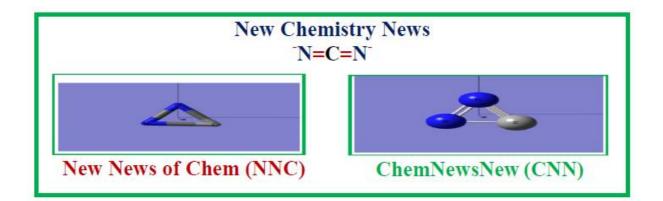
Available online at www.joac.info


ISSN: 2278-1862

Journal of Applicable Chemistry

2023, 12 (5): 835-915 (International Peer Reviewed Journal)

CNN-58--Fit (Figure Image TableScript...) BasesPart 6. xAI (Bfit) 2022-2023 Probes

Information Source	sciencedirect.com;	
S. Narasinga Rao M D Associate Professor, Dept. of General Medicine, Government medical college, government general hospital, Srikakulam, AP, I ndia	K. SomasekharaRao, Ph D Dept. of Chemistry, Acharya Nagarjuna Univ., Dr. M.R.Appa Rao Campus, Nuzvid-521 201, I ndia	R. Sambasiva Rao, Ph D Dept. of Chemistry, Andhra University, Visakhapatnam 530 003, I ndia
snrnaveen007@gmail.com (+91 9848136704)	<u>sr kaza1947@yahoo.com</u> (+91 98 48 94 26 18)	rsr.chem@gmail.com (+91 99 85 86 01 82)

Conspectus: The tasks based on physics, chemistry and biology are modelled with empirical, theoretical or computational approaches. The I2O (Input-to-Output) transformation through the best of best models remained to be black-box approaches except in the case simple regression or trees. In the last decade, there was an upsurge to understand as deeply as possible the model employed, I/O transformation, parameter space, transformations, logic in arriving at intermediate information/ knowledge/hypothesis/ conclusions/ acceptance or rejection of advices. Further, it is used to point out explicit explanation not only to users but also to all stake holders. This protocol is indispensable and essential in health sector,

Défense, legal affairs, environmental policies, manufacure and so on.

xAI:In 2015, DARPA (USA) coined the term xAI(explainable Artificial Intelligence) and within a span of few years, it turned out into an indispensable trans-discipline in science/engineering/technology. Under the umbrella-xAI, noteworthy mathematical probes emerged enabling explanation frame for complex machine learning work-flows, deep neural nets, (vector/matrix) capsule nets etc. It altogether changed the mode of reporting of modelling output. The DNA approach for probes, software-tools, display methods follow.

Tasks in Mathematical Language: Broad types of tasks with xAI are detection, classification, Segmentation, clustering, regression, and structure-property/ structure-function/ structure-response relationships.

Disciplines employing xAI: The applied and trans-areas employing xAI are medicine, Molecular/material science, environment, Nuclear physics, molecular genetics etc.

Data types:The different data modes used as input are tabular (numerical, categorical, binary, logical), text (words, sentences, scripts), images (2D-,3D-, RGB), point clouds, audio, graphs, videos etc.

Models: Models are broadly classified as black-box, grey-box and white-box types. They are also otherwise called as transparent and opaque.

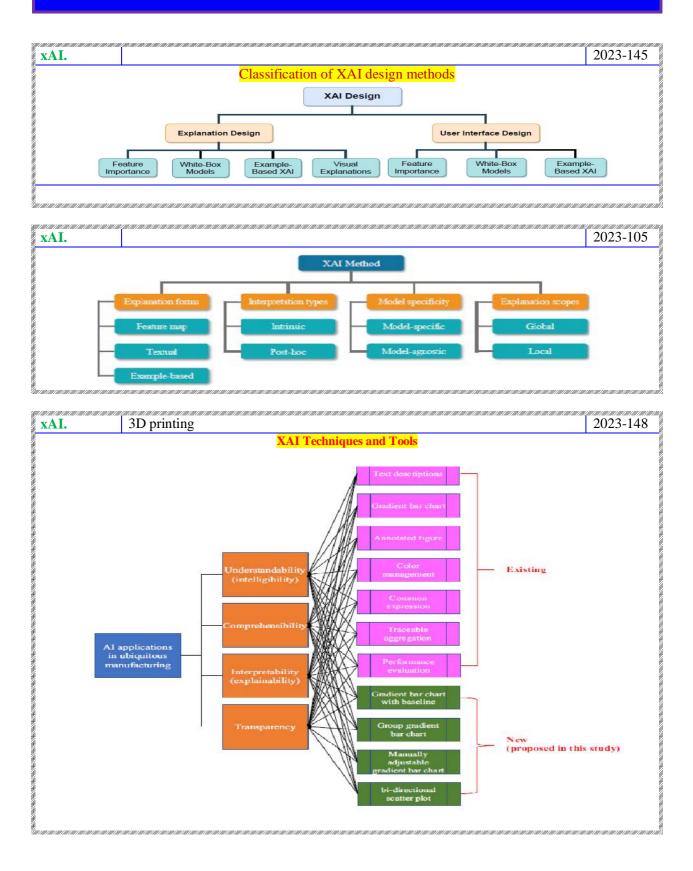
xAI-probes: The two important categories of xAI-probes are local and global. Another division is antehoc and post-hoc.

Libraries: Available are AIX-360.Captum, InterpretML, Skater Ecco and XATIK

Frameworks: Are developed in Python for post-hoc XAI of DeepNNs. Typical ones are Zennit, Captum, and Nvestigate

Explanation modes:If-Then-Else, scripts, Graphical (Figures, images, videos) and multi-media (Text and graphs, video/audio)

Explanation objects: Areall layers of neurons, layers of capsules, features, processes, decisions


Explanation methods: The explanation is sometimes by simplification. But, mostly based on perturbation of input/output/parameters of model, gradient and the concept.

Feature Relevance explanation in NNs is monitored and assessed by integrated gradients, guided BP, Layerwise Relevance propagation, Graph LRP, Deep Taylor decomposition, DeepLift (Learning Important FeaTures), Concept activation, activation maximization and Prediction difference Analysis (PDA).

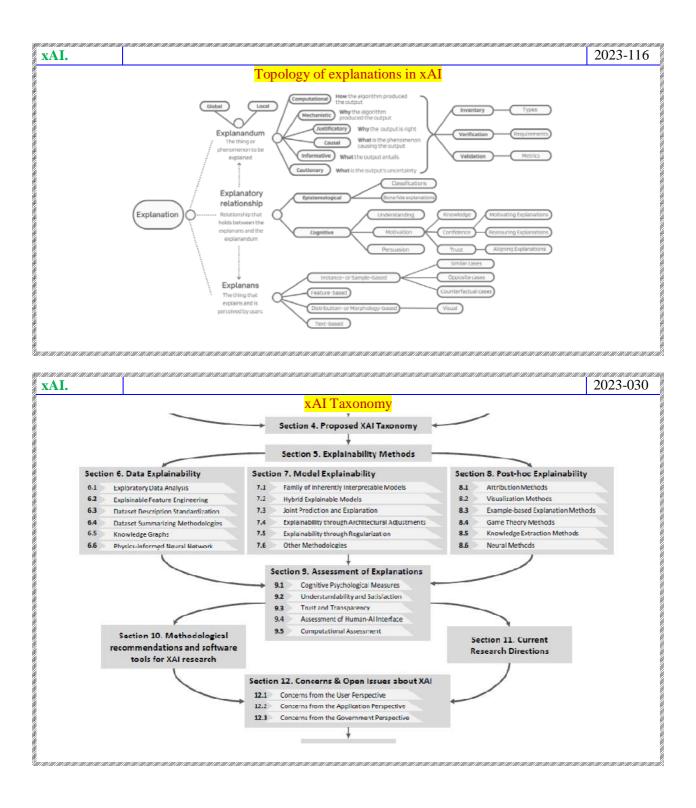
Some other typical xAI probes are Local interpretable model-agnostic explanations (LIME), Sub modular pick (SP)-LIME, anchor-LIME, LORE, SHAP, Shapley additive explanations, Saliency Maps, Class model visualization, LOKE, Anchors, class activation map (CAM) ,Grad-CAM, Grad-CAM++, SMOOTHGRAD, U-CAM, Eigen-CAM, DeepRed, GAM, Decision Trees, LENs and BRL.The output (Fit: Figure Image Table Script Bases) of typical case studies using xAI-probes during 2022Jan to 2023June are described.

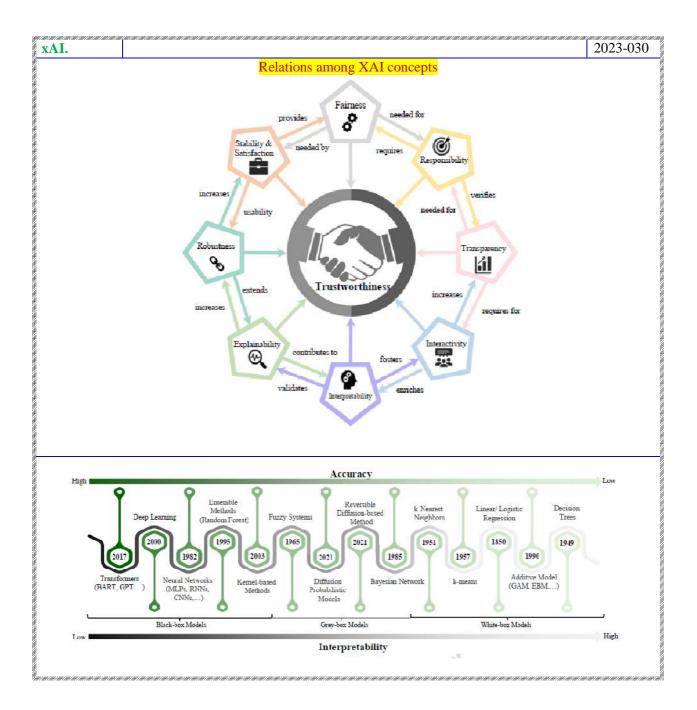
Keywords:xAI, Post-hoc, ante-hoc explanations; xAI-Probes; Local interpretable model-agnostic explanations (LIME), SHAP, Layerwise Relevance propagation, Partial dependence plots, Class Activation map (CAM), Grad-CAM; Integrated gradients; Concept activation map, Heatmaps; Saliency maps;;tSNE plot; Feature Relevance explanation, Rule extraction, eXplainable/ interpretableNumerical values, Figures; Images, Tables, Scripts.

Probes of xAI methods

		X7 A T (1 1		2023		
		XAI methods				
Explanation Type	Black-Box Model	Method	Scope	Functionality		
		LIME	Local	Surrogate Model		
		LORE	Local	Surrogate Model		
		Anchors	Local	Surrogate Model		
	Any	Occlusion	Local	Input Perturbation		
		Permutation Feature Importance	Global	Input Perturbation		
		Shapley Feature Importance	Global	Game-Theory		
		SHAP	Both	Game-Theory		
	5	Guided Backpropagation	Local	Backpropagation		
		Integrated Gradients	Local	Backpropagation		
Feature Importance	Neural Network	Layerwise Relevance Propagation	Local	Backpropagation		
	Neural Network	DeepLift	Local	Backpropagation		
		Testing with Concept Activation Vectors	Global	Human Concepts		
		Activation Maximization	Global	Forwardpropagation		
		Deconvolution	Local	Backpropagation		
	CNN	Class Activation Map	Local	Backpropagation		
		Grad-CAM	Local	Backpropagation		
	Transformer	Attention Flow / Attention Rollout	Local	Network Graph		
	Iransformer	Transformer Relevance Propagation	Local	Backpropagation		
		Rule Extraction	Global	Simplification		
	Any	Tree Extraction	Global	Simplification		
White-Box Model		Model Distillation	Global	Simplification		
	CNN	Attention Network	Global	Model Adaption		
	RNN	Attention Network	Global	Model Adaption		
		Prototypes	Global	Example (Train Data		
Example-Based	Any	Critisisms	Global	Example (Train Data		
		Counterfactuals	Global	Fictional data point		
		Partial Dependence Plot	Global	Marginalization		
Visual Explanations	Any	Individual Conditional Expectation	Global	Marginalization		
		Accumulated Local Effects	Global	Accumulation		

	17				their model pre	The second state of the local	7 months for a little for
Author	Objective	Subject	Application	Data type	Sig. Features	ML model	Results
Magunia et al. [63]	Identifies ICU outcome preductors in a multicenter COVID-19 cohort	1186 patients	ICU/ patient outcome	EHR/EMR	age, platelet/neutrophil ratio, D-dimer, admussion by external transfer, Murray hing injury score, D-dimer level, creatinine level, SOFA score w/o GCS	EBM	Survival ACC: 64.00% AUROC: 0.810 ECMO therapy ACC: 73.00% AUROC: 0.690 Renal replacement therapy ACC: 70.00% AUROC: 0.690
Qu et al. [64]	Identify Predictors of Congenital Heart Diseases	119 CHD 239 normal	CDS	Questionnaires and clinical data	maternal coagulation function indicators, glucose levels, maternal serum UA levels	EBM	ACC: 65.00% SPE: 65.00% SEN: 74.00% AUROC: 0.760


EN MARTER MAR


AAA→CNN-58→ **BFit6.xAI.2022**, **2023**

Author	Objective	Subject	Application	Data type	Data	ML/DL	Classifier	Technique	Results
Gidde et al. [66]	COVID-19 Detection	6 Public dataset	cus	Image	Chest X- ray	DL	U Nct, R CNN, DenseNet- 201	Expert system devised by radiologists	ΔCC: 95.00% SPE: 97.00% SEN: 78.00% AUROC: 0.890
Mellem et al. [67]	clinical trial patient selection to retrospectively improve treatment effects in scluzophrenia	95 treatment arms 102 placebo	Treatment effect study	clinical data	chrical trial data	MIL	Kule- based	Bayesian Rule Lists	ACC: 74.10% AUROC: 0.740

		<mark>xAI Pro</mark>	obes				
	Result 7	Result Type			Role		
	feature-scoring	rule-based	local	global	interpret. model	expl. method	
LIME	Ø		0			•	
SHAP	0		0			0	
Activation Maximization	Ø		0			0	
Saliency Maps	Ø		0			•	
SP-LIME	0			0		0	
Class Model Visualization	•			0		0	
LORE		0	0			0	
Anchors		0	0			0	
DeepRED		0	0	0		0	
GAM	O			0	0		
Decision Trees		•	۲	0	0		
BRL		0	O	0	0		
LENs		0	0	0	0	0	

