Available online at www.joac.info

ISSN: 2278-1862

Journal of Applicable Chemistry

2022, 11 (4): 692-788 (International Peer Reviewed Journal)

CNN – 46 Supl nf Fig (Sif) Aerogenbonds

Information Source	ACS.org ; sciencedirect.com
K. Somasekhara Rao,	R. Sambasiva Rao,
Dept. of Chemistry,	School of Chemistry,
Acharya Nagarjuna Univ.,	Andhra University,
Dr. M.R.Appa Rao Campus,	Visakhapatnam 530 003, I ndia
Nuzvid-521 201, I ndia	-

Aerogen Bond (18 NgB) [He Ne ArKr Xe Rn]

AAA→CNN → Supl nf Fig (Sif) Aerogenbonds

AAA→CNN → Supl nf Fig (Sif) Aerogenbonds

erogen	Bond					NgB.	ACS.	1
[Xe]								
bond	distance (A.)	ρ _b (e Å ⁻³)"	$\nabla^2(\rho)$ (e Å ⁻⁵) ^b	<i>Н</i> ь (а.п.) ^ь	ε ^d		note	
K ₄ Xe ₃ O ₁₂								
Xe(1)O(1)	$2.475(9) \times 3$	0.3112	+3.4107	-0.0032	0.0331	aerogen bonds ^e		
Xe(1)-O(2)	1.774(7) × 3	1.3814	+8.4690	-0.1439	0.012.5	covalent bonds in [XeO3] ⁰ molecule		
Xe(2)-O(1)	$1.821(9) \times 6$	1.2.901	+6.3218	-0.1 302	0.0006	covalent bonds in [XeO ₆] ⁴⁻ octahedron [/]		
XeO38								
Xe(1)-O(1)	1.74(3)	1.4655	+10.9628	-0.1584	0.0109	covalent bond at Xe(1)-O(1)-Xe(1) bridge		
Xe(1)O(1)	2.80(3)	0.1561	+2.0215	+0.0019	0.0607	aerogen bond at Xe(1)-O(1)Xe(1) bridge		
Xe(1)-O(2)	1.76(3)	1.4066	+8.9539	-0.1477	0.0130	covalent bond to nonbridging oxygen		
Xe(1)-O(3)	1.77(3)	1,3987	+8.4175	-0.1479	0.0103	covalent bond at Xe(1)-O(3)Xe(1) bridge		
Xe(1)O(3)	$2.90(3) \times 2$	0.1260	+1.6600	+0.0021	0.0715	aerogen bonds at Xe(1)-O(3)…Xe(1) bridges		

sigma-hole + pi-holes on same Ng atom

Nobel gas compounds [He Ne ArKr Xe Rn]

Hydrogen Bond 1. HyB

Tetrel Bond 14 TtB

sigma-hole + pi-holes on same molecule

Tt Bond [Ge]	sigma-hole + pi-holes on same molecule	NgB.	ACS.	16	
Ge-O NBO bonding and antibonding orbitals of GeF2O					

Tetrel Bond	NgB.	ACS.	02
[C Ge]			
reduced amplitude density depletion $\pi(CO)$ orbital density	π -hole	5	P
Tetrogen Bond [C Ge]	NgB.	ACS.	02

MEP

AAA→CNN → Supl nf Fig (Sif) Aerogenbonds

1

NBO localized orbitals of NH3 N lone pair and $\pi^*(T-O)$ for(a) F2CO and (b) F2GeO.

