Available online at www.joac.info

ISSN: 2278-1862

# ×

### Journal of Applicable Chemistry

2022, 11 (4): 664-691 (International Peer Reviewed Journal)





### CNN – 46 Aerogenbonds

| Information Source       | ACS.org ; sciencedirect.com   |
|--------------------------|-------------------------------|
| K. Somasekhara Rao,      | R. Sambasiva Rao,             |
| Dept. of Chemistry,      | School of Chemistry,          |
| Acharya Nagarjuna Univ., | Andhra University,            |
| Dr. M.R.Appa Rao Campus, | Visakhapatnam 530 003, I ndia |
| Nuzvid-521 201, I ndia   |                               |

**Conspectus:** Aerogen atoms ( [AeA: [He Ne Ar, Kr, Xe Rn Og]) belong to 18th group of 18 column chemical elements periodic table. AeA or NgA exhibits Lewis's acid (LA) behaviour and forms complexes or adducts with Lewis bases (LB) including molecules or species with  $\pi$  electron systems. The aerogen (like triel, tetrel, pnic(t)ogen, chalcogen, halogen, hydrogen, spodium, regium) bond is also understood in terms of the  $\sigma$ -hole concept proposed by Politzer and Murray.

Knowledge based work-flows (with imbedded XI [:Artificial, eXplainable, Natural, Super Intelligence], machine learning, deep learning, deep-NNs and preliminary-consciousness tools) have beentarget/focus of our investigations of speciation in different phases and environments evolving into better and better approaches in trans-disciplinary chemical sciences.

*Keywords*:Interactions; Physics; Chemistry-Biology; Bonds; No-Bonds; Chemical bonds (CB); Electrovalent-B; Covalent Bond (CovB); Non-Covalent Chemical bonds (NCCB): [Nobel gas (aerogen), Halogen,Chalcogen, Pnicogen (or Pnictogen), Tetrel, Triel, Spodium, Regium (or

Coinage), alkali, alkaline earth, Hydrogen [{strong, weak}, dihydrogen, hydride]], Synthesis, spectroscopy, computational quantum chemistry, Molecular dynamics

|     | <mark>Layout</mark>                                         |                |
|-----|-------------------------------------------------------------|----------------|
| 1   | Aerogen bonds in chemical systems                           | V(nowledge)Lab |
| 11  | Select Research Titles from ACS (American Chemical Society) | rsr.chem1979   |
| 111 | Select Research Titles from SD (Science Direct)             |                |

# I. Aerogen bonds in chemical systems

Chemical bonds: The chemical bond, representing a lump of energy holding atoms of molecules together, is the central dogma of Chemical Sciences (CS). It playsthe role of a third eye in the rationalistic perception of material component of the Universe in Spatio-temporal frame. The conceptual understanding of the core of chemical bonding evolved with scientific progress and integration of all frameworks ---valence bond, advances in molecular orbital theories, static computationalquantum chemistry, molecular dynamics, spectroscopy up to atto-second scale etc---culminated into what exists today as the state-of-Knowledge-chemical bonding.

In the classical era, electrostatic and/or covalentinteractions were two pillars of formation/dissociation/ionization of molecular systems in solid, liquid, gaseous and solution phases. Although this approach accounted for more than major chunk of experimentalknowledge, deeper search continued to explain minor, but significant energetics/properties expressed by some systems and processes. Non-covalentinteractions were first enunciatedin 1983 by van der Waals [J.D. van der Waals, On the continuity of the gaseous and liquid state, Doctoral Dissertation, Leiden, the Netherlands, 1873]. Their relevance in life is unequivocally manifested in the double helixstructure of deoxyribonucleic acid[J.D. Watson, F.H.C. Crick, Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid (DNA) Nature 171 (1953) 737–738].

Animportant and foremost member of non-covalent bonds category is hydrogen bond. It was proposed a century ago and now indispensable in molecular chemistry, material science, crystalengineering, biology, protein-ligand (drug), protein-protein interactions etc. The outcome of researches in halogen bonding opened new vistas in apparent contradictory interactions. In the modern perceptive, these bonds are viewed as "Lewis acid-base", " $\sigma$ -hole – electron pair " or "electron donor–acceptor (eDA)" interactions. A brief summary of spodium to aerogen bonds follow in a nutshell.

|                         | Colum                                                                                                           | n <sup>#</sup> Abb    | rev A               | bbrev                    | \$\$ bonds                                                  |                           |
|-------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------|---------------------|--------------------------|-------------------------------------------------------------|---------------------------|
|                         |                                                                                                                 | \$\$B                 | ond \$              | \$Atom                   |                                                             |                           |
|                         | 1G                                                                                                              | HB                    | ŀ                   | IA                       | Hydrogen                                                    |                           |
|                         |                                                                                                                 |                       |                     |                          |                                                             |                           |
|                         | 7.000 / 000 / 000 / 000 / 000 / 000 / 000 / 000 / 000 / 000 / 000 / 000 / 000 / 000 / 000 / 000 / 000 / 000 / 0 |                       |                     | 110110110110110110010010 |                                                             | <i></i>                   |
| yanananananan<br>k      |                                                                                                                 |                       |                     |                          |                                                             |                           |
|                         | NgB                                                                                                             | NgA                   | Nob                 | el gas                   |                                                             |                           |
| 18G                     |                                                                                                                 | <u> </u>              | Or                  |                          | <b>_</b>                                                    |                           |
| 100                     | AcP                                                                                                             |                       | Aon                 | ogon                     |                                                             |                           |
|                         | ACD                                                                                                             | ACA                   | Aci                 | ogen                     |                                                             |                           |
| An Ae<br>moiety<br>acid | rogen bond is<br>and an chen                                                                                    | defined<br>nical eler | as an in<br>nent of | nteractio<br>group       | n between an<br>8 group (Ng                                 | ny electron<br>gA) acting |
|                         | aan e aan e ann e ann e and i 100 i 100 i 100 i 100 i 100                                                       |                       |                     | / 100 / 100 / 10         | n , mar , mar , mar , mar , 1000 / 1000 / 1000 / 1000 / 100 |                           |
|                         |                                                                                                                 |                       |                     |                          |                                                             |                           |
| Colum                   | n <sup>#</sup> Abbrev                                                                                           |                       | Abbrev              | V                        | \$\$ bonds                                                  |                           |
|                         |                                                                                                                 |                       |                     |                          | 1                                                           |                           |

| 17 <b>G</b> @ | HaB           | HaA           | Halogen               |
|---------------|---------------|---------------|-----------------------|
| 16G@          | ChB           | ChA           | Chalcogen             |
| 15G           | PnB           | PnA           | Pnicogen or Pnictogen |
| 14 <b>G</b>   | TtB           | TtA           | Tetrel                |
| 13 <b>G</b>   | TrB           | TrA           | Triel                 |
| 12 <b>G</b>   | SPB           | SPA           | Spodium               |
| 11G           | CiB or<br>RgB | CiA or<br>RgA | Coinage or Regium     |
|               |               |               |                       |
| 2G            | AEB AlkEarB   | AEB AlkEarA   | Alkaline-Earth        |
| 1G            | AkB<br>AlkB   | AkA<br>AlkA   | Alkali                |



| Aerogen bonds        |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Aerogenbond (AeB) or | <ul> <li>Is a member of set (or family) of σ_hole (or simply σ) bonds</li> <li>σ-hole on theaerogen atom is located approximately on the extension of the covalent bonds to this atom</li> <li>Def: Non-covalent bond arising due to interaction between</li> <li>a covalently-bonded Group-18 (noble gas or aerogen) atom (NgA or AeA) functioning as Lewis acid (or an electron-acceptor) andelectron donor playing the role of Lewis base</li> </ul> |  |  |  |
| Noble gas bond (NgB) |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |

AAA→CNN → Aerogenbonds

| , , , , , , , , , , , , , , , , , , , | A | Lewis acid property of aerogen atoms arise due to existence of an electron-deficient region (called $\sigma$ -hole) |
|---------------------------------------|---|---------------------------------------------------------------------------------------------------------------------|
|                                       | A | $\sigma\text{-hole}$ is distributed on the outermost portion of these aerogen atoms                                 |
|                                       | A | $\sigma$ -hole region characterized by a positive molecular electrostatic potential (MESP)                          |
|                                       | • | Very much like those of the halogen bond because of<br>the similar misshaped electron clouds of the halogen<br>atom |

| y na hanna hann<br>A | AeBs exhibit                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Characteristics of Aerogenbond                                                                                       | Less directionality than other σ-hole interactions like halogen bonds                                                                                                                                                                                                                                                            |
|                                                                                                                      | Directional tunability $\rightarrow$ Great promise to fabricate                                                                                                                                                                                                                                                                  |
|                                                                                                                      | <ul> <li>Smart molecules and materials with         <ul> <li>Desired functions, properties</li> </ul> </li> </ul>                                                                                                                                                                                                                |
|                                                                                                                      |                                                                                                                                                                                                                                                                                                                                  |
| Electrondonors inaerogen bonds                                                                                       | <ul> <li>Lone pairs from molecules like         <ul> <li>NH3 or NCH</li> </ul> </li> <li>Pi electrons</li> <li>Single electron donors         <ul> <li>Radical species</li> </ul> </li> <li>Metal hydrides</li> <li>✓ Negative site on the Lewis base is responsible for formation and directionality of aerogenbonds</li> </ul> |
|                                                                                                                      |                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                      | <ul> <li>Increases as size of the aerogen atom increases {He to Rn}</li> <li>Increases by cooperative effects</li> </ul>                                                                                                                                                                                                         |
|                                                                                                                      | Generally comparable with                                                                                                                                                                                                                                                                                                        |
| Strength of AeB                                                                                                      | <ul> <li>Lone pair-aerogen interaction</li> <li>conventional hydrogen bonds</li> <li>Very much like those of the halogen bond because of the similarmisshaped electron clouds of the chalcogen atom andhalogen atom</li> </ul>                                                                                                   |
|                                                                                                                      | <ul> <li>Depends upon</li> <li>Characteristics of aerogen atom</li> <li>Nature of the electron-donor</li> <li>Substituent effects on the Lewis acid / Lewis base</li> <li>Cooperativity with other intermolecular interactions</li> <li>Cooperative synergetic or effects Between types of intermolecular interaction</li> </ul> |
|                                                                                                                      |                                                                                                                                                                                                                                                                                                                                  |

