Available online at www.joac.info

ISSN: 2278-1862

Journal of Applicable Chemistry

2022, 11 (2): 319-329 (International Peer Reviewed Journal)

KInn. Part-24. **Professional Profile of** Alan Mathison Turing

K. Somasekhara Rao,	R. Sambasiva Rao,
Dept. of Chemistry,	School of
Acharya Nagarjuna Univ.,	Chemistry,
Dr. M.R.Appa Rao	Andhra University,
Campus,	Visakhapatnam,
Nuzvid-521 201, I ndia	530 003, I ndia

Conspectus: Alan Mathison Turing (1912-1954)was one of the leading figures in Twentiethcentury science. What is surprising about his (published and unpublished) papers are that although they were written decades ago, still address major tasks which concern researchers today. The sparkling ideas of Turing in diverse disciplines of science-technology still hover in the minds of experts of this decade in their ground breaking pursuits. He is referred as a genius in discussions about computer architecture, software engineering, nature of Artificial Intelligence, pure mathematics, mathematical logic and morphogenesis in plants

Birth: Alan (Mathison) Turing was born in Paddington, Londonin the year 1912 to British parents. Along with his elder brother, Alan was brought up till 1926 in foster homes as his father was deployed to Madras Presidency, India.

Childhood: The strict disciplinary attitude of British homes in that era deprived free expression and encouragement/appreciation for originality/discovery. At high school itself, teachers noticed and complained the signs of above average intelligence in Turing and his excessive focus on science and mathematics compared to classics. The impact of the book "Natural Wonders Every Child Should Know" was astounding on his mindset. A distinct mode of thinking/integration was a hidden driving firmware in his motivations as well as solution processes in a direction generally not persuaded by many of that order of intellect. That may be one reason why Turing (1912-1953) is a genius of his unique type and contributed in multiple disciples within two decades of his academic and professional career.

Educational profile: Turing was elected for King's college fellowship (1931-34) and Smith's prize (1935). He was conferred with a distinguished degree. The paper on computable numbers ("Turing machines") was a mind-blowing contribution. This seminal paper was recommended for publication by Alonzo Church, American mathematical logician. Turing and Church independently proved the result and of course with different methods. It could also draw attention of Hungarian-American mathematical logic and obtained in record time a Ph.D. degree under directorship of Dr Church. Alan did not accept a temporary lecturer post offered by Neumann at Princeton. He came back to Cambridge and lived on his King's College fellowship, as logician and number theorist.

Employment:

Defence: Dr Turing started working for the Government Code and Cypher School on a part-time basis. When the world war (WWII) broke, he joined wartime headquarters at Bletchley Park, Buckinghamshire as a cryptanalyst. Turing implemented the first systematic method to break messages encrypted by the sophisticated German cipher machine. In 1940, "Bombe", first electromechanical machine of Alan Turing that was installed.

NPL-London: Turing was recruited in 1945 to the National Physical Laboratory (NPL) in London. His job was to create an electronic computer.

Academic position: Dr Turing joined for an academic role Manchester univ. in 1953. The readership in the theory of computing was specially created for him.

Awards and honours: At the end of the war (WWII) in 1945, Turing was made an Officer of the Most Excellent OBE (Order of the British Empire) for his ingenious code-breaking approaches. It is not known to thecivilian public for several years because of the British Official Secrets Act, which prevented discussion of the wartime work outside defence premises. ACM's (Association for Computing Machinery's) prestigious Mathematics annual Award (since 1966) was named after Alan Turing. He is named as one of the 100 Most Important People of the 20th Century by Time Magazine. On 23^{rd} June 2021, a new £50 note was issued by with Alan Turning figure by Bank of England.

Keywords: Mathematics; Cryptography; Morphogenesis, Computer Science; Artificial Intelligence;

Parents and birth place: Alan (Mathison) Turing was born on 23rdJune, 1912,in a nursing home inPaddington, London, England. His father was Julius who had been in the Indian Civil Service, serving in the Madras Presidency.Alan's mother was Ethel Sara Stoney, the daughter of the chief engineer of the Madras railways, who came from an Anglo-Irish family.

Childhood: Alan Turing and his elder brother John were fostered in various English homes until their father's retirement from India in 1926. The menace of the brought up was that there was no encouragement of expression, originality, or discovery during formative years.

Family life: Turing was engaged to Joan Clarke; but the deal was broken. Thus, Alan remained unmarried all through his life.

Death: Alan was found dead in his bed on June 7, 1954, Wilmslow, Cheshire. It might be an accident of inhaling cyanide fumes from an experiment in the tiny laboratory adjoining his bedroom. This occurred during a period he was amidst carrying out the groundbreaking work.

Inspiration: The popular book entitled "*Natural Wonders Every Child Should Know*" had seminal influence on his mindset. The extra-curricular passion for him was Science and its expressionsparkled in primitive chemistry experiments. The uniqueness of his mind, was also a hidden factor in driving his pursuitsand solution processes in a direction none could have foreseen.

