Available online at www.joac.info

ISSN: 2278-1862

Journal of Applicable Chemistry

2022, 11 (5): 910-956 (International Peer Reviewed Journal)

CNN – 47 Spodiumbonds

Information Source	ACS.org ; sciencedirect.com
K. Somasekhara Rao,	R. Sambasiva Rao,
Dept. of Chemistry,	School of Chemistry,
Acharya Nagarjuna Univ.,	Andhra University,
Dr. M.R.Appa Rao Campus,	Visakhapatnam 530 003, I ndia
Nuzvid-521 201, I ndia	

Conspectus: The term Spodium was used in the XIII century to refer to zinc oxide mixed with other metals. Spodium atoms ([SpA: [Zn, Cd; Hg; Cn]) belong to 12th group of 18 column chemical elements periodic table. SpA exhibits Lewis's acid (LA) behaviour. SpAs forms complexes or adducts with Lewis bases (LB) including molecules or species with π electron systems. The Spodium (like triel, tetrel, pnic(t)ogen, chalcogen, halogen, aerogen, hydrogen, regium) bond is also understood in terms of the σ -hole concept proposed by Politzer and Murray.

Knowledge based pipe-lines(with imbedded XI [:Artificial, eXplainable, Natural, Super Intelligence], machine learning, deep learning, deep-NNs and preliminary-consciousness tools/work flowshave beentarget/focus of our investigations of speciation in different phases and environments evolving into better and better approachesin trans-disciplinary chemical sciences. The multi-way flow/fusion with Physics, Biology based state-of-knowledge stunts will take the man-made scientific intervention towards greatest-benefit-to-human-kind.

Keywords:Interactions; Physics; Chemistry-Biology; Bonds; No-Bonds; Chemical bonds (CB); Electrovalent-B; Covalent Bond (CovB); Non-Covalent Chemical bonds (NCCB): [Nobel gas (aerogen), Halogen, Chalcogen, Pnicogen (or Pnictogen), Tetrel, Triel, Spodium, Regium (or Coinage), alkali, alkaline earth, Hydrogen [{strong, weak}, dihydrogen, hydride]], Synthesis, spectroscopy, computational quantum chemistry, Molecular dynamics

 	Layout Spodium (12G) bonds in chemical systems Select Research Titles	K(nowledge)Lab rsr.chem1979
111	SupInf Fig (Sif)	

I. Spodium bonds in chemical systems

- mar - m		(1) (1)	//www.//www.//www.//www.//www.//
Column" Periodic table	Abbrev	Abbrev	¢¢ bonda
	\$\$Bond	\$\$Atom	əə donas
1 G	HvB	HvA	Hydroger

Column [#]	Abbrev	Abbrev	\$\$ bonds
180	NgB	NgA	Nobel gas
100	AeB	AeA	Aerogen
17G@	HaB	HaA	Halogen
16 G @	ChB	ChA	Chalcogen
15G	PnB	PnA	Pnicogen or Pnictogen
14 G	TtB	TtA	Tetrel
13 G	TrB	TrA	Triel

12G SpB SpA Spodium

Spodium bond is defined as noncovalent interaction between any electron donating moiety and a chemical element of group 12 group (SpA) acting as Lewis acid

11G 10G	CiB or RgB	CiA or RgA	Coinage or Regium
2G	AEB AlkEarB	AEB AlkEarA	Alkaline- Earth
1G	AkB AlkB	AkA AlkA	Alkali

	ereenenenenenenenenenenenenenenenenenen
	 Is a noncovalent interaction between a covalently-bonded atom and anegative site, e.g. A lone pair of electrons in a Lewis base, an anionor a π-system These noncovalent interactions are markedly different from coordination bonds
σ-hole bonding	 σ -hole arises from an anisotropic charge distribution around the polarized atom σ -holecreates a region of positive electrostatic potential (σ-hole) on the extension of one of the covalent bonds to the atom Ex.: X-Ae, X-Hal, X-Ch, X-Pn, and X-Tr
	 Concept of σ-hole interactions has also been extended to coinage- metal bond or regium bond and spodium bonds