Tetrel Bond		NgB.	ACS.	02
[Se N As Br Zn]				
	<mark>ΜΕΡ ΤΕD (ρ)</mark>			

Pnictogen(orPnicogen) bonds 15PnB

pnictogen Bond	 NCFOH2 NC(OH2)F 	NgB.	ACS.	16
Carbon(Tt)bond				
	σ-hole and pi-hole			
	Optimized structures			

Chalcogen Bond 16 ChB

sigma-hole + pi-holes on same molecule

rogen Bond				NgB.	SD. 2
complex	V _{S,max}	V _{S,min}	Rint	θo-z…c	Eint
OF2Kr···CH3	61.1	-8.3	2.800	179	-4.30
OF ₂ Kr···C ₂ H ₅	61.1	-10.9	2.623	178	-7.05
OF ₂ Xe····CH ₃	61.8	-8.3	2.993	180	-4.95
OF ₂ Xe···C ₂ H ₅	61.8	-10.9	2.869	178	-6.48
O ₃ Kr…CH ₃	62.8	-8.3	3.159	154	-2.72
$O_3Kr \cdots C_2H_5$	62.8	-10.9	3.019	158	-3.86
O ₃ Xe····CH ₃	70.8	-8.3	3.141	165	-3.56
$O_3Xe \cdots C_2H_5$	70.8	-10.9	2.966	164	-5.35

Isolated monomers	SEAB complexes
MEP maxima (Vs,max, kcal/mol)	Binding distance (Rint, Å)
MEP minima (Vs,min, kcal/mol)	Binding angles (θο-zc, °)
	Interaction energy (Eint, kcal/mol)

complex	PBCP	$\nabla^2 \rho_{\rm BCP}$	HBCP	Δq	E ⁽²⁾	QCT	WBI
OF2Kr···CH3	0.022	0.058	-0.001	0.017	6.28	0.024	0.031
OF2Kr···C2H5	0.034	0.072	-0.005	0.022	10.42	0.031	0.055
OF ₂ Xe····CH ₃	0.025	0.067	-0.002	0.030	8.74	0.028	0.038
OF2Xe···C2H5	0.038	0.082	-0.006	0.039	14.60	0.035	0.063
O ₃ Kr…CH ₃	0.011	0.034	0.001	0.013	2.14	0.001	0.012
O ₃ Kr ^{···} C ₂ H ₅	0.015	0.044	0.000	0.016	4.33	0.011	0.013
O ₃ Xe···CH ₃	0.015	0.037	0.001	0.023	3.75	0.003	0.025
O ₃ Xe ^{···} C ₂ H ₅	0.028	0.046	-0.002	0.028	6.59	0.014	0.036

^a All ρ_{BCP} , $\nabla^{-}\rho_{BCP}$ and H_{BCP} values in au, $E^{\vee -}$ in kcal/mol, Δq and q_{CT} in e. **SEAB complexes**

Topological parameters		Charge	2		
Electron density (at	t BCP, ρBCP),	Ē	NBO atomic	charge change	(Δq) of Z atom
I Laplacian, ∇2ρBCF)	(P	Charge-trans	fer energy (E(2)))
Total electron energy	gy density, HBCI		Net charge-ti	ransfer (qCT)	
even and a constant and a const	NACIONALIMANA MANANA		Wiberg bond	l index (WBI)	u u u u u u u u u u
complex	R ₇ c	AR7. C	Firmer	Finzic	F
	12	C	-mt,total	-m, ZC	-coop

FH…OF ₂ Xe …CH ₃	2.924	1	-0.069	-11.35	-5.86	-1.28
FH···O ₃ Kr···CH ₃	3.112	2	-0.047	-6.71	-3.10	-0.71
FH…O ₃ Xe …CH ₃	3.078	3	-0.063	-8.73	-4.14	-0.89
og i an	nanananananananananananan Te	rn	arv complexes		911001100110011001100110011001100110011	
SEAB distances	(RZ···C, Å)	rn	ary complexes Total interaction	energies	(Eint,total, kcal	l/mol)
SEAB distances	(RZ···C, Å)	m	ary complexes Total interaction	energies	(Eint,total, kcal	l/mol)
SEAB distances Relative changes to binary complexes	(RZ····C, Å) (ΔRZ····C, Å)	rna	ary complexes Total interaction Interaction energ of SEAB	energies ;ies	(Eint, total, kcal (Eint, Z…C, kc	l/mol) cal/mol)

Relative changes to	$(\Delta RZ \cdots C, Å)$	Interaction energies	(Eint, Z···C, kcal/mol)
binary complexes		of SEAB	
		Cooperative energies	(Ecoop, kcal/mol)

