Bonds--Dyn.Cov.Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

	Hydrogels	Multi-responsiveness Injectability Drug carriers	nnan ann ann ann ann ann ann ann ann an
Contract of the second s	Prep	Mixing of	Multiple stimuli-responsiveness
100 V 100 V 10	-	DMA-stat-2APBA + (OH)2-PDMA-b-	• pH
11. V 2010. V 2010		PNIPAM diblock copolymers in PBS (pH 7.4)	Temperature
A NUMBER OF BRIDE		solution at temperature, i.e. 37 °C	 Glucose redox reaction
		-	Mechanical field

Injectable multi-responsive hydrogels cross-link	ed Reactive and Functional Polymers,	
by responsive macromolecular micelles	161(2021)104866	
	doi.org/10.1016/j.reactfunctpolym.2021.104866	
Yong Gao and Amin Deng and Xionghui Wu and Changsheng Sun and Chenze Qi		

Dyn.Cov.Bonds--Dyn.Cov.Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Hydrogels	Self-healing	Dyn Cov Bonds
Injectable		
Prep	Aldehyde functionalized hyaluronic	Multiple responsive properties
	acid (HA-CHO) + disulfide containing	🛄 Strain
	crosslinker - 3,3'-dithiobis(propionic	Reduction
	hydrazide) (DTPH)	Oxidation
	• • • • •	🛄 Enzyme
		U
Tissue	- Cannot meet the requirements	New hydrogel
adhesives of	of sophisticated surgeries	🛄 much high lap shear adhesive
yester years		strength (up to 120 kPa) to the
		porcine skin, which surpasses
		65.8% to BioGlue V
- 1.601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601	- 1997 - 199	

An injectable multi-responsive hydrogel as self-
healable and on-demand dissolution tissue adhesiveApplied Materials Today, 22(2021)100967
doi.org/10.1016/j.apmt.2021.100967Sigen A and Qian Xu and Melissa Johnson and Jack Creagh-Flynn and Manon Venet and Dezhong
Zhou and Irene Lara-Sáez and Hongyur Tai and Wenxin Wang

Rev	• Reversible polymer	Dyn. Cov. Bonds	
	 Stimulus-responsive polymer 	Dun Comh Chom	
	• Exchange reaction	Dyn.Comb.Chem	
	C C		
	High lights of Rev		
Dyn. Cov. Bonds [C Nbonds in imine derivatives and C Obonds in alkoxyamine] impact on			
🥙 R	Reactive polymer blends		
🥙 R	Ring-chain equilibrium		
🖉 F	Reorganizable polymers and polymeric systems		
	Dynamic smart polymer materials can reform their structures and constitutions		
1	Intelligent systems using equilibrium under reorganization processes and stimulus-responsive polymeric materials based on bond-reformation		

Dynamic covalent polymers: Reorganizable polymers	Progress in Polymer Science, 34 (2009)581-	
with dynamic covalent bonds	604	
	doi.org/10.1016/j.progpolymsci.2009.03.001	
Takeshi Maeda and Hideyuki Otsuka and Atsushi Takahara		
Dyn.Cov.BondsDyn.CovChemOrthogonal.Dyn.Cov.Chemnon_cov_Int		

Y MANANANANANANANANANANANANANANANA		n na manana mana mana mana		
Prep	✓	Homogeneous mixture of chitosan +	Dyn Comb Chem	
chiral		betulinic aldehyde in different molar ratios		
hydrogels	✓	Under the effect of ultrasound		
Ne com	419 419 419 419 419 419 419 4			

Chiral betulin-imino-chitosan hydrogels by dynamic
covalent sonochemistryUltrasonics Sonochemistry, 45(2018)238-247
doi.org/10.1016/j.ultsonch.2018.03.022Manuela Maria Iftime and Luminita Marin

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Hydrogels	 Native protein 	871.871.871.871.871.871.871.871.871.871.	Dyn Cov Interactions
	✓ Cytochrome C, Boronic acid,		Dyn Boronic Acid Chem
	Hydrogel		
	✓ Bioactive		
	 Responsive 		
Appl:	 Controlled administration 	Prop:	Attractive rheological properties
In vivo	Typon acidification		
	• Hydrogel matrix dissociated		
	• Release active enzymes into		
	A549 cells, which initiates apoptosis		

Native protein hydrogels by dynamic boronic acid chemistry	Tetrahedron, 73(2017) 4979-4987 doi.org/10.1016/j.tet.2017.06.066	
Christiane Seidler and David Y.W. Ng and TanjaWeil		

Hydrogels Dynamic hyaluronic acid-based		Dyn. Cov. Bonds
Responsive drug delivery		system
	 Self-healing 	
Appl biomedical	 Anti-oxidative 	
Appi bioinculcai	 ROS responsive drug delivery 	
	+ Bio-inks for	
	✓ 3D prii	nting/bioprinting
Prep	Phenylboronic acid modified hyaluronic acid	
	(HA-PBA) and the	commercially available
	poly (vinyl alcohol) (PVA)	
+ Injectability	Basis: dynamic bond	
+ Self-healing	-	

Fabrication of versatile dynamic hyaluronic acid-based
hydrogelsCarbohydrate Polymers, 233(2020)115803
doi.org/10.1016/j.carbpol.2019.115803Wen Shi and Blake Hass and Mitchell A. Kuss and Haireng Zhang and Sangjin Ryu and Dongze
Zhang and Tieshi Li and Yu-Iorg Li and Bin Duan

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Hydrogels Ad Elastin-like pr	aptable otein-hyaluronic acid (ELP-HA)	Dyn Cov Chem
KeyLrn_Bits	 Cartilage regeneration 	•
Prep	reaction between hydrazine-modified ELP + aldehyde-modified HA	 + dynamic hydrazone bonds →
Appl	 3D scaffolds with decoupled niche properties to guide other desirable cell fates and tissue repair 	

Elastin-like protein-hyaluronic acid (ELP-HA)	Biomaterials, 127(2017)132-140
hydrogels with decoupled mechanical and biochemical	doi.org/10.1016/j.biomaterials.2017.02.010
cues for cartilage regeneration	
Danqing Zhu and Huiyuan Wang and Pavin Trinh	and Sarah C. Heilshorn and Fan Yang

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

		Hydrogels	n na haran n Dyn Cov Bonds	
				Rev
		Drug delivery,	Requirements	
Į.		Tissue engineering	 Favorable carrier property in three-dimension 	
Į.		6 6	 Biocompatibility 	
			 Low invasive 	
			 Adaptable shape for admit 	nistration
81/2	***************************************			

Recent advances of injectable hydrogelsfor drugPolymer Testing, 81(2020)106283delivery and tissue engineering applicationsdoi.org/10.1016/j.polymertesting.2019.106283Yining Sun and Ding Nan and Haiqiang Jin and Xiaozhong Qu

Dyn.Cov.Bonds--Dyn.Cov.Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

AAA \rightarrow CNN \rightarrow Dynamic covalent bonds (Chemistry)

Natural protein hydrogels - Exhibit poor mechanical properties	+ High strength	dynamic covalent chemistry	
Synthesis	BSA (THPC-BSA) as dyna network	BSA (THPC-BSA) as dynamic covalent bond cross-linked first network	
	Covalently cross-linked pol	[°] Covalently cross-linked polyacrylamide (PAAM) as second network	
	+ Excellent tensile properties	+ Excellent tensile properties	
Prop	 Displayed extremely fast se 	Displayed extremely fast self-recovery property and fatigue resistance.	
+ Double network, Hybrid			
+ Self-recovable			

Natural protein-based hydrogels with high strength	International Journal of Biological	
and rapid self-recovery	Macromolecules, 141(2019)108-116	
	doi.org/10.1016/j.ijbiomac.2019.08.258	
Zhao Liu and Ziqing Tang and Lin Zhu and Shaoping Lu and Feng Chen and Cheng Tang and Huan		
Sun and Jia Yang and Gang Qin and Qiang Chen		
Dyn.Cov.BondsDyn.CovChemOrthogonal.Dyn.Cov.Chemnon cov Int		

Inorganic-organic	Dyn Cov Bond	
hybrid gels		
Prep	radical exchange reaction: TiO2 nanoparticles modified with organophosphonic	
	acid bearing C-ON bonds	
	The modification of TiO2 with N-tert-butyl-N-(1-dihydroxyphosphoryl-2,2-	
	dimetylpropyl)- aminoxymethyl benzene (DEPN-BA) + isodecyl phosphonic	
	acid (IDP)	