	Solution Is a member of set (or family) of σ_{hole} (or simply σ)
	σ-hole on the spodium atom is located approximately on the extension of the covalent bonds to this atom
	Def: Non-covalent bond arising due to interaction between
	✓ a covalently-bonded Group-12 (spodium) atom (SpA) functioning as Lewis's acid (or an electron-acceptor) and electron donor playing the role of Lewis base
Spodiumbond (SpB)	 It is non-covalent/non-coordinative attractive interaction Antibonding (Sp–Y, where Y can be any atom) has a contribution Strength depends upon energy or force involved Coexists with other weak interactions, including hydrogen and halogen bonding
	 Lewis acid property of spodium atoms arise due to existence of an electron-deficient region (called σ- hole)
	G-hole is distributed on the outermost portion of these spodium atoms
	 σ-hole region characterized by a positive molecular electrostatic potential (MESP)
	 Very much like those of the halogen bond because of the similar misshaped electron clouds of the halogen atom

ny na manana na manana manana na manana na manana na manana manana manana manana manana manana manana. Ny fi		
	 ✓ 	Directional
Characteristics	1	Electron rich atom is located at distances that are longer than the sum of covalent radii
	 ✓ 	Considerably weaker than coordination bonds
SpB utility	~	To differentiate the coordination bond (high covalent character) typical of transition metals from the noncovalent contact

	Knowledge base	fc	or spoc	dium	bond
lf	SpA : [Zn, Cd, Hg]& oxidation state = $+2$ & coordination environment = (pseudo)tetrahedral Sp(Ligand) ₄		ann ann If	former H < 0	dative bonds &
Th	n region of positive potential suitable to interact with a lone-pair		Then	Indicat i.e. clea	tes high covalent character arly a dative interaction
	bearing partner			Elself	H > 0
→	Sp bond feasible			Then	Indicates Noncovalent van der Waalsinteraction
lf	SpA : [Zn, Cd and Hg]& oxidation state = +2& coordination environment = five-coordinate coordination complexes				Ex. : weakest S…Ag interaction is best described as a van der Waals interaction rather than a dative bond.
Th	Interactions are markedly different		EndIf		I na na manana ang ang ang ang ang ang ang ang an
<u>→</u>	No Sp interaction				

	 Coordination polymers Catalysis, crystal engineering
Applications	 Supramolecular chemistry To control Molecular recognition Self-assembly processes
	 Biomolecular functional materials Protein structure Enzyme inhibition

Coinage metal-bond	√ √	Non-covalent Interaction of polarized group11 metal (such as in AgCl or small metal clusters)with a LB To account for electrostatic interaction (Ex. goldadducts with non-negligible covalent character)
- (68) 1 68) 1 68) 1 68) 1 68) 1 68) 1 68) 1 68) 1 68) 1 68) 1 68) 1 68) 1 68) 1 68) 1 68) 1 68) 1 68) 1 68) 1		

II. Select Research Titles

π -Hole spodium bonding in tri-coordinated Hg (ii)	Dalton Transactions 50.22 (2021): 7545-
complexes	7553.
	https://doi.org/10.1039/D1DT01235E
Gomila, Rosa M., Antonio Bauza, Tiddo J. N	Mooibroek, and Antonio Frontera.
	SpB. 01

Spodium bonds: noncovalent interactions involving group 12 elements	Angewandte Chemie International Edition 59.40 (2020): 17482-1748
	https://doi.org/10.1002/anie.202007814
Antonio Bauzá, Ibon Alkorta, José Elguero, Tic	ldo J. Mooibroek, Antonio Frontera
	SpB. 02

Spodium bonding and other non-covalent interactions	Inorganica Chimica Acta	a 519 (20)21):	
assisted supramolecular aggregation in a new	120			
mercury(II) complex of a nicotinohydrazide derivative	https://doi.org/10.1016/j.ica.	2021.120)279	
GhodratMahmoudi, EnnioZangrando, BarbaraMiroslaw, Atash V.Gurbanov, Maria G.Babashkina,				
AntonioFrontera, Damir A.Safin				
		SpB.	03	

A new spodium bond driven coordination polymer	New Journal of Chemistry 4	4.48 (20)20):	
constructed from mercury (ii) azide and 1, 2-bis	zide and 1, 2-bis 21100-211		107.	
(pyridin-2-ylmethylene) hydrazine <u>https://doi.org/10.1039/D0NJ04</u>			444J	
Mahmoudi Ghodrat, Simon E. Lawrence, Jonathan Ciste	rna, Alejandro Cárdenas, Iván Bi	ito, Anto	onio	
Frontera, and Damir A. Safin				
		SpB.	04	

Insight into Spodium– π Bonding Characteristics of the MX2… π (M = Zn, Cd and Hg; X = Cl, Br and I)	Molecules. 2022 May; 27(9): 2885. doi: 10.3390/molecules27092885
Complexes—A Theoretical Study	
Meng Gao, Qibo Zhao,Hao Yu, Mi	n Fu, and Qingzhong Li
	SpB. 05

Not Only Hydrogen Bonds: Other Noncovalent Interactions	Crystals, 10.3.(2020): 180 https://doi.org/10.3390/cryst10030180
Alkorta, Ibon, José Elguero, ar	nd Antonio Frontera
	SpB. 06