Aerogen Bond		NgB.	SD. 26
[Xe]			
Interaction en	ergies of SEA1	B in the trimers	
$\underline{\text{Eint}, AB(T) = EAB}$	BC - (EA +]	EBC) – Eint,AC(T)	
Total energy of triad	EABC	Energy of fully relaxed	EBC
Energy of the isolated optimized A monomer	EA	Energy of dyad	BC
Interaction energy of AC pair in the geometry of triad	Eint,AC(T)		
	ooperative energ	a nanasa ana ana ana ana ana <mark>gies</mark> a nanasa ana ana ana ana ana ana ana ana	

Ecoop=Eint,A	BC – Eint	,A	AB — Ein	nt,BC – Eint,AC (T)
Interaction energy	Eint, ABC		Eint,AB	Interaction energy
Of ternary complex				isolated binary complexes
			Eint,BC	
hannan manan m Manan manan mana	UMALIKA KANANANA			ananananananananananananananananananan

Aerogen-hydride	NgB.	SD.	27
interaction			
Electron density difference			
	Aerogen-hydride interaction Electron density difference	Aerogen-hydride NgB. interaction Electron density difference	Aerogen-hydride NgB. SD. interaction SD. Electron density difference

	6 0 Xe	T T	8 F.	9 .F
	0 Xe	Xe	F, F,	F
	Xe	A ==		V/
		0		Xe
	F	_		
	F-	F		
	10	11	12	13
		F, F	F	F
	F'. Xe. YF	Xe	F. Xe	Xe
	F	F F_	F F F	F
			F	
	14	15	16 F	17 F
		12	10 1	., .
Table 1. pVTZ lev kcalmol ⁻ density a	Interaction ene el of theory with ¹ , respectively), t the cage critic	rgies of complete nout and with t equilibrium dis al point (ρ , a.u.)	exes 6–17 at the RI- N he BSSE correction (E tances (R_e in Å) and va	1P2/aug-cc- and E _{8SSE} in alue of the
Table 1. pVTZ lev kcalmol ⁻ density a	Interaction ene el of theory with ¹ , respectively), t the cage critic E _{RSSE}	rgies of completion out and with tequilibrium distinguishing al point (ρ , a.u.) R_{e}	exes 6–17 at the RI-W he BSSE correction (E tances (R_e in Å) and v Complex type	1P2/aug-cc- and E_{8SSE} in alue of the $10^2 \times \rho$
Table 1. pVTZ lev kcalmol ⁻ density a <i>E</i> -16.6	Interaction ene el of theory with ¹ , respectively), t the cage critic <i>E</i> _{BSSE} -12.4	rgies of completed to the second sec	exes 6–17 at the RI-W he BSSE correction (E i tances (R _e in Å) and vi Complex type α-hole	1P2/aug-cc- and E_{BSSE} in alue of the $10^2 \times \rho$ 1.08
Table 1. pVTZ lev kcalmol ⁻ density a <i>E</i> -16.6 -4.5	Interaction ene el of theory with ¹ , respectively), t the cage critic E_{BSSE} -12.4 -2.5	rgies of complete nout and with t equilibrium dis al point (ρ , a.u.) R_{e} 2.904 ^[a] 3.259 ^[b]	exes 6–17 at the RI-W he BSSE correction (E is tances (R_e in Å) and va Complex type σ -hole lone pair– π	$\frac{10^{2}}{10^{2} \times \rho}$