Preparation of inorganic-organic hybrid gels by radical	Materials Today: Proceedings, 16(2019)180-	
exchange reaction using TiO2 nanoparticles modified	186	
with organophosphonic acid bearing C-ON bonds	doi.org/10.1016/j.matpr.2019.05.291	
Kohei Kaneta and Seiichi Tahara and Naokazu Idota and Yoshiyuki Sugahara		

Hydrogel.		Dyn Cov Chem
KeyLrn_Bits	✓ Chitosan	✓ Biocompatibility
· -	✓ Nitrosalicylaldehyde,	✓ Antitumor functionality
Prep of Hydrogels based on Chitosan polyamine Nitrosalicylaldehyde	by Dynamic covalent chemis Imination Transimination reactions	
Hydrogelation	III Mechanical properties	
mechanism	o Rheological mea	asurements

			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	NMR	🛄 Morphology	
	FTIR spectroscopy	0	Electron scanning microscopy \rightarrow hydrogels exhibited a
	X-ray diffraction		channels microstructure
	polarized light		
į	microscopy		
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

Cytotoxicity in vitro	Biocompatibility was monitored in vivo	
o on HeLa cancer cells	<ul> <li>by subcutaneous implantation on rats</li> </ul>	
• Result : favorable	o Result : favorable	
Future prospects	Local therapy on human patients	
L Tumour		
	🛄 Cancer	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		

Biocompatible chitosan based hydrogels for potential application in local tumour therapy	Carbohydrate Polymers, 179(2018) 59-70 doi.org/10.1016/j.carbpol.2017.09.066	
Anda-Mihaela Olaru and Luminita Marin and Simona Morariu and Gabriela Pricope and Mariana		
Pinteala and Liliana Tartau-Mititelu		
Dyn.Cov.BondsDyn.CovChemOrthogonal.Dyn.Cov.Chemnon_cov_Int		

# Human Health Medicinometrics

# drug delivery systems

Cancer therapy	EN MARANANANANANANANANANANANANANANANANANANA	Dyn Cov Chem
Timuli-liable pro	operties	
Regulating the dr	rug release kinetics	
Highlights of Rev	Major classes of dynamic covalent bonds	Combination strategies of dual dynamic covalent bonds
	Responsive mechanisms	Impact on complex tumor
	Acid-activatable	microenvironment
	Reduction-activatable	
	Drug Deliv Syst	Future prospects of Dyn Cov
	Tumor-targeted	Chem in DDSs
Drug delivery	Intended to	Mechanism
systems	Deliver drugs at the	Prolonging blood circulation
	intended targets	Optimizing pharmaceutical
	Tumor cells or tissue	profiles
- Therapeutic efficacy of DDSs severely impaired by insufficient or non-specific drug release		
Remedy: DDSs having Dyn Cov Bonds with stimuli-liable property		
Regulate drug release kinetics		

Dynamic covalent chemistry-regulated	stimuli-	Chinese Chemical Letters, 31(2020) 1051-
activatable drug delivery systems for improved	d cancer	1059
therapy	doi.org/10.1016/j.cclet.2019.12.002	
Qiwen Zhu and Madiha Saeed and Rundi Song and Tao Sun and Chen Jiang and Haijun Yu		

## tumor therapy

Intracellular switch on/off controlled release .		Dyn Cov Bonds	
KeyLrn_Bits	✓ Bioreduction-rupture, PEI- ✓ siRNA delivery		
	1.8 kDa	✓ siRNA switch on/off	
	<ul> <li>Lysosomal escape</li> </ul>	controlled release	
	<ul> <li>Reduction-sensitive</li> </ul>		
Nanogel with $\leftarrow \leftarrow$ By thiolated PEI of 1.8 kDa(PEI-1.8 kDa) and			
Dynamic covalent bond crosslinked prepred biodegradable dextrin			

Bioreduction-ruptured nanogel for switch on/o	ff Journal of Controlled Release, 292(2018)78-	
release of Bcl2 siRNA in breast tumor therapy	90	
	doi.org/10.1016/j.jconrel.2018.02.036	
Huipeng Li and Xue Yang and Fang Gao and Chenggen Qian and Chenzi Li and David Oupicky and		
Minjie Sun		
Dun Cou BondgDun Cou Chem Orthogonal Dun Cou ChemDon gou Int		

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Anti-recurrence/metastasis and chemosensitization		
therapy with thioredoxin reductase-interfering drug	doi.org/10.1016/j.biomaterials.2020.120054	
delivery system		
Jichun Yang and Shuojiong Pan and Shiqian Gao and Yiheng Dai and Huaping Xu		

Dyn.Cov.Bonds--Dyn.Cov.Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

### dental restorative

Imines	Dyn Cov Bond
KeyLrn_Bits	<ul> <li>Adaptive interface, Interfacial stress relaxation</li> </ul>
Dental restorative composites Limitations	<ul> <li>Stress induced microcracks from polymerization shrinkage, thermal and other stresses along with the low fracture toughness of methacrylate-based composites remain significant problems</li> </ul>
DCC at the resin– filler interface	Stress-relieving mechanism operative in dental restorative materials

Dynamic covalent chemistry (DCC) in dental	Dental Materials, 36(2020)53-59
restorative materials: Implementation of a DCC-based	doi.org/10.1016/j.dental.2019.11.021
adaptive interface (AI) at the resin-filler interface for	
improved performance	

Nancy Sowan and Adam Dobson and Maciej Podgorski and Christopher N. Bowman

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

# Healing

Repair	Self Repair
Healing	Auto-healing
	Rehealing
	Self-healable

# Self-healing

	Dyn. Cov. Chem
Hydrogel	Nanocomposite DNA-based hydrogel crosslinked with oxidized alginate (oa) via the formation of reversible imine linkages
Properties	Self-healing ; shear-thinning
	Reversible covalent imine bonds         Formed between the aldehyde groups of OA and the amine groups of DNA nucleotides         Sustained drug releasesimvastatin for more than a week

Self-healing DNA-based injectable hydrogels reversible covalent linkages for controlled delivery			
Sayantani Basu and Settimio Pacelli and Arghya Paul			

		Dyn. Cov. Bonds	
Hydrogel	Highly stretchable and tough gel	cyclodextrin + polyacrylamide azobenzene	
		alginate-based	
Self-healing	<ul> <li>✓ Irradiation upon ultraviolet light /visible light →</li> <li>Reversible transformation of the sol-gel</li> </ul>		
properties			
• •	✓ Basis: host-guest interaction	h between cyclodextrin and azobenzene	
	The recovery gel elongation at 48	h healing in the dark condition was is 0.04 MPa,	
	with an elongation of 1140 %.		

Highly stretchable and tough alginate-b	carbohydrate Polymers, 256 (2021)117595		
cyclodextrin/Azo-polyacrylamide interpenetr	ating doi.org/10.1016/j.carbpol.2020.117595		
network hydrogel with self-healing properties			
Furui He and Longzheng Wang and Shujuan Yang and Wenqi Qin and Yuhong Feng and Yuany			
Liu and Yang Zhou and C	Gaobo Yu and Jiacheng Li		
Dyn.Cov.BondsDyn.CovChemOrthogonal.Dyn.Cov.Chemnon_cov_Int			
Polymers	Dyn Cov Bonds		
Polymers Proc:	Dyn Cov Bonds Prop		
	Prop		
Proc: Schiff base from cystine and vanillin	Prop		
Proc:	Prop o <mark>Self-healin</mark> g		

Self-healing of cross-linked PU via dual-dynamic covalent bonds of a Schiff base from cystine and vanillin			
Sang-Hyub Lee and Se-Ra Shin and Dai-Soo Lee			

			Dynamic Covalent Bonds
			Mobile Covalent Bonds
<mark>Self-healing</mark> material	Prepared by combining the mobilit polyrotaxane with the versatility of covalent chemistry	•	Basis: Combination of physical (conformational changes) + chemical (bond reformation) phenomena

Combining Mobile and Dynamic Bonds for Rapid and	Chem, 1(2016)672-673		
Efficient Self-Healing Materials	doi.org/10.1016/j.chempr.2016.10.013		
Guillaume De Bo			

		Dynamic Covalent Bonds	
Self-healing	Polymer	Crack-healing capability	
Prep	Dynamic polymer networks	Dynamic bonds         • Dynamic covalent bond         • Hydrogen bond         • Ionic bond         • Metal-ligand coordination         • Hydrophobic interaction	
Self-healing process theory	<ul> <li>Polymer chains diffuse across the interface to reform the dynamic bonds,</li> <li>It is modeled by a diffusion-reaction theory. which predict the stress-stretch behaviors of original and self-healed DPNs</li> </ul>		