Dibismuthates as linking units for bis-zwitterions and	Inorganic chemistry 59.18 (2	2020): 13	270-
coordination polymers		13	3280.
	https://doi.org/10.1021/acs.inorgc	hem.0c0	<u>1619</u>
Fekete, C., Barrett, J., Ben	kő, Z. and Heift, D		
		SpB.	07

Hydrogen and halogen bonds formed by MCO3		Molecular Division 20	1 22	
(M - 7n Cd) and their enhancement by a readium	htter e	Molecular Physics, 2022,		
(w - 2n, Cu) and their enhancement by a spodium	nttps	//d01.0rg/10.1080/002689/6.2022.2102	,348	
bond				
Qingqing Yang,Qiaozhuo Wu,Xiaolong	g Zha	ng,Xin Yang &Qingzhong Li		
		SpB.	08	
			1	
Spodium Bonds in Biological Systems: Expanding the	e	Journal of chemical information	and	
Role of Zn in Protein Structure and Function		modeling 61.8 (2021): 3945-39) 54.	
		https://doi.org/10.1021/acs.jcim.1c00	<u>594</u>	
Himansu S. Biswal, Akshay Kumar Sahu,	Anto	nio Frontera, and Antonio Bauzá		
		SpB.	09	
		~ L =:		
Intramolecular Spodium Bonds in Zn (II) Complexes:		International journal of molecular scien	nces	
Insights from Theory and Experiment		21.19 (2020): 70)91.	
		https://doi.org/10.3390/ijms21197	091	
Karmakar, Mainak, Antonio Frontera, Shouvik Cha	ttopa	adhyay, Tiddo J. Mooibroek, and Antonio	0	
Bauzá, "Intramolecular Spodium Bonds in Zn (II) Co	mple	xes: Insights from Theory and Experime	ent "	
International journal of molecular so	vience	$\sim 21 \text{ no} 19 (2020) \cdot 7091$		
		C.D. C.D.	10	
		эрь.	10	
Iribarren, Iñigo, et al. "Evaluation of electron density	Γ	The Journal of Physical Chemistry A 125	5.22	
shifts in noncovalent interactions."		(2021): 4741-47	749.	
		https://doi.org/10.1021/acs.ipca.1c00	830	
Iriberran Iñigo, Coar Sánahaz Sanz, Iban All	zorto	Losá Elguero, and Cristina Truiillo	050	
Indarren, Inigo, Goar Sanchez-Sanz, Idolf An	Korta,	, Jose Eiguero, and Cristina Trujino		
		SpB.	11	
Assessing the orbital contribution in the "spodium	In	organic Chemistry 60 7 (2021) · 4683-46	692	
bond" by natural orbital for chemical valence-	httn	$\frac{10000}{1000000000000000000000000000000$	650	
charge displacement analysis	mup	<u>53.//doi.org/10.1021/dcs.iiiorgenem.0005</u>	050	
Ciarge displacement analysis	11.			
Ciancaleoin, Giannuca, an			10	
		SpB.	12	
On the importance of π -hole spodium bonding in		Dalton Transactions 49 48 (2020): 175	547-	
tricoordinated Hg II complexes		175	551	
theoordinated fig if complexes		https://doi.org/10.1030/D0DT0303	38 A	
Maharan di Chadara Andaran Maaradia 1 Maria C	D . 1	<u>intps://doi.org/10.1039/D0D1039</u>	<u> </u>	
Manmoudi, Gnodrat, Ardavan Masoudiasi, Maria G	. Bab	asnkina, Antonio Frontera, Thomas Doe	rt,	
Jonathan M. White, Ennio Zangrando, Fe	edor I	I. Zubkov, and Damir A. Safin.		
		RiB.	13	
Liu Na Oingzhong Li and Steve Scheiner		Chemical Physics 556 (2022), 1114	470	
"Spodium and tetral bonds involving Zn (II)/Cd (II)	https	·//doi org/10 1016/j chomphys 2022 111	470.	
spoulum and terrer bonds involving Zil (II)/Cd (II)	mps	.//doi.org/10.1010/j.cnempitys.2022.111	<u>+/U</u>	
and their interplay."				
Liu, Na, Qingzhong Li, a	and S	Steve Scheiner.		
		RiB.	14	
Theoretical study on a line has disc to the sector of	e I	Dhugiaal Chamisters Chamister Direct	2 2 1	
i neoretical study spodium bonding in the active site of	n 1	Enysical Chemistry Chemical Physics 23	3.31	
three Zn-proteins and severalmodel systems		(2021): 16888-168	396.	
		https://doi.org/10.1039/D1CP0215	<u>50H</u>	
Llull, Rosa, Gaizca Montalbán, Ivan Vidal, Rosa M.	Gom	nila, Antonio Bauzá, and Antonio Fronte	era	
		SpB.	15	
		592.	-	