| Components of Non-covalent (Aerogen)<br>Interactions | <ul> <li>Electrostatic effects</li> <li>Charge-transfer from the bonding orbital in the Lewis base to the antibonding orbital of the Lewis acid</li> <li>Polarization</li> <li>Dispersion</li> <li>Cooperative effects</li> </ul> |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Applications in molecular design                     | <ul> <li>Functions as a molecularlinker in</li> <li>Molecular recognition (MR)</li> <li>Material synthesis (MS)</li> <li>Structureformation, dynamics</li> <li>Chemical reactions</li> </ul>                                      |
| Aerogen bond formation detected by                   | <ul> <li>Bond-length change</li> <li>Interaction energy</li> <li>Topological property</li> <li>Electron charge density and its Laplacian</li> <li>Charge transfer</li> </ul>                                                      |
|                                                      |                                                                                                                                                                                                                                   |
| Expt. evidence for Aerogen bond                      | <ul> <li>Crystal structure experiments</li> <li>Agreement with the theoretical/computational results</li> <li>Existence of the aerogen bond (AFM)</li> <li>Protein Data Bank</li> <li>Crystal packing processes</li> </ul>        |
| Critical role in                                     | <ul> <li>Protein folding</li> <li>Stacking of nucleobases</li> <li>Drug binding</li> <li>Self-assembly</li> </ul>                                                                                                                 |

| Single-electron Non_Cov bonds          |                                      |                                                         |  |  |
|----------------------------------------|--------------------------------------|---------------------------------------------------------|--|--|
|                                        | CH3····HCN                           | Methyl radical electron                                 |  |  |
| single-electron hydrogen bond<br>Se HB | СН3…Н2О                              | acts as the proton acceptor                             |  |  |
|                                        | СН3…NН3                              |                                                         |  |  |
| single-electron tetrel bond            | FXH3…CH3 (X                          |                                                         |  |  |
| SE. TtB                                | = C, Si, Ge, and Sn) complexes       |                                                         |  |  |
| single-electron $\sigma$ -holebond     | $\sigma$ -hole region of Group 14-17 | unpaired electron of the methyl                         |  |  |
| SE.SigB                                | atoms                                | radical<br>สาย และแปลเป็นและแปลเป็นและแปลเป็นและแปลเป็น |  |  |

|                              | KrOF2, KrO3, XeOF2 and<br>XeO3                                                           | methyl (CH3) or ethyl (C2H5)<br>radical                         |  |
|------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|
| inclusion and                | Probes<br>✓ Molecular electrostatic potential                                            |                                                                 |  |
| single-electron aerogen bond | <ul> <li>Quantum theory of atom in molecules</li> <li>Natural bonding orbital</li> </ul> |                                                                 |  |
| SE.AeB                       |                                                                                          |                                                                 |  |
|                              | <ul> <li>Noncovalent interaction in</li> </ul>                                           | ndex analyses                                                   |  |
|                              | Information bit:                                                                         |                                                                 |  |
| ***                          | • Formation of an O…H int the SEAB, when they coe                                        | eraction increase the strength of<br>exist in a ternary complex |  |

# **Cooperativity effect**

| Cooperativity effect                   | Cumulative strength of (two or moreor networks of)<br>noncovalent bondsis larger or smaller (when they work in<br>concert)compared to sum of the individual bondstrengths                                                                                                                                                                                                                                                        |  |  |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Mechanism of Cooperativity             | <ul> <li>The formation of first noncovalent bond results in a change in electron distribution of monomers</li> <li>This happens in such a way that an electron donating site nearby the electron acceptor site becomes</li> <li>potentially a better electron donor</li> <li>Cooperatively forms a second noncovalent bond. Similarly, the nearby electron-accepting sites become less prone for a second interaction</li> </ul> |  |  |
| Responsible factors for co-operativity | <ul> <li>Many body interactions</li> <li>Secondary interactions</li> <li>Conformation changes</li> <li>Chelate effect</li> </ul>                                                                                                                                                                                                                                                                                                 |  |  |
| Cooperativity of hydrogen bonds        | Historical : In water complexes in 1957<br>Recent: 1970-2022                                                                                                                                                                                                                                                                                                                                                                     |  |  |

# **Cooperativity effect in non-cov\_interactions**

## (aerogen bond + another NCB)

Example 1: Aerogen-bonding interaction increases in the presence of an anion- $\pi$  or a lone pair- $\pi$  interaction. The estimated cooperative energies are between -0.27 and -11.96 kcal/mol

Example 2:In aerogen- $\pi$  and cation- $\pi$  interactions, induction effects are responsible for the stabilization





# NonCovalent-Bonds Sigma- pi- Interactions

| NonCov-Bond | <ul> <li><sup>(2)</sup> [ HyB DHyB</li> <li><sup>(2)</sup> TrB TtB PtB</li> <li><sup>(2)</sup> ChB, HaB NgB]</li> </ul> | NgB.    | ACS. | 03 |
|-------------|-------------------------------------------------------------------------------------------------------------------------|---------|------|----|
|             |                                                                                                                         | <u></u> | ×.   |    |



### II. Select Research Titles from American Chemical Society Journals

| Aeroo           | gen Bond                                                                                                                                      |                                               | NgB.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ŀ                                                                                                             | ACS.       | 01 |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------|----|
|                 | wa wa wa wa wa wa wa w<br>Con                                                                                                                 | ıp Quai                                       | <b>i Chem (CQC)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                               |            |    |
| -               | LA                                                                                                                                            |                                               | LB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                               | -          |    |
|                 | AeOF2 (Ae = Kr, Xe                                                                                                                            | )                                             | <ul><li>Diazines</li><li>Pyridazine, Pyr</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | imidine,                                                                                                      |            |    |
|                 | UNINI MININI MININI MININI<br>MANINI MININI |                                               | • Pyrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   1 |            |    |
| S               | oftware                                                                                                                                       |                                               | Gaussian 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1    |            |    |
|                 | lasks lasks                                                                                                                                   | 4                                             | Geom opt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                               | -          |    |
|                 |                                                                                                                                               | 4                                             | Frequency comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | outations                                                                                                     |            |    |
| Ir              | nteraction energies                                                                                                                           | Corre<br>stanc                                | cted for BSSE by<br>lard counterpoise p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | procedure                                                                                                     |            |    |
| Theory<br>level | MP2                                                                                                                                           | 177 - 1887 - 1887 - 1887 - 1887 - 1888 - 1888 | - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - |                                                                                                               |            |    |
| Basis sets      | aug-cc-pVDZ-<br>PP                                                                                                                            | Хе                                            | To incorpora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ate relativist                                                                                                | ic effects |    |
|                 | aug-cc-pVDZ                                                                                                                                   | other a                                       | Itoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                               |            |    |

| Probe                                 |      | Software           | Inf                   |
|---------------------------------------|------|--------------------|-----------------------|
| Energy decomposition analysis         | EDA  | ADF modeling suite | BLYP/ZORA/TZ2P level  |
| Molecular<br>Electrostatic potentials | MEPs | WFA-SAS            | MP2/aug-cc-pVDZ level |
| NBO analysis                          | NBO  | NBO                |                       |
| Noncovalent interaction index         | NCI  | MultiWFN           | MP2/aug-cc-pVDZ level |

| Descriptors                                       | Electron density                                                                                     | ρ                                                                                         |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Bond critical                                     | Laplacian of electron density                                                                        | $\nabla^2 \rho$                                                                           |
| properties                                        | Total electron<br>energy                                                                             | H<br>kcal mol-1                                                                           |
| Second-order NBO<br>perturbation<br>energies (E2) | For for charge tran<br>indicatedorbitals i<br>F2OAe (Ae = Kr,<br>Ex: LP(N1) $\rightarrow \sigma^* A$ | nsfer between<br>n σ-hole bonded<br>Xe) complexes<br>AeO                                  |
| EDA                                               | Total DFT-D inter<br>σ-complexes→<br>✓ Pauli repu<br>✓ Electrosta<br>✓ orbital int<br>dispersior     | raction energy of<br>Ilsion (EPauli) +<br>tic (Eelstat) +<br>eraction (Eoi)+<br>n (Edisp) |

| Experimental and Theoretical Studies of Dimers<br>Stabilized by Two Chalcogen Bonds in the Presence of | J. Phys. Chem. A, 20<br>Doi.org/10.10 | 21, 125,<br>21/acs.jp | 2, 657–<br>0ca.0c10 | 668<br>814 |
|--------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------|---------------------|------------|
| a N…N Pnicogen Bond                                                                                    |                                       |                       |                     |            |
| Mariusz Michalczyk, Magdalena Ma                                                                       | lik, Wiktor Zierkiewicz               |                       |                     |            |
|                                                                                                        |                                       | NgB.                  | ACS.                | 01         |

| Dissection of the Origin of $\pi$ -Holes and the | J Phys. Chem A, 2021, | 125, 30   | , 6514-6 | 528 |
|--------------------------------------------------|-----------------------|-----------|----------|-----|
| Noncovalent Bonds in Which They Engage           | DOI: 10.10            | 21/acs.jp | ca.1c05  | 431 |
| Steve S                                          | cheiner               |           |          |     |
|                                                  |                       | NgB.      | ACS.     | 02  |

| Molecular Electrostatic Potential Reorganization | J. Phys. Chem. A, 2020   | , 124, 11 | , 2231-2 | 241 |
|--------------------------------------------------|--------------------------|-----------|----------|-----|
| Theory to Describe Positive Cooperativity in     | DOI: 10.10               | 21/acs.jp | ca.9b11  | 538 |
| Noncovalent Trimer Complexes                     |                          |           |          |     |
| Padinjare Veetil Bijina and                      | l Cherumuttathu H. Sures | h         |          |     |
|                                                  |                          | NgB.      | ACS.     | 03  |

| Hydrophobic Solvation of Gases (CO2 CH4 H2            | I Phys. Chem. C. 2017, 121, 47, 26530, 6550                                                                                            |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Tryutophobic Solvation of Gases (CO2, C114, 112,      | $\begin{array}{c} \text{D. 1 Hys. Chem. C, 2017, 121, 47, 20339-0330} \\ \text{D. 0.10, 10, 2017, 121, 47, 20339-0330} \\ \end{array}$ |
| Noble Gases) in Clay Interlayer Nanopores             | DOI: 10.1021/acs.jpcc./b09/68                                                                                                          |
| Greeshma Gadikota, Baptiste Dazas, Gernot Rother, Mic | hael C. Cheshire and Ian C. Bourg                                                                                                      |