		Key pi	ropertie	es of s	tate-o	f-the-ar	t algor	ithms			
Overview of key properties of					urt algorith	ms. The orde	r of appeara	ance of the	state-of-the-	art algorith	ms in the tab
s the same as in the discuss property	this paper	LIME [33]	SHAP [23]	LRP [3]	NAM [1]	CHIRPS [15]	LORE [14]	MOC [7]	MAPLE [30]	DICE [26]	FACE [31]
fast	-	-		-		-	-				-
deterministic	-		Lan	-							
local	1-	-	-	-	-	1-	**	100	-	-	
model-agnostic	-	100	-				100	-		-	-
suitable for multi-class models	-			-	-	-	1120	-	-	-	-
user-parameter-free post hoc									-		
provides counterfactual		1	1	1					5	-	-
explanations	-					-	-	-	-	-	-
provides symbolic explanations	-						-				
explanations from the domain	-			-		*			-	-	
certainty quantification	-				-	-			-		

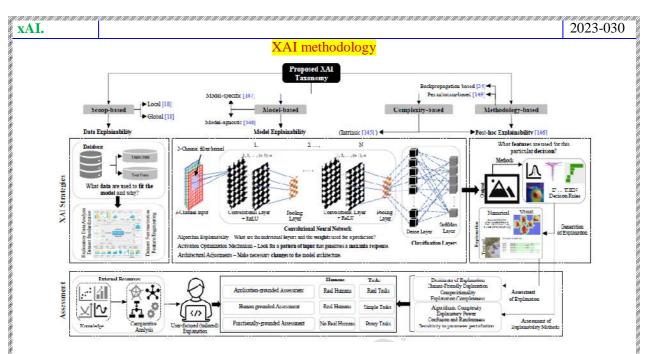
xAI. Libraries

xAI.		2023-145	
	Some of popular XAI libraries		

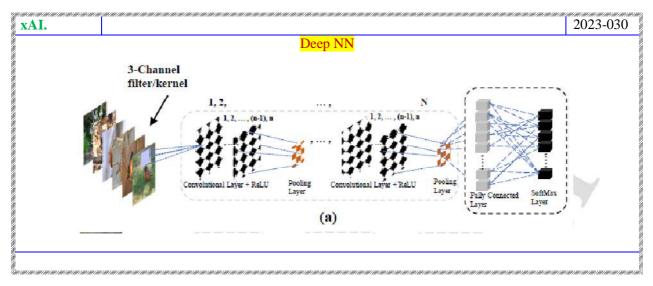
Name	Focus	Feature Importance	White-Box Mode Is	Example-Based XAI	Visual XAI	Framework
AIX 360 [151]	General	LIME, SHAP	Decision Rules, Model Distillation	Prototypes, Con- trastive Explanations	-	
Alibi [152]	General	Anchors, Integrated Gradients, SHAP,	—	Contrastive Explana- tions, Counterfactuals	ALE	TensorFlow
Captum [153]	Neural Networks	DeepLift, Deconvolution, Integrated Gra- dients, SHAP, Guided Backpropagation, GradCam, Occlusion, PFI	-	_	ра <u>—</u> С	PyTorch
DALEX [154]	General	LIME, SHAP, PFI	8 <u>14401</u>		ALE, PDP	-
DiCE [155]	Counterfactuals		<u>412</u>	Counterfactuals	_	<u></u>
InterpretML [156]	General	LIME, SHAP, Morris Sensitivity Analysis	Explainable Boosting, Decision Tree, Deci- sion Rules, Regression	_	PDP	—
PAIR Saliency [157]	Saliency Maps	Integrated Gradients, GradCam, Occlu- sion, Guided Backpropagation, Ranked Area Integrals, SmoothGrad	-	-	-	PyTorch, TensorFlow
Skater [158]	General	Layerwise Relevance Propagation, LIME, Integrated Gradients, Occlusion, PFI	Bayesian Rule List, De- cision Tree	-	PDP	TensorFlow
Quantus [159]	Quantitative Evaluation		100			TensorFlow PyTorch
ExplainerDashboard [160]	General	SHAP, PFI	Decision Tree	_	PDP	Scikit-learn
Ecco [161]	NLP	Integrated Gradients, Saliency, DeepLift, Guided Backprop	1000		-	PyTorch
XAITK [162]	General	Saliency Maps	Decision Tree	Explanation by Example	—	-

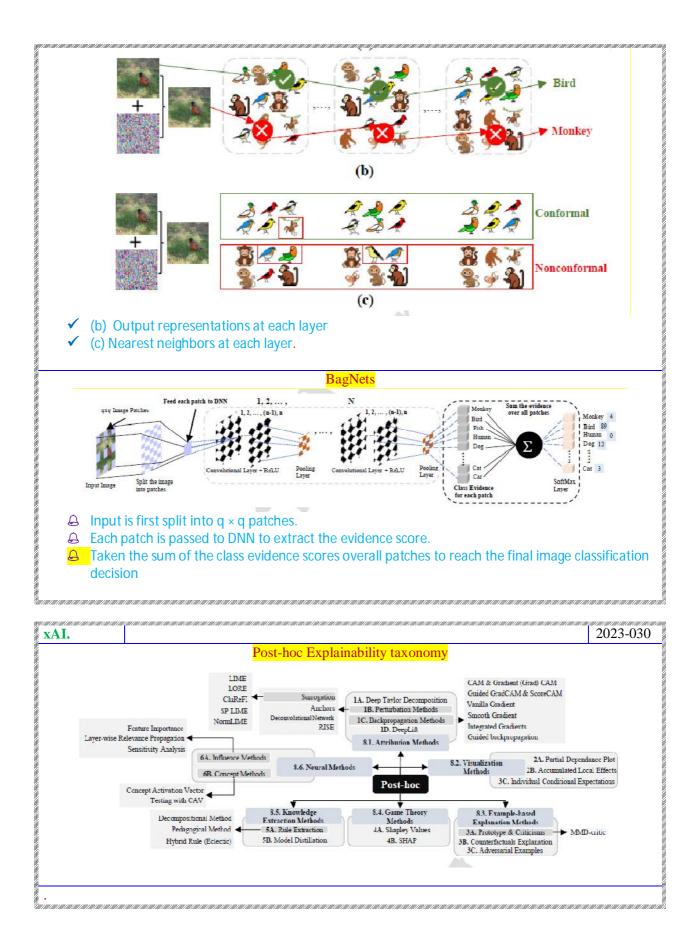
NARARANA MARANARANA MARANARANA MARANARANA MARANARANARANA MARANARANA MARANARANA MARANARANA MARANARANA MARANARANA

xAI.

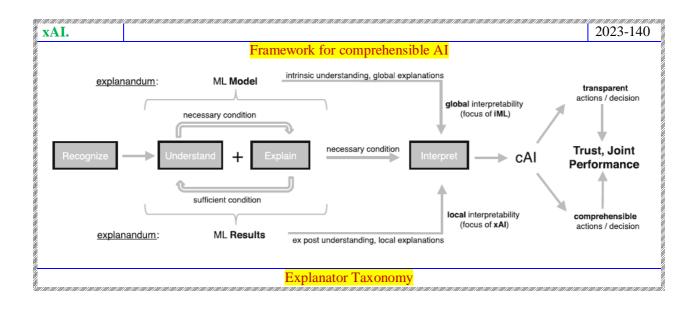

Python frameworks supporting post-hoc attribution for XAI of DNNs

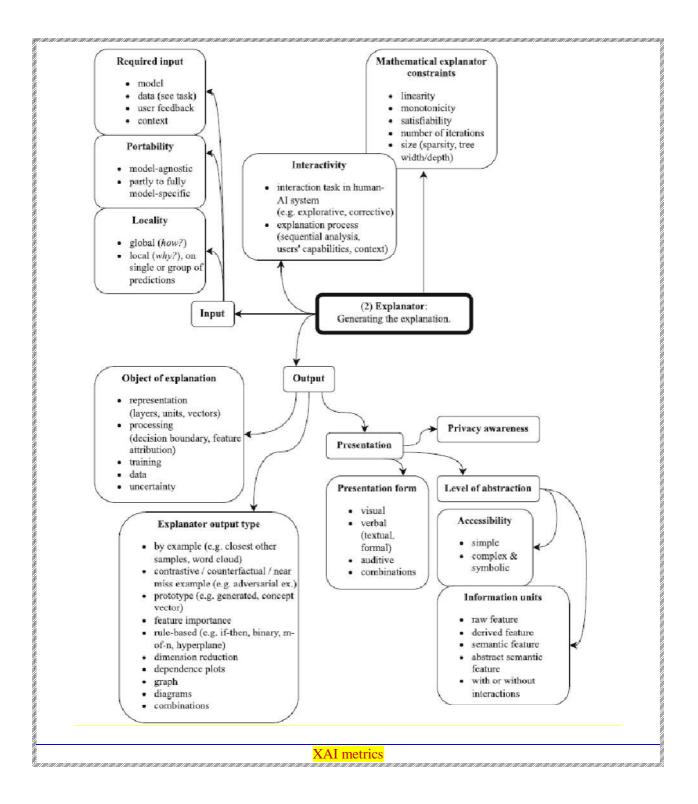
2023-155

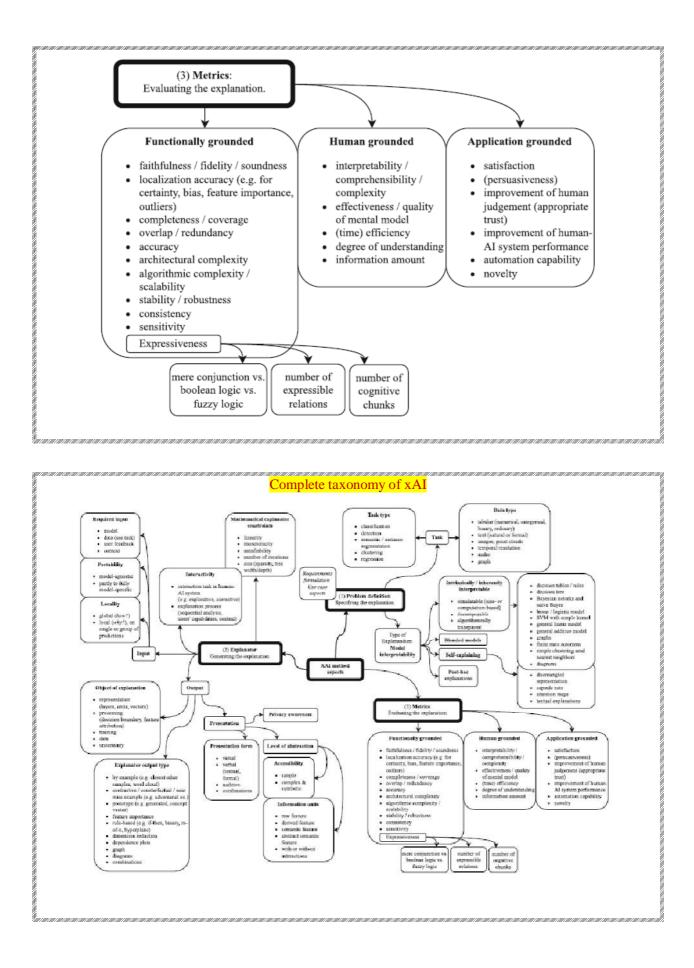

Framework	Back-end	Propagation Attribution	Propagation Rule-map	Other Attribution (Notable)	Documentation Tests
Zennit (ours)	PyTorch	Common LRP [10] Uncommon/Custom LRP Guided Backprop [37] Excitation Backprop [38]	Built-In Custom Canonization	SmoothGrad [35] Integrated Gradients [36] Occlusion [51]	Full Usage API Tutorials Fully Tested + Cl
Captum [17]	PyTorch	LRP-¢ [10] DeepLIFT(+Shap) [61, 62] Guided Backprop [37]	None	SmoothGrad [35] Integrated Gradients [36] Conductance [63, 64] GradientShap [62] KernelShap [62] GradCAM [65] Occlusion [51] LIME [66] Shapley Values [67, 68]	Full Usage API Tutorials Fully Tested + CI
TorchRay [30] (unmaintained)	PyTorch	Guided Backprop [37] Excitation Backprop [38]	None	GradCAM [65] Occlusion [51] LIME [66] RISE [69] Extremal Perturbation [30]	Joint Usage+API Examples Benchmarks
iNNvestigate [27]	Tensorflow/ Keras	Common LRP [10] PatternAttribution [70] DeepLIFT [61] Guided Backprop [37]	Built-In	SmoothGrad [35] Integrated Gradients [36]	Usage in Readme API Tutorials Fully Tested + Cl
DeepExplain[71] (unmaintained)	Tensorflow/ Keras	LRP-ε [10] DeepLIFT [61]	None	Integrated Gradients [36] Occlusion [51] Shapley Values [67, 68]	Usage in Readme Examples Tests + CI


xAI. 2023-140 Explainability toolboxes

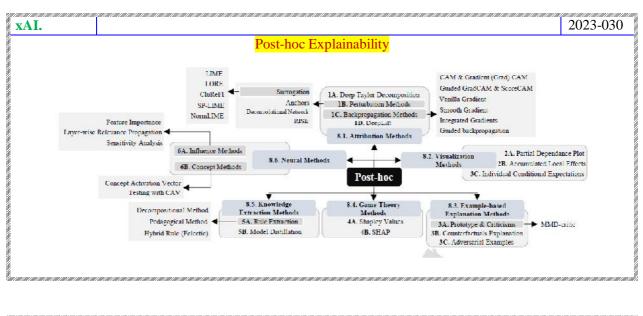
Toolbox	Publication	Code repository
Skater	Choudhary (2018)	https://github.com/oracle/Skater
InterpretML	Nori et al. (2019)	https://github.com/interpretml/interpret
iNNvestigate	Alber et al. (2019)	https://github.com/albermax/innvestigate
AI Fairness 360	Arya et al. (2019)	https://github.com/Trusted-AI/AIF360
explAIner	Spinner et al. (2020)	https://github.com/dbvis-ukon/explainer
FAT Forensics	Sokol et al. (2020)	https://github.com/fat-forensics/fat-forensics
Alibi	Klaise et al. (2021)	https://github.com/SeldonIO/alibi