Mechanics	of	self-healing	polymer	networks	Journal of the Mechanics and Physics of
crosslinked b	y dyr	namic bonds	_		Solids, 121(2018)409-431
					doi.org/10.1016/j.jmps.2018.08.007

Kunhao Yu and An Xin and Qiming Wang

#### Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Chap 2: Rev	Dyn. Cov. Bonds	
<mark>Self-healing</mark> polymer materials	Advantages + Minimization of system breakdown + Decrease in the cost of maintenance	<ul> <li>Increased working life</li> <li>Increased safety index</li> </ul>
Chemistries of self-healing systems	<ul> <li>Hrreversible covalent bond formation via extrinsic microcapsules self-healing process</li> <li>Reversible dynamic covalent chemistry .</li> </ul>	<ul> <li>Reversible supramolecular interactions to improve the multiple healing times</li> <li>through intrinsic self-healing process</li> </ul>

	Biomaterials	Electronics
	Bioelectronics	Energy devices such as membranes
Appl	Sensors/ actuators	3D/4D Printing
	Coating paints technologies	Tissue engineering
		Soft robotics skin

Chapter 2 - Types of chemistries involved in self-	Self-Healing Polymer-Based Systems,		
healing polymeric systems	Elsevier(2020)17-73		
	doi.org/10.1016/B978-0-12-818450-9.00002-		
	7		
Anil K. Padhan and Debaprasad Mandal			

		Dynamic Covalent Bonds
Self-healing Recyclable	Rubber composites	<ul><li>Thermorevesible</li><li>thermal reprocessability</li></ul>
KeyLrn_Bits	<ul> <li>Elastomer\</li> <li>Thermorevesible bonding</li> </ul>	<ul> <li>Reprocessability</li> </ul>
Prep	Ethylene propylene diene monomer (EPDM) rubber grafted with maleic anhydride (EPDM-g- MA) → thermoreversibly crosslinked by silane modified silica	<ul> <li>Rubber network could be broken at high temperature</li> <li>reconstructed by thermal annealing,</li> </ul>

Recyclable and self-healing rubber composites based	Composites Part A: Applied Science and		
on thermorevesible dynamic covalent bonding	Manufacturing, 129(2020)105709		
	doi.org/10.1016/j.compositesa.2019.105709		
Zhixin Jia and Shuli Zhu and Yongjun Chen and Wenqiang Zhang and Bangchao Zhong and Demin			
Jia			

Self-healing		Dynamic Covalent Bonds
KeyLrn_Bits	<ul> <li>Anion exchange membrane,</li> </ul>	<ul> <li>Organic aqueous redox flow</li> </ul>
	<ul> <li>Diels-Alder reaction,</li> </ul>	battery
Synth	<ul> <li>Block copolymer from         <ul> <li>Vinylbenzyl chloride +2-((4-vinylbenzyloxy) methyl) furan by RAFT polymerization</li> <li>By solution casting and reacting at 80 °C, an AEM (Anion exchange membranes) with dynamic network was prepared.</li> </ul> </li> </ul>	
	✓ AEM has a Cl− conductivity of 32.7 mS cm−1 at 80 °C	
	<ul> <li>Man-made cracks on the membrane can be self-healed</li> </ul>	

Self-healing anion exchange membrane for pH7 redox	Chemical Engineering Science,
flow batteries	201(2019)167-174
	doi.org/10.1016/j.ces.2019.02.033
Jianqiu Hou and Yahua Liu and Yazhi Liu and Liang	Wu and Zhengjin Yang and Tongwen Xu

Self-healing, Inject	able		Dynamic Covalent Chem	
KeyLrn_Bits	<ul> <li>CAN</li> </ul>		<ul> <li>Dissociative exchange</li> </ul>	
Compd	• Aromatic thiourethane, Polythiourethane		hiourethane	
S-aromatic polythiourethane (PTU) networks	linkage is a promising dynamic covalent bond → Responsible for self-healable, injectable and recyclable materials			
Covalent	<ul> <li>Are polymer systems</li> <li>Crosslinks can undergo reversible rearrangement reactions.</li> </ul>			
adaptable	<ul> <li>The stimuli-triggered dynamism of the network enables</li> </ul>			
networks (CAN)	+ Healing	e		
	<ul> <li>Reprocessing of</li> </ul>	pristine mate	erials	
	+ Without damagi	ng their origi	nal mechanical properties	

New injectable and self-healable polythiourethane based on S-aromatic dissociative exchange mechanism			
A. Erice and A. Ruiz de Luzuriaga} and I. Azcune and M. Fernandez and I. Calafel and HJ. Grande and A. Rekondo			

Acrylate elastomer Click chemistry, Disulfide bonds	S,	Dynamic Covalent Chem
Compd	Synthesized thiol-ene click reactions between acrylate monomers and polysulfide oligomers → Novel kind of acrylate-based elastomers with exchangeable disulfide crosslinks by	
restoration of mechanical properties	<ul> <li>Base system itself without the extra addition of self-healing catalyst</li> <li>+ Mechanical properties of acrylate-based elastomers restored more than 90% with a habitation of 5 h.</li> </ul>	

Self-healable	and	reprocessable	acrylate-based	
elastomers wi	ith exch	angeable disulfid	e crosslinks by	doi.org/10
thiol-ene click	chemis	try		
Hong Coo or	d Vince	hun Sun and Mia	omio o Wong and	Do Wy and Cy

Polymer, 212(2021)123132 oi.org/10.1016/j.polymer.2020.123132

Hong Gao and Yingchun Sun and Miaomiao Wang and Bo Wu and Guoqiang Han and Ling Jin and Kui Zhang and Youyi Xia

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Rehealing behavior			Dynamic Covalent Bond
			Thiol-Michael bond
KeyLrn_Bits	Polyester network		<ul> <li>Michael addition polymerization</li> </ul>
Rehealing time	Increasing the curing temperature to 120 °C led to a decrease in time to reheal (≤8 h),		
	+		

Probing the crosslinked thermoreversil	polyester	networks	behavior of containing	Polymer, 145(2018) 286-293 doi.org/10.1016/j.polymer.2018.05.009
Samantha P. Daymon and Kevin M. Miller				

Dyn.Cov.Bonds--Dyn.Cov.Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

## Monomers $\rightarrow$ Polymers

Polymers
Wormlike micelles
Foldamers
Titrimers

# wormlike micelles

CTAB/CB/NA			Dyn Cov Bonds
4-carboxybenzaldehyd		atio of 60:40:40 (CTAB/CB/NA)	
Inst analysis	The set of	nod 🏾 🖉 Infrared	spectroscopy

	Rheology		☞ 1H ☞ Cry	NMR o-TEM
Information	If pH increased from 3.13 to 7.25, CTAB/CB/NA solution changed from a low-viscosity fluid to a transparent gel-like fluid [viscosity increased from 1 to 4.6 × 104 mPa·s]			
	If pH decreased Viscosity recovered			
Expl	<ul> <li>drastic change in rheological properties is</li> <li>due to pH dependent ionization and formation of dynamic covalent bond CBNA</li> <li>Reason: Morphology of micelles system changes from spherical to worm-like micelles</li> </ul>			
Compd	Worm-like micelles		Property	Rheological
State	Fluid		Response	рН

Fluid state transition mechanism of a ternary<br/>component aqueous solution based on dynamic<br/>covalent bondJournal of Molecular Liquids,<br/>332(2021)115849<br/>doi.org/10.1016/j.molliq.2021.115849Menglan Li and Wanli Kang and Zhe Li and Hongbin Yang and Xin Kang and Ruxue Jia and Anqing<br/>Xie and Bauyrzhan Sarsenbekuly and Maratbek Gabdullin

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

wormlike micelles	SELATA BUTANA SUNTA S	Dyn Cov Bond	
KeyLrn_Bits	Phase transfer	<ul> <li>Hydrotrope</li> </ul>	
single stimuli for switch on and off the viscoelasticity of WLMs	<ul> <li>→ pH, CO2</li> <li>→ Temperature</li> </ul>	<ul> <li>Light</li> <li>Redox and magnetic fields</li> </ul>	
Prep	<ul> <li>cetyltrimethylammonium bromide (CTAB) + 4-formylbenzoic acid (FA) + hexylamine (HA)</li> <li>at the molar ratio of 60:25:25</li> </ul>		
Rheological parameter	<ul> <li>Increased from ~1.1 mPa⋅s to ~68,000 as pH increase from 6.01 to 12.07</li> <li>i.e. transitions from a water-like fluid → viscoelastic fluid → gel-like solution</li> <li>o Reversed by decreasing pH from alkaline to acidic</li> </ul>		