NgB. ACS. 04

| [               | Noble gas Bor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nding                                                                                                                                                                      |                                                              | NgB.                                                         | A                              | ICS.               | 05             |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------|--------------------|----------------|
|                 | Ng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c c} \hline \textbf{Comp Quan} \\ \textbf{MX} & \textbf{Ng} = \textbf{He} \\ \textbf{M} = \textbf{Cu}, \\ \textbf{X} = \textbf{F}, \textbf{Cl} \end{array}$ | Chem (C<br>, Ne, Ar, K<br>Ag, Au;<br>, Br, I                 | <mark>QC)</mark><br>r, Xe, Rn;                               |                                |                    |                |
| Theory<br>level | Software<br>Bonding<br>analyses<br>The second second second<br>Bonding<br>Bonding<br>The second second second<br>Software<br>Na<br>Software<br>Na<br>Software<br>Na<br>Software<br>Na<br>Software<br>Na<br>Software<br>Na<br>Software<br>Na<br>Software<br>Na<br>Software<br>Na<br>Software<br>Na<br>Software<br>Na<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Software<br>Soft | tural Bond Orb<br>tural Resonanc<br>D(T)                                                                                                                                   | bital (NBO)<br>ce Theory (                                   | onananananan<br>)<br>NRT)<br>anananananan<br>anananananan    | Gau<br>GENNB                   | ssian 03<br>O 6.0W |                |
| Basis sets      | Convergent triple-ζ<br>basis sets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | aug-cc-<br>pVTZ-PP                                                                                                                                                         | Include st<br>consisten<br>pseudopo<br>account fe<br>effects | mall-core of<br>t relativisti<br>tentials (P<br>or relativis | energy-<br>ic<br>P) to<br>stic | æ 2                | Ke, Rn, I      |
|                 | Systematically augme<br>correlation-consistent<br>Dunning basis sets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ented<br>triple-ζ                                                                                                                                                          | aug-cc-p                                                     | √TZ                                                          |                                | ) 🗣 (<br>٤         | Other<br>itoms |

| Insight into the Bonding Mechanism and the Bonding | J. Phys. Chem. A, 2017 | , 121, 27, | , 5183-5 | 189  |
|----------------------------------------------------|------------------------|------------|----------|------|
| Covalency in Noble Gas–Noble Metal Halides: An     | DOI: 10.10             | 21/acs.jp  | ca.7b02  | .047 |
| NBO/NRT Investigation                              |                        |            |          |      |
| Guiqiu Zhang, Lei Fu, Hong Li, Xuc                 | han Fan and Dezhan Che | 1          |          |      |
|                                                    |                        | NgB.       | ACS.     | 05   |

| How to Twist, Split and Warp a $\sigma$ -Hole with | J. Phys. Chem. A, 2016 | , 120, 47  | , 9431-9 | 445 |
|----------------------------------------------------|------------------------|------------|----------|-----|
| Hypervalent Halogens                               | DOI: 10.10             | 021/acs.jp | ca.6b07  | 894 |
| Omer Kirshenboim and Se                            | ebastian Kozuch        |            |          |     |
|                                                    |                        | NgB.       | ACS.     | 06  |

| Noble gas Bonding                                            | NgB. | ACS. | 07 |
|--------------------------------------------------------------|------|------|----|
| Comp Quan Chem (CQC)AuNgXNg = Ar, Kr, Xe;<br>X = F, Cl,Br, I |      |      |    |

|                                           | Software<br>Tasks<br>C                                                                                                                                               | Gaussian 09<br>Geom opt<br>Frequency computations                                    |                |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------|
|                                           | Theory level<br>Basis sets                                                                                                                                           | <ul> <li>MP2</li> <li>DFT(B3LYP)</li> <li>DFT(M062X)</li> <li>Def2-TZVPPD</li> </ul> |                |
| ,<br>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ananananananan<br>nanananananan<br>Pro                                                                                                                               | annananananananananananan<br>annananananan                                           | Software       |
| Topological analysis of the $\rho(r)$     | wave function app<br>by the CCSD meth                                                                                                                                | roximated nod with the Def2-TZVPPD basisset.                                         | AIMAll         |
| Single-point Energy                       | <ul> <li>DFT(B3LYP) +</li> <li>Relativistic effects described by the zero-order regular approximation (ZORA)</li> <li>Basis set : optimized Slater-type ,</li> </ul> |                                                                                      | ADF<br>program |

| Nature of the Bonding in the AuNgX (Ng = Ar, Kr,                                           | J. Phys. Chem. A, 2015,   | 119, 11   | , 2401-2 | 412  |
|--------------------------------------------------------------------------------------------|---------------------------|-----------|----------|------|
| Xe; X = F, Cl, Br, I) Molecules. Topological Study on                                      | DOI:                      | 10.1021   | /jp5082  | 66k  |
| Electron Density and the Electron Localization                                             |                           |           |          |      |
| Function (ELF)                                                                             |                           |           |          |      |
| Emilia Makarewicz, Agnieszka J. Go                                                         | rdon and Slawomir Bersk   | i         |          |      |
|                                                                                            |                           | NgB.      | ACS.     | 07   |
| Noble Gas Adsorption in Metal–Organic Frameworks                                           | J. Phys. Chem. C, 2014, 1 | 18, 22, 1 | 11685-   |      |
| Containing Open Metal Sites                                                                | 11698                     |           |          |      |
|                                                                                            | DOI                       | : 10.102  | 1/jp5014 | 195f |
| John J. Perry, Stephanie L. Teich-McGoldrick, Scott T. Meek, Jeffery A. Greathouse, Maciej |                           |           |          |      |
| Haranczyk and Mark I                                                                       | D. Allendorf              |           | -        |      |
|                                                                                            |                           | NgB.      | ACS.     | 08   |



| , , , , , , , , , , , , , , , , , , , | Ator                                                                                                        | nic charges computed by                                                                                                                                            | NBO analysis<br>o MP2/aug-cc-pVTZ<br>function                                                                          | Z/SDD wave                              |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|                                       | Chei                                                                                                        | mical bonding analysis                                                                                                                                             | Theory of atoms-in-molect<br>o MP2/aug-cc-pVTZ<br>electron density Software : AIM2000,                                 | ules (AIM)<br>Z/SDD                     |
| -                                     | AIM<br>inter<br>prop                                                                                        | analysis Attractor<br>raction—Bonding<br>perties                                                                                                                   | <ul> <li>Charge density</li> <li>Laplacian of the charge density</li> <li>Energy density H at the borpoints</li> </ul> | nsity<br>ond critical                   |
| Theory<br>level                       | 🖨 Ab-<br>🍰 MP                                                                                               | initio<br>2                                                                                                                                                        | terte de la constante de la constante de de la constante de la constante de la constante de la constante de la         | 11.11.11.11.11.11.11.11.11.11.11.11.11. |
| Basis sets                            | Dunning's co<br>diffuse functi                                                                              | orrelation consistent double- and<br>ons (aug-cc-pVDZand aug-cc-                                                                                                   | H, F, He, Ne,<br>Ar, and Kr                                                                                            |                                         |
|                                       | RelativisticStuttgart/Dresden (SDD) effective core potential and the valencebasis set designed for this ECP |                                                                                                                                                                    |                                                                                                                        | Xe                                      |
|                                       |                                                                                                             | nanananananananananananan<br>Probe                                                                                                                                 | a da na manana da da da na na manana da                                            | Software                                |
| Topological of the $\rho(r)$          | al analysis                                                                                                 | Wave function approxima<br>Def2-TZVPPD basisset                                                                                                                    | atedby the CCSD method with the                                                                                        | AIMAll                                  |
| Single-poi                            | nt Energy                                                                                                   | <ul> <li>DFT(B3LYP) +</li> <li>Relativistic effects described by the zero-order regular approximation (ZORA)</li> <li>Basis set : optimized Slater-type</li> </ul> |                                                                                                                        | ADF<br>program                          |
| , Venenenenenenenen<br>,              |                                                                                                             |                                                                                                                                                                    |                                                                                                                        | den on non non mon mette                |

| Cationic Noble Gas Hydrides: A Theoretical<br>Investigation of Dinuclear HNgFNgH+ (Ng = He–Xe) | J. Phys. Chem. A, 2010<br>DO | ), 114, 27<br>I: 10.1021 | , 7382-7<br>l/jp1020 | 7390<br>018n |
|------------------------------------------------------------------------------------------------|------------------------------|--------------------------|----------------------|--------------|
| Stefano Borocci, Nicoletta Bronzolino, Mar                                                     | ia Giordani and Felice Gi    | andinetti                |                      |              |
|                                                                                                |                              | NgB.                     | ACS.                 | 09           |
|                                                                                                |                              |                          |                      |              |
| Molecular Dynamics Simulations of Deuterium                                                    | J. Phys. Chem. C, 2010       | ), 114, 12               | , 5382-5             | 5390         |
| Trapping and Re-emission in Tungsten Carbide                                                   | DO                           | I: 10.102                | l/jp9054             | 473          |
| Katharina Vörtler and F                                                                        | Kai Nordlund                 |                          |                      |              |
|                                                                                                |                              | NgB.                     | ACS.                 | 10           |
|                                                                                                |                              |                          |                      |              |
| List of Publications of Vincenzo Aquilanti                                                     | J. Phys. Chem. A, 2009       | , 113, 52,               | 14193-               |              |
|                                                                                                | 14205                        |                          |                      |              |
|                                                                                                | DO                           | I: 10.102                | l/jp9097             | 777          |
| Vincenzo Aqui                                                                                  | lanti                        |                          |                      |              |
|                                                                                                |                              | NgB.                     | ACS.                 | 11           |