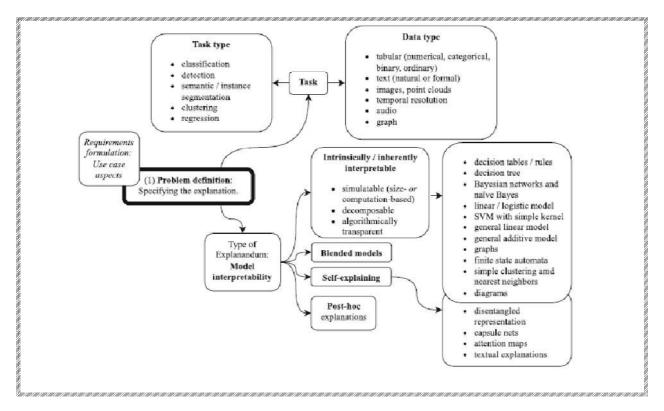
See that that the that that the the that the the the the the the the the the th			
	LIME	Locally Interpretable Model Agnostic Explainer	
	LIME.SP	Submodular Pick	
	LIME.RISE	Randomized Input Sampling to Provide Explanations,	
	LIME.CluRe	Cluster Representatives with LIME	
	LORE	Local Rule based Explanation	
	САМ	Class Activation Map	
	MMD	Maximum Mean Discrepancy	
	CAV	Concept Activation Vector	
1.001/1.001/1.001/1.001/1.001/1.001/1.001/1.001/1.001/1.001/1.001/1.001/1.001/1.001/1.001/1.001/1.001/1.001/1.		EN TETENT TETETETETETETETETETETETETETETE	(1997 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997 1



Cite	Task	Model-agnostic?	Transp.	Global?	Obj. Expl.	Form	Туре
Hendricks et al. (2016)	cls		s		P	sym/vis	rules/fi
Kim et al. (2018b)	any		8		р	sym/vis	rules/fi
Chen et al. (2019a)	cls,img		s		p/r	vis	proto/fi
Sabour et al. (2017)	cls		S		r	sym	fi
Losch et al. (2019), Wang (2018), Chen et al. (2020)	any		8		ſ	sym	fi
Donadello et al. (2017)	any		b	1	p/r	sym	rule
Yang et al. (2017)	any,pel		b		P	vis	fi/red
Kauffmann et al. (2019)	any		b		p	vis	fi
Ribeiro et al. (2016), Lundberg and Lee (2017)	cls	*	p		P	vis	fi/con
Petsiuk et al. (2018)	cls,img	4	р		р	vis	fi
Petsiuk et al. (2021)	det,img	1	P		P	vis	fi
Dhurandhar et al. (2018)	cls,img	×	р		p	vis	fi/con
Bachrens et al. (2010)	cls		Р		P	vis	fi
Zeiler and Fergus (2014), Simonyan et al. (2014), Sprin- genberg et al. (2015)	img		р		р	vis	fi
Zhou et al. (2016), Selvaraju et al. (2017)	cls,img		р		P	vis	fi
Muddamsetty et al. (2021)	cls,img		р		P	vis	fi
Zhou et al. (2018)	cls,img		р		p/r	vis	fi
Muddamsetty et al. (2021)	cls,img		р		p	vis	fi
	Hendricks et al. (2016) Kim et al. (2018b) Chen et al. (2019a) Sabour et al. (2017) Losch et al. (2017) Yang et al. (2017) Yang et al. (2017) Kauffmann et al. (2017) Ribeiro et al. (2017) Ribeiro et al. (2016), Lundberg and Lee (2017) Petsiuk et al. (2018) Petsiuk et al. (2018) Bachrens et al. (2010) Zeiler and Fergus (2014), Simonyan et al. (2014), Sprin- genberg et al. (2015) Zhou et al. (2016), Selvaraju et al. (2017) Muddamsetty et al. (2021) Zhou et al. (2018)	Hendricks et al. (2016)clsKim et al. (2018b)anyChen et al. (2019a)cls,imgSabour et al. (2019a)clsSabour et al. (2017)clsLosch et al. (2017)anyYang et al. (2017)anyYang et al. (2017)anyRibeiro et al. (2017)anyRibeiro et al. (2016), Lundberg and Lee (2017)clsPetsiuk et al. (2018)cls,imgPetsiuk et al. (2018)cls,imgDhurandhar et al. (2018)cls,imgBaehrens et al. (2010)clsZeiler and Fergus (2014), Simonyan et al. (2014), Springenberg et al. (2015)imgZhou et al. (2016), Selvaraju et al. (2017)cls,imgMuddamsetty et al. (2021)cls,imgMuddamsetty et al. (2021)cls,img	Hendricks et al. (2016)clsKim et al. (2018b)anyChen et al. (2019a)cls,imgSabour et al. (2017a)clsLosch et al. (2019), Wang (2018), Chen et al. (2020)anyDonadello et al. (2017)anyYang et al. (2017)any,pclKauffmann et al. (2019)anyRibeiro et al. (2016), Lundberg and Lee (2017)cls \checkmark \checkmark Petsiuk et al. (2018)cls,img \checkmark cls,img \land cl	Hendricks et al. (2016)clssKim et al. (2018b)anysChen et al. (2019a)cls,imgsSabour et al. (2017)clssLosch et al. (2017)anybYang et al. (2017)anybYang et al. (2017)anybKauffmann et al. (2019)anybRibeiro et al. (2016), Lundberg and Lee (2017)cls \checkmark Petsiuk et al. (2018)cls,img \checkmark pPetsiuk et al. (2018)cls,img \checkmark pBachrens et al. (2010)clsppZcifer and Fergus (2014), Simonyan et al. (2014), Sprin-imgpZhou et al. (2016), Selvaraju et al. (2017)cls,imgpMuddamsetty et al. (2021)cls,imgpZhou et al. (2018)cls,imgpMuddamsetty et al. (2021)cls,imgpSabour et al. (2018)cls,imgpSabour et al. (2018)cls,imgpSabour et al. (2016)clspSabour et al. (2016)cls,imgpSabour et al. (2015)cls,imgpSabour et al. (2018)cls,imgpSabour et al. (2018)cls,imgpSabour et al. (2018)cls,imgpSabour et al. (2018)cls,imgp	Hendricks et al. (2016)clssKim et al. (2018b)anysChen et al. (2019a)cls,imgsSabour et al. (2017)clssLosch et al. (2019), Wang (2018), Chen et al. (2020)anysDonadelio et al. (2017)anyb \checkmark Yang et al. (2017)anyb \checkmark Yang et al. (2017)anyb \checkmark Ribeiro et al. (2016), Lundberg and Lee (2017)cls \checkmark pPetsiuk et al. (2018)cls,img \checkmark pPetsiuk et al. (2018)cls,img \checkmark pDhurandhar et al. (2010)clsppZeiler and Fergus (2014), Simonyan et al. (2014), Sprin- imgimgpZou et al. (2016), Selvaraju et al. (2017)cls,imgpMuddamsetty et al. (2021)cls,imgpZhou et al. (2018)cls,imgpZhou et al. (2018)cls,imgp	Hendricks et al. (2016)clsspKim et al. (2018b)anyspChen et al. (2019a)cls,imgsp/rSabour et al. (2017)clssrLosch et al. (2019), Wang (2018), Chen et al. (2020)anysrDonadelio et al. (2017)anyb \checkmark p/rYang et al. (2017)anyb \checkmark p/rYang et al. (2017)anyb \checkmark pRibeiro et al. (2016), Lundberg and Lee (2017)cls \checkmark ppPetsiuk et al. (2018)cls,img \checkmark ppDhurandhar et al. (2018)cls,img \checkmark ppBachrens et al. (2010)clspppZcifer and Fergus (2014), Simonyan et al. (2014), Springenberg et al. (2015)cls,imgppZhou et al. (2016), Selvaraju et al. (2017)cls,imgppZhou et al. (2018)cls,imgpppZhou et al. (2018)cls,imgpp<	Hendricks et al. (2016)clsspsym/visKim et al. (2018b)anyspsym/visChen et al. (2019a)cls,imgsp/rvisSabour et al. (2017)clssrsymLosch et al. (2017)anyb \checkmark p/rsymDonadelio et al. (2017)anyb \checkmark p/rsymYang et al. (2017)any, pclbpvissKauffmann et al. (2017)any, pclbpvissRibeiro et al. (2016), Lundberg and Lee (2017)cls \checkmark ppvisPetsiuk et al. (2018)cls,img \checkmark ppvisBachrens et al. (2010)clsppvissZciler and Fergus (2014), Simonyan et al. (2014), Springender et al. (2015)cls,imgppvisZhou et al. (2016), Selvaraju et al. (2017)cls,imgppvisMuddamsetty et al. (2021)cls,imgppvisZhou et al. (2016), Selvaraju et al. (2017)cls,imgppvisZhou et al. (2018)cls,imgppvisyisMuddamsetty et al. (2021)cls,imgppvisMuddamsetty et al. (2021)cls,imgppvisMuddamsetty et al. (2021)cls,imgppvisShou et al. (2018)cls,imgppvisShou et al. (2018)cls,imgppvis <t< td=""></t<>

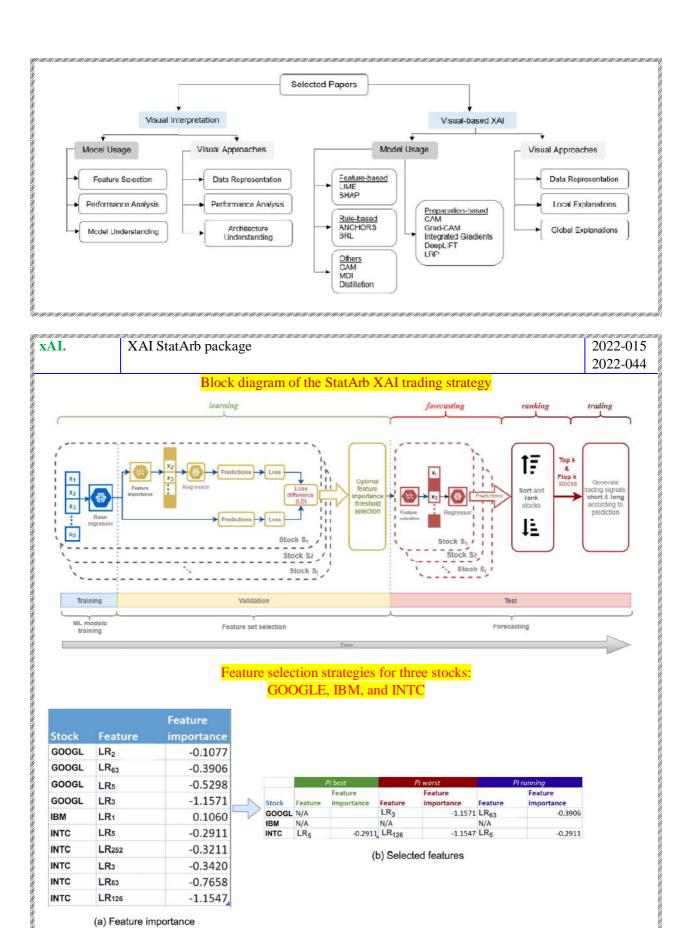
Name	Cite	Task	Model-agnostic?	Transp.	Global?	Obj. Expl.	Form	Туре
Pattern attribution	Kindermans et al. (2018)	els		р		р	vis	fi
	Fong and Vedaldi (2017)	cls		P		р	vis	fi
SmoothGrad, Integrated Gradients	Smilkov et al. (2017), Sundararajan et al. (2017)	cls		р		р	vis	fi
Integrated Hessians	Janizek et al. (2020)	CIS		p		p	VIS	n
Global representation analysis								
Feature Visualization	Olah et al. (2017)	img		р	4	ſ	vis	proto
NetDissect	Bau et al. (2017)	img		р	~	ſ	vis	proto/fi
Net2Vec	Fong and Vedaldi (2018)	img		р	(1)	r	vis	fi
TCAV	Kim et al. (2018a)	any		Р	~	r	vis	fi
ACE	Ghorbani et al. (2019)	any		p	*	r	vis	fi
-	Yeh et al. (2020)	any		р	4	ſ	vis	proto
IIN	Esser et al. (2020)	any		р	(~)	ſ	vis/sym	fi
Explanatory Graph	Zhang et al. (2018)	img		р	(1)	p/r	vis	graph
Dependency plots								
PDP	Friedman (2001)	any	*	p		p	vis	plt
ICE	Goldstein et al. (2015)	any	1	р	~	р	vis	plt
Rule extraction								
TREPAN, C4.5, Concept Tree	Craven and Shavlik (1995), Quinlan (1993), Renard et al. (2019)	cls	*	р	4	р	sym	tree
VIA	Thrun (1995)	CIS		р	4	р	sym	rules
DeepRED	Zilke et al. (2016)	CIS.		р	~	р	sym	rules
LIME-Aleph	Rabold et al. (2018)	cls	1	Р		P	sym	rules
CA-ILP	Rabold et al. (2020)	cls		р	1	Р	sym	rules
NBDT	Wan et al. (2020)	cls		p	1	p	sym	tree

Name	Cite	Task	Model-agnostic?	Transp.	Global?	Obj. Expl.	Form	Туре
Interactivity								
CAIPI	Teso and Kersting (2019)	cls,img	*	P		r	vis	fi/con
EluciDebug	Kulesza et al. (2010)	cls	~	P		r	vis	fi,plt
Crayons	Fails and Olsen Jr (2003)	cls,img	~	t		р	vis	plt
LearnWithME	Schmid and Finzel (2020)	els	1	t	1	p, r	sym	nules
Multi-modal phrase-critic model	Hendricks et al. (2018)	cls,img		р	5	р	vis,sym	plt,rules
Inspection of the training								
1 21	Shwartz-Ziv and Tishby (2017)	any		Р	1	t	vis	dist
Influence functions	Koh and Liang (2017)	cls		р	1	t	vis	fi/dist
Data analysis methods								
t-SNE, PCA	van der Maaten and Hinton (2008), Jolliffe (2002)	any	4	p	5	d	vis	red
k-means, spectral clustering	Hartigan and Wong (1979), von Luxburg (2007)	any	~	P	1	d	vis	proto