Responsive wormlike micelle with pH-induced	Journal of Molecular Liquids, 86(2019)		
transition of hydrotrope based on dynamic covalent	110935		
bond	doi.org/10.1016/j.molliq.2019.110935		
Pengxiang Wang and Tongyu Zhu and Xiaoyu Hou and Yilu Zhao and Xiangfeng Zhang and Tongyu			
Wang and Hongbin Yang and Wanli Kang			

## **Polymers**

Polymer reaction	S	Dyn.Cov.Chem	
Cross-linking			
synth	Low-Tg polymers with alkoxyamine units in the side chains	By radical copolymerisation of 2-ethylhexyl acrylate and two kinds of alkoxyamine- containing acrylate monomers	
Structural transition	Spectroscopy	Measurement	
between low-Tg linear	IH and 13C NMR,	Rheology	
polymers and cross-	Fourier transform infrared	Swelling experiment	
linked polymers		Gel permeation chromatography	
• transition from a liquid-like flowable polymer state → to a rubber-like polymer state was confirmed			

Reversible cross-linking reactions of alkoxyamine-<br/>appended polymers under bulk conditions for transition<br/>between flow and rubber-like statesPolymer, 55(2014)1474-1480<br/>doi.org/10.1016/j.polymer.2014.01.055Jing Su and Yoshifumi Amamoto and Tomoya Sato and Masashi Kume and Taro Inada and

Tomoyuki Ohishi and Yuji Higaki and Atsushi Takahara and Hideyuki Otsuka

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

<ul> <li>Olefin metathes</li> </ul>	✓ Olefin metathesis		Dyn Cov Chem
Synthesis of linear polyethylene/polyester <mark>copolymers</mark>		y olefin cross metathesis drogenation	

Polymer, 55(2014)6245-6251
doi.org/10.1016/j.polymer.2014.10.001
ki Ohishi and Atsushi Takahara and Hideyuki

Compd	Polymer molecules	self-healing	Dyn Cov Bonds
Rev	Reaction conditions n Existing challenges an		
Appl	tissue adhesives, tissue egeneration	drug delivery, sensors	3D printing, fluorescent probes coatings

European Polymer Journal,
141(2020)110094
doi.org/10.1016/j.eurpolymj.2020.110094

Shuo Huang and Xin Kong and Yingshuo Xiong and Xiaoran Zhang and Hao Chen and Wenqing Jiang and Yuzhong Niu and Wenlong Xu and Chunguang Ren

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Foldamer	non a ca a na canana a ana ana ana ana ana	Dyn Cov Chem
KeyLrn_Bits	<ul> <li>Donor–acceptor interaction</li> </ul>	<ul> <li>Conjugated radical cation</li> </ul>
		dimerization

 Pleated polymeric foldamers
 driven by donor-acceptor
 Chinese Chemical Letters, 27(2016)817-821

 interaction and conjugated radical cation dimerization
 doi.org/10.1016/j.cclet.2016.03.041

 Yun-Chang Zhang and Lan Chen and Hui Wang and Ya-Ming Zhou and Dan-Wei Zhang and Zhan-Ting Li
 Ting Li

#### Dyn.Cov.Bonds--Dyn.Cov.Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

, a dha a da dha a da dha a dha a dha dha		Dyn Cov Chem
KeyLrn_Bits	<ul> <li>Reversible covalent polymers</li> <li>Application</li> </ul>	<ul><li>Polymer engineering,</li><li>Adaptivities</li></ul>
Rev Highlights	<ul> <li>Theoretical and experimental</li> <li>Design and preparation of mat</li> <li>Basis of reversible covalent of</li> <li>Rheology of reversible covale</li> <li>Methods of construction of re</li> <li>Smart, adaptive properties off</li> <li>Advantages and weaknesses of</li> <li>Challenges and opportunities</li> </ul>	terials through chemistry nt polymers, versible covalent polymers, ered by reversible covalent chemistry. f representative reaction systems

Polymerengineeringbased on reversible covalent<br/>chemistry: A promising innovative pathway towards<br/>new materials and new functionalitiesProgress in Polymer Science, 80(2018)39-93<br/>doi.org/10.1016/j.progpolymsci.2018.03.002Ze Ping Zhang and Min Zhi Rong and Ming Oiu Zhang

Ze Ping Zhang and Min Zhi Rong and Ming Qiu Zhang

Dyn.Cov.Bonds--Dyn.Cov.Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Modular approach for theranostic polymer conjugates	Journal of Controlled Release,	
with activatable fluorescence: Impact of linker design		
on the stimuli-induced release of doxorubicin	doi.org/10.1016/j.jconrel.2018.07.015	
Gregor Nagel and Harald R. Tschiche and Stefanie Wedepohl and Marcelo Calderón		
Den Gee Dende Den Gee Ghen Orther	and Dem Gen Gleen man and Tak	

### **Vitrimers**

' (gy thai thai thai thai thai thai thai thai	te de la de	
Titrimer	Recyclable	Dyn Cov Chem
	Tunable	

Recyclable ethylene-vinyl acetate copolymer vitrimer foams	Polymer,(2021)123662 doi.org/10.1016/j.polymer.2021.123662		
Lin Cheng and Sijun Liu and Wei Yu			

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

			Dyn. Cov. Bond.Exchange
Epoxy vitrimer	Fully bio-based		
Synth	ESO (Epoxidized soybean oil ) + 1	osin deriva	tive-fumaropimaric acid (FPA)
Properties	Tg (glass transition temperature):6	55 °C	Tensile strength :16 MPa
	Self-healing, triple-shape memory	and reproc	essing

A fully bio-based epoxy vitrimer: Self-healing, tripleshape memory and reprocessing triggered by dynamic covalent bond exchange Materials & Design, 186(2020) doi.org/10.1016/j.matdes.2019.108248

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Dynamic network topology	Polymer network	dyn. Cov. Bonds.chem
Trend Rev synapsis	<ul> <li>Concept of vitrimers</li> <li>Most unique propert</li> <li>Outstanding challeng</li> <li>Recyclable high perf</li> </ul>	ies ges
<ul> <li>Recyclability</li> <li>Processability</li> <li>Self-Healing</li> <li>Adhesion</li> </ul>	<ul><li>+ Low cost</li><li>+ Desirable physical p</li></ul>	roperties
Vitrimers. Def.	Permanent networks of poly bonds	mer chains connected via dynamic covalent
		o change its topology ant number of chemical bonds at all

Vitrimers:	Permanently	crosslinked	Progress in Polymer Science, 104 (2020) 101233
polymers w	with dynamic networ	k topology	doi.org/10.1016/j.progpolymsci.2020.101233
Nathan J. Van Zee} and Renaud Nicolaÿ			

✓ Epoxy <mark>vitrin</mark>	ners	Imine	?/##/1##/1##/1##/1##/1##/	Dyn Cov Bond
Prep		Curing mono-glycidyl structure of vanillin (Van-Ep) with isophorone diamine (IPDA) hardener	~	Product vanillin-based epoxy vitrimer (Van-Ep/IPDA) with dynamic imine covalent bonds
Prop	•	Excellent reprocessability		
		Acid degradable behavior		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Vanillin-based Reprocessability a	degradable and mechanical	epoxy properties		European Polymer Journal, 117(2019)55-63 doi.org/10.1016/j.eurpolymj.2019.04.053
Qingqing Yu and Xionghou Peng and Yuli Wang and Hongwei Geng and Anchang Xu and Xi Zhang				
and Weilin Xu and Dezhan Ye				

Vitrimers: Associative dynamic covalent adaptive	<b>u</b>		
networks in thermoset polymers	385(2020)123820		
	doi.org/10.1016/j.cej.2019.123820		
Balaji Krishnakumar and R.V.S. Prasanna Sanka and We	olfgang H. Binder and Vijay Parthasarthy and		
Sravendra Rana and Niranjan Karak			

Dyn.Cov.Bonds--Dyn.Cov.Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

## **Epoxy resins**

Epoxy resin			Dyn. Cov. Bonds
Recycling	not pressing		
Prep	Vanillin + polyimine-e	epoxy cross	s-linked network $\rightarrow$ in-situ formation of the schiff base st
• Chemical struct	ures	0	Fourier transform infrared spectroscopy
• Thermal and me	echanical properties	<b>o</b>	Nuclear magnetic resonance spectra
		0	Differential scanning calorimetry
		<b>o</b>	Dynamic thermomechanical analysis
• Vanillin-based e	epoxy resin (dade)		
• Diglycidyl ether	r of bisphenol a epoxy		
resin (dgeba)			