| Noble Gas Anions: A Theoretical Investigation of                             | J. Phys. Chem. A, 2007, 111, 40, 10144 |  |  |
|------------------------------------------------------------------------------|----------------------------------------|--|--|
| FNgBN-(Ng = He-Xe)                                                           | 10151                                  |  |  |
|                                                                              | DOI: 10.1021/jp0743673                 |  |  |
| Paola Antoniotti, Stefano Borocci, Nicoletta Bronzolino, Patrizio Cecchi and |                                        |  |  |
| Felice Grandin                                                               | netti                                  |  |  |
|                                                                              | NgB. ACS. 12                           |  |  |

| Determination of branching ratio and collisional    | J. Phys. Chem., 1        | 993, 97,  | , 3, 604- | 609 |
|-----------------------------------------------------|--------------------------|-----------|-----------|-----|
| mixing rate of potassium (52PJ) doublets following  | DOI: 10                  | ).1021/j1 | l00105a   | 012 |
| 193-nm photodissociation of potassium iodide in the |                          |           |           |     |
| presence of argon, helium, methane, and carbon      |                          |           |           |     |
| dioxide                                             |                          |           |           |     |
| Ching Bin Ke, Shiow Hwa Chou, King C                | Chuen Lin and Wei Tzou I | Luh       |           |     |
|                                                     |                          | NgB.      | ACS.      | 13  |

| Collisional quenching of electronically excited tin  | J. Phys. Chem., 1976, 80, 2, 91-97 |
|------------------------------------------------------|------------------------------------|
| atoms, Sn(5p2 3P1) and Sn(5p2 3P2), by time-resolved | DOI: 10.1021/j100543a001           |
| attenuation of atomic resonance radiation            |                                    |
| P. D. Foo, J. R. Wiesenfeld, M. J                    | . Yuen and D. Husain               |
|                                                      | NgB. ACS. 14                       |

| Xenon in Rigid Oxide Frameworks: Structure, Bonding | J. Am. Chem. Soc.,2016    | , 138, 13 | 838-13 | 841 |
|-----------------------------------------------------|---------------------------|-----------|--------|-----|
| and ExplosiveProperties of Layered Perovskite       | DOI: 10.1021/jacs.6b09056 |           |        |     |
| K4Xe3O12                                            |                           |           |        |     |
| Sergey N. Britvin, Sergei A. Kashtanov, Sergey V    | . Krivovichev and Nikita  | V. Chuk   | anov   |     |
|                                                     |                           | NgB.      | ACS.   | 15  |

| Noncovalent Bonds through Sigma and Pi-Hole<br>Located on the Same Molecule. Guiding Principles and<br>Comparisons | Molecules, 2021, 26, 174<br>doi.org/10.3390/molecules2606174 |      |      | 740.<br>740 |
|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------|------|-------------|
| Wiktor Zierkiewicz, Mariusz Micha                                                                                  | lczyk and Steve Scheiner                                     |      |      |             |
|                                                                                                                    |                                                              | NgB. | ACS. | 16          |

| How to Twist, Split and Warp a #-Hole with J Phys Chem., 2016, 120(47):943 |                              |      | 7):9431- | 9445 |
|----------------------------------------------------------------------------|------------------------------|------|----------|------|
| Hypervalent Halogens                                                       | doi: 10.1021/acs.jpca.6b0789 |      |          |      |
| Omer Kirshenboim, and Sebastian Kozuch                                     |                              |      |          |      |
|                                                                            |                              | NgB. | ACS.     | 17   |

| Structure and Stability of the Organo-Noble Gas | J. Phys. Chem. A, 20 | <b>)07,</b> 111, | , 44, 112 | 261- |
|-------------------------------------------------|----------------------|------------------|-----------|------|
| Molecules XNgCCX and XNgCCNgX (Ng = Kr, Ar;     |                      |                  | 11        | 268  |
| X = F, CI                                       | DOI:                 | 10.1021          | /jp0712   | 42p  |
| Scott Yockel, Evan Gawlik and                   | d Angela K. Wilson   |                  |           |      |
|                                                 |                      | NgB.             | ACS.      | 18   |

| Endohedral energies and translation of fullerene-noble | J. Phys. Chem., 1993, 97, 33, 8562-8563 |
|--------------------------------------------------------|-----------------------------------------|
| gas clusters G@Cn (G = helium, neon, argon, krypton    | DOI: 10.1021/j100135a005                |
| and xenon; $n = 60$ and $70$ )                         |                                         |
| L. Pang and F. H                                       | Brisse                                  |
|                                                        | NgB. ACS. 19                            |

| Surface assisted xenon-xenon bonding?                | J. Phys. Chem., 199 | 1, 95, 10, | , 4033-4 | 037 |
|------------------------------------------------------|---------------------|------------|----------|-----|
|                                                      | DOI: 1              | 0.1021/j1  | 100163a  | 028 |
| Roald Hoffmann, Meinolf Kersting and Zafiria Nomikou |                     |            |          |     |
|                                                      |                     | NgB.       | ACS.     | 20  |

| Complexes of XeHXe+ with Simple Ligands: A        | J. Phys. Chem. A, 2    | 015, 119 | 9, 11, 23 | 83– |
|---------------------------------------------------|------------------------|----------|-----------|-----|
| Theoretical                                       | 2392doi.org            | /10.1021 | /jp5075   | 835 |
| Investigation on (XeHXe+)L (L = N2, CO, H2O, NH3) |                        |          |           |     |
| Stefano Borocci, Maria Giordani,                  | and Felice Grandinetti |          |           |     |
|                                                   |                        | NgB.     | ACS.      | 21  |

## III. Select Research Titles from Science Direct

| An efficient error-correction model to investigate the rotational structure and microwave spectrum of Ar–AgF complex | Chemical Physics, 18 April 2022, 111545<br>doi.org/10.1016/j.chemphys.2022.111545 |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Yanshan Tian, Tong Cheng                                                                                             | , Rui Zheng                                                                       |
|                                                                                                                      | NgB. SD. 01                                                                       |
|                                                                                                                      |                                                                                   |

| Spodium bonds and metal-halogenhalogen-metal    | Journal of Moleculadr Structure,<br>Volume 1252, 15 March 2022, 132144 |      |     | ure, $144$ |
|-------------------------------------------------|------------------------------------------------------------------------|------|-----|------------|
| dimeric or polymeric architectures              | doi.org/10.1016/j.molstruc.2021.132144                                 |      |     | 144        |
| Vali Alizadeh, Ghodrat Mahmoudi, Damir A. Safin |                                                                        |      |     |            |
|                                                 |                                                                        | NgB. | SD. | 02         |

| From LAr to L-ArBeO (L = $He$ , Ne, Ar, HF):        | Chemical Physics Letters, 768, April 2021, |
|-----------------------------------------------------|--------------------------------------------|
| Switching on $\sigma$ -hole effects in non-covalent | 138402                                     |
| interactions                                        | doi.org/10.1016/j.cplett.2021.138402       |
| Borocci, Stefano Felice Grandin                     | netti, Nico Sanna                          |
|                                                     | NgB. SD. 03                                |

| Hot Topics in Crystal Engineering.                 |                                                                         |                                                                                                              | ing,                                                                                                                                   |
|----------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 2021,Pages 119-15                                  |                                                                         |                                                                                                              | 155                                                                                                                                    |
| doi.org/10.1016/B978-0-12-818192-8.00001-9         |                                                                         |                                                                                                              | 01-9                                                                                                                                   |
| Rosa M. Gomila Tiddo J. Mooibroek Antonio Frontera |                                                                         |                                                                                                              |                                                                                                                                        |
|                                                    | NgB.                                                                    | SD.                                                                                                          | 04                                                                                                                                     |
|                                                    | Hot Topics in C<br>doi.org/10.1016/B978-0-<br>looibroek Antonio Fronter | Hot Topics in Crystal E<br>2021,Pag<br>doi.org/10.1016/B978-0-12-81819<br>looibroek Antonio Frontera<br>NgB. | Hot Topics in Crystal Engineer<br>2021,Pages 119-<br>doi.org/10.1016/B978-0-12-818192-8.0000<br>looibroek Antonio Frontera<br>NgB. SD. |

| Chapter 2: The intermolecular chemical bond: Physical facts and geometric fiction | hysical Theoretical and Computational Chemistry<br>20, 2021, Pages 25-5<br>doi.org/10.1016/B978-0-12-823747-2.00002 |      | stry,<br>5-52<br>)02- |    |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------|-----------------------|----|
|                                                                                   | 0                                                                                                                   |      |                       | 0  |
| Angelo Gavezz                                                                     | zotti                                                                                                               |      |                       |    |
|                                                                                   |                                                                                                                     | NgB. | SD.                   | 05 |

| Chapter One: Recent advances in NMR crystallography and polymorphism | Annual Reports on NMR Spectroscopy<br>Volume 102, 2021, Pages 1-8<br>doi.org/10.1016/bs.arnmr.2020.10.00 |      | opy,<br>-80<br>001 |    |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------|--------------------|----|
| Scott A. Southern, David L. Bryce                                    |                                                                                                          |      |                    |    |
|                                                                      |                                                                                                          | NgB. | SD.                | 06 |

| Chapter One: Indirect spin-spin coupling constants across noncovalent bonds | Annual Reports on NMR Spectroscopy,<br>Volume 104, 2021, Pages 1-73<br>doi.org/10.1016/bs.arnmr.2021.05.002 |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Jarosław Jaźwi                                                              | ński                                                                                                        |
|                                                                             | NgB. SD. 07                                                                                                 |

