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ABSTRACT 
A novel and efficient one-pot operation for the synthesis of α-Ketoamides has been reported via 
difunctionalization of terminal alkenes using I2 as a mild catalyst in open atmospheric condition. The 
metal-free approach utilizing TBHP as an oxidant makes our protocol economically and 
environmentally benign. 
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INTRODUCTION 

 
As pervasive structural moieties in a widespread number of pharmaceuticals compounds, α-
Ketoamides posses a promising role in drugs and natural products. In addition, it also acts as 
anticancer agents, HIV inhibitors, FIV protease inhibitors and histone deacetylase inhibitors 
[1-6]. The moiety of α-Ketoamides also attributes to the activities of transition state inhibitory 
immunosuppressive drugs like tacrolimus and sirolimus [7, 8]. Although it has a wide and 
efficient role in biological activities it is also an important intermediate in organic synthesis 
and functional group transformation [9, 10]. Hitherto, several synthetic strategies have been 
developed considering the importance of α-Ketoamides scaffolds. Among them, the most 
common and widely used method includes amidation of α-Ketoacids and α-Keto acyl halides 
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[11]. Metal catalyzed methodologies have overcome the drawbacks of these traditional 
methods. Among which Palladium-catalyzed double carbonylation of aryl halides [12], 
copper-catalyzed oxidative synthesis of α-Ketoamides from ketones [13, 14], and 
dehydrogenative coupling of amine and α-carbonyl aldehyde etc., [15] have inspired many 
chemists for the synthesis of tertiary α-Ketoamides (Scheme 1). Although efficient in many 
aspects, these expensive transition metals being hazardous, toxic in nature and sensitive to 
moisture and air increases the demand for metal-free methodologies.  
 
      According to recent literature, aryl methyl ketone, terminal alkynes and oxoaldehyde [16b] 
have proved to be a common efficient substrate for metal-free approach to α-Ketoamides [16-
19]. Alkenes have been used extensively as a substrate for organic synthesis due to it’s readily 
availability and versatility.  Recently, Sekar et. al. have discovered I2/IBX promoted synthesis 
of α-Ketoamides from alkenes [20a]. However, the lower solubility of IBX and its shock 
sensitivity limits the availability of this methodology. Deshidi et al., have synthesized α-
Ketoamides using DMSO and equivalent amount of I2 [20b]. Guo and co-workers have also 
developed I2-promoted aerobic oxidative coupling of acetophenones with amines to give α-
Ketoamides [21]. In spite of being metal-free and appealing approach, a need for a catalytic 
platform still creates an opportunity to develop a novel, simple and highly efficient synthetic 
route for one-pot synthesis of α-Ketoamides. 
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Scheme 1. Synthesis of α-Ketoamides 
 

 Radical chemistry has received a lot of attention in organic synthesis due to its mild, 
efficient and environmentally benign nature. [22, 23] Inspired by the upcoming work of the 
radical initiated synthesis and our continuous effort on the difunctionalization of alkenes [24], 
lead us to propose an efficient, simple and mild pathway for the synthesis of α-Ketoamides 
utilizing easily available alkenes and dimethylformamide as a source of amine radical. It’s a 
new method of C-N bond formation via decarbonylation [23]. 

 
MATERIALS AND METHODS 

 
1H NMR spectra were recorded on a Bruker Avance II (400 MHz) FT spectrometer in CDCl3 using 
TMS as internal reference. 13C NMR spectra were recorded on the same instrument at 100 MHz in 
CDCl3 and TMS was used as internal reference. All coupling constant (J) are reported in Hertz (Hz). 
Mass (EI) spectra were recorded on JEOL D-300 mass spectrometer. Melting points were determined 
by open glass capillary method and are uncorrected. All chemicals used were reagent grade and were 
used as received without further purification. All reactions were performed using oven-dried 
glassware. Organic solutions were concentrated using a Buchi rotary evaporator. Column 
chromatography was carried out over silica gel (Merck 100–200 mesh) and TLC was performed using 
silica gel GF254 (Merck) plates. 
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General Procedure for the synthesis of α-Ketoamides 3: A mixture of aryl terminal alkene 1 (1 
mmol), I2 (20 mol%) and TBHP (4 mmol) in dialkylformamide (3 mL) was stirred at 80C temperature 
for 15 h under atmospheric air in a round bottom flask. After completion of the reaction as monitored 
by TLC, water (5 mL) was added and the mixture was extracted with ethyl acetate (3 X 5 mL). The 
combined organic phases were dried over anhyd. sodium sulphate, filtered and concentrated under 
reduced pressure. The residue obtained was purified by column chromatography using a gradient 
mixture of n-hexane/ethyl acetate as eluent to obtain an analytically pure sample of α-Ketoamides 3 
(Table 2, entries 3a-o) in 76-89% yields. 
 