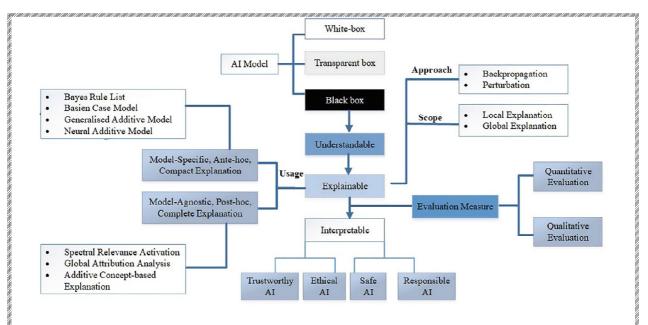

distribution=dist

xAI.	2023-030

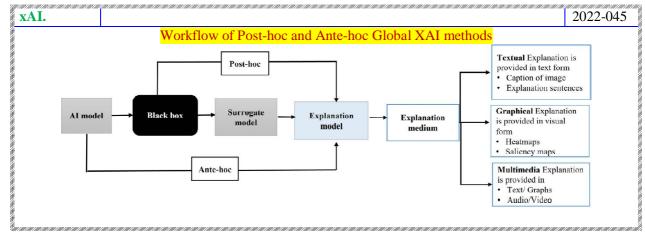
Method	Ref.	Advantages	Disadvantages	Concept
DTD	240	Training free method, may apply directly to any NNs.	 Inconsistent in providing a unique solution, and slow computations [245]; ii) Partial explanation as higher order derivatives terms are set to zeros. 	SA methods
LIME	[29]	i) Suitable to a very large number of explanatory variables, sparse explainer; ii) Same local interpretable mode could be replaced [149]; iii) Selective and possibly contrastive explanations; iv) Provides local ficelity; v) Makes no assumptions about the model.	i) Incapable of explaining models with non-linear decision bouncaries; ii) Incapable of explaining surrouncing observations [149], iii) Unsolved problem with tabular data.	Model agnost local surrogat
LORE	[246]	 Provide a counterfactual suggestion with the explanation; ii) Utilise a genetic algorithm that takes advantage of the black-box to generate examples, iii) Parameter-free method. 	i) Based on assumption; ii) Cannot provide a global explanation; iii) Works for tabular data.	Local explanation
CluReFi	[247]	Provides local explanation to a cluster.	Representative of each cluster presents the explanation of important features.	Local explanation
SP-LIME	[20]	To check the entire model by extracting some data points. Aggregate the local models to form a global interpretation.	less beneficial for high-level comprehension.	Model agnost global surroga
NormLIME	[227]	Provides finer-grained interpretation in a multi-class setting and add proper normalization to reduce the computation.	Aggregate many explanations for the class-specific explanation.	Local explanation
Anchors	[231]	i) Less computation than SHAP; ii) Better generalizability than LIME [227].	 Requires discretization, highly configurable, and impactful setup; ii) Coverage drastically decreases with an increase in the number of feature predicates. 	Perturbation- based model agnostic RL
DeconvNet	[238]	i) Highlights fine-grained details; ii) Dense feature representation with multi-layer.	Artifacts in the visualization [31]; ii) Training is difficult due to the large output space.	Pixel-space gradient visualization
RISE	[229]	i) Any architecture can be generalized; ii) Proposes causal metrics.	i) Inconsistent due to random mask; ii) Slow computation.	Pixel saliency
САМ	[235]	i) Identifies discriminative areas in an image classification task; ii) Fast and accurate.	 Modify the network architecture that lends to complex model [31]; ii) Applicable to a specific type of CNN. 	Regularizatio
Grad CAM	[31]	 i) Applies to a broad range of CNN model families; ii) Robust to adversarial perturbations in an image classification task; iii) Help to achieve the model generalization by removing blases.) Lacks the ability to highlight fine-grained details; ii) Individual interpretations are difficult to aggregate for global knowledge. 	Regularizatio
Guided Backpropagation	[248]	 i) Highlights the fine-grained details and less noisy explanation [31]; ii) Provides more interpretable results than DeepLift. 	 Captures pixels detected by neurons, not the ones that suppress neurons [31]; ii) Less class-sensitive than the vanilla gradient. 	Pixel-space Gradient Visualization
Guided Grad-CAM	[31]	 i) Removes negative gradients and understand the model's decision; ii) Provides class descriptive and high-resolution maps. 	 Distinguishes an object of the same class; ii) Does not consider the entire class region. 	Guided Back propagation - Grad-CAM
ScoreCAM	[30]	i) Solves the dependency's problem on the gradients; ii) Achieves better visualization and fair interpretation.	 bocalization results are poor and lead to non-interpretability; Smoothing generates inconsistent explanations. 	CAM
Vanilla Gradient	239	 i) Simple to implement based on backpropagation; ii) Pixel-wise features are important. 	 Makes undesirable changes with data pre processing [240]; ii) Vulnerable to adversarial attacks [250]; iii) Decision-making process is unknown. 	Backpropaga tion interpretation
SmGrad	[233]	 Denoising impact on the sensitivity map is achieved by training with noisy data; ii) Generates images with multiple levels of noise. 	i) More effective with Large areas of the class object. i) Degeneralizes to different networks.	Regularization [251]
Integrated Gradients (IC)	[252]	i) Very suitable for neural networks; ii) Optimizes the heatmap for faithful explanations.	 Does not meet the Shapley values' axiom; ii) Frail mechanism to identify specific features and inconsistent to produce the explanation. 	Shapley value
DeepLift	[234]	i) Gradient-free [227]; II) Achieves the goal of completeness.	 Depends on a reference point or baseline: ii) Produces inconsistent results due to redefining gradient. 	Feature importance


< X 4004 X 1000 X 400	xAI.	ER BARKARARARARARARARARARARARARARARARARARAR	2023-140
		xAI-Probes	

XAI method	Explana	tion level	Implemen	tation level	Model dep	endency
	Global	Local	Intrinsic	Post hoc	Agnostic	Specific
ANCHORS [40]		v		v	V	
LIME [28]	~	~		~	~	
SHAP [35]		~		~	~	
LRP [30]	v	v		v	v	
Grad-CAM [29]		~		~	~	8
Saliency Maps [39]		v		v	~ _	1
Integrated Gradients [38]		~		~	~	
DeepLIFT [36]		~		~	-	
Bayesian Rule Lists [32]	v		v			v
Distillation [34]	~			~	~	
GAM [33]	~		~			~
Mean Decrease Impurity [37]	v	V	~			v
CAM [41]		~		~	~	

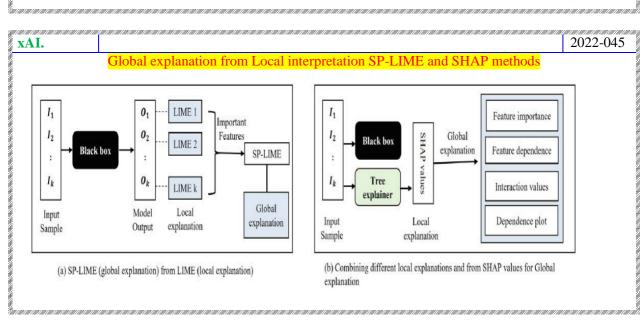

XAI probes

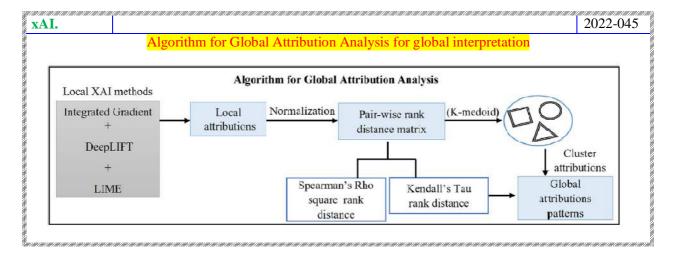
2022-183

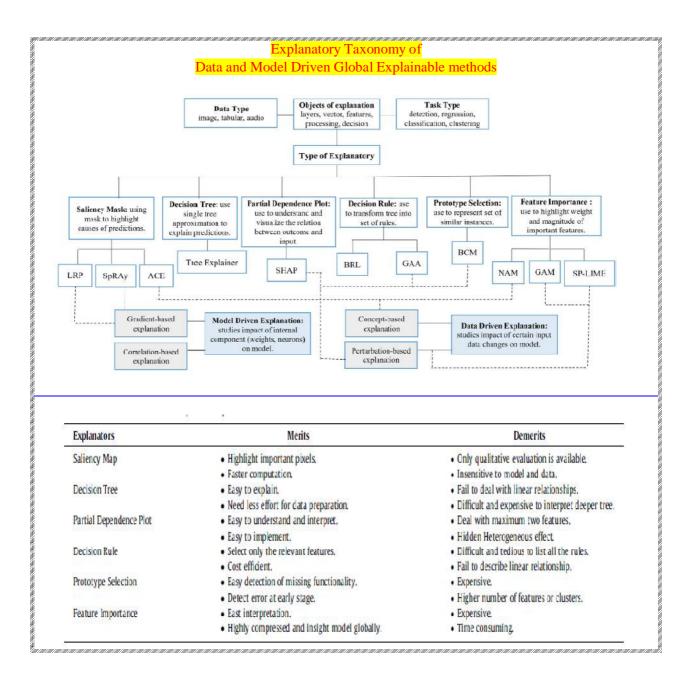


[.		1	202
	Pertu Method	rbation	References
Gradients (sensitivity)	N/A (gradient-based)		Baehrens et al., 2009
	Saliency maps		Simonyan ct al., 2013
	Class activation mapping (CA	M)	Zhou et al., 2016
	Gradient-weighted CAM (Gra	ad-CAM)	Selvaraju et al., 2017
	Guided Grad-CAM		Selvaraju et al., 2016
	3D CAM		Yang et al., 2018
	3D Grad-CAM		Yang et al., 2018
	Respond-CAM		Zhao et al., 2018
	Multiscale CAM		Hu et al., 2020
	SmoothGrad (SG)		Smilkov et al., 2017
	Correlation maps		Schirrmeister et al., 2017
	l'esting with concept activation	on vectors (TCAV)	Kim et al., 2018
	Automated concept-based exp	planation (ACE)	Ghorbani et al., 2019a,b
Signal	Guided backpropagation (GB	\mathbf{P}	Springenberg et al., 2014
	DeConvNet (occlusion maps)	()	Zeiler and Fergus, 2014
	Inversion-based		Mahendran and Vedaldi, 2015
	Inversion-based		Dosovitskiy and Brox, 2016
	PatternNet		Kindermans et al., 2017
	PatternAttribution		Kindermans et al., 2017
Model agnostic	Local interpretable model-agr	nostic explanations (LIME)	Ribeiro et al., 2016
	Submodular pick LIME (SP L	Ribeiro et al., 2016	
	anchor-LIME (aLIME)		Tulio Ribeiro et al., 2016
	Model agnostic globally interp	pretable explanations	Puri et al., 2017
	SHapley additive exPlanation	s (SHAP)	Lundberg and Lee, 2017
	Decomposition	n (redistribution)	
ayer-wise relevance pro	pagation (LRP)	Bach et al., 20	015
Deep Taylor decompositi	on	Montavon et	al., 2017
Deep learning important		Shrikumar et	al., 2017
ntegrated gradients (IG)	100	Sundararajan	1 et al., 2017
Gradient × input		Shrikumar et	al., 2017
Prediction difference ana	lysis (PDA)	Zintgraf et al	., 2017
Graph LRP	to an and the	Chereda et al	., 2021

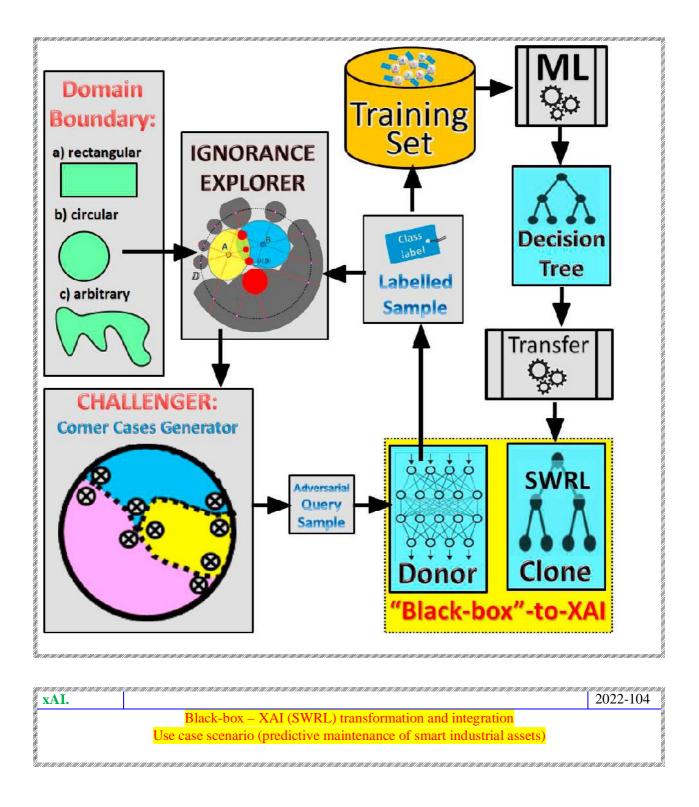
911011011011011011011011011011011001001		
xAI.		2022-045
	XAI methods terminology map	
	la l	91.101.101.101.101.101.101.101.101.101.1