| Pentavalent P $\pi$ phosphorus bonding with associated Cl $\pi$ halogen bonding in influencing the geometry of POC13-Phenylacetylene heterodimers: Evidence from matrix isolation infrared spectroscopy and ab initio computations | Journal of I<br>Volume 1224, 15 Ja<br>doi.org/10.1016/j.mo | Molecula<br>nuary 20<br>olstruc.20 | r Struct<br>21, 129<br>)20.129 | ure,<br>288<br>288 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------|--------------------------------|--------------------|
| B. Suryaprasad, Swaroop Chan                                                                                                                                                                                                       | dra, K. Sundararajan                                       |                                    |                                |                    |
|                                                                                                                                                                                                                                    |                                                            | NgB.                               | SD.                            | 08                 |

| The interplay and the formation of $\sigma$ -hole in the $\pi \cdots$ LiX and pseudo- $\pi \cdots$ LiX (X = F, Cl and CN) lithium bonds involving unsaturated and homocyclic hydrocarbons | Computational and Theoretical Chemistry<br>Volume 1186, 15 September 2020, 11289<br>/doi.org/10.1016/j.comptc.2020.11289 |      | stry,<br>899<br>899 |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------|---------------------|----|
| D. G. Rego, B. G.                                                                                                                                                                         | Oliveira                                                                                                                 |      |                     |    |
|                                                                                                                                                                                           |                                                                                                                          | NgB. | SD.                 | 09 |

| C(sp3) atoms as tetrel bond donors: A crystallographic | Coordination Chemistry Reviews,   |  |  |
|--------------------------------------------------------|-----------------------------------|--|--|
| survey                                                 | Volume 413, 15 June 2020, 213265  |  |  |
|                                                        | doi.org/10.1016/j.ccr.2020.213265 |  |  |
| Andrea Daolio, Patrick Scilabra, Giuseppe Resnati      |                                   |  |  |

|                                                         |                                    | NgB.     | SD.     | 10   |
|---------------------------------------------------------|------------------------------------|----------|---------|------|
|                                                         |                                    |          |         |      |
| Halogen bond in separation science: A critical analysis | Journal of Chromatography A        |          |         | у A, |
| across experimental and theoretical results             | Volume 1616, 12 April 2020, 460788 |          |         | 788  |
|                                                         | doi.org/10.1016/j.cl               | nroma.20 | )19.460 | 788  |
| Paola Peluso, Victor Mamai                              | ne, Sergio Cossu                   |          |         |      |
|                                                         |                                    | NgB.     | SD.     | 11   |

| $\sigma/\pi$ -Hole noble gas bonding interactions: Insights from | Coordination Chemistry Reviews,   |      |     |     |
|------------------------------------------------------------------|-----------------------------------|------|-----|-----|
| theory and experiment                                            | Volume 404, 1 February 2020, 2131 |      |     | 112 |
|                                                                  | doi.org/10.1016/j.ccr.2019.213    |      |     | 112 |
| Antonio Bauzá, Antonio Frontera                                  |                                   |      |     |     |
|                                                                  |                                   | NgB. | SD. | 12  |

| Tetrel bonding interactions at work: Impact on tin and lead coordination compounds | Coordination Chemistry Review<br>Volume 384, 1 April 2019, Pages 107-12 |            |         | ews,<br>125 |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------|---------|-------------|
| ·                                                                                  | doi.org/10.1016                                                         | 6/j.ccr.20 | 019.01. | 003         |
| Antonio <mark>Bauz</mark> á, Saikat Kumar Seth,                                    | Antonio Frontera                                                        |            |         |             |
|                                                                                    |                                                                         | NgB.       | SD.     | 13          |

| Tetrel bonding on graphene         | Computational and Theoretical Chemistry |          |         |      |  |
|------------------------------------|-----------------------------------------|----------|---------|------|--|
|                                    | 1147, 1 January 2019, Pages 8           |          |         | 3-12 |  |
|                                    | doi.org/10.1016/j.                      | comptc.2 | 018.11. | 011  |  |
| Yu Zhang, Weizhou Wang, Yi-Bo Wang |                                         |          |         |      |  |
|                                    |                                         | NgB.     | SD.     | 14   |  |

| Sigma-Hole Interactions in Anion Recognition | Chem, 4, Issue 4, 2<br>doi.org/10.1016/j.c | 2018, Pag<br>chempr.2 | ges 731-<br>018.02. | 783<br>022 |
|----------------------------------------------|--------------------------------------------|-----------------------|---------------------|------------|
| Jason Y. C. Lim, Pau                         | l D. Beer                                  |                       |                     |            |
|                                              |                                            | NgB.                  | SD.                 | 15         |

| A computational study on the strength and nature of bifurcated aerogen bonds | Chemical Physics Letters<br>doi.org/10.1016/ | , 698, 16<br>j.cplett.2 | i, Pages<br>018.02. | 1-6<br>066 |
|------------------------------------------------------------------------------|----------------------------------------------|-------------------------|---------------------|------------|
| Mehdi D. Esrafili, Asma S                                                    | adr-Mousavi                                  |                         |                     |            |
|                                                                              |                                              | NgB.                    | SD.                 | 16         |

| Anionic tetrel bonds: An ab initio study | Chemical Physics Letters, 691, January 201 |  |  |
|------------------------------------------|--------------------------------------------|--|--|
|                                          | Pages 394-400                              |  |  |
|                                          | doi.org/10.1016/j.cplett.2017.11.051       |  |  |
|                                          |                                            |  |  |
| Mehdi D. Esrafili, Soheila Asadollal     | ni, Parisasadat Mousavian                  |  |  |
|                                          | NgB. SD. 17                                |  |  |

| Journal of Fluorine Chemist<br>203, November 2017, Pages 62-<br>doi.org/10.1016/j.jfluchem.2017.10.0 |                                                            |                                                                                   | 179,<br>-74<br>002                                                                                   |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Giuseppe Resnati                                                                                     |                                                            |                                                                                   |                                                                                                      |
|                                                                                                      | NgB.                                                       | SD.                                                                               | 18                                                                                                   |
| (                                                                                                    | 203, November<br>doi.org/10.1016/j.jfl<br>Giuseppe Resnati | 203, November 2017, F<br>doi.org/10.1016/j.jfluchem.2<br>Giuseppe Resnati<br>NgB. | 203, November 2017, Pages 62<br>doi.org/10.1016/j.jfluchem.2017.10.0<br>Giuseppe Resnati<br>NgB. SD. |

| A theoretical survey of substituent effects on the             | Journal of Molecular Graphics and        |  |  |  |
|----------------------------------------------------------------|------------------------------------------|--|--|--|
| properties of pnicogen and hydrogen bonds in cationic          | Modelling, 77, October 2017, Pages 64-71 |  |  |  |
| complexes of PH4+ with substituted benzonitrile                | doi.org/10.1016/j.jmgm.2017.08.010       |  |  |  |
| Sotoodeh Bagheri, Hamid Reza Masoodi, Ali Reza Akrami-Mohajeri |                                          |  |  |  |
|                                                                | NgB. SD. 19                              |  |  |  |

### {{{{{{{{{{{}}}}

| Prediction of neutral noble gas compounds LiNgF<br>(Ng=Kr, Xe and Rn) | Computational and The<br>1113, 1 Augu<br>doi.org/10.1016/j.c | eoretical<br>1st 2017,<br>comptc.2 | Chemis<br>Pages 8<br>017.04. | stry,<br>3-13<br>011 |
|-----------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------|------------------------------|----------------------|
| Rui Zhao, Li Sheng, Kunqi Gao                                         |                                                              |                                    |                              |                      |
|                                                                       |                                                              | NgB.                               | SD.                          | 20                   |

| Aerooge                                            | n Bond                 | NgB. SI                                                                                                    | 20                                                                            |  |  |
|----------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|
| Comp Quan Chem (CQC)<br>species                    |                        |                                                                                                            |                                                                               |  |  |
|                                                    | LiNgF<br>Decomposition | • $Ng = [Xe Rn]$                                                                                           |                                                                               |  |  |
| n järteen aan aan van van van van van van van va   | Comp                   | Quan Chem (CQC)                                                                                            | 9 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100<br> |  |  |
| CQC                                                |                        | Software                                                                                                   | Gaussian 03                                                                   |  |  |
|                                                    |                        | DFT (B3LYP)<br>MP2<br>CCSD(T)                                                                              | Theory level                                                                  |  |  |
| Geom opt<br>frequency computations                 |                        | aug-cc-PVTZ (AVTZ)<br>Dunning's correlation consistent<br>triple-zeta basis sets with diffuse<br>functions | F, Li and Kr<br>atoms                                                         |  |  |
|                                                    |                        | valence basis set +<br>aug-cc-PVTZ-PP relativistic<br>effective core pseudopotentials<br>(ECPs)            | Xe<br>and Rn atoms                                                            |  |  |
| Minimum energy paths of unimolecular decomposition |                        | intrinsic reaction coordinate (IRC) c                                                                      | B3LYP<br>MP2                                                                  |  |  |
| Bond nature of the                                 |                        | lacktrian lacktrian America (NBO) a                                                                        | nalysis                                                                       |  |  |
| LiNgF species                                      | LiNgF species          |                                                                                                            |                                                                               |  |  |
|                                                    |                        | unanananananananananananananananananan<br>unuunuunuunuunuunuunuunuunuunuunuu<br>                           | anna an                                      |  |  |
| MP2 energies                                       | AVTZ<br>aug-cc-PVQZ    | (AVQZ) basis sets                                                                                          |                                                                               |  |  |