A recyclable vanillin-based epoxy resin with high-performance that can compete with DGEBA	European Polymer Journal, 140(2020)110053doi.org/10.1016/j.eurpolymj.2020.110053	
Xunzheng Su and Zhen Zhou and Jingcheng Liu and Jing Luo and Ren Liu		

<ul><li>Healable polymer</li><li>Shape memory polymer</li></ul>	<ul> <li>Thermosets</li> <li>Enable recycling</li> </ul>	Dynamic Covalent Bond
Prep Esterification of diglycidyl ether of bisphenol A + tricarballylic acid.		tricarballylic acid.
healing efficiency ~60%		

Intrinsic healable and recyclable thermoset epoxy based on shape memory effect and transesterification reaction	
Lu Lu and Jizhou Fan and Guoqiang Li	

Malleable and Recyclable Thermosets: The Next Generation of Plastics	Matter 1(2019)1456–1493
Yinghua Jin, Zepeng Lei, Philip Taynton, Shaofeng Huang, and Wei Zhang	

# **Thermosets**

Plastics	o		
Malleable	Crosslinked polymers with dynamic covalent bonds,		
thermosets:	Bonds cleaved and reformed reversibly		
	Excellent mechanical properties and thermal and chemical stabilities like traditional		
	thermosets		
	<ul> <li>Reprocessable recyclable like thermoplastics</li> </ul>		
Highlights	Introduction of fundamental concepts		
Rev*	Tynamic covalent chemistry covalent adaptable networkmalleable		
	thermosets, rehealability, possible recyclabilityrecent literature		
	examples		
7 7 7 7	<b>Future opportunities</b>		

Malleable and Recyclable Thermosets: The Next Generation of Plastics	Matter, 1 (2019) 1456-1493 doi.org/10.1016/j.matt.2019.09.004	
Yinghua Jin and Zepeng Lei and Philip Taynton and Shaofeng Huang and Wei Zhang		
Dyn.Cov.BondsDyn.CovChemOrthogonal.Dyn.Cov.Chemnon_cov_Int		

Ultrastrong intrinsic bonding for thermoset composites	Composites Part B: Engineering,
via bond exchange reactions	194(2020)108054
	doi.org/10.1016/j.compositesb.2020.108054

Zhiqiang Chen and Qian Shi and Xiao Kuang and H. Jerry Qi and Tiejun Wang

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

### covalent organic frameworks

Covalent organic framework		Dyn. Co	v.Chem
Highlights Rev*	<ul><li>Porphyrin</li><li>Phthalocyanine</li></ul>		<ul><li>Catalysis</li><li>Optoelectronic devices</li></ul>

Dynamic Combinatorial Evolution within Self-	Angew. Chem. Int. Ed.48(2009)1093-1096
Replicating Supramolecular Assemblies	DOI: 10.1002/anie.200804602
Remi Nguyen, Lionel Allouche, Eric Buhler and Nicolas Giuseppone	

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Dynamic combinatorial	_	en even an an an ann an an an an an an an an a
chemistry	Rev	Dyn. Cov.Bond
Folding or self-replicating macrocycles		
KeyLrn_Bits	Emergence of life from a pool of simple chemicals	
✓ Kinetic an		d thermodynamic control coexist in DCC
	Non-coval	ent interactions

Evolution of Dynamic Combinatorial Chemistry	Acc Chem Res.,45(2012) 2211-21 doi: 10.1021/ar200240m
Fabien B. L. Cougnon And Jeremy K. M. Sanders	

Rev	covalent organic frameworks	Dyn. Cov.Chem
KeyLrn_Bits	modulation, mixed linker	substoichiometric
	linker exchange	reaction
		isomerism

Applications of Dynamic Covalent Chemistry Concept toward Tailored Covalent Organic Framework Nanomaterials: A Review	ACS Appl. Nano Mater.(2021) doi.org/10.1021/acsanm.0c01327	
Jiyun Hu, Suraj K. Gupta, John Ozdemir, and M. Hassan Beyzavi		

Covalent organic fram	neworks (Cov Org FraWrk) Dyn Cov Bonds		
Highlights of	Synthetic strategies with special emphasis on dynamic covalent		
rev	chemistry		
	Strategies of introducing extra tools in COFs to enhance their		
	crystallininty, porosity and chemical stability		
Applications	🔛 CO2 capture		
of COFs	Important parameters in the applications of COFs for post-combustion		
	capture of CO2 in the CCS technology		

Recent advances in the synthesis of covalent organic	
frameworks for CO2 capture	doi.org/10.1016/j.jcou.2016.12.003
Abass A. Olajire	

Dyn.Cov.Bonds--Dyn.Cov.Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Porous polymers	Cov org frameworks	Dyn Cov Chem
Synth:	Dehydration of a tetrahedral tetrakis(boronic acid) monomer $\rightarrow$ boroxine-linked 3D network	
Prop of	high functionalization density, long-range orde	er, and permanent porosity.
COF-102 network		

Functionalization of 3D covalent organic frameworks	Polymer, 55(2014)330-334	
using monofunctional boronic acids	doi.org/10.1016/j.polymer.2013.07.030	
Spencer D. Brucks and David N. Bunck and William R. Dichtel		

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

✓ Imines		Self-assembly		Dyn Cov Chem
		-		Cov Org frameworks
Factors	✓	Reaction solvent	✓	Reaction kinetics and
affecting yield	✓	Composition		thermodynamics
	✓	Structure of building units	✓	Degree of condensation
		influence	 	_

Thermodynamic, kinetic, and structural factors in the synthesis of imine-linked dynamic covalent frameworks	
Nathan C. Duncan and Benjamin P. Hay and Edw	ard W. Hagaman and Radu Custelcean

Review		Dyn Cov Chem	
		Covalent Organic Frameworks	
KeyLrn_Bits	Post-synthetic	+ Stability	
	modification	+ linkage,	
Covalent organic	🛄 These are functional poro	us crystalline "molecular Legos"	
frameworks (COFs)	Composed of light eleme	nts	
	Held together by covalen	t bonds.	
Synthesis		of reversible covalent bonds linking	
	multivalent monomers		
Reversibility	Imparts error correction & defect healing		
Highlights of Rev	State-of-the-art development of chemically robust cofs,		
	Grutinize the intriguing		
Applications	🛄 Heterogeneous catalysis		
	🛄 Environmental remediation	n	
	🛄 Chiral separation,		
	🛄 Corrosive gas sensing, and	d	
	🛄 Lithium-ion batterie		
Future research	🛄 Major challenges		
	Opportunities in future res		
	Perspectives of chemicall	y robust co`fs.}	

Chemically Robust Covalent Organic Frameworks:	Matter, 3(2020)1507-1540	
Progress and Perspective	doi.org/10.1016/j.matt.2020.09.007	
Xinle Li and Songliang Cai and Bing Sun and Chongqing Yang and Jian Zhang and Yi Liu		
Dun Cou Bonda-Dun Cou Chom Orthog	onal Dum Cour Chamnon dour Int	

metal-organic frameworks	ERRENALARAN ANTAN AN	Dyn Cov Chem
KeyLrn_Bits	<ul> <li>Combination of dynamic covalent chemistry + coordination chemistry in MOFs</li> <li>Post-synthetic methods,</li> <li>Interpenetration</li> </ul>	<ul> <li>Benchmark</li> <li>Expansion contraction</li> <li>Flexibility,</li> <li>Stability and lability</li> </ul>

Lattice Expansion and Contraction in Metal-Organic<br/>Frameworks by Sequential Linker ReinstallationMatter, 1(2019)156-167<br/>doi.org/10.1016/j.matt.2019.02.002Liang Feng and Shuai Yuan and Jun-Sheng Qin and Ying Wang and Angelo Kirchon and Di Qiu and<br/>Lin Cheng and Sherzod T. Madrahimov and Hong-Cai Zhou

Compd	Cucurbiturils (CB)	Dyn Comb Lib Dyn Comb Bonds
<ul> <li>Overview of</li> <li>CB formation mechanisms</li> <li>Synthetic methods</li> </ul>	Prop	<ul> <li>Dimensions shapes of cucurbituril derivatives</li> <li>Solubilities in water</li> </ul>

3.08 - Cucurbiturils: Synthesis, Structures, Formation Mechanisms, and Nomenclature	Comprehensive Supramolecular Chemistry II, Elsevier (2017)203-220 doi.org/10.1016/B978-0-12-409547-2.12514- 4	
R. Aav and S. Kaabel and M. Fomitšenko		