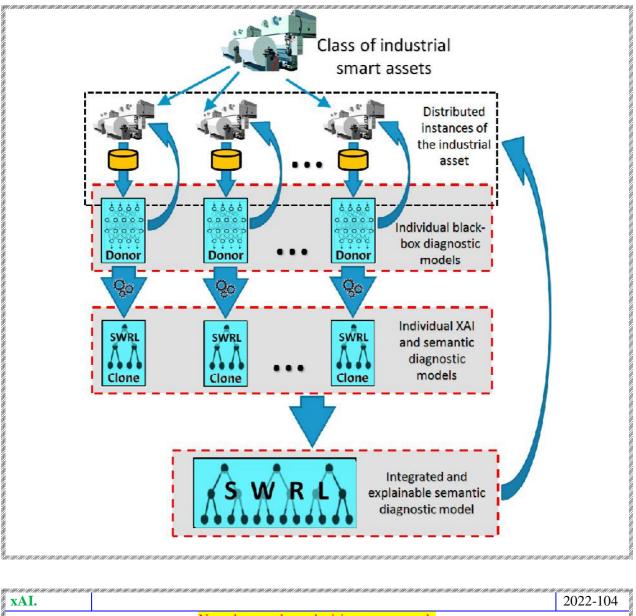




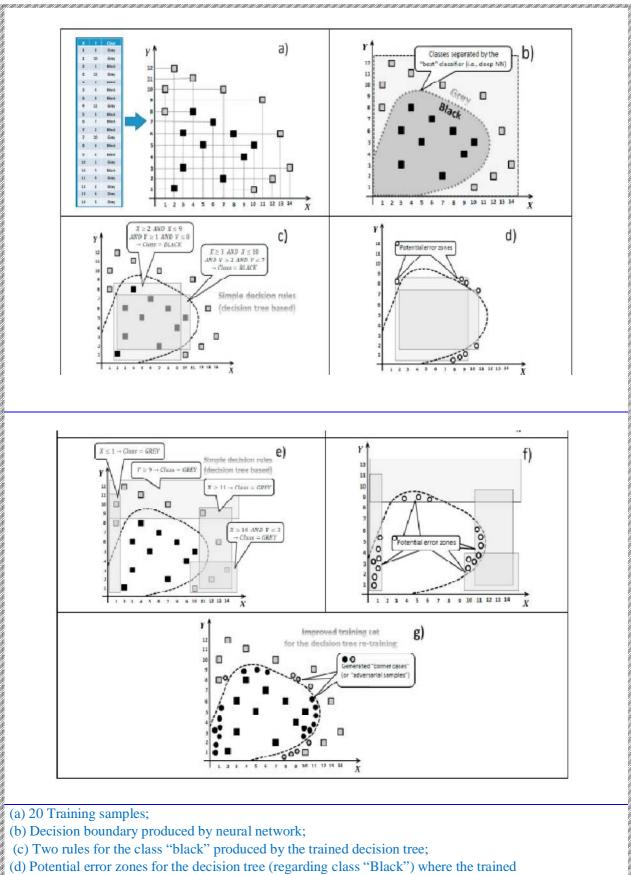

Model usag	e (type)	Year	Methods	Data	type
Ante-hoc (M	odel-Specific)	2014	BCM [75]	Any	
		2015	GAM [76]	Tabul	lar
		2015	BRL [86]	Tabul	lar
		2020	NAM [70]	Image	e
Methodologies	Explanation	medium	Framework	s	XAI evaluation
Perturbation-based	Multimedia		Python (PYM	MC)	Qualitative
Perturbation-based	Graphics (hea	atmaps)	R (PyGAM)		Qualitative
Rule-based	Textual		Python		Quantitative
Cluster-based	Graphics (hea	atmaps)	Pytorch		Ouantitative

Model usa	ige (type)	Year	Methods	Data type	
Post-hoc (Model-Agnostic)	2016	SP-LIME[40]	Any	
		2015	LRP [86]	Image	
		2017	SHAP [52]	Any	
		2019	SpRAy [53]	Image	
		2019	GAA [72]	Image	
		2019	ACE [94]	Image	
Methodologies	Explanation me	edium	Frameworks	XAI evalu	ation
Perturbation-based	Graphics		Python/R	Qualitativ	e
Gradient-based	Graphics (heatn	naps)	Caffe	Quantitat	ive
Perturbation-based	Multimedia		Python (XGBoost)	Quantitat	ive
Gradient-based	Graphics		Caffe	Quantitat	ive
Perturbation-based	Multimedia		Multi- dimensiona	l Quantitat	ive
Concept-based	Graphics		TensorFlow	Qualitativ	e



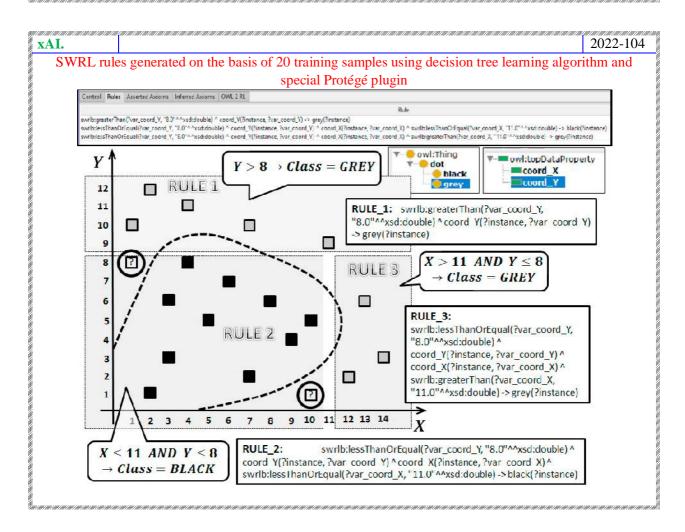


700 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
xAI.		2022-045
9		เสาสาสาสาสาสาสาสาสาสาสไม้.

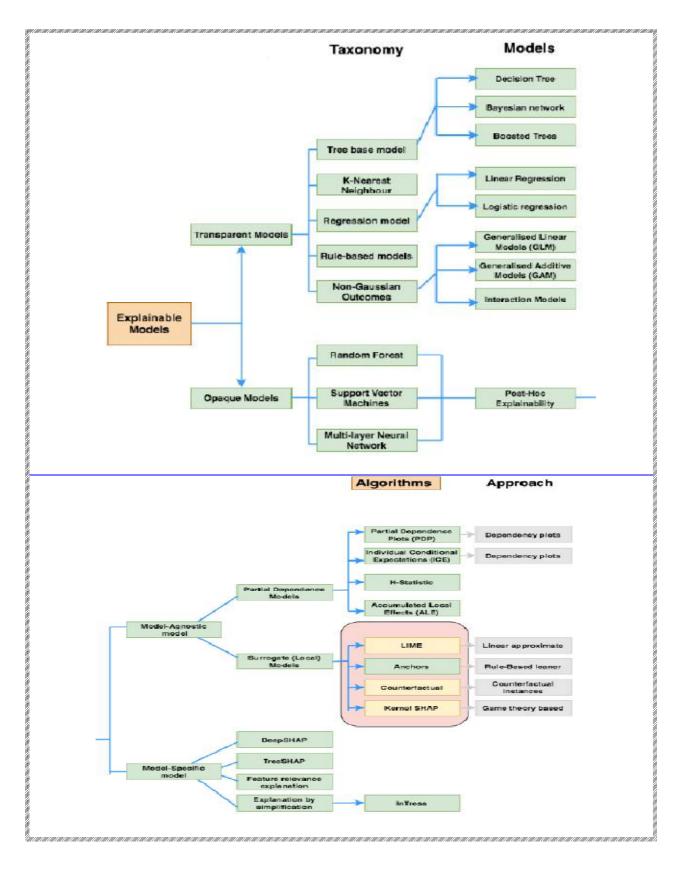


	1	Semantic Web Rule Language (SWRL) Semantic Representation of Deep Learning Models (SenRepDLM)	2022-104			
002.1.04		Semantic Representation of Deep Learning Models (SenRepDLM)				
	Generic schema of "cloning" black-box classification models					
	to the explainable form of SWRL rules					

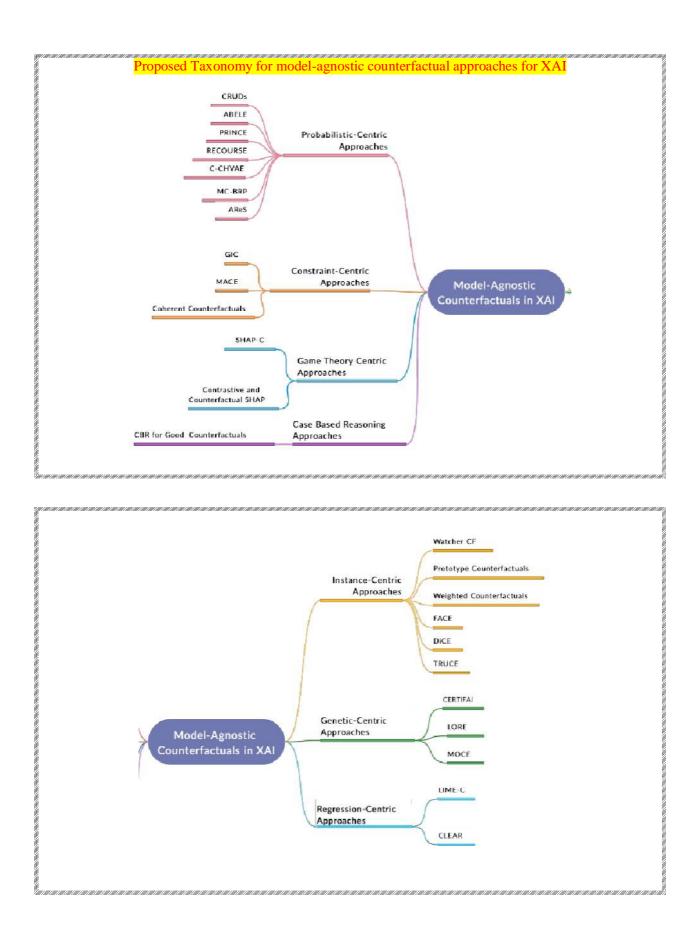
	Neural	networ	k vs. c	lecision	tree ex	ample	
008 / 0001 / 0008 / 0008 / 0001 .	1 100 1 1000 1 1000 1 100 1 1000 1	/ 1008 / 1008 / 1000 / 1008 / 1008 / 1000 /	- 000 / 0000 / 000 / 000 / 000 / 000	0 / 0008 / 0008 / 0001 / 0008 / 0008 / 0008		· · · · · · · · · · · · · · · · · · ·	0000



neural network performs better;

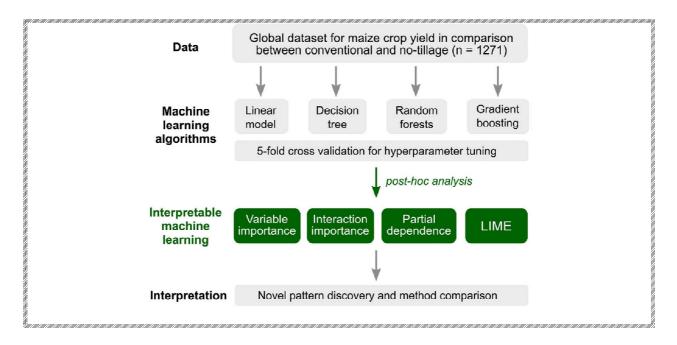

(e) Two rules for the class "Grey" produced by the trained decision tree;.

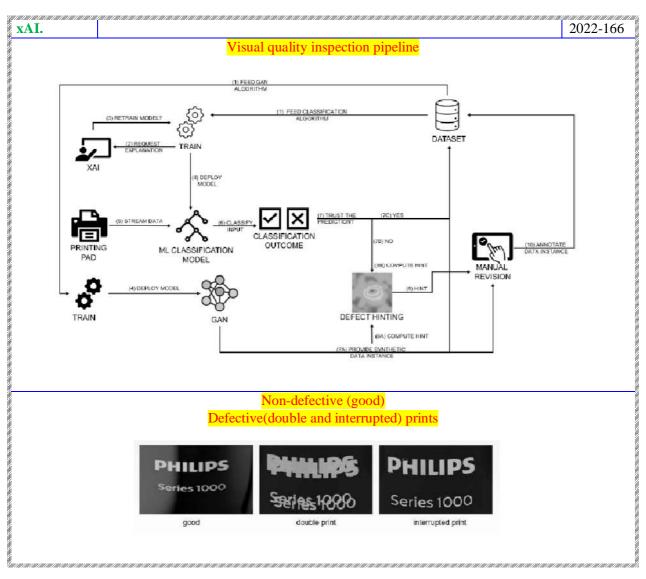
(f) Potential error zones for the decision tree (regarding class "Grey") where the trained neural network performs better;

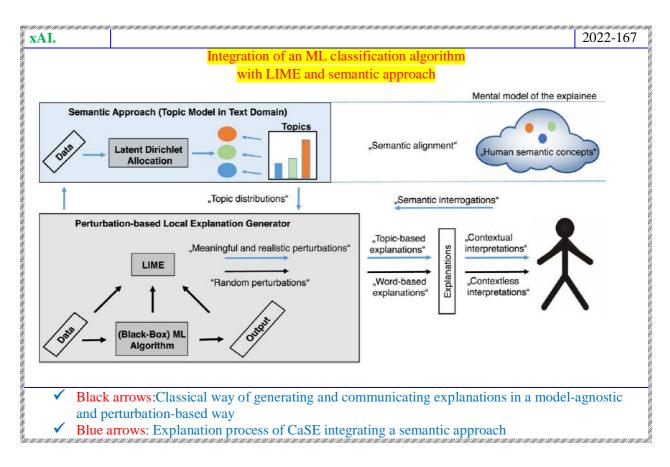

(g) Generated samples ("corner cases" or "adversarial samples") within the discovered potential error zones that could be used to re-train the decision tree aiming better classification accuracy and robustness.