Table 1. pVTZ lev kcalmol ⁻ density a <i>E</i> -16.6 -4.5 -6.2	Interaction ene el of theory with ¹ , respectively), t the cage critic E_{BSSE} -12.4 -2.5 -2.2	rgies of complete nout and with t equilibrium dis al point (ρ , a.u.) R_e 2.904 ^[a] 3.259 ^[b] 3.061 ^[a]	exes 6–17 at the RI-N he BSSE correction (E is tances (R_e in Å) and va Complex type σ -hole lone pair– π σ -hole	$\frac{1P2}{aug-cc-}$ and E_{BSSE} in alue of the $\frac{10^2 \times \rho}{1.08}$ 0.18 0.94
Table 1. pVTZ lev kcalmol ⁻ density a <i>E</i> -16.6 -4.5 -6.2 -8.1	Interaction energy with the cage critical E_{BSSE} -12.4 -2.5 -2.2 -5.1	rgies of completion hout and with t equilibrium dis al point (ρ , a.u.) R_e 2.904 ^[a] 3.259 ^[b] 3.061 ^[a] 3.049 ^[a]	exes 6–17 at the RI-W he BSSE correction (E i tances (R _e in Å) and vi Complex type σ-hole lone pair–π σ-hole lone pair–π	$\frac{1P2}{aug}-cc-and E_{BSSE} in alue of the 102 × \rho 1.08 0.18 0.94 0.26$
Table 1. pVTZ lev kcalmol ⁻ density a <i>E</i> -16.6 -4.5 -6.2 -8.1 -10.7	Interaction ene el of theory with ¹ , respectively), t the cage critic <i>E</i> _{BSSE} -12.4 -2.5 -2.2 -5.1 -6.7	rgies of completion out and with tequilibrium distance of the second se	exes 6–17 at the RI-W he BSSE correction (E is tances (R _e in Å) and vi Complex type σ-hole lone pair-π σ-hole lone pair-π σ-hole	$\frac{10^{2} \times \rho}{10^{2} \times \rho}$ 10 ² × ρ 1.08 0.18 0.94 0.26 1.02
Table 1. pVTZ lev kcalmol ⁻ density a <i>E</i> -16.6 -4.5 -6.2 -8.1 -10.7 -6.3	Interaction ene el of theory with ¹ , respectively), t the cage critico E_{BSSE} -12.4 -2.5 -2.2 -5.1 -6.7 -3.7	rgies of complete nout and with t equilibrium dis al point (ρ , a.u.) R_e 2.904 ^[a] 3.259 ^[b] 3.061 ^[a] 3.049 ^[a] 2.979 ^[b] 3.119 ^[b]	exes 6–17 at the RI-W he BSSE correction (E is tances (R_e in Å) and va- Complex type σ -hole lone pair– π σ -hole lone pair– π σ -hole lone pair– π	$\frac{10^{2} \times \rho}{1.08}$
Table 1. pVTZ lev kcalmol ⁻ density a <i>E</i> -16.6 -4.5 -6.2 -8.1 -10.7 -6.3 -12.9	Interaction ene el of theory with ¹ , respectively), t the cage critic E_{BSSE} -12.4 -2.5 -2.2 -5.1 -6.7 -3.7 -8.8	rgies of complete nout and with 1 equilibrium dis al point (ρ , a.u.) R_e 2.904 ^[a] 3.259 ^[b] 3.061 ^[a] 3.049 ^[a] 2.979 ^[b] 3.119 ^[a] 3.045 ^[b]	exes 6–17 at the RI-W he BSSE correction (E is tances (R_e in Å) and variation Complex type σ -hole lone pair– π σ -hole lone pair– π σ -hole lone pair– π π -hole lone pair– π	$\frac{10^{2} \times \rho}{1.08}$ 1.08 0.18 0.94 0.26 1.02 0.23 0.91