|                         | CCSD(T)                                                                              |                             | AVTZbasis set                                                        | unaaaan maaaaaaa ahaan maanaa ah<br>Ah                                                                                |                            |  |
|-------------------------|--------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------|--|
|                         |                                                                                      |                             |                                                                      |                                                                                                                       |                            |  |
|                         | $E^{CCSD(T)/avg-cc-pvqz} = E^{MP2/aug-cc-pvqz} + \Delta_{MP2}^{CCSD(T)}$<br>energies |                             |                                                                      |                                                                                                                       |                            |  |
|                         |                                                                                      |                             | $\Delta_{\rm MP2}^{\rm or} = E^{\rm constrained}$                    | er her + Frankraß er her                                                                                              |                            |  |
|                         |                                                                                      |                             | Two-point extrapolation form                                         | ula                                                                                                                   |                            |  |
|                         | CCSD(T)/CBS<br>energies                                                              | S                           | $E_{CBS} = \frac{X^3 E(X) - (X - X)}{X^3 - (X - X)}$                 | $(X = 4)^{3}E(X - 1)$ (X = 4)                                                                                         |                            |  |
|                         |                                                                                      |                             | inennennennennennennennen<br>voor voor voor voor voor voor voor voor | unduanananananananananananan<br>unanun unanun unanun unanun unanun unanun u                                           |                            |  |
| Probes                  |                                                                                      |                             | Inference                                                            | Sub-hypotheses                                                                                                        |                            |  |
| Bond                    | ✓ LiAN<br>Rcov                                                                       |                             | ✓ LiANg bond lengths <<br>Rcov(LiANg)                                |                                                                                                                       | g bond lengths <<br>LiANg) |  |
| lengths                 | ✓ (                                                                                  | calcula                     | ated NgAF bond lengths                                               |                                                                                                                       |                            |  |
| C                       |                                                                                      | are in<br>Rcov(]            | the range from<br>NgAF) to RvdW(NgAF).                               | _                                                                                                                     |                            |  |
| NBO<br>analysis<br>to F |                                                                                      | LiNgF<br>transfe<br>to F at | species large electrons<br>erred from LiNg fragment<br>om.           | <ul> <li>LiAXe bond is electrostatic</li> <li>XeAF, LiARn and RnAF bonds<br/>is weak interaction with some</li> </ul> |                            |  |
| QTAIM                   |                                                                                      | Low q<br>Positiv<br>Small   | (rc),<br>/e r2q(rc),<br> H(rc)  and G(rc)/q(rc)                      | covalent property                                                                                                     |                            |  |
|                         | suggest t                                                                            | that th                     | е                                                                    |                                                                                                                       |                            |  |

}}}}

| Helium Shows New Chemistry Not Seen Anywhere | Chem, 2, Issue 4, 13 Ap | ril 2017, | Pages 4 | 66- |  |
|----------------------------------------------|-------------------------|-----------|---------|-----|--|
| Else                                         |                         |           |         | 467 |  |
|                                              | doi.org/10.1016/j.c     | chempr.2  | 017.03. | 008 |  |
| Jorge Botana, Mao-sheng Miao                 |                         |           |         |     |  |
|                                              |                         | NgB.      | SD.     | 21  |  |

| Importance of Nonclassical $\sigma$ Hole Interactions for the Reactivity of $\lambda 3$ Iodane Complexes | The Journal of Organic Chemistry, 82, Issue<br>22, 2017, Pages 11799-11805<br>doi.org/10.1021/acs.ioc.7b01716 |      |     |    |  |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------|-----|----|--|
| Halua Pinto de Magalhães, Antonio Togni, Hans Peter Lüthi                                                |                                                                                                               |      |     |    |  |
|                                                                                                          |                                                                                                               | NgB. | SD. | 22 |  |

| An ab initio study on anionic aerogen bonds | Chemical Physics Letters, 667, January 2017, |      |     |     |  |
|---------------------------------------------|----------------------------------------------|------|-----|-----|--|
|                                             | Pages 337-34                                 |      |     | 344 |  |
|                                             | doi.org/10.1016/j.cplett.2016.11.019         |      |     |     |  |
| Mehdi D. Esrafili, Fariba Mohammadian-Sabet |                                              |      |     |     |  |
|                                             |                                              | NgB. | SD. | 23  |  |

7.02: Design of Molecular Crystals: Supramolecular Synthons

Comprehensive Supramolecular Chemistry II, 2017, Pages 3-24 doi.org/10.1016/B978-0-12-409547-2.13696-

0

NgB. SD. 24

{{{{

| Aeroo                                                                     | gen Bond                                                                                                                                                                                                                     | NgB.                                                    |                      | SD                                                                 | 25                    |  |  |  |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------|--------------------------------------------------------------------|-----------------------|--|--|--|
| Comp Quan Chem (CQC)                                                      |                                                                                                                                                                                                                              |                                                         |                      |                                                                    |                       |  |  |  |
|                                                                           | species                                                                                                                                                                                                                      |                                                         |                      |                                                                    |                       |  |  |  |
| <ul> <li>(KrOF2)n=2-6</li> <li>(XeOF2)n=2-6 c</li> </ul>                  | in Xe comp                                                                                                                                                                                                                   | blexes. Com                                             | paredto              |                                                                    |                       |  |  |  |
| ng pan har                            | Comp Quan Chem (CQC)                                                                                                                                                                                                         |                                                         |                      |                                                                    |                       |  |  |  |
| CQC                                                                       | Software                                                                                                                                                                                                                     |                                                         | Gaussian 0           | )9                                                                 |                       |  |  |  |
|                                                                           | DFT<br>MO6-2X                                                                                                                                                                                                                |                                                         | Theory le            | vel                                                                |                       |  |  |  |
|                                                                           | Small-core energy-consistent pseudopotential                                                                                                                                                                                 | relativistic                                            | Хе                   |                                                                    |                       |  |  |  |
| <ul> <li>Geom opt</li> <li>Frequency<br/>computations</li> </ul>          | MP2/def2-TZVPPD level                                                                                                                                                                                                        | Structure of (ZOF2)n=2,3<br>clusters                    |                      |                                                                    |                       |  |  |  |
|                                                                           | All-electron def2-TZVPPD<br>triple-f basis set equipped wit<br>polarization and diffusionfunc                                                                                                                                | All other atoms                                         |                      |                                                                    |                       |  |  |  |
| Interaction energy                                                        | <ul> <li>= Difference of the tot<br/>the complex and the s<br/>isolated monomers in<br/>complex geometry</li> <li>Corrected using basis<br/>superposition error (<br/>calculated with CP<br/>(counterpoise)methol</li> </ul> | al energy of<br>um of the<br>their<br>set<br>3SSE)<br>d |                      |                                                                    |                       |  |  |  |
| MEP analysis                                                              | Wave FunctionAnalysis-Surfa                                                                                                                                                                                                  | e Analysis Suit                                         | e (WFA-SAS           | S)                                                                 |                       |  |  |  |
| NBO analysis                                                              | NBO 5.0                                                                                                                                                                                                                      |                                                         | M06-2X/c             | def2-TZVPP                                                         | D level               |  |  |  |
| NCI index analysis                                                        | MultiWFN program                                                                                                                                                                                                             |                                                         | , <u> </u>           |                                                                    |                       |  |  |  |
| Spin-spin<br>coupling constant<br>across the aerogen<br>bond interactions | 83Krand 129Xe chemical shie<br>values as well as                                                                                                                                                                             | lding isotropy                                          | → G<br>a<br>→ M<br>T | Gauge incluc<br>tomic orbit<br>pproach<br>106-2X/def<br>ZVPPD leve | led<br>al<br>2-<br>≱l |  |  |  |

S. Sinha, C. B. Aakeröy

| A theoretical evidence for cooperative enhancement in aerogen-bonding interactions: Open-chain clusters of | Chemical Physics Letters, 662, 1 October<br>2016, Pages 80-85 |      |     |    |  |  |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------|-----|----|--|--|
| KrOF2 and XeOF2                                                                                            | doi.org/10.1016/j.cplett.2016.09.037                          |      |     |    |  |  |
| Mehdi D. Esrafili, Esmail Vessally                                                                         |                                                               |      |     |    |  |  |
|                                                                                                            |                                                               | NgB. | SD. | 25 |  |  |
|                                                                                                            |                                                               |      |     |    |  |  |

*}}}}* 

{{{{

| A                                                                                     | eroogen                                               | Bond              |               |                                                      | NgB.                                               |                          | SD                                                                | 26                                                                   |
|---------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------|---------------|------------------------------------------------------|----------------------------------------------------|--------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------|
|                                                                                       |                                                       |                   |               | Chom (CC                                             |                                                    |                          |                                                                   |                                                                      |
|                                                                                       |                                                       | Single-elec       | tron ae       | rogen bond                                           | (SEAB)                                             |                          |                                                                   |                                                                      |
|                                                                                       |                                                       | I                 | LA            |                                                      |                                                    | LB                       |                                                                   |                                                                      |
|                                                                                       | • KrO                                                 | F2, KrO3, X       | KeOF2 ; I     | XeO3                                                 | Methyl<br>Ethyl (C                                 | (CH3) rac<br>22H5) rad   | lical<br>ical                                                     |                                                                      |
|                                                                                       | Comp Quan (                                           | Chem (CQC         | ,)            | 997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 | 1 - 2011 - 2011 - 2011 - 2011 - 2011 - 2011 - 2011 |                          |                                                                   | 997 1997 1997 1997 1997 1997 1997 1997                               |
| CQC                                                                                   | Software                                              |                   |               |                                                      | (                                                  | Gaussian (               | )9                                                                |                                                                      |
|                                                                                       | Theory level                                          |                   | MP2           |                                                      |                                                    |                          |                                                                   |                                                                      |
|                                                                                       |                                                       |                   |               |                                                      |                                                    | Kr; Xe at                | oms                                                               |                                                                      |
| Geom opt<br>frequency<br>computations                                                 | Basis set                                             |                   | aug-o         | c-pVTZ-PF                                            | 5                                                  | عة ا<br>م<br>r<br>t<br>r | ncludes s<br>energy-co<br>elativistic<br>ials (PP)<br>elativistic | mall-core<br>nsistent<br>cpseudopoter<br>to account for<br>c effects |
|                                                                                       |                                                       |                   | aug-o         | ug-cc-pVTZ                                           |                                                    | H, C and O atoms         |                                                                   |                                                                      |
| Interaction<br>energy                                                                 | Corrected by                                          | basis set su      | perposit      | ion error (                                          | (BSSE)                                             |                          |                                                                   |                                                                      |
| ! Topolo<br>! Electro                                                                 | ogical analysis<br>on density                         | <mark>o</mark> Al | IM2000<br>o N | program<br>1P2/aug-co                                | c-pVTZ(-F                                          | PP)                      |                                                                   | THE REPORT OF A STREET                                               |
| MEP analysis                                                                          |                                                       | 🖉 W               | /ave Fur      | ction Anal                                           | ysis-Surfa                                         | ace Analy                | sis Suite                                                         | (WFA-SAS)                                                            |
| NBO analysis                                                                          |                                                       | 🥗 N               | BO 5.0        | •                                                    | y<br>Wave fun<br>HF/aug-c                          | ctions ge<br>c-pVTZ le   | nerated a<br>evel                                                 | it                                                                   |
|                                                                                       |                                                       |                   |               |                                                      |                                                    |                          |                                                                   |                                                                      |
| <ul> <li>NCI indet</li> <li>Electror<br/>(ELF)</li> <li>Electror<br/>(EDD)</li> </ul> | ex analysis<br>I localization fu<br>I density differe | nction<br>nce     | ~             | MultiWFN                                             | program                                            |                          |                                                                   |                                                                      |
| 🔶 Spin-spi                                                                            | n coupling cons                                       | stant             |               | o G                                                  | auge inclu                                         | uded ator                | nic orbita                                                        | lapproach                                                            |