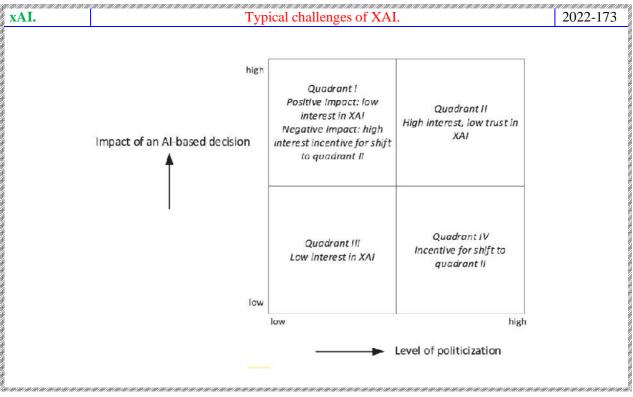
e,			
	xAI.		2022-143
		Taxonomy of explainable artificial intelligence	

100 X 1000 X	xAI.	2022-143
	ARTHAR MARTHAR	ซึ่งสามากการการการการการการที่ได้

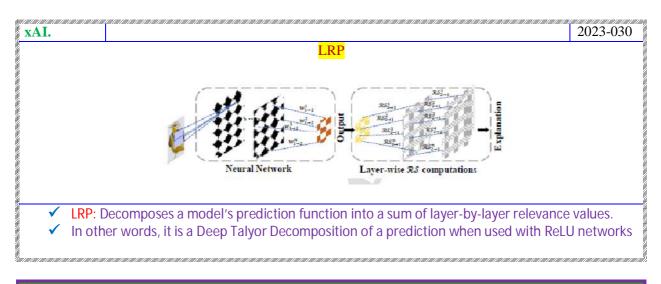


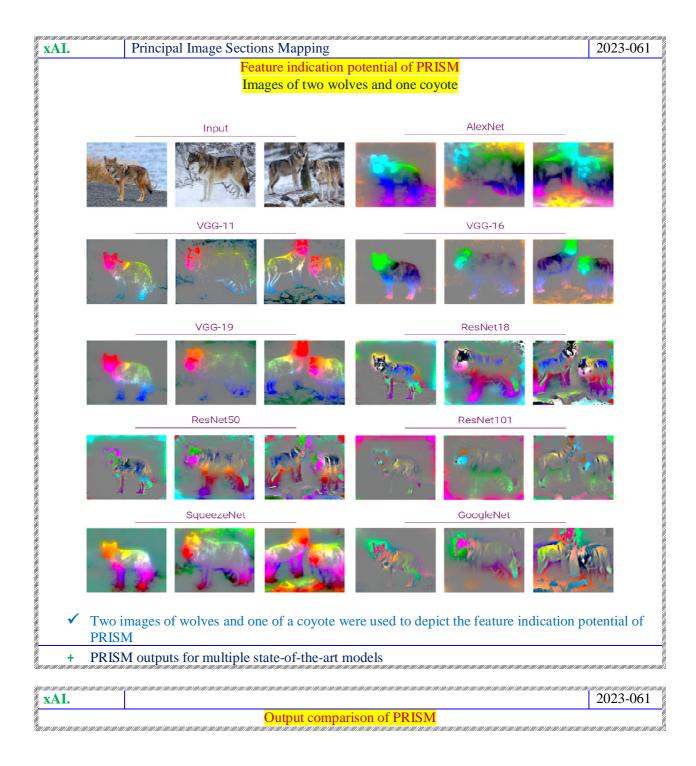

I.										11.00	2022-1
assificati	ion of collec	ted mo	<u> </u>			0		AI ba	sed or	n different	proper
			theor	eticalba	ckground	s and a	pplications				
	Marthur	P./		Code?	Barrente	Bluebla	Proper		E-stan	Outertaintin	c
kery/Approach	Algorithms	Ref. [32]	Applications	Yes [120]	Presimily	Phonisity	Spirsity	X	Feaibility	Optimization Cradient Docent	Caus?
	Pretotype	ANA -	[lab/lng] C	[Algo:CF] Yes [120]	[L_norm]	18.35		1-58	X	CASS/SEVICE	X
	Camterfactuals	[12]	[lab/Ing]	[Algo (JProto)]	$[L_1/L_2$ -com]	~	[kd-trues]	1	1.60	FETA	1414
	FACE	[56]	[lab/ing]	Yes [122]	×	×	X	1	-	e -graphs	X
ananana	Weighted Counterfactual	3003	ТЬ	No	[L_mm]	X	×	X	×	Cradent Docont	×
hotance-Contric	TRUCE	[102,100,134]	C [Tab/ Tet / Img]	Yes [123]	[L-norm]	×	×	×	×	Crowing Spheres	×
	DICE	[50]	с (Та́ы)	Yes [124]	[L ₁ -nerm]	X	[kings loss]	~	1	Cradent Docent	×
	CIUDS	[116]	С (Таћ)	No	[Li-nerm]	~	X Neration Automoderal	1	~	3	×
	AluS [Golul]	[125]	CR [fab/Tst]	No	1	X	X [Probabilistic]	×	X	Maximum a Fosterior Estimate	X
	PRINCE	[111]	CR [fab/Txt]	Yes [126]	~	X	X Random Walk (X	×	lageRask	X
shiedlistic Centric	CONAL	[112, 113]	С (Тав)	Yes [127]	~	X	[Varation / atsessed re]	X	X	Integer Programming Optimization	X
	AEELI	[115]	C [Ing]	Yes [128]	4	X	[Varation Automoders]	×	×	12	×
	RECOURSE	117	С [Таь]	Yex [129]	~	×	[Veration Automoders]	1	~	Cradient Dosont	~
	MC-ERP	[114]	2 [Tab]	Yes [130]	~	X	~	1	×	Monte Carlo	×
	GE	[105]	[Ть]	No	~	×	1	×	×	Hil Clining/ Genetic Algorithms	×
	MaCL	[90]	с [ТШ]	Ya [111]	Lo/Lo/Lot -tom	~	[constraint satisfaction]	1	1	SMI	×
lonstracht-Genezie	Coherent Counterfactuals	[98]	C/R [ah / Tat]	Yes [112]	[L ₁ -norm]	×	[nized polytopes]	1	×	Gurobi Optimization	×
	MOLE	[92]	с [Тњ]	Yes [113]	[L-norm]	X	[min katare changes]	X	X	NSGA-1	×
	CERTIFAL	10	C [Tab / Ing]	Ym [134]	L, norm / SSM	X	×	Instational	×	Ritsee	×
Genetik-Contric	LCRE	[104]	с [ТьЬ]	Yes [135]	Lynom / Matel	X	X	mutational	×	Decision Tree Model	×
	LINEC	[136, 109]	C/ R ['ah/ Tet / Img]	Yes [137]	X	X	X	X	×	Additive Peature Attribution	×
	SED-C	[95]	C [Tat]	Yes [138]	(cosine similarity)	X	×	×	×		×
agression-Centric	CLEAR	104	с (Таь)	Yec[139]	[Lj-norm]	X	[min katare changes]	×	X	Regression	×
Came Throny	SHAPC	136, 109	C.' R [Tab/ Tet / Img]	Yes [140]	×	X	×	×	×	Thapley Values	×
Centric Centric	SHAPCE	[116]	C/ R [Tab]	No	X	X	X	X	×	Shaplay Vilues	X
e Bool Running	CER for Good Counterfactuals	[94]	C Fab (Tatl	No	[L_torm]	\checkmark	[onotefactual potential]	1	1	Nearest Unlikely Neighbour	×

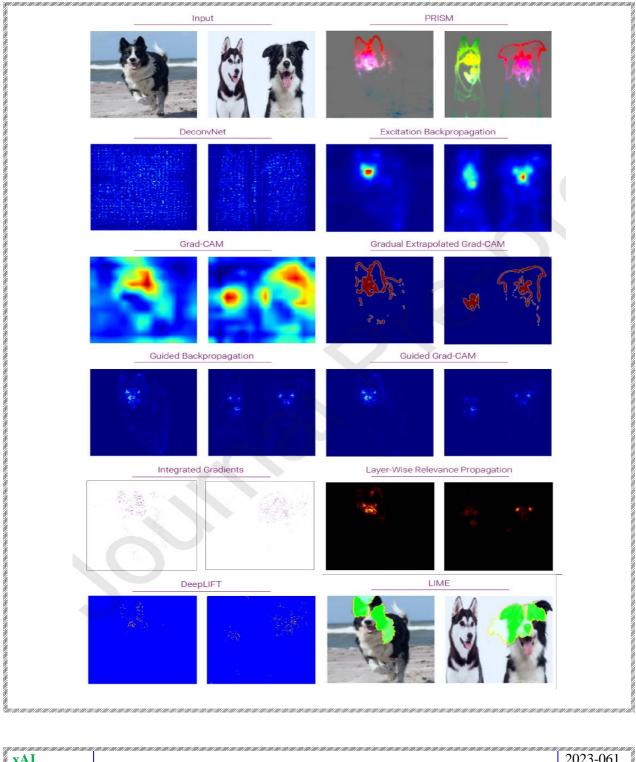

xAI.


Post-hoc analysis

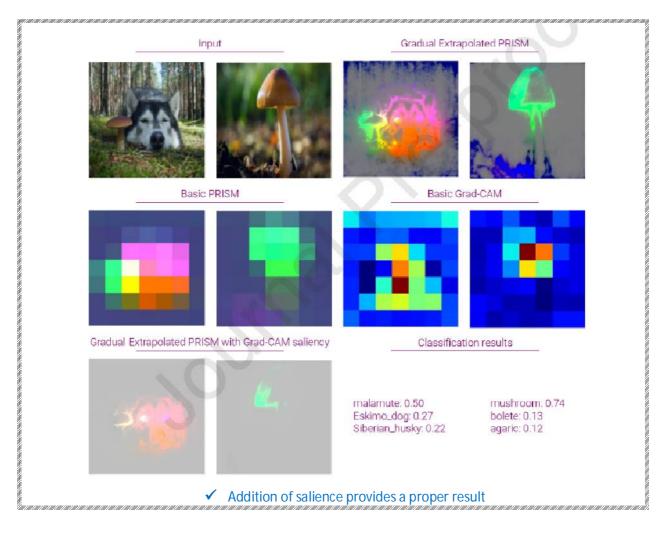
2022-153

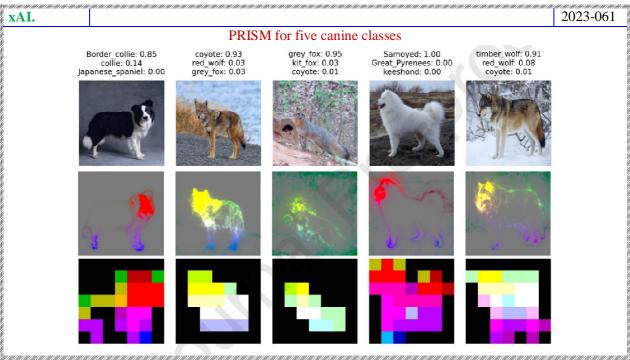


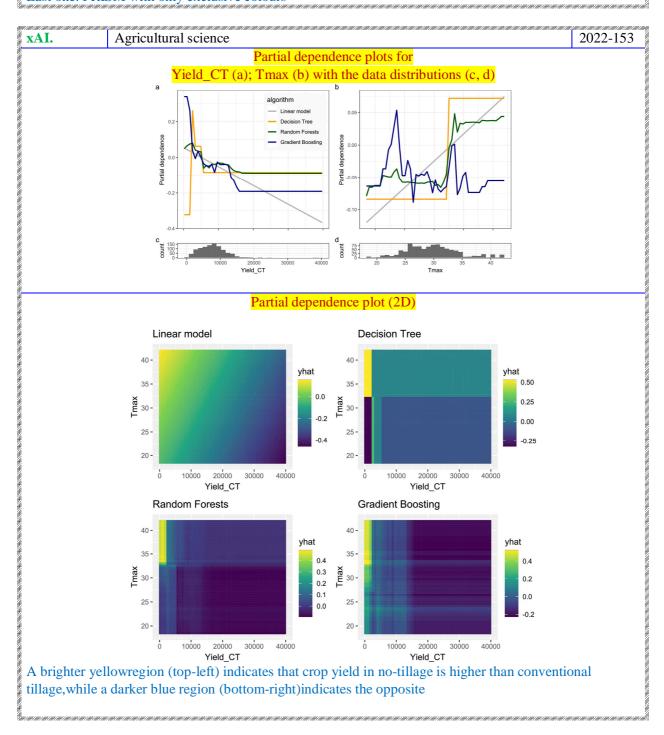




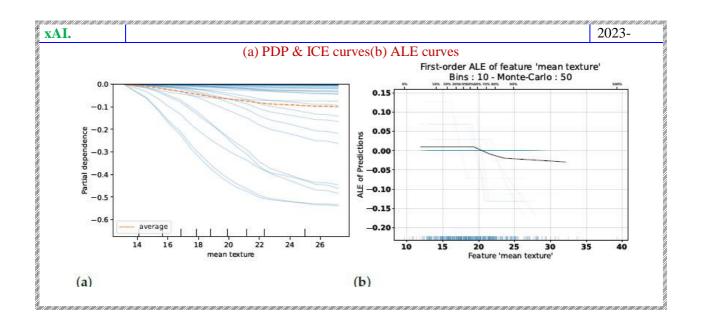
Challenge	Explanation
1. Lack of expertise	Most persons will lack the expertise to understand the explanation and assess the fairness of the decision.
2. Contested explanations	Experts explaining algorithms also make biased and inherently disputable choices.
3. Dynamics of data and decisions	Data and decisions change over time, and therefore explanations change.
4. Interference of algorithms	Often there is a whole chain of activities to collect and process data from various types of sources, and many, often different kinds of algorithms are used.
5. Context-dependency	Algorithms cannot be explained at a general level, as outcomes might be different per individual.
6. Wicked nature of the problems addressed	Wicked problems are ill-structured, are ambiguous by nature and can be solved in different ways. Algorithms provide one answer that is contestable and changes over time.
7. Causality is not used for making decisions	If the causality is explained between inputs and outputs, this does not mean that the algorithm uses that causality to arrive at a decision. Furthermore, the explanation of causality might change over time.