Table 1. pVTZ lev kcalmol ⁻ density a <i>E</i> -16.6 -4.5 -6.2 -8.1 -10.7 -6.3 -12.9 -3.4	Interaction ene el of theory with ¹ , respectively), t the cage critic E_{BSSE} -12.4 -2.5 -2.2 -5.1 -6.7 -3.7 -8.8 -1.9	rgies of completion hout and with tequilibrium distance of completion $(\rho, a.u.)$ R_{*} 2.904 ^[a] 3.061 ^[a] 3.049 ^[a] 2.979 ^[b] 3.049 ^[a] 2.979 ^[b] 3.019 ^[a] 3.026 ^[a]	exes 6–17 at the RI-W he BSSE correction (E tances (R_e in Å) and va- Complex type σ -hole lone pair– π σ -hole lone pair– π σ -hole lone pair– π π -hole lone pair– π	$1P2/aug-cc-and EBSSE inalue of the10^{2} \times \rho1.080.180.940.261.020.230.910.16$
Table 1. pVTZ lev kcalmol ⁻ density a <i>E</i> -16.6 -4.5 -6.2 -8.1 -10.7 -6.3 -12.9 -3.4 -8.1 -5.2	Interaction ene el of theory with ¹ , respectively), t the cage critico E_{BSSE} -12.4 -2.5 -2.2 -5.1 -6.7 -3.7 -8.8 -1.9 -3.5 -2.1	rgies of completion hout and with 1 equilibrium dis al point (ρ , a.u.) R_e 2.904 ^[a] 3.061 ^[a] 3.049 ^[a] 2.979 ^[b] 3.019 ^[a] 3.045 ^[b] 3.026 ^[a] 3.096 ^[b] 2.905 ^[a]	exes 6–17 at the RI-W he BSSE correction (E is tances (R_e in Å) and va- Complex type σ -hole lone pair– π σ -hole lone pair– π σ -hole lone pair– π π -hole lone pair– π π -hole	$ \begin{array}{r} 1P2/aug-cc-\\ and E_{8SSE} in \\ alue of the \\ 10^2 \times \rho \\ 1.08 \\ 0.18 \\ 0.94 \\ 0.26 \\ 1.02 \\ 0.23 \\ 0.91 \\ 0.16 \\ 0.89 \\ 0.21 \end{array} $
Table 1. pVTZ lev kcalmol ⁻ density a <i>E</i> -16.6 -4.5 -6.2 -8.1 -10.7 -6.3 -12.9 -3.4 -8.1 -5.3 10.0	Interaction ene el of theory with ¹ , respectively), t the cage critico E_{BSSE} -12.4 -2.5 -2.2 -5.1 -6.7 -3.7 -8.8 -1.9 -3.5 -3.1 5.7	rgies of completed of complete	exes 6–17 at the RI-W he BSSE correction (E is tances (R_e in Å) and va- Complex type σ -hole lone pair– π σ -hole lone pair– π σ -hole lone pair– π π -hole lone pair– π π -hole lone pair– π	$\frac{10^{2} \times \rho}{1.08}$ $\frac{10^{2} \times \rho}{0.26}$ 1.02 0.26 1.02 0.23 0.91 0.16 0.89 0.21 0.20
Table 1. pVTZ lev kcalmol [−] density a E -16.6 -4.5 -6.2 -8.1 -10.7	Interaction ene el of theory with ¹ , respectively), t the cage critic E_{BSSE} -12.4 -2.5 -2.2 -5.1 -6.7	rgies of complete nout and with t equilibrium dis al point (ρ , a.u.) R_e 2.904 ^[a] 3.259 ^[b] 3.061 ^[a] 3.049 ^[a] 2.979 ^[b]	exes 6–17 at the RI-W he BSSE correction (E is tances (R_e in Å) and va- Complex type σ -hole lone pair– π σ -hole lone pair– π σ -hole	$\frac{1000}{1000}$
Table 1. pVTZ lev kcalmol ⁻ density a <i>E</i> -16.6 -4.5 -6.2 -8.1 -10.7 -6.3 -12.9 -3.4	Interaction ene el of theory with ¹ , respectively), t the cage critico E_{BSSE} -12.4 -2.5 -2.2 -5.1 -6.7 -3.7 -8.8 -1.9	rgies of complete nout and with 1 equilibrium dis al point (ρ , a.u.) R_e 2.904 ^[a] 3.259 ^[b] 3.061 ^[a] 3.049 ^[a] 2.979 ^[b] 3.119 ^[a] 3.045 ^[b] 3.026 ^[a]	exes 6–17 at the RI-W he BSSE correction (E is tances (R_e in Å) and va- Complex type σ -hole lone pair– π σ -hole lone pair– π σ -hole lone pair– π π -hole lone pair– π	$\frac{10^{2} \times \rho}{1.08}$ 1.08 0.18 0.94 0.26 1.02 0.23 0.91 0.16