|                                      | <ul> <li>M06-2X</li> <li>All-electron DGDZVP basis set.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| nananananananananananananana<br>Type | Descriptors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MEP                                  | <ul> <li>MESP maxima (VS,max, kcal/mol)</li> <li>MESP minima (VS,min, kcal/mol)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Geometry                             | <ul> <li>Binding distance (Rint, Å)</li> <li>Binding angles (θ0-7…C.°)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Energy                               | Interaction energy(Eint, kcal/mol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Electron Density                     | <ul> <li>Electron Density (Electron Density At BCP)</li> <li>Laplacian, ∇2ρbcp</li> <li>Total electron energy density, (HBCP)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Charge                               | <ul> <li>Provide a structure of the second struct</li></ul> |
| NMR                                  | <ul> <li>Absolute Chemical Shielding (Σ, Ppm), 83Kr Or 131Xe</li> <li>Change with respect to isolated monomer (Δσ, ppm)</li> <li>Z-C spin-spin constant (J(Z–C), Hz)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Interaction<br>Energies              | Ternary complexes<br>Total Interaction Energies (Eint, Total, Kcal/Mol)<br>Interaction Energies Of SEAB (Eint, Z…C, Kcal/Mol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Single-electron aerogen bonds: Do they exist?                      | Chemical Physics Let                | ters, 659. | , 16 Aug | gust |  |  |
|--------------------------------------------------------------------|-------------------------------------|------------|----------|------|--|--|
|                                                                    | 2016, Pages 196-20                  |            |          |      |  |  |
|                                                                    | doi.org/10.1016/j.cplett.2016.07.02 |            |          |      |  |  |
| Mehdi D. Esrafili, Fariba Mohammadian-Sabet, Mohammad Solimannejad |                                     |            |          |      |  |  |
|                                                                    |                                     | NgB.       | SD.      | 26   |  |  |

| Exploring "aerogen-hydride" interactions between<br>ZOF2 (Z-Kr, Va) and metal hydrides: An ab initia |                                     |      |     |    |  |
|------------------------------------------------------------------------------------------------------|-------------------------------------|------|-----|----|--|
| ZOF2 (Z=Kr, Xe) and metal hydrides: An ab initio                                                     |                                     |      |     |    |  |
| study                                                                                                | doi.org/10.1016/j.cplett.2016.05.01 |      |     |    |  |
| Mehdi D. Esrafili, Fariba Moha                                                                       | mmadian-Sabet                       |      |     |    |  |
|                                                                                                      |                                     | NgB. | SD. | 27 |  |
| {{{{                                                                                                 |                                     |      |     |    |  |
| Aeroogen Bond                                                                                        | NgB.                                | SD   | 28  |    |  |
|                                                                                                      |                                     |      |     |    |  |

| e de la construcción de la constru<br>Comp Quantum Chem (CQC) |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|--|
| Aerogen bond (NgB)                                                                                                                        |  |
| LA LB                                                                                                                                     |  |

| • XeC                                                                                                                                                                                               | nnnnnn<br>DF2<br>nnnnnn                 |                                                                                                                                                                                                                                                                                                                                                                   | Ethyne, eth<br>Furan,thiop<br>Cl <sup>-</sup> ; Br <sup>-</sup><br>Lone pairs<br>o N | ene, benzene<br>bhene<br>H3 ; CH3CN                                             | , pyrrole,                                         |                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------|----------------|
|                                                                                                                                                                                                     | Softwa                                  | are                                                                                                                                                                                                                                                                                                                                                               |                                                                                      |                                                                                 | Gaussian 09                                        |                |
|                                                                                                                                                                                                     | Theor                                   | v level                                                                                                                                                                                                                                                                                                                                                           | MP2                                                                                  |                                                                                 | Guussiun 07                                        |                |
| Monomers and complexes<br>Geom opt                                                                                                                                                                  | Basis                                   | set                                                                                                                                                                                                                                                                                                                                                               | aug-cc-p                                                                             | VTZ-PP                                                                          | Xe atoms<br>To account<br>relativistic             | for<br>effects |
| Frequency<br>computations                                                                                                                                                                           |                                         |                                                                                                                                                                                                                                                                                                                                                                   | aug-cc-p                                                                             | VTZ                                                                             | H, C and O atoms                                   |                |
|                                                                                                                                                                                                     | prected                                 | hy basis se                                                                                                                                                                                                                                                                                                                                                       | t supernos                                                                           | sition error (                                                                  | นางเม่าเม่างมางมาง<br>แก่แม่นเน่นแน่นเน่น<br>BSSE) |                |
| Decomposition of M<br>Interaction energy                                                                                                                                                            | P2/aug-c                                | c-pVTZ(PF                                                                                                                                                                                                                                                                                                                                                         | )                                                                                    | Localized molecular orbital<br>energy decomposition<br>analysis (LMOEDA) method |                                                    | GAMESS         |
| <ul> <li>! Topological analysis</li> <li>! Electron density</li> <li>MEP analysis</li> <li>NBO analysis</li> <li>NBO analysis</li> <li>A NCI index an Electron loc</li> <li>Cleatron doc</li> </ul> | alization                               | <ul> <li>AIM2000 program         <ul> <li>MP2/aug-cc-pVTZ(PP)</li> </ul> </li> <li>Wave Function Analysis-Surface Analysis Suite (WFA-S</li> <li>MP2/aug-cc-pVTZ(PP)</li> <li>MP2/aug-cc-pVTZ(PP)</li> <li>NB0 5.0</li> <li>Wave functions generated at HF/aug-cc-pVTZ level</li> <li>Alysis</li> <li>Ization function (ELF)</li> <li>MultiWEN program</li> </ul> |                                                                                      |                                                                                 | A-SAS)                                             |                |
|                                                                                                                                                                                                     |                                         |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                      | NANANANANANA                                                                    | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~            |                |
| Type                                                                                                                                                                                                | - 1 mil 1 mil 1 mil 1 mil 1 mil 1 mil 1 |                                                                                                                                                                                                                                                                                                                                                                   | Des                                                                                  | criptors                                                                        |                                                    |                |
| Energy<br>Energy<br>Second-order perturbation energies (E(2), kc<br>Sum of charge on allatoms of XeOF2 (Q, e) cor<br>o HF/aug-cc-pVTZ level<br>o                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                      | s (E(2), kcal/mol)<br>2 (Q, e) complexes                                        |                                                    |                |
| Components of<br>Energy (ES)<br>Components of<br>Energy (EX)<br>Polarization Energy (REP)<br>Dispersion Energy (POL)<br>Energy (DISP)                                                               |                                         |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                      |                                                                                 |                                                    |                |
| terenerenenenenenenenenenenenenenenen<br>Terenerenenenenenenenenenenenenenenenene                                                                                                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                      |                                                                                 |                                                    | uu 1117ta.     |

| The aerogen $-\pi$ bonds involving $\pi$ systems        | Chemical Physics Letters, 651, May 2016,  |
|---------------------------------------------------------|-------------------------------------------|
|                                                         | Pages 50-55                               |
|                                                         | doi.org/10.1016/j.cplett.2016.03.021      |
| Meng Gao, Jianbo Cheng,                                 | Oingzhong Li                              |
|                                                         | NgB. SD. 28                               |
| uuu                                                     |                                           |
|                                                         |                                           |
| Potential interstellar noble gas molecules: ArOH+ and   | Molecular Astrophysics, 2, March 2016,    |
| NeOH+ rovibrational analysis from quantum chemical      | Pages 18-24                               |
| quartic force fields                                    | doi.org/10.1016/j.molap.2015.12.001       |
| Riley A. Theis, Ryan C. F                               | ortenberry                                |
|                                                         | NgB. SD. 29                               |
|                                                         |                                           |
| Comparison of your and radon motal halidas              | Chamical Division Lattoria 629, 1 October |
| Comparison of <mark>xenon</mark> and radon metal nandes | Chemical Physics Letters, 058, 1 October  |
|                                                         | 2015, Pages 249-252                       |
| Christenhau C. Levelle, Mexico                          |                                           |
| Christopher C. Lovalio, Marius                          | Z KIODUKOWSKI                             |
|                                                         | NgB. 5D. 30                               |
|                                                         |                                           |
| Main group coordination chemistry at low                | Coordination Chemistry Reviews, 257.      |
| temperatures: A review of matrix isolated Group 12 to   | Issues 5–6. March 2013. Pages 956-1010    |
| Group 18 complexes                                      | doi.org/10.1016/j.ccr.2012.10.013         |
| Nigel A. Young                                          |                                           |
|                                                         | NøB SD 31                                 |
|                                                         | 1.821 221 01                              |
|                                                         |                                           |
| Coordination chemistry of the noble gases and noble     | Coordination Chemistry Reviews, 257,      |
| gas fluorides                                           | Issues 5–6, March 2013, Pages 902-909     |
|                                                         | doi.org/10.1016/j.ccr.2012.07.017         |
| Eric G. Hope                                            | 8                                         |
|                                                         | NgB, SD, 32                               |
|                                                         | 1,82, 02, 02                              |
|                                                         |                                           |
| 1.10: Studying Highly Reactive Organometallic           | Comprehensive Organometallic Chemistry    |
| Complexes with Infrared Spectroscopy: Matrix            |                                           |
| Isolation, Liquefied Noble Gases, Supercritical Fluids, | From Fundamentals to Applications         |
| and Time-resolved IR Spectroscopy                       | Volume 1, 2007, Pages 263-277             |
|                                                         | do1.org/10.1016/B0-08-045047-4/00011-X    |
| M. W. George, P. Po                                     | rtius                                     |
|                                                         | NgB.   SD.   33                           |
|                                                         |                                           |
|                                                         |                                           |