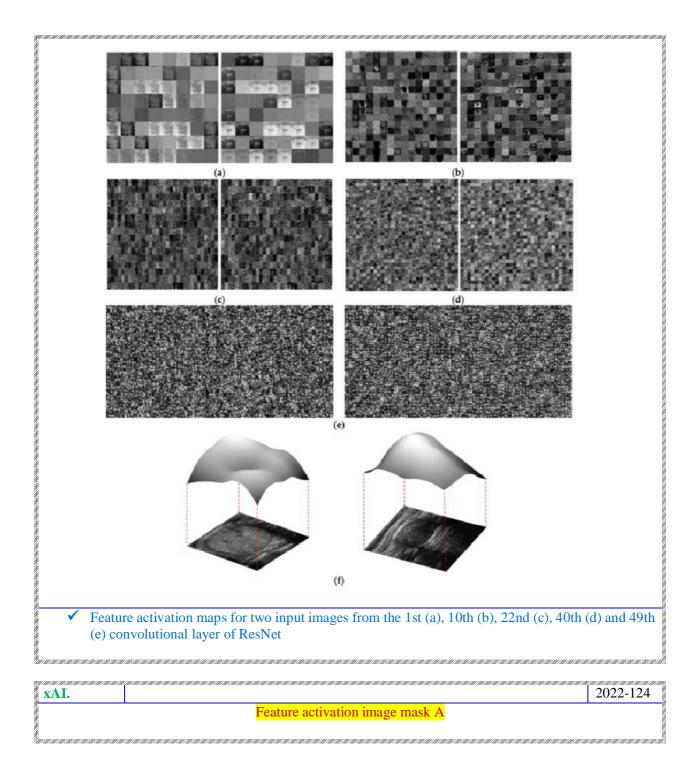

PRincipal Image Sections Mapping PRISM

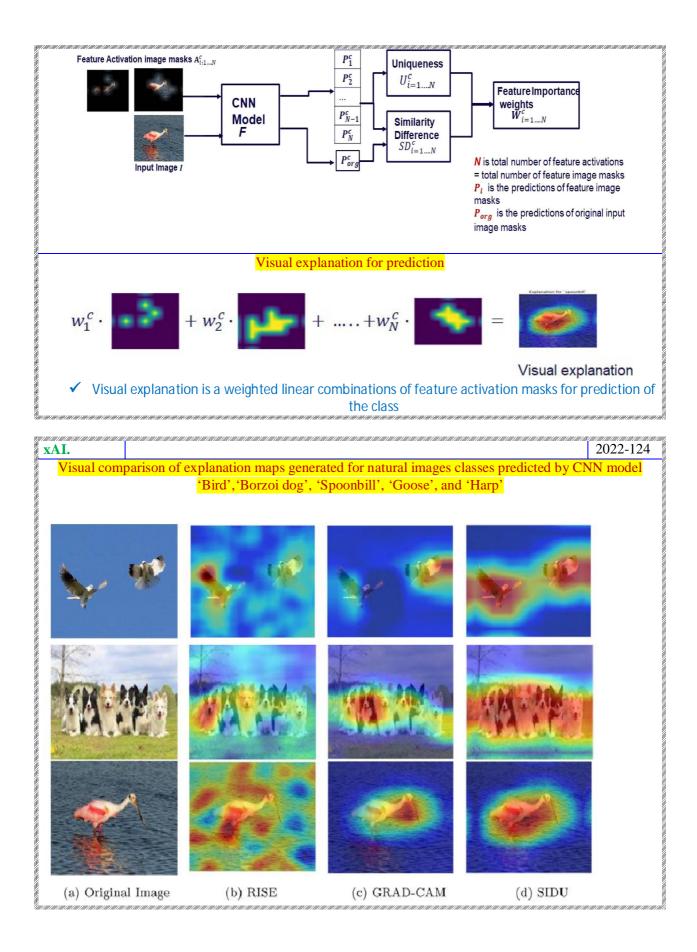


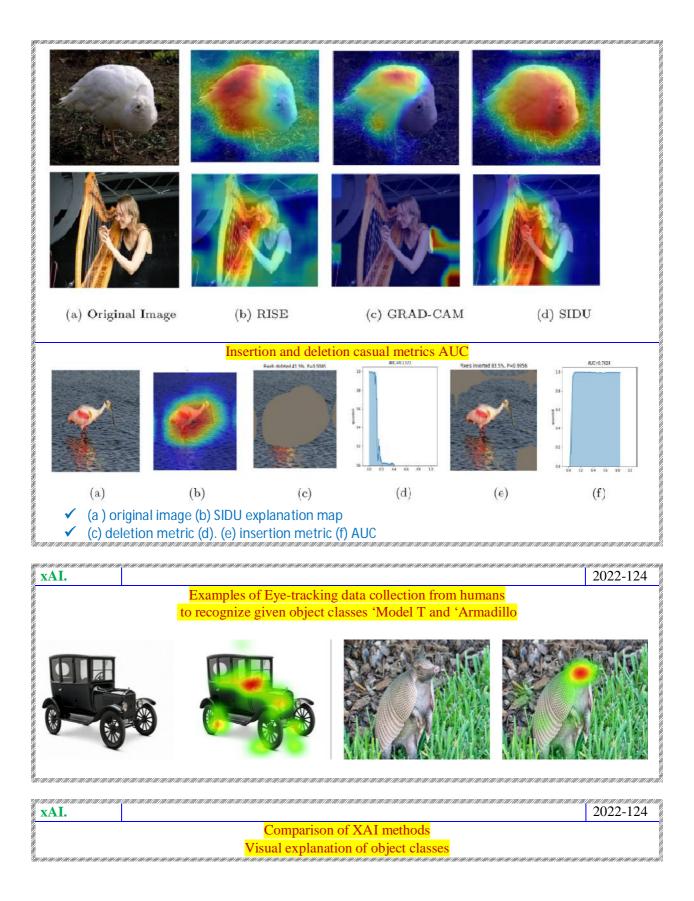
	xAI.	2023-061	8
		PRISM detects features (mushroom) ignored by	8
		final CNN's verdict	
- 2	7.000/1.000/1.000/1.000/1.000/1.000/1.000/1.000/1.000/1.000	RANNAN AN ANANANANANANANANANANANANANANAN	¥7);

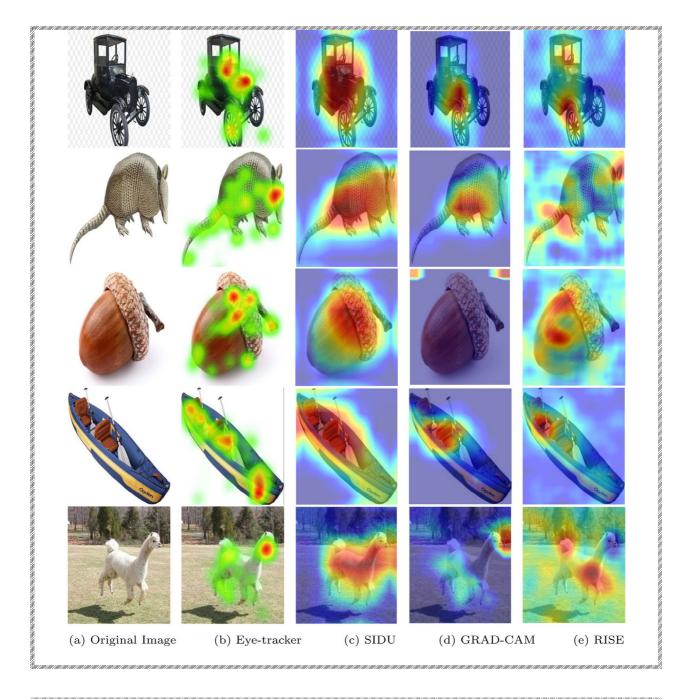


First row: top three confidence scores for each image Second row: input images Third row: GE PRISM Last one: PRISM with only exclusive colours

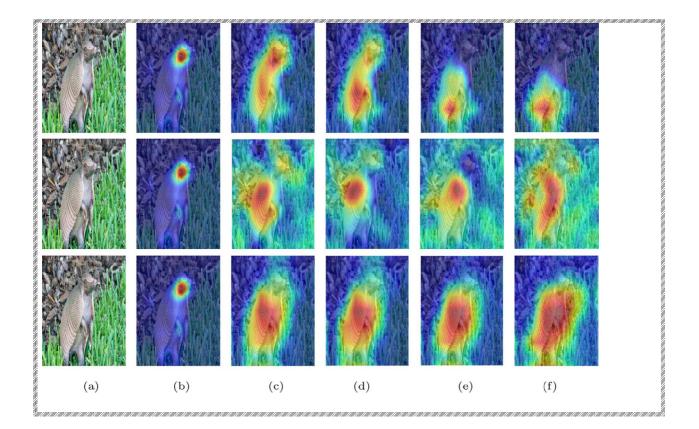


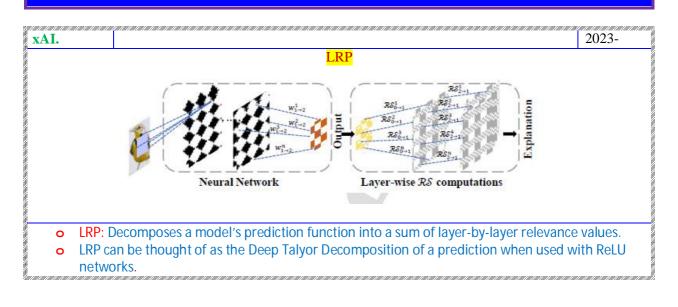

Variable importance plots



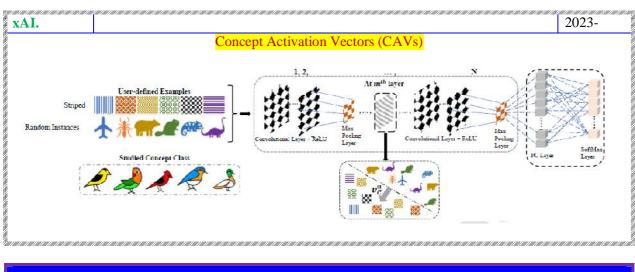

Feature activation maps

xAI.	UY NUUNANNANANANANANANANANANANANANANANANAN	2022-066	
Feature activation maps			
	Thyriod Nodule classification – ultrasound Data		





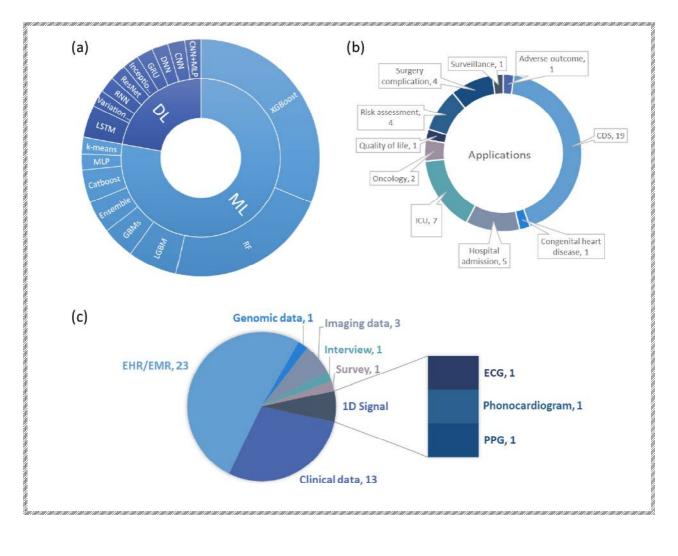
Comparison of XAI visual explanation with different levels of FGSM noise with human visual explanation (heatmaps)



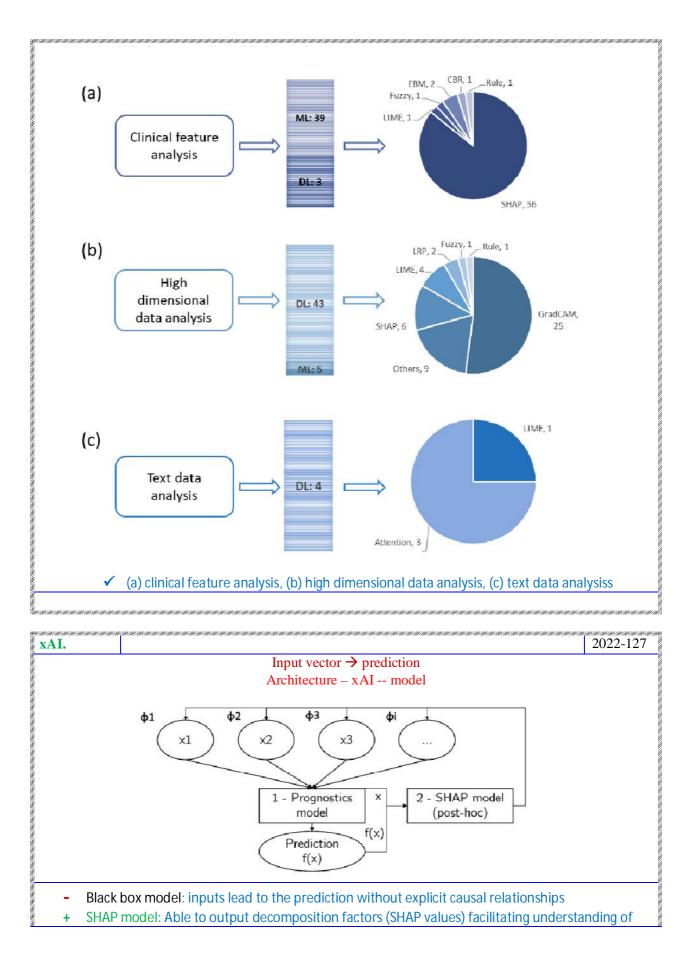
LRP

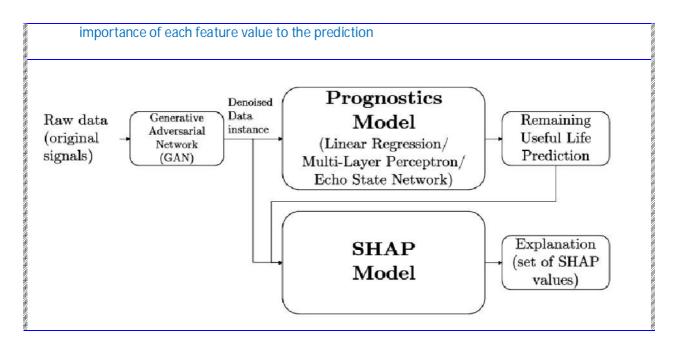
		2023-150
	List of XAI studies that used LRP to explain their model prediction results	
- 2011/01/01/01/01/01/01/01/01/01/01/01/01/	I MARIAN MARIANA	

Author	Objective	Subject	Application	Data type	Data	ML/DL	Classifier	Recults
Binder et al. [52]	Morphological and molecular breast cancer profiling	565 BC	CDS	Image	Histological image	ML	SVIM	ACC: 98.00%
Chereda et al. [54]	patient-specific molectular submelworks responsible for metastasis prediction in breast cancer	393 metastasis 576 no metastasis	Precision medicine	Genomic	gene expression data	DL	Graph CNN	ACC: 76.00% AUROC: 0.820
Böhle et	Alzheimer's Disease	193 AD	CIDS	Image	MRI	DL	CNIN	ACC: 87.96%