III. Supl nf Fig (Sif) Spodium [Zn; Cd; Hg; Cn]Bond (SpB, 12G)

AAA→CNN → Spodiumbonds

	5 Zn2 5 M4 O2 _{N3}	(b) N1 Zn1 2	02 01 05 06 05 2n2 N3 04 04
	Selected bond	lengths (A°)	
	1		ία.
Zn1-N1 (coord.) ¹	2.169(5)	Zn2-N3 (coord.)	2.160(5)
Zn1–N2 (coord.)	2.074(4)	Zn2-N4 (coord.)	2.085(4)
Zn1-O1 (coord.) ²	2.212(4)	Zn2-O1 (coord.)	1.983(4)
Zn1–O3 (coord.)	1.977(3)	Zn2-O3 (coord.)	2.165(3)
Zn1–O6 (coord.)	2.051(4)	Zn2-O5 (coord.)	2.075(4)
Zn1–O4 (SpB)	2.688(5)	Zn2–O2 (SpB)	2.667(4)
Zn1…Zn2	3.047(1)		
	2	2	25*
Zn1-N1 (coord.)	2.091(2)	Zn2-N3 (coord.)a	1.922(2)
Zn1-N2 (coord.)	2.099(2)	Zn2-O1 (coord.)	2.017(1)
Zn1-O1 (coord.)	2.058(2)	Zn2-O3 (coord.)	2.007(2)
Zn1-O3 (coord.)	2.042(2)	Zn2-O6 (coord.)	1.976(2)
Zn1-O5 (coord.)	1.978(2)	Zn2–O2 (SpB)	2.692(2)
Zn1…Zn2	2.9025(5)	Zn2–O4 (SpB)	2.664(2)
¹ Sum of Zn and N covalent	radius: 1.93 Å;	² Sum of Zn and O covaler	nt radius: 1.86 Å

Distribution of intermolecular BCPs (yellow dots) and bond paths

Sp... bonds

		I	Eigen values		
	υ ₀	υ_1	υ ₃	υ_4	υ ₅
1CH ₃ CN	0.14	0.10	0.06	0.05	0.04
100	0.12	0.08	0.06	0.02	0.02

|--|

Adduct	\mathbf{E}_{int}	E _{orb}	E _{st}	\mathbf{E}_{disp}	3
1CH ₃ CN	-9.4	-6.2	-2.2	-0.9	5
1CO	-4.4	-2.8	-1.2	-0.4	

Orbital Energies (in kcal/mol) and CT V	alues (inme) Relative to the	Different Bond Components
---	------------------------------	---------------------------

adduct	Eorb	E_{SpB} (CT _{SpB})	$E_{\rm HB} (\rm CT_{\rm HB})$	$E_{\rm ChB} (\rm CT_{\rm ChB})$
1CH ₃ CN	-6.2	-2.5 (42)	-1.4(-17)	-0.3 (5)
100	-2.8	-0.7 (15)		-0.3 (-2)

EDA Results Solid-State D	(in kcal/r Dimers fro	nol) and (m CSD	CT Valu	es (in me) Relative to the	Different Bo	nd Componer	nts for Experi	mental
adduct	Eint	Eorb	E _{st}	Edisp	$E_{SpB}(CT_{SpB})$	$E_{\rm HB} (\rm CT_{\rm HB})$	E _{ChB} (CT _{ChB})	$E_{\rm XB}$ (CT _{XB})	refs
					M = Zn				
ASEZIJ-a	-8.8	-6.1	-2.3	-0.4				-4.5 (-77)	41
ASEZIJ-b	-15.2	-14.8	0.0	-0.5				-12.9(-136)	41

AAA→CNN → Spodiumbonds

Blue arrows show the weak S…Ag interactions

 \checkmark

Red, blue, and green dots : bond, ring cage critical points

(A) Three-dimensional representation of bond, ring, and cage critical points.

(B) Contour plot of the electron density in the Ag2S2 plane

AAA→CNN → Spodiumbonds

Spodium Bond	SpB.	05
[Zn Cd Hg]		

1CH20 1CH2S 2CO 3CH3CN 3CO 3CH2O 3CH2S 4CH2O	B3LYP-D3/ZORA-TZVP PBE0-D3/ZORA-TZVP TPSSh-D3/ZORA-TZVP TPSS-D3/ZORA-TZVP BLYP-D3/ZORA-TZVP BP86-D3/ZORA-TZVP
5CH ₃ CN	B3LYP-D3/ZORA-sVP
5CO 5CH2O	BP86-D3/ZORA-sVP

AAA→CNN → Spodiumbonds

AAA→CNN → Spodiumbonds