Table 1. pVTZ lev kcalmol ⁻ density a <i>E</i> -16.6 -4.5 -6.2 -8.1 -10.7 -6.3 -12.9 -3.4	Interaction ene el of theory with ¹ , respectively), t the cage critic E_{BSSE} -12.4 -2.5 -2.2 -5.1 -6.7 -3.7 -8.8 -1.9	rgies of completion nout and with tequilibrium distance of the second state of the se	exes 6–17 at the RI-W he BSSE correction (E tances (R_e in Å) and va- Complex type σ -hole lone pair– π σ -hole lone pair– π σ -hole lone pair– π π -hole lone pair– π	1P2/aug-cc- and E_{855E} in alue of the $10^2 \times \rho$ 1.08 0.18 0.94 0.26 1.02 0.23 0.91 0.16 2.00
Table 1. pVTZ lev kcalmol ⁻ density a <i>E</i> -16.6 -4.5 -6.2 -8.1 -10.7 -6.3 -12.9 -3.4 -8.1	Interaction ene el of theory with ¹ , respectively), t the cage critico E_{BSSE} -12.4 -2.5 -2.2 -5.1 -6.7 -3.7 -8.8 -1.9 -3.5	rgies of complete nout and with 1 equilibrium dis al point (ρ , a.u.) R_e 2.904 ^[a] 3.259 ^[b] 3.061 ^[a] 3.049 ^[a] 2.979 ^[b] 3.119 ^[a] 3.045 ^[b] 3.026 ^[a] 3.026 ^[a] 3.026 ^[b]	exes 6–17 at the RI-W he BSSE correction (E is tances (R_e in Å) and va- Complex type σ -hole lone pair– π σ -hole lone pair– π σ -hole lone pair– π π -hole lone pair– π π -hole	
Table 1. pVTZ lev kcalmol ⁻ density a <i>E</i> -16.6 -4.5 -6.2 -8.1 -10.7 -6.3 -12.9 -3.4 -8.1	Interaction ene el of theory with ¹ , respectively), t the cage critico E_{BSSE} -12.4 -2.5 -2.2 -5.1 -6.7 -3.7 -8.8 -1.9 -3.5	rgies of completion hout and with 1 equilibrium dis al point (ρ , a.u.) R_e 2.904 ^[a] 3.061 ^[a] 3.049 ^[b] 3.049 ^[b] 2.979 ^[b] 3.119 ^[b] 3.045 ^[b] 3.026 ^[a] 3.096 ^[b] 2.996 ^[b]	exes 6–17 at the RI-W he BSSE correction (E is tances (R_e in Å) and va- Complex type σ -hole lone pair– π σ -hole lone pair– π σ -hole lone pair– π π -hole lone pair– π π -hole	
Table 1. pVTZ lev kcalmol ⁻ density a <i>E</i> -16.6 -4.5 -6.2 -8.1 -10.7 -6.3 -12.9 -3.4 -8.1 -5.3 10.0	Interaction ene el of theory with ¹ , respectively), t the cage critico E_{BSSE} -12.4 -2.5 -2.2 -5.1 -6.7 -3.7 -8.8 -1.9 -3.5 -3.1	rgies of completed and with 1 equilibrium dis al point (ρ , a.u.) R_e 2.904 ^[a] 3.059 ^[b] 3.061 ^[a] 3.049 ^[a] 2.979 ^[b] 3.019 ^[a] 3.045 ^[b] 3.026 ^[a] 3.026 ^[a] 3.096 ^[b] 2.905 ^[a] 2.905 ^[a]	exes 6–17 at the RI-W he BSSE correction (E is tances (R_e in Å) and va- Complex type σ -hole lone pair– π σ -hole lone pair– π σ -hole lone pair– π π -hole lone pair– π π -hole lone pair– π	$\frac{10^{2} \times \rho}{1.08}$ $\frac{10^{2} \times \rho}{0.26}$ 1.02 0.26 1.02 0.23 0.91 0.16 0.89 0.21 0.20