Characterization Data of Representative Compounds 
N, N-dimethyl-2-oxo-2-phenylacetamide (Table 2, entry 3b): (Colourless liquid) IR (KBr): 1680, 
1644. 1H NMR (400 MHz, CDCl3, TMS): δ = 7.95-7.98 (m, 2H), 7.61-7.66 (m, 1H), 7.51-7.53 (m, 
2H), 3.15 (s, 3H), 3.00 (s, 3H). 13C NMR (100 MHz, CDCl3, TMS): δ = 191.9, 167.0, 134.8, 133.0, 
129.5, 128.9, 36.9, 33.9. EIMS (m/z): 177 (M+). Anal.calcd for C10H11NO2: C, 67.78; H, 6.26; N, 
7.90. Found, C, 67.89; H, 6.32; N, 7.85. 
 
2-(4-fluorophenyl)-N, N-dimethyl-2-oxoacetamide (Table 2, entry 3e): (Colourless liquid) IR 
(KBr): 1679, 1645. 1H NMR (400 MHz, CDCl3, TMS): δ = 8.00-8.05 (m, 2H), 7.13-7.20 (m, 2H), 
3.13 (s, 3H), 3.00 (s, 3H) 13C NMR (100 MHz, CDCl3, TMS): δ = 189.9, 168.0, 166.8, 165.5, 132.3, 
129.5, 116.3, 116.3, 29.9, 33.9. EIMS (m/z): 195 (M+). Anal.calcd for C10H10FNO2: C, 61.53; H, 5.16; 
N, 7.18 Found, C, 61.40; H, 4.98; N, 7.07. 
 
2-(furan-2-yl)-N, N-dimethyl-2-oxoacetamide (Table 2, entry 3k): (Colourless liquid) IR (KBr): 
1694, 1650. 1H NMR (400 MHz, CDCl3, TMS): δ = 7.69 (s, 1H), 7.40 (s, 1H), 6.64 (s, 1H), 3.12 (s, 
3H), 3.00 (s, 3H) 13C NMR (100 MHz, CDCl3, TMS): δ = 178.6, 165.3, 150.3, 148.8, 122.5, 112.9, 
37.1, 34.4. EIMS (m/z): 168 (M+). Anal.calcd for C8H9NO3: C, 57.48; H, 5.43; N, 8.38; Found, C, 
57.69; H, 5.55; N, 8.46. 
 
N, N-diethyl-2-(4-nitrophenyl)-2-oxoacetamide (Table 2 entry 3o): (Colourless liquid) IR (KBr): 
1690, 1643. 1H NMR (400 MHz, CDCl3, TMS): δ = 8.37 (d, J = 7.2Hz 2H), 8.12 (d, J = 7.2Hz, 2H), 
3.60 (q, J = 7.2Hz, 2H), 3.30 (q, J =7.2Hz, 2H), 1.28 (t, J = 7.2Hz, 3H), 1.21 (t, J = 7.2Hz, 3H). 13C 
NMR (100 MHz, CDCl3, TMS): δ =189.0, 165.5, 149.9, 137.8, 130.6, 124.0, 42.2, 39.4, 14.4, 12.7. 
EIMS (m/z): 250 (M+). Anal.calcd for C12H14N2O4: C, 57.59; H, 5.64; N, 11.19. Found, C, 57.64; H, 
5.34; N, 10.98. 
 

RESULTS AND DISCUSSION 
 

Initially, we envisaged the synthesis of α-Ketoamides via I2 catalyzed difunctionalization of 
alkenes with DMF in the air atmosphere. We proceeded with a model reaction of styrene 1a (1 
mmol) and iodine (20 mol%) in DMF 2a (3 mL) using TBHP (4 mmol) as an oxidant at 80C. 
To our delight, 88% of 3a was obtained. With this excellent yield in our hand, we further 
proceeded to optimize our reaction condition by carrying a series of control experiments. In 
the absence of either catalyst or oxidant no product formation was observed (Table 1 entries 7, 
8). Among various catalyzing reagent used like I2, PhI(OAc)2, nBu4NI, and nBu4NBr, I2 
proved to be the best (Table 1, entries 1,10-12). Next, we observed that on decreasing 20 
mol% of I2 to 10 mol% the product yield also decreased to 70% (Table 1, entry 2). Further, 
when it was increased from 20 mol% to 30 mol% there was no change observed in yield 
(Table 1, entry 3). No product was observed when the reaction was carried out under the inert 
N2 atmosphere (Table 1, entry 9), this revealed the necessity of O2 for the formation of α-
Ketoamides. Various oxidants were also examined such as DTBP, H2O2, and K2S2O8 but none 
of them were suitable for our standard reaction condition (Table 1, entries 4-6). The yield was 
reduced to 55% on decreasing TBHP to 2 equiv. (Table 1, entry 13).  
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Table 1. Optimization of reaction conditionsa 