### Diselenide bonds

Dynamic diselenide bor	8 Network polymers	Dyn. Cov. Bonds
	<ul><li>Polymer reactions\ Diselenide,</li><li>Network polymers</li></ul>	
Ifthere are neighboring aromatic rings instead of aliphatic derivatives		
Then       Dynamic properties (ex. Higher photo-stability against UV light) enhanced for diselenide bonds         Image: Control of the stability of the stabilit		nst UV

Enhancement of the stimuli-responsiveness and photo-<br/>stability of dynamic diselenide bonds and diselenide-<br/>containing polymers by neighboring aromatic groupsPolymer,154(2018)281-290<br/>doi.org/10.1016/j.polymer.2018.09.022

Nao Suzuki and Akira Takahashi and Tomoyuki Ohishi and Raita Goseki and Hideyuki Otsuka

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Disulfide		n Cov Chem Comb Chem
KeyLrn_Bits	<ul> <li>RNA</li> </ul>	• HIV
- Contractor nation and an an	<ul> <li>Peptides</li> </ul>	

Probing the geometric constraints of RNA binding via	Bioorganic & Medicinal Chemistry,	
dynamic covalent chemistry	24(2016)3940-3946	
	doi.org/10.1016/j.bmc.2016.02.029	
John D. McAnany and John P. Reichert and Benjamin L. Miller		
Dem Gene Dende Dem Gene Ober Orthogeneil Dem Gene Ober and see Tet		

Dyn.Cov.Bonds--Dyn.Cov.Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

### **Miscellaneous**

		Dynamic Covalent Chem
KeyLrn_Bits	<ul><li>Rhombimines</li><li>Chiral diacetals</li><li>Schiff-base macrocycles</li></ul>	<ul><li>Spiro atom</li><li>TDDFT calculations</li></ul>

Axial chirality inversion at a spiro carbon leads to	Journal of Molecular Structure, 1202(2020)	
efficient synthesis of polyimine macrocycle	doi.org/10.1016/j.molstruc.2019.127336	
Mikołaj Zgorzelak and Jakub Grajewski		

	Triphenylamines	Dyn Comb Lib
-		Dyn Comb Bonds
$\square$ Reversible Diels-Alder reaction of these dyes $\rightarrow$		
Reversible emission switch OFF/ON		

Dynamic dye emi moiety exchangep	ission ON/OFF systems by a <mark>furan</mark> rotocol	Dyes and Pigments, 184(2021)108652 doi.org/10.1016/j.dyepig.2020.108652
	Qi Zhang and Ying Wang and Junk	oo Gong and Xin Zhang
Dyn.Cov.BondsDyn.CovChemOrthogonal.Dyn.Cov.Chemnon_cov_Int		
Compd	<ul><li>Benzo[ghi]perylene trimide,</li><li>Perylene diimide,</li></ul>	Dyn Comb Chem
Synth	<ul> <li>Benzo[ghi]perylene trimide</li> <li>its anion radical π-bonded din</li> </ul>	ner

Structural, photoelectrical and thermol properties of		
ultra-stable Benzo[ghi]perylene trimide dimer anion	doi.org/10.1016/j.tet.2019.130577	
Siyu Wu and Caihong Cheng and Wenlong Hou and Qizhe Li and Danyang Dong and Yongshun Gao		
and Lu Liu and Bo Liang and Haiquan Zhang		

Compd	Polybutadiene or	99   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   10	Dyn Cov Chem
	Naturally occurring		
	<ul> <li>Polyisoprene</li> </ul>		
	<ul> <li>Olefin-containing</li> </ul>		
	polyurethane		
Factors	Reaction time	Prop:	Enhanced mechanical
studied :	<b>Solvent</b>		properties
	! Homopolymer structure		

Metathesis-driven scrambling reactions between polybutadiene or naturally occurring polyisoprene and olefin-containing polyurethane	
Tomoyuki Ohishi and Kaori Suyama and Shigehisa Kamimura and Masahide Sakada and Keiichi Imato and Seiichi Kawahara and Atsushi Takahara and Hideyuki Otsuka	

Aromatic	• Self-assembly	Dyn Cov Cher	
compounds	<ul> <li>Molecular recognition</li> </ul>	-	
Compd	10-Hydroxy-10,9-boroxophenanthrene +	Reversible covalent chemistry	
	benzylic and alkane diols $\rightarrow$ 2:1 adducts	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

The dynamic covalent chemistry of mono- and		
bifunctional boroxoaromatics	doi.org/10.1016/j.tet.2006.12.034	
Lyndsey M. Greig and Alexandra M.Z. Slawin and Melanja H. Smith and Douglas Philp		

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Phenylboronic acid		Dynamic Covalent Chem
KeyLrn_Bits	<ul> <li>Electrochemical biosensor,</li> <li>Cells capture and release,</li> </ul>	<ul> <li>Tumor cells, Diagnosis</li> </ul>
<ul> <li>Electrochemical biosent</li> <li>Promising platform</li> <li>Specific tumor cell dete</li> <li>Monitoring the cell capt</li> </ul>	ction	Future diagnosis Early discovery detection of O Tumorigenesis O Metastasis

A dynamic electrochemical cell sensor for selective	Sensors and Actuators B: Chemical,
capture, rapid detection and noninvasive release of	330(2021)129345
tumor cells	doi.org/10.1016/j.snb.2020.129345
Xiaohua Tian and Yonghai Feng and Liang Yuan and Yu	uging Duan and Lei Liu and Mingdong Dong

		Atom transfer radical polymerization Block copolymers	Dyn.Comb.Chem
Synth	Atom transfer radical polymerization of monomers using a bis-bromoisobutyrate initiator bearing one acylhydrazone bond $\rightarrow$ Dynamic polystyrene (d-PS) and poly(n-butyl acrylate) (d-PBA) with an acylhydrazone linkage at each chain center		
Iftreated with trifluoroacetic acid or heated at 120 °C in solutionThenpolymer chains of d-PS and d-PBA were found to be cleaved			aved

ly into blocks of half original length → implies a dynamic equilibrium of forming and breaking acylhydrazone bond
-------------------------------------------------------------------------------------------------------------------------

Dynamic polymerscontaining one acylhydrazonePolymer, 54(2013)2647-2651linkage and dynamic behavior thereofdoi.org/10.1016/j.polymer.2013.03.023Zizhen Xu and Peng Zhao and Yongming Chen and Guohua Deng

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Diels-Alder reaction Cyclic polymer	Epoxy resins	Dyn Cov Bond
Prep Cyclic	poly(methyl methacrylate) linked by a	dynamic covalent
	aleimide bond was rationally designe	

Degradable epoxy resins prepared from diepoxide<br/>monomer with dynamic covalent disulfide linkagePolymer, 82(2016)319-326<br/>doi.org/10.1016/j.polymer.2015.11.057Akira Takahashi and Tomoyuki Ohishi and Raita Goseki and Hideyuki Otsuka

#### Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Perylene bisimide	Fluorescence sensing,	Dyn Cov Chem	
derivatives	To develop functionality-led		
	molecular systems		
Preparation	Fluorescent ionic complex : 3,4,9,10-	Acid-base reaction with (2-(6-	
	perylene tetracarboxylic acid (PTCA)	aminohexanamido)phenyl)boronic	
		acid (PBA- NH2)	
Effect on	If Fluoride introduced, it turns the quenched	fluorescence on	
Response	If Ca2+ added, it makes emission off again		
fluorescence			
	Reason: Formation and disruption of dynamic cyclic boronate esters owing to		
	establishment and cleavage of another dynamic covalent bond of B-F		
	→ Accordingly, selective and reversible sensing of glucose (PVA), F- and		
Ca2+ was realized			

Formation of an ionic PTCA-PBA-NH2 complex and<br/>its fluorescent changes triggered by cyclic boronate<br/>ester establishing and cleavage reactionJournal of Photochemistry and Photobiology<br/>A: Chemistry, 355(2018)425-40<br/>doi.org/10.1016/j.jphotochem.2017.07.020Xiaojie Xu and Huijing Liu and Qingqing Sun and Xuwei Fu and Rongrong Huang and Yu Fang

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

<ul> <li>Trianglamines</li> <li>Calixsalan</li> <li>Imine</li> </ul>	<ul> <li>Isotrianglamine, Macrocycle</li> <li>Rhombamine, Supramolecular</li> </ul>	Dyn Cov Chem
		Macrocyclic imines
Synth:	Primary amines + Aldehydes $\rightarrow$	under thermodynamic
l Veneralista de la constancia de la constanci		equilibrium conditions