| Noble gas compounds and chemistry: a brief review of     | Journal of Fluorine Chemistry, Volume 121, |         |      |    |  |  |
|----------------------------------------------------------|--------------------------------------------|---------|------|----|--|--|
| interrelations and interactions with fluorine-containing | Issue 1, 1 May 2003, Pages 1-8             |         |      |    |  |  |
| species                                                  | 22-1139(                                   | 03)0000 | )9-5 |    |  |  |
| Joel F. Liebman, Carol A. Deakyne                        |                                            |         |      |    |  |  |
|                                                          |                                            | NgB.    | SD.  | 34 |  |  |

| Chemical Physics L       | etters, V                                                                               | olume 3                                                                                                                  | 368,                                                                                                                                        |
|--------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Issues 5-6, 24 January 2 | 2003, Pag                                                                               | es 589-                                                                                                                  | 593                                                                                                                                         |
| doi.org/10.1016/S000     | )9-2614(                                                                                | 02)0191                                                                                                                  | 3-9                                                                                                                                         |
| z Klobukowski            |                                                                                         |                                                                                                                          |                                                                                                                                             |
|                          | NgB.                                                                                    | SD.                                                                                                                      | 35                                                                                                                                          |
|                          | Chemical Physics L<br>Issues 5–6, 24 January 2<br>doi.org/10.1016/S000<br>z Klobukowski | Chemical Physics Letters, V<br>Issues 5–6, 24 January 2003, Pag<br>doi.org/10.1016/S0009-2614(0<br>z Klobukowski<br>NgB. | Chemical Physics Letters, Volume 3<br>Issues 5–6, 24 January 2003, Pages 589-<br>doi.org/10.1016/S0009-2614(02)0191<br>Klobukowski NgB. SD. |

| Transition metal-noble gas complexes | Advances in Inorganic Chemistry, 52, 2001, |
|--------------------------------------|--------------------------------------------|
|                                      | Pages 113-150                              |
|                                      | doi.org/10.1016/S0898-8838(05)52002-6      |
| D. C. Grills                         | , M. W. George                             |
|                                      | NgB. SD. 36                                |

| A standard geometrical model for compounds of the<br>main group elements H through I | Journal of Molecular Structure:<br>THEOCHEM, 123, Issues 3–4, August 1985,<br>Pages 399-412<br>doi.org/10.1016/0166.1280(85)80181.0 |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                      | u01.01g/10.1010/0100-1200(05/00101-0                                                                                                |
| Michael R. Peterson, Imre                                                            | G. Csizmadia                                                                                                                        |
|                                                                                      | NgB. SD. 37                                                                                                                         |

| Atom-probe FIM analysis of the interaction of the | of the Surface Science, 23, Issue 1, October 19 |          |         | 970, |
|---------------------------------------------------|-------------------------------------------------|----------|---------|------|
| imaging gas with the surface                      | Pages 112-                                      |          |         | 129  |
|                                                   | doi.org/10.1016/003                             | 39-6028( | 70)9000 | )8-7 |
| E. W. Müller, S. V. Krishnaswa                    | my, S. B. McLane                                |          |         |      |
|                                                   |                                                 | NgB.     | SD.     | 38   |

#### {{{{

| Aeroo        | gen Bond           |                                                             | NgB.                                    |         | SD                          | 39                     |
|--------------|--------------------|-------------------------------------------------------------|-----------------------------------------|---------|-----------------------------|------------------------|
|              | Comp Qu<br>Aeroger | an Chem(<br>–pi Interac                                     | CQC)<br>tions                           |         |                             |                        |
|              | LA                 |                                                             | LB                                      |         |                             |                        |
|              | • XeO3<br>• XeF4   | • Ber<br>• Trif<br>• Hex                                    | nzene<br>fluorobenzene<br>kafluorobenze | e,      |                             |                        |
| CQC Task     | Software           | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 199 |                                         | Gaussia | an 09                       |                        |
| Monomers and | Theory level       | RI-MP2                                                      |                                         |         |                             |                        |
| complexes    | Basis set          | aug-cc-                                                     | pVTZ-PP                                 | Xe atoi | ms<br>To accou<br>relativis | unt for<br>tic effects |

| com                                                                                                                                                                                     | putations      | <u> </u>                                                                 | aug-cc-pVTZ H,         |                                                                                                                                      | H, C and O at | toms | L. H. H. H. H. |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------|------|----------------|----|
| Туре                                                                                                                                                                                    |                | Computation level Descriptors                                            |                        |                                                                                                                                      |               |      |                |    |
| Energies                                                                                                                                                                                | ଙ୍କ di<br>ଙ Ri | <ul> <li>DF-DFT-SAPT theory</li> <li>RI-DFT/aug-cc-pVTZ level</li> </ul> |                        | <ul> <li>✓ SAPT interaction energies (Etota</li> <li>→</li> <li>✓ Electrostatic,</li> <li>✓ Exchange</li> <li>✓ Induction</li> </ul> |               |      | 1)             |    |
|                                                                                                                                                                                         |                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                  |                        | 🖉 Disp                                                                                                                               | persion       |      |                |    |
| Theoretical Study on the Dual Behavior of XeO3 and<br>XeF4toward Aromatic Rings: Lone Pair-p versus<br>Aerogen-pInteractionsChemPhysChem, 2015, 16, 3625-3<br>DOI : 10.1002/cphc.201500 |                |                                                                          |                        | 630<br>757                                                                                                                           |               |      |                |    |
|                                                                                                                                                                                         |                | Antonio <mark>Ba</mark>                                                  | <mark>ıza</mark> . and | Antonio From                                                                                                                         | ntera         | ND   |                | 20 |
|                                                                                                                                                                                         |                |                                                                          |                        |                                                                                                                                      |               | NgB. | SD.            | 39 |

}}}

| Aerogen Bonding Interaction: A New Supramolecular | Angew. Chem. Int   | . Ed., 20 | 15, 54, | 1-5 |
|---------------------------------------------------|--------------------|-----------|---------|-----|
| Force?**                                          | DOI: 10.10         | )02/anie. | 201502  | 571 |
| Antonio <mark>Bauza</mark> and                    | l Antonio Frontera |           |         |     |
|                                                   |                    | NgB.      | SD.     | 40  |

| Classifying the chemical bonds involving the noble-<br>gas<br>atoms | New J. Chem., 20<br>DOI: 10 | )20,44, 1<br>).1039/D | 4536-14<br>00NJ019 | 4550<br>927E |
|---------------------------------------------------------------------|-----------------------------|-----------------------|--------------------|--------------|
| Stefano Borocci, Felice Grandinetti                                 | , Francesca Nunzic and N    | lico Sanı             | na                 |              |
|                                                                     |                             | NgB.                  | SD.                | 41           |

| Noncovalent Complexes of the Noble-Gas Atoms:         | J. Comput. Chem. 2      | 2019, 40, | 2318-2 | 328 |
|-------------------------------------------------------|-------------------------|-----------|--------|-----|
| Analyzing                                             | DOI: 10.1002/jcc.2601   |           | 010    |     |
| the Transition from Physical to Chemical Interactions |                         |           |        |     |
| Stefano Borocci, Felice Grandinetti, Nico             | Sanna, Paola Antoniotti | and       |        |     |
| Francesca Nunz                                        | i                       |           |        |     |
|                                                       |                         | NgB.      | SD.    | 42  |

| Is Aerogen–p Interaction Capable of Initiating the NoncovalentChemistry of Group 18? | Chem. Asian J. 2<br>doi.org/10.1 | 2015, 10,<br>1002/asia | 2615- 1<br>.20150 | 2618<br>0785 |
|--------------------------------------------------------------------------------------|----------------------------------|------------------------|-------------------|--------------|
| Junjian Miao, Bo                                                                     | Song, and Yi Gao                 |                        |                   |              |
|                                                                                      |                                  | NgB.                   | SD.               | 43           |
|                                                                                      |                                  |                        |                   |              |

| Interaction and Polarization Energy Relationships in $\sigma$ -Hole and $\pi$ -Hole Bonding | Crystals 2020, 10, 76<br>doi.org/10.3390/cryst10020076 |  |  |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|
| Jane S. Murray a                                                                            | nd Peter Politzer                                      |  |  |





#### AAA→CNN → Aerogenbonds

| Ref | Mahdi Khosravy, Neeraj Gupta, Spiral-like movement inside a huddle of emperor |
|-----|-------------------------------------------------------------------------------|
|     | penguins, in                                                                  |
|     | Nilesh Patel • Tomonobu Senjyu (Editors), Frontier Applications, of Nature    |
|     | Inspired, Computation, Springer Nature Singapore Pte Ltd. 2020                |
|     |                                                                               |