RIMP2/aug-cc-pVTZ

AAA→CNN → Supl nf Fig (Sif) Aerogenbonds

AAA→CNN → Supl nf Fig (Sif) Aerogenbonds

Aerogen Bond	NgBC47reference set	NgB.	SD.	41
[He, Ne, Ar, Kr, Xe]				
	Bond distances			
	Ng = He, Ne , Ar , Kr , Xe			

AAA→CNN → Supl nf Fig (Sif) Aerogenbonds

	[He, Ne, Ar, Kr, Xe]					NgB.		SD.		41
		AN	g-X Bonds							
		-								
			Cov							
			nCov (B)							
			nCov (C)							
			pCov (A)	4	H ^{er} I	*** H				
			pCov (B)	51	TY	1				
			pCov (C)	7	-11-					
			pear (c)							
		i				-				
		If H	s negative (H-),	or ve to positiv	10					
		10	inge nom negati	V 🛏 17 V 1 W 10 11 V						
		be	eing on the avera	age positive	(H+/-) or					
		be	eing on the avera egative (H-/+).	age positive	(H+/-) or					
		Then p	eing on the avera egative (H-/+). Cov	age positive	(H+/-) or					
		be ne Then p	eing on the average egative (H-/+).	age positive	(H+/-) or					
Ng-X	bonds classification	Then p	eing on the average egative (H-/+). Cov	age positive	(H+/-) or					
Ng-X	bonds classification	be net Then po n	Probe	age positive	(H+/-) or					
Ng-X	bonds classification	h t (neary)	Probe H(r) plo Values	age positive ot Hs that the	(H+/-) or H(r) take	s over ti	he volu	ıme		
Ng-X	bonds classification Covalent (Cov) Partially-covalent	t (pcov)	Probe H(r) plo Values enclose	bt by the s(r)	(H+/-) or (H+/-) or H(r) takes) = 0.4 iso	s over tl	he volu	ume pund t	he	
Ng-X G	bonds classification Covalent (Cov) Partially-covalent Non-covalent (nC	t (pcov)	Probe H(r) plo Values enclose AIM BO	ot Hs that the i d by the s(r)	(H+/-) or H(r) takes H(r) = 0.4 iso	s over the sourface	he volu e at arc	ume bund t	he	
Ng-X ¢	bonds classification Covalent (Cov) Partially-covalent Non-covalent (nC	t (pcov)	Probe • H(r) plo • Values enclose AIM Bo	ot Hs that the d Dy the s(r) CP	(H+/-) or (H+/-) or H(r) takes) = 0.4 iso	s over tl	he volu e at arc	ume bund t	he	
Ng-X	bonds classification Covalent (Cov) Partially-covalent Non-covalent (nC	ba ne Then p0 (pcov) Lov)	Probe H(r) plo Values enclose AIM Bo	ot Hs that the CP	(H+/-) or (H+/-) or H(r) takes) = 0.4 iso	s over tl	he volu e at arc	ume ound t	he	
Ng-X G G Cov	 bonds classification Covalent (Cov) Partially-covalent Non-covalent (nC Plotted H(r) A. with p(BCP) > 0.08 	ba ne Then pt t (pcov) Cov)	Probe • H(r) plo • Values enclose AIM BO Examples ^a Ng-H ⁺ H-Ng-F	ot Hs that the CP	(H+/-) or H(r) take H(r) take $(LiF)_{h}$ Ar-OF	s over the sourface	he volu e at arc	ume bund t	he	