**AAA** $\rightarrow$ CNN  $\rightarrow$  Dynamic covalent bonds (Chemistry)

Prop	Macrocyclic imines are rigid,	
	Imine reduction products, oligoamines are flexible	
Appl	Chiral discrimination in NMR spectroscopy	
	For asymmetrical catalysis	
Basis of	Imine synth is Dyn cov bond formation between primary amines and	
l 1. Carlan har	aldehydes	

3.11 - Trianglamines and Related Chiral Macrocycles	Comprehensive Supramolecular Chemistry II, Elsevier(2017)267-291 doi.org/10.1016/B978-0-12-409547-2.12521- 1
J. Gawroński and M. Kwit ar	nd U. Rychlewska

Thermo-mechanical respon	se	+ Dynamic Covalent Bond
KeyLrn_Bits	<ul> <li>Constitutive modeling ,</li> </ul>	<ul><li>+ Elastomer</li><li>+ Nanocomposite</li></ul>
Natural and synthetic rubbers : Netwo	ks of polymer chains cor	nected by irreversible chemical cross-links
- Cannot be repaired after dam	age	
- Discarded rubbers cannot be	economically recycled an	d reprocessed
Elastomers with dynamic covalent bor	ıds	
+ Recyclability, Malleability;	Capability of Autonomous	s Self-Healing
Expl: Thermally triggered bond-excha	nge reactions	
<u> </u>	operty relations over wid	e range of temperatures
🖌 🖌 Tensile	tests 🗸	Covalently cross-linked
🕺 🖌 Cyclic t	ests 🗸	rubber, Thermoplastic elastomer
🐰 🖌 Relaxat	ion tests 🗸	Elastomer
✓ creep t	ests 🗸	anocomposites with dynamic covalent bonds epoxy vitrimers

Thermo-mechanical behavior of elastomers	with	International Journal of Engineering Science,
dynamic covalent bonds		147(2020) 103200
		doi.org/10.1016/j.ijengsci.2019.103200
A.D. Drozdov and Jesper deClaville Christiansen		
Dyn.Cov.BondsDyn.CovChemOrthogonal.Dyn.Cov.Chemnon_cov_Int		

	<u>, , , , , , , , , , , , , , , , , , , </u>	la l
Polymer reactions		Dyn Cov Chem
Tari na		e have have have have have have have hav

**AAA** $\rightarrow$ CNN  $\rightarrow$  Dynamic covalent bonds (Chemistry)

og fræstendende haden af haden af haden fræstendende haden af haden af haden fræstende haden af haden af hade Fræstende Fræstende fræstende haden af h		
KeyLrn_Bits	<ul> <li>Cross-linked polymers,</li> </ul>	<ul> <li>EPR spectroscopy</li> </ul>
	<ul> <li>Polymer/silica</li> </ul>	
	composites	
Exchangeable dynamic	Structural reorganization	
covalent carbon-carbon		
bonds introduced into		
of polymer/silica		
$composites \rightarrow$		

Network reorganization in cross-linked polymer/silica composites based on exchangeable dynamic covalent carbon–carbon bonds	Polymer, 177(2019)10-18 doi.org/10.1016/j.polymer.2019.05.046
Takahiro Kosuge and Daisuke Aok	ti and Hideyuki Otsuka
Dyn.Cov.BondsDyn.CovChemOrthogonal.Dyn.Cov.Chemnon_cov_Int	

	The second secon	an a	Dyn Cov Chem
1 Young	Synth of	Stereoselective synthesis of first representatives of 1,12-diaza- 3,10,14,21-tetra-phospha-cyclo-	By Mannich-type condensation : 1,6-bis(phenylphosphino)hexane + formaldehyde + primary amines
- 10000 L 10000 L 1 1 1		docosanes	a An an

Stereoselective synthesis of the RPSPSPRP isomer of	Mendeleev Communications, 30(2020) 697-	
22-membered P4N2 macrocycles	699	
	doi.org/10.1016/j.mencom.2020.11.002	
Elvira I. Musina and Tatiana I. Wittmann and Alena S.	Shpagina and Andrey A. Karasik and Peter	
Lönnecke and Evamarie Hey-Hawkins		

t for the		Dyn Cov Chem
Nucleic acids	Central role in storing and tran	smitting genetic information
	→ High-specificity, high-affinity	hybridization
	Appl: Gene therapy, agricultur	al disease management, electronics
KeyLrn_Bits	Xenonucleic acid	Nucleic acid
	<ul> <li>Click chemistry</li> </ul>	<ul> <li>Xenonucleic acids (XNAs)</li> </ul>
	<ul> <li>Template-directed synthesis</li> </ul>	
XNA synthesis	Influenced by	
	Biology (e.g., directed evolution)	
Chemistry (e.g., dynamic covalent reactions)		

Towards High-Efficiency Synthesis of Xenonucleic Acids	Trends in Chemistry,2(2020)43-56 doi.org/10.1016/j.trechm.2019.06.004	
Benjamin D. Fairbanks and Heidi R. Culver and Sudheendran Mavila and Christopher N. Bowman		
Dyn.Cov.BondsDyn.CovChemOrthogonal.Dyn.Cov.Chemnon_cov_Int		

Controlled-release	system Next generation	Dyn Cov Chem
KeyLrn_Bits	<ul> <li>-hexylimine-chitosan</li> </ul>	<ul> <li>Antifungal</li> </ul>
	<ul> <li>Hexanal</li> </ul>	<ul> <li>Grain storage</li> </ul>
		<ul> <li>Biodegradable</li> </ul>
Prep of	Iminated N-hexylimine- chitosan (NHIC)by	Reaction of Polysaccharide chitosan + hexyl aldehyde in Schiff base
Appl	The contract of the contract o	
	occurrence on the grain	

N-hexylimine-chitosan, a biodegradable and<br/>covalently stabilized source of volatile, antimicrobial<br/>hexanal. Next generation controlled-release systemFood Hydrocolloids, 48(2015)213-219<br/>doi.org/10.1016/j.foodhyd.2015.02.033Tania Fadida and Adi Selilat-Weiss and Elena Poverenov

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Controlled-release	e system Next generation	Dyn Cov Bond	
Synth of	Assembling multi-hydroxyl carbon dots (CDs) on magnetic nanoparticles		
	The Modified with phenylboronic acid (PBA) molecular brush by a reversible		
	dynamic covalent bond		
Appl	<ul> <li>Glucose monitoring</li> <li>High sensitivity</li> </ul>		
	+ Wide linear response range from 0.2 to		
20 mM of glucose			

Glucose assay based on a fluorescent multi-hydroxyl	Sensors and Actuators B: Chemical,
carbon dots reversible assembly with phenylboronic	304(2020)127349
acid brush grafted magnetic nanoparticles	doi.org/10.1016/j.snb.2019.127349
Ji Li and Xinjie Li and Rongqin Weng and Taotao Qiang and Xuechuan Wang	

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

on a nananana ana ana ana ana ana ana an			
Synth of	Polybutadienes and olefin-containing polyurethanes		
	+ With urethane linkages as a source of hydrogen bonds in the		
	polymer main chain (PBUs).		
Appl	Cured rubbers		
	<ul> <li>Durability and fuel efficiency</li> </ul>		
KeyLrn_Bits	Rubber	<ul> <li>Hydrogen bonds</li> </ul>	
	Toughness	<ul> <li>Energy dissipation,</li> </ul>	

Polybutadiene rubbers with urethane linkages prepared		
by a dynamic covalent approach for tire applications	doi.org/10.1016/j.polymer.2020.122700	
Yasuhiro Shoda and Daisuke Aoki and Katsuhiko Tsunoda and Hideyuki Otsuka		
rasuniro Snoda and Daisuke Aoki and Kalsuniko Tsunoda and Hideyuki Olsuka		

Imines	RARAMARAN MARAMARAN KARAMARAN KARAMARAN KARAMARAN KARAMARAN KARAMARAN KARAMARAN KARAMARAN KARAMARAN KARAMARAN K	Dyn Cov Chem
KeyLrn_Bits	<ul> <li>Cages</li> </ul>	<ul> <li>Supramolecular chemistry</li> </ul>
	<ul> <li>Self-assembly</li> </ul>	

Dyn Cov Chem		2011-1000-1-000-1-000-1-000-1-000-
Synth of	C3-symmetric trialdehyde + triamine in acetonitrile	· · · · · · · · · · · · · · · · · · ·
tris-imine	Catalyst : trifluoroacetic acid	
	+ Dynamic Covalent Bond Formation	