 

   catalyst
Oxidant, air

80 oC
DMF

N

O

O

1a 2a 3a  
 

 
 
 
 
 
 
 
 
 
 
 
 

aReaction conditions: Styrene (1 mmol), catalyst (mol%),  
DMF(3 mL)Oxidant (4 mmol)  under an air atmosphere at 80oC 

b Reaction carried under inert N2 atmosphere 
c Isolated yield of 3a after flash chromatography 

   
Table 2. Difunctionalization of terminal alkenes with dialkylformamides  

to yield α-Ketoamidesa 
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a Reaction conditions: aryl terminal alkene (1 mmol), dialkylformamide (3 ml), I2 (20 mol%) 
TBHP (4 mmol), 80oC, open-air condition, 15 h 

bAll compounds are known and gave C, H and N analyses within ±0.37% and satisfactory spectral 
(IR, 1H NMR, 13C NMR and EIMS) data with those reported in the literature [16, 20, 21, 24d, 27] 

Entry Catalyst 
(mol%) 

Oxidant 
 (mmol) 

Time
 (h) 

Yield  
(%)c 

1 
2 
3 
4 
5 
6 
7 
8 
9 b 
10 
11 
12 
 13 

I2 (20) 
I2 (10) 
I2 (30) 
I2 (20) 
I2 (20) 
I2 (20) 
I2 (20) 

- 
I2 (20) 

PhI(OAc)2 (20)
nBu4NI (20) 

nBu4NBr (20) 
I2 (20) 

TBHP (4) 
TBHP (4) 
TBHP (4) 
DTBP (4) 
H2O2 (4) 

K2S2O8 (4) 
- 

TBHP (4) 
TBHP (4) 
TBHP (4) 
TBHP (4) 
TBHP (4) 
TBHP (2) 

15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 

88 
70 
88 
5 
1 
- 

n.r. 
n.r. 

- 
20 
10 

Traces 
55 



Twinkle Keshari et al                                      Journal of Applicable Chemistry, 2022, 11(4):588-596 

www. joac.info 592 

 

Whereas, 4-fluro-phenyl styrene 1e treated with DMF 2a, the yield of α-Ketoamide 3e slightly 
decreased to 76%. Even heteroaryl terminal alkene (1k, 1l) also produced 79-80% of α-
ketomide in the present reaction condition (Table 2 3k, 3l). The scope of the reaction was also 
observed with N, N-diethylformamide 2b and could be easily transformed into our desired 
product in average to good yield (3j, 3m-3o). 
 
 A number of experiments were performed to investigate a plausible reaction pathway as 
shown in Scheme 2.  
 

N
C

H

O O

N
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     80 oC
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     N2,15 h

a) Role of air as the oxidant
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b) 13C isotope labelling experiment
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O

82 %

O

13

 
 

Scheme 2. Mechanistic investigation. 
 
The role of O2 was studied by performing the reaction under N2 condition. The reaction was inhibited 
in the given condition (Scheme 2a). Next, on further carrying out 13C-isotope labelling experiment 
proves that the acyl group didn’t come from the DMF (Scheme 2b). 18O-isotope containing α-
Ketoamides was obtained in 82 % yield (Scheme 2c) confirming the attack of dioxygen [24c]. It is the 
first report of difunctionalization of alkene via decarbonylation of DMF in air atmosphere under 
metal-free condition [25]. 
 
 On the basis of the above results and literature precedents [16, 24d, 26-27] a plausible 
reaction mechanism for the formation of α-Ketoamides 3 has been shown in Scheme 3. Firstly 
I2 catalyzes the formation of tert- butyl peroxyl and tert-butoxyl radicals. This tert-butoxyl 
radical abstracts hydrogen from 2 to form acyl radical 2’ which further forms aminyl radical 4 
by decarbonylation. Next, a carbon-centered radical 5 is formed by the attack of aminyl radical 
on 1. The addition of dioxygen on 5 produces 7 which on oxidation with TBHP yield 10 which 
further oxidized to give the desired product 3. 
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Scheme 3. Plausible reaction pathway for the formation of α-Ketoamides 
 

APPLICATION 
 

The synthesis of α-Ketoamides using terminal alkene with DMF is very facile and eco-friendly 
method and is present in many bio-active molecules. The use of iodine as a catalyst is easily available 
and non toxic in nature. This method develops C-N bond formation in terminal alkene utilizing DMF 
both as a solvent and reactant. It has a great application in medical and pharmaceuticals field. This 
novel methodology also plays an important role in drugs synthesis. 

 
CONCLUSION 

 
α-Ketoamides has been synthesized via a novel approach of difunctionalization of terminal alkenes in 
a metal-free condition in the air atmosphere utilizing TBHP as an oxidant. This protocol is thus 
environmentally friendly and a new method to synthesis of α-Ketoamides.  
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