Ng-X G Cov pCov	 bonds classification Covalent (Cov) Partially-covalent Non-covalent (nC Plotted H(r) A, with ρ(BCP) > 0.08 A with ρ(BCP) < 0.08 	$H_{1}^{++} H^{++} \text{ or }$	Probe • H(r) plo • Values enclose AIM Bo Examples ^u Ng-H ⁺ , H-Ng-F, H F-NgO (H ⁺) (N	ot Hs that the d by the s(r) CP	(H+/-) or H(r) takes) = 0.4 iso $(LiF)_2$ Ar-OF Ng-HOH ⁺ (N	s over the sourface	he volu e at arc []3 (][] Ng-	ume bund t	he (Ng=	:He
Ng-X Cov pCov	bonds classification Covalent (Cov) Partially-covalent Non-covalent (no Plotted $H(r)$ A, with $\rho(BCP) \ge 0.08$ A, with $\rho(BCP) \le 0.08$ B	$H_{\varepsilon}^{++}, H^{++}, \text{ or }$	Probe Probe Probe H(r) plo Values enclose AIM Bo Examples ^u Ng-H ⁺ , H-Ng-F, H F-NgO (H ⁺⁺) (N H Ar-BeO (H ⁺⁺)	ot Hs that the d by the $s(r)$ CP H-HeNH ₃ ⁺ , He-O [g = He, Kr, Xe), 1 (r-BeO (H ⁺) Xe-	(H+/-) or H(r) takes) = 0.4 iso $\frac{(LiF)_2}{Ng-HOH_2^+(N)}$	s over the sourface	he volu e at arc [<u>3</u> (<i>H</i>), Ng-	ume bund t	he (Ng=	: He
Ng-X G G Cov	bonds classification Covalent (Cov) Partially-covalent Non-covalent (nC Plotted $H(r)$ A, with $\rho(BCP) > 0.08$ A, with $\rho(BCP) \le 0.08$ B C	$H_{\sharp}^{+}, H^{+}, \text{of}$	Probe Probe Probe H(r) plo Values enclose AIM Bo Examples ^u Ng-H ⁺ , H-Ng-F, H F-NgO (H ⁺⁺) (N H Ar-BeO (H ⁺⁺), K H Ne-HOH ₂ ⁺ (H ⁺⁺), K	bt Hs that the $\frac{1}{2}$ d by the s(r) CP H-HeNH ₃ ⁺ , He-O Ig = He, Kr, Xe), N Ig-BeO ($H^{(r)}$), Xe-	(H+/-) or H(r) take: H(r) take:) = 0.4 iso $(LiF)_2$ Ar-OF Ng-HOH ₂ ⁺ (N BeO (H^+)	s over th osurface I [†] , F-Ar-CH g = Ar-Xe)	he volu e at arc [] (H), Ng-	ume bund t	he (Ng=	He
Ng-X G Cov pCov	bonds classification Covalent (Cov) Partially-covalent Non-covalent (no Plotted $H(r)$ A, with $\rho(BCP) \ge 0.08$ A, with $\rho(BCP) \le 0.08$ B C C	ba Then p0 Then p0 n H_{2} H; H_{2} H ^{+ -} , H ^{+ +} , or $H^{+ -}, H^{+ +}, or H+ -, H+ +, or H^{+ -}, H^{+ +}, or positive $	Probe Probe Probe H(r) plo Values enclose AIM Bo Examples ^u Ng-H ⁺ , H-Ng-F, H F-NgO (H ⁺⁺) (N H Ar-BeO (H ⁺⁺), K H Ne-HOH ₂ ⁺ (H ⁺¹) Ng-L (L = Ar. H	bt Hs that the f d by the $s(r)$ CP H-HeNH ₃ ⁺ , He-O Ig = He, Kr, Xe), I Gr BeO (H ⁺⁺), Xe- , F-ArO (H ⁺⁺) F. F. Na ⁺), He-HO	(H+/-) or (H+/-) or H(r) takes) = 0.4 iso $(LiF)_2$ Ar-OF Ng-HOH ₂ ⁺ (N BeO (H^{+}) OH_{2}^{+} (He-BeO	s over the sourface f [†] , F-Ar-CH g = Ar-Xe)	he volu e at arc [] (H), Ng-	ume ound t	he (Ng=	: He