Academic profile of Alan Turing

1918	St. Michael's school	1	Turing began to show signs of above average intelligence
1926	Sherborne School Dorset, England	! !	Teachers criticized that Turing was focusing too much on learning mathematics and science Not spending enough time on the study of important classics
1928	Read Albert Einstein's work	ļ	Figured out that Einstein was questioning Isaac Newton's laws of motion. ^{CP} But Einstein did not explicitly say so in his text

Academic profile of Alan Turing				
1931-	A distinguished degree	King's College, University of Cambridge mathematicsstudy		
1931- 1934	Elected to a fellowship at King'sCollege	In recognition of his research in probability theory (Dissertation on the central limit theorem)		
1935	Smith's Prize in Fellowship of King's College	King's College		

Doctoral Research of Alan Turing

1936-1938	Doctoral study
Thesis	Systems of Logic Based on Ordinals (1938)
Doctoral advisor	Alonzo Church Institute for Advanced Study Princeton University, New Jersey
1938	Ph. D

Published Research of Alan Turing

Church-Turing thesis	 ✓ That everything humanly computable can also be computed by the universal Turing machine ✓ Extension of his ideas (Ordinal Logics) lead to Ph.D. thesis
On Computable Numbers, with anApplication to the Entscheidungs [Decision Problem]	 In 1936, proved that machines (ie. "Turing machines") were capable of any mathematical computation if the computations could be presented as algorithms This seminal paper was recommended for publication by Alonzo Church, American mathematicallogician Church himself just then published a paper that reached the same conclusion as Turing's, although by a different method The idea had come to the attention of the leading Hungarian-American mathematician John von Neumann

Summer of 1938	Post-doctoral research		
	• Having returned from the United States to his		
	fellowship at King's College		

Employment of Alan Turing

1938-1939	 In 1938 Turing was offered a temporary post at Princeton by von Neumann But instead,he returned to Cambridge and Lived on his King's College fellowship, as logician and number theorist He had no University lectureship
Sep 1938-	He began working for the Government Code and Cypher School on a part-time basis starting from Sep 1938

1939	 Joined the Government Code and Cypher School At the outbreak of war with Germany in September 1939, he moved and reported to organization's wartime headquarters at Bletchley Park, Buckinghamshire on 4 Sep 1939
1939-autumnand spring of 1940	 Turing and others designed a related, but very different, code-breaking machine known as the Bombe. o For the rest of the war, Bombes supplied the Allies with large quantities of military intelligence.
18 Mar 1940	+ "Bombe", Alan Turing's first electromechanical machinewas installed
6 Sep 1941	 Alan Touring met British Prime Minister Winston Churchill during Churchill's visit at the Government Code and Cypher School at Bletchley Park in Milton Keynes, Buckinghamshire, England, United Kingdom.

1942	 Cryptanalysts at Bletchley Park were decoding about 39,000 intercepted messages each month, a figure that rose subsequently to more than 84,000 per month—two messages every minute, day and night
1942	Turing also devised the first systematic method for breaking messages encrypted by the sophisticated German cipher machine that the British called "Tunny."
Honor	! At the end of the war, Turing was made an Officer of the Most Excellent Order of the British Empire (OBE) for his code-breaking work
1945	 In 1945, the war was over Turing was recruited to the National Physical Laboratory (NPL) in London to create an electronic computer
19 Feb 1946	 Alan Turing presented a paper that revealed his design of a stored-program computer But he was securitized by the British government as it contained too much secret technology developed during WW2.
1953 May	 Was appointed to a specially created readership (Manchester) in the theory of computing

Science and Alan Turing

Honor 1951 FRS	Turing was elected as a fellow of the Royal Society (FRS) of London				
1951-	Started working on what is now known as artificial life.				
1952 1954	 Between 1952 and his death in 1954, Turing ✓ Studied mathematical biology (Chemical Basis of Morphogenesis) ✓ Pattern in living organisms 				

Books of AlamTuirng

Alan Turing	The Essential Turing: Seminal Writings in	Ι.		
	Computing, Logic, Philosophy, Artificial		Colle	cted works of Turing
	Intelligence, and Artificial Life Plus the		Volume	Title
	Secrets of Eni		I.	Mechanical Intelligence
Alan Turing	Alan Turing's Systems of Logic: The		II.	Pure Mathematics
	Princeton Thesis		III.	Morphogenesis
Alan Turing &	A. M. Turing's ACE Report of 1946 and		IV.	Mathematical Logic
Michael	Other Papers	1		
Woodger	Outer 1 apers			

Awards and recognitions to Alan Turing

1945	Awardfor his wartime services
1966	The Association for Computing Machinery's prestigious Award for mathematics was named after Alan Turing, who was said be the "Father of computer science".
1999	In 1999, he was named one of the 100 Most Important People of the 20th Century by Time Magazine for his involvement in the creation of the modern computer.
23 June 2021	New £50 note, with Alan Turning figure was issued

Innovations of Alan Turing	
 Turing test Turing machine (1935) Universal Turing machine Turing's proof Turing pattern Turing reduction 	 Cryptanalysis One of the core teamMembers who built The Bombe Decoding the Enigma in 1942 Key team member whichdecoded the 'Fish' cipher
Expertise of Alan Turing	New disciplines
 ✓ Mathematics → Ordinal logics ✓ Philosophy ✓ Biology ! Mathematical ! Theretical 	Later named Computer science Cognitive science Artificial intelligence Artificial life Computer architecture Designed paper model of world's first digital computer

Appendix