Synthesis of a C3-symmetric tris-imine via dynamic<br/>covalent bond formation between a trialdehyde and a<br/>triamineTetrahedron Letters, 58(2017)4612-4616Keiko Nakada and Seiya Kondo and Yoshiteru Matsumoto and Masamichi Yamanaka

#### Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

,	11 11 11 11 11 11 11 11 11 11 11 11 11	la l
		Dyn Cov Bond
KeyLrn_Bits	<ul> <li>Self-assembly</li> </ul>	<ul> <li>Carbohydrate</li> </ul>
Supra-amphiphile	•	side (Azo-Gal) supra-amphiphile
	Self-assembled to fibrillar s	
Dual responses to	UV light and pH	

Self-assembly of supra-amphiphile of azobenzene-	Chinese Chemical Letters, 27(2016)1740-1744		
galactopyranoside based on dynamic covalent bond	doi.org/10.1016/j.cclet.2016.05.009		
and its dual responses			
Tian-Nan Wang and Guang Yang and Li-Bin Wu and Guo-Song Chen			

### Dyn.Cov.Bonds--Dyn.Cov.Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

	Aromatic disulfides Polysiloxanes	Outstanding	reprocessability	Dyn Cov Bond	
ATP3-SS showed best stretchability		Elongation at break	was as high as 780%.		
	APP1-SS achieved highest tensile	e strength of	2.60 MPa		

Stretchable, robust and reprocessable poly(siloxane- urethanes) elastomers based on exchangeable aromatic disulfides	Polymer, 221(2021)123588 doi.org/10.1016/j.polymer.2021.123588		
Shijie Shan and Yaling Lin and Anqiang Zhang			

Chitosan	Chitosan hydrogels using monoaldehydes	Dyn Cov Chem,
Self-healing	<ul> <li>Widespread in nature</li> </ul>	
	+ Cheap	
	+ Beneficial to the human body	
KeyLrn_Bits	<ul> <li>Superporous</li> </ul>	<ul> <li>Thixotropy</li> </ul>
	• Luminescence	<ul> <li>bio-medical applications</li> </ul>

Salicyl-imine-chitosan hydrogels: Supramolecular architecturing as a crosslinking method toward multifunctional hydrogels Carbohydrate Polymers, 165(2017)39-50 doi.org/10.1016/j.carbpol.2017.02.027

Manuela-Maria Iftime and Simona Morariu and Luminita Marin

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Coordination bo	ond 🛛			
arrays         arrays         Pattern recognition         Rev Highlights         Conventional design strategy         Self-assembled chemo-         Information-rich patterns from a smaller number of chemosensors	7.			
• Pattern recognition           Rev Highlights           Conventional design strategy         • For chemosensor arrays overview of simple minimized multifunctional chemosensor arrays multi-analyte detection           Self-assembled chemo-         • Information-rich patterns from a smaller number of chemosensors	Supramolecular Chemosensor     Inter/intramolecular interaction			
Rev Highlights           Conventional design strategy         • For chemosensor arrays overview of simple minimized multifunctional chemosensor arrays multi-analyte detection           Self-assembled chemo-         • Information-rich patterns from a smaller number of chemosensors	arrays			
Conventional design strategy• For chemosensor arrays overview of simple minimized multifunctional chemosensor arrays multi-analyte detectionSelf-assembled chemo-• Information-rich patterns from a smaller number of chemosensors				
strategymultifunctional chemosensor arrays multi-analyte detectionSelf-assembled chemo-Information-rich patterns from a smaller number of chemosensors				
Self-assembled chemo-         Information-rich patterns from a smaller number of chemosensors	<ul> <li>For chemosensor arrays overview of simple minimized</li> </ul>			
	multifunctional chemosensor arrays multi-analyte detection			
sensor arrays • Appl: environmental and biochemical tasks				
	<ul> <li>Appl: environmental and biochemical tasks</li> </ul>			
<ul> <li>Inter- or intramolecular interactions</li> </ul>	Inter- or intramolecular interactions			
Self-assembly For pattern recognition ex: chirality sensing	For pattern recognition ex: chirality sensing			
"without" a chemo-				
ensor array				
Knowledge-toDate • To develop "sophisticated chemosensor arrays" applicable for real-	• To develop "sophisticated chemosensor arrays" applicable for real-			
world scenarios				

Molecular	self-assembled	chemosensors	and	their	Coordination Chemistry Reviews,
arrays					429(2021)213607
	doi.org/10.1016/j.ccr.2020.21360				
Yui Sasaki and Riku Kubota and Tsuyoshi Minami					

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Phosphonium salt having a	Dyn Cov Bond	la Hai Hai Hai Hai Hai Hai Hai Hai Hai Ha	Dyn Cov Bond		
dynamic covalent bond	Between anion				
		versible structural shift on pair and zwitterion			
KeyLrn_Bits	<ul> <li>Ionic liquid</li> </ul>		<ul> <li>Zwitterion,</li> </ul>		
	<ul> <li>Phase separation</li> </ul>				
	Phosphonium salt	<ul> <li>i.e. Forming Mono- C</li> </ul>	Dr Bi-Phasic		
m	acroscopic phase behavior	Systems			
	in aqueous solution	• $\rightarrow$ Leading to green so	eparation		
systems					
	INFLUENcing factors	<ul> <li>CO2/N2 bubbling or</li> </ul>			
	<ul> <li>Acid/base</li> </ul>				

Hand-holding and releasing between the anion and	Green Energy & Environment, 4(2019)127-		
cation to change their macroscopic behavior in water	130		
	doi.org/10.1016/j.gee.2018.12.004		
Kosuke Kuroda and Yumiko Shimada and Kenji Takahashi			

Dyn.Cov.Bonds--Dyn.Cov.Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

	الإسلامية المسالمية	
Rotaxanes,	Organic frameworks	Dyn Cov Chem
	fan de henenen de henen	

**AAA** $\rightarrow$ CNN  $\rightarrow$  Dynamic covalent bonds (Chemistry)

Macrocycles	randa katan kat	an a	
KeyLrn_Bits	<ul> <li>, Hydrogen bonding</li> </ul>	<ul> <li>Thermodynamic control</li> </ul>	
	,		
Prep	Coupling reaction		
-	<ul> <li>Bromopyrido-24-crown-8 + phenylboronic acid →</li> </ul>		
	<ul> <li>4-phenylpyrido-24-crown-8 (prod)</li> </ul>		
	• Prod complexes with a variety of dibenzylammonium ions $\rightarrow$ complexes		
	molecules		
	<ul> <li>Stabler than their dibenzo-24-crown-8 counterparts</li> </ul>		
	• A complex in which diformyl-terminated thread is bound, $\rightarrow$ used to assemble a		
	[2]rotaxane under thermodynamic control		

Bromopyrido-24-crown-8: a versatile building block<br/>for the construction of interlocked moleculesTetrahedron Letters, 57(2016)513-516<br/>doi.org/10.1016/j.tetlet.2015.11.105Luke C. Delmas and Nicholas A. Payne and Avril R. Williams

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

### **Dynamic combinatorial Libraries**

	Dyn. Cov.Chem		
Highlights Rev*	<ul> <li>✓ Systems chemistr</li> <li>✓ DCLs that are un         <ul> <li>Synthetic</li> <li>Catalytic</li> <li>Complex</li> </ul> </li> <li>✓ Principles of DCC</li> <li>✓ Harbor richer from Self-reples</li> </ul>	atorial molecular networks y der thermodynamic control → e receptors systems self assembled supramolecular architectures to systems that are not at equilibrium functional behavior	
Dynamic Combinatorial Libraries: From Exploring		J. Am. Chem. Soc. 135(2013)	
Molecular Recognition to Systems Chemistry		9222-9239dx.doi.org/10.1021/ja402586c	
Jianwei Li, Piotr Nowak, and Sijbren Otto			

Dyn.Cov.Bonds--Dyn.Cov..Chem--.Orthogonal.Dyn.Cov.Chem--non_cov_Int

Double-level ''orthogonal'' dynamic <mark>combinatorial libraries</mark> on transition metal template	PNAS, 98(2001)1347–1352	
Vasiliy Goral, Marina I. Nelen, Alexey V. Eliseev and Jean-Marie Lehn		
Dyn.Cov.BondsDyn.CovChemOrthogonal.Dyn.Cov.Chemnon_cov_Int		
Selection and Amplification of Hosts From Dynamic	SCIENCE, 297(2002)	
Selection and Amplification of Hosts From Dynamic CombinatorialLibraries of Macrocyclic Disulfides	SCIENCE, 297(2002)	