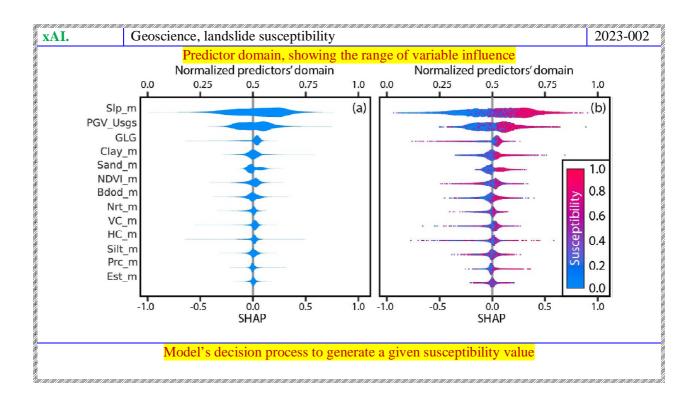

SHAP

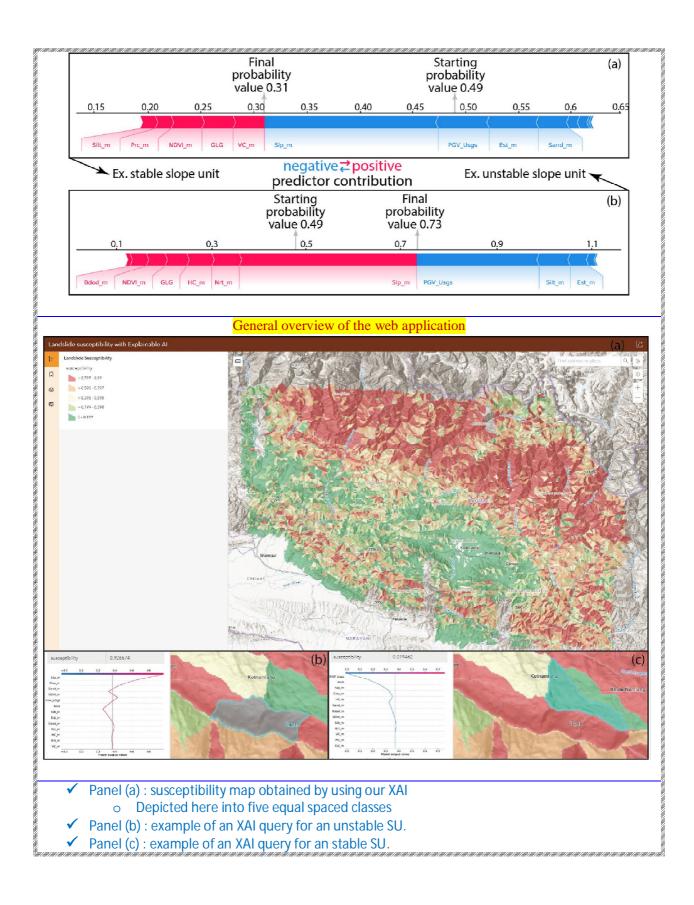
xAI.	2011/10/10/10/10/10/10/10/10/10/10/10/10/	023-142
	Libraries for Shap and Lime	

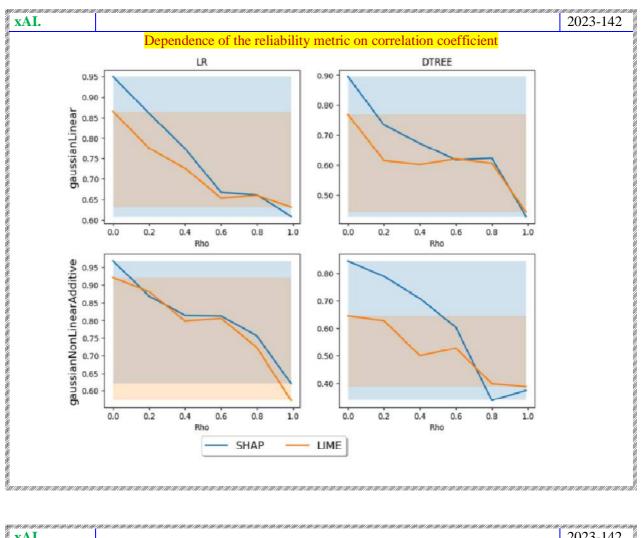

Library Name	Description	Library Version
NumPy	Λ library that implements linear algebra operations, mathematical functions, elements of statistical analysis	1.21.0
Matplotlib	Library for plotting various types of graphs	3.5.1
Scipy	Library designed to perform scientific and engineering calculations	1.8.0
Pandas	Library for working with tabular data structures	1.4.1
Shap	Library with implementation of the XAI SHAP method	0.40.0
Lime	Library with the implementation of the XAI LIME method	0.2.0.1
Scikit-learn	Library with tools for designing and training models	1.0.2


SHAP. MedData (MD) → xAIM

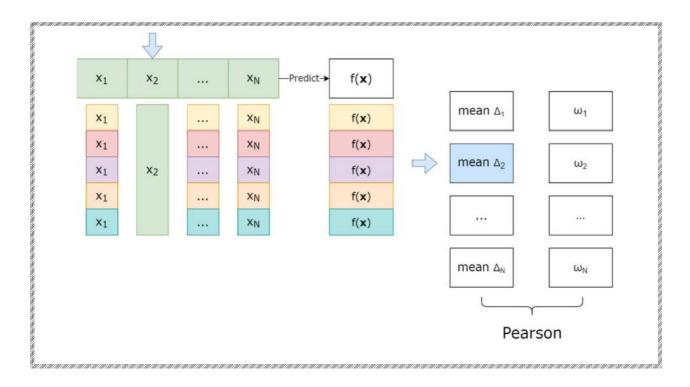
xAI.	Health care	2023-150	
	SHAPdiagram of AI models		
Sunburst, Doughnut, Pie			
- 7.2011.0011.0011.0011.0011.0011.0011.001	A RACHARARARARARARARARARARARARARARARARARAR	911911911911911911911911911911911911911	

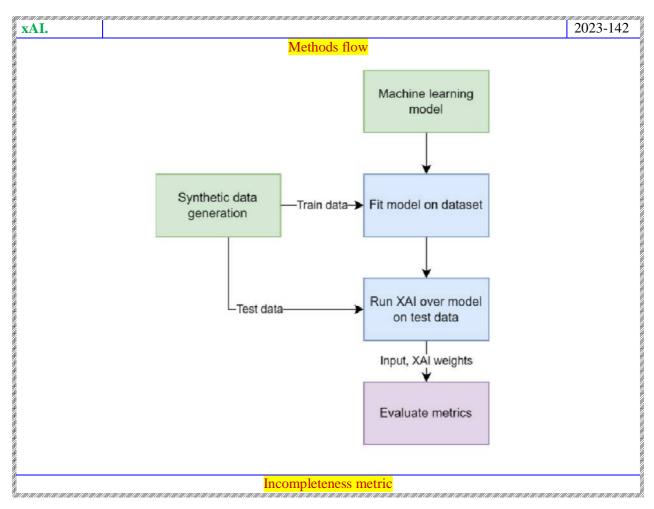


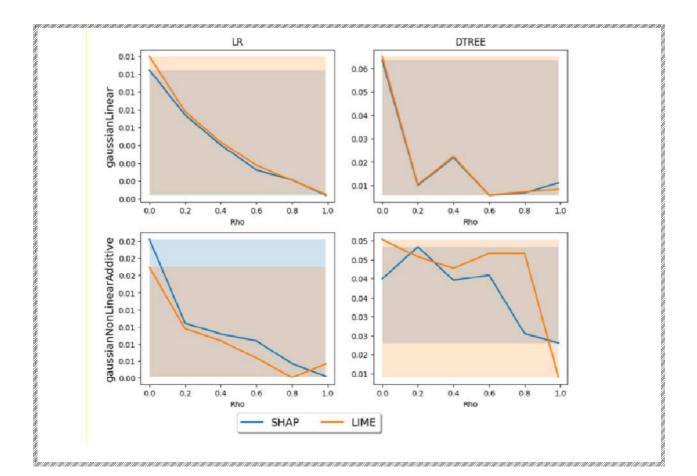

xAI.	Health care	2023-
	AI models employed and the respective XAI technique	



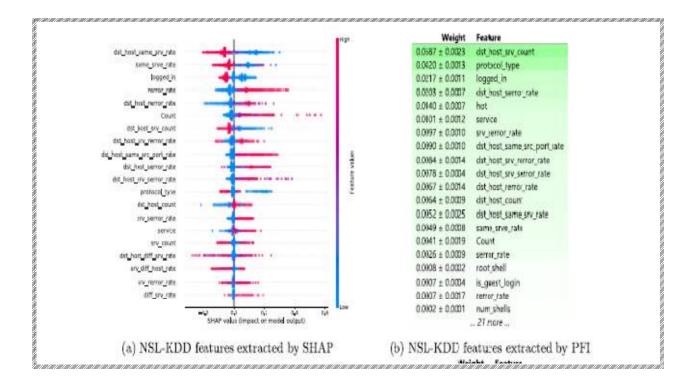
SHAP. GeoScience→xAI.GeoSci

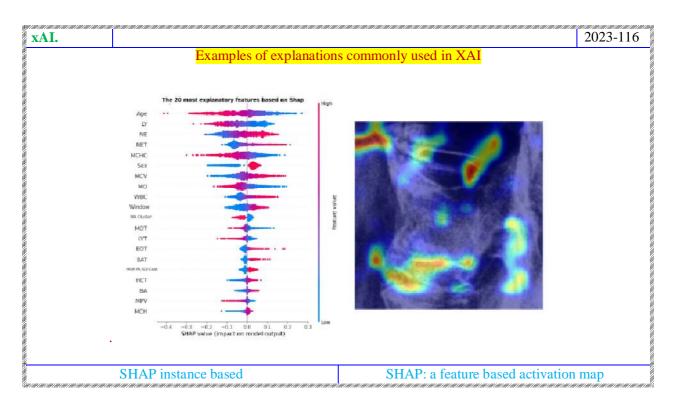


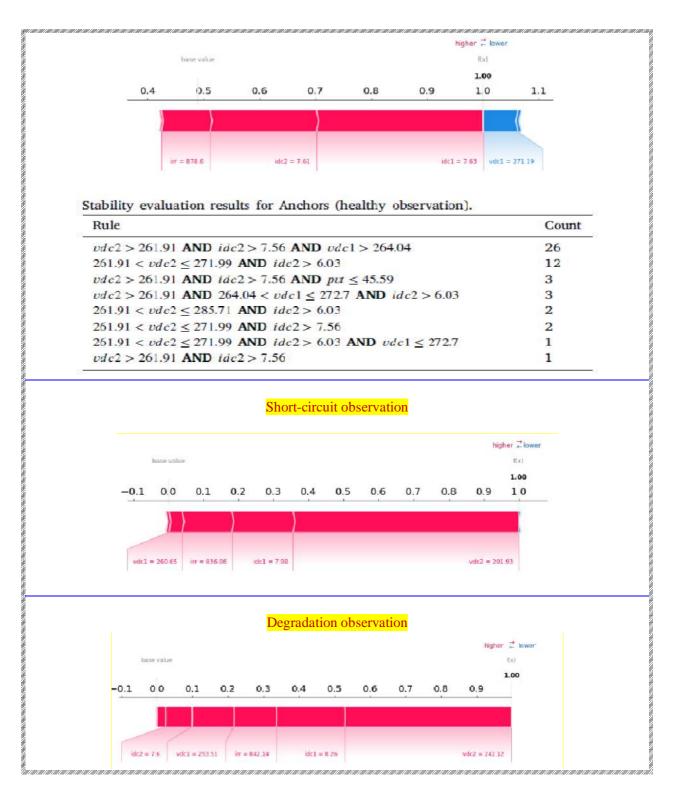


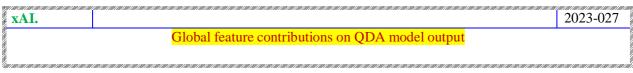

Metrics : [SHAP;LIME]

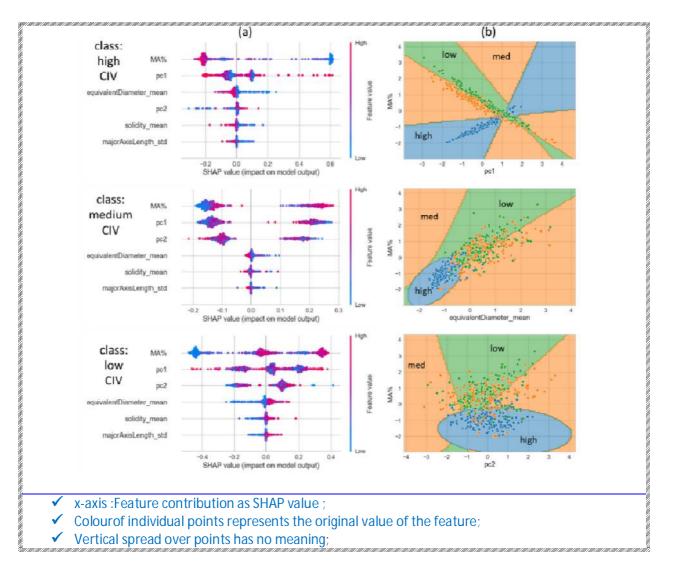
ð	XAI.		2023-142
		Algorithm for calculating faithfulness metric	
- 72			7 (301 / 307 (307 / 307 (307 (301 / 307 (307 (307 (307)



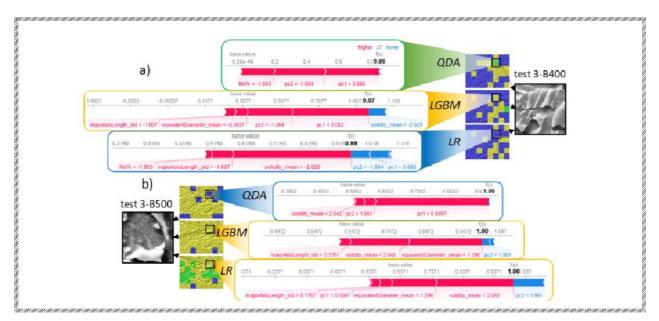


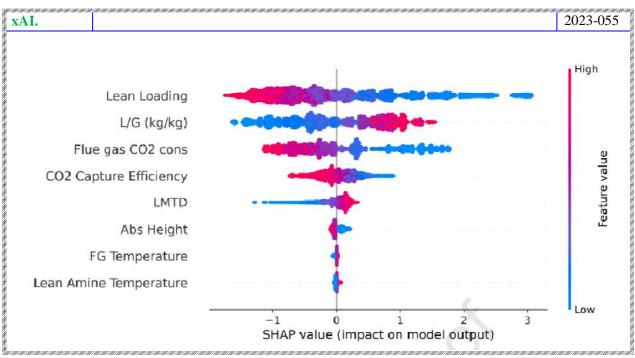

SHAP; IOT


	xAI.	Intrusion detectionframework in IoT networks	2023-057
		Top 20 relevant features of attacks that binary classifiers learned	
		SHAP	
12111	10 10 10 10 10 10 10 10 10 10	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	39/139/139/139/139/139/139/139/139/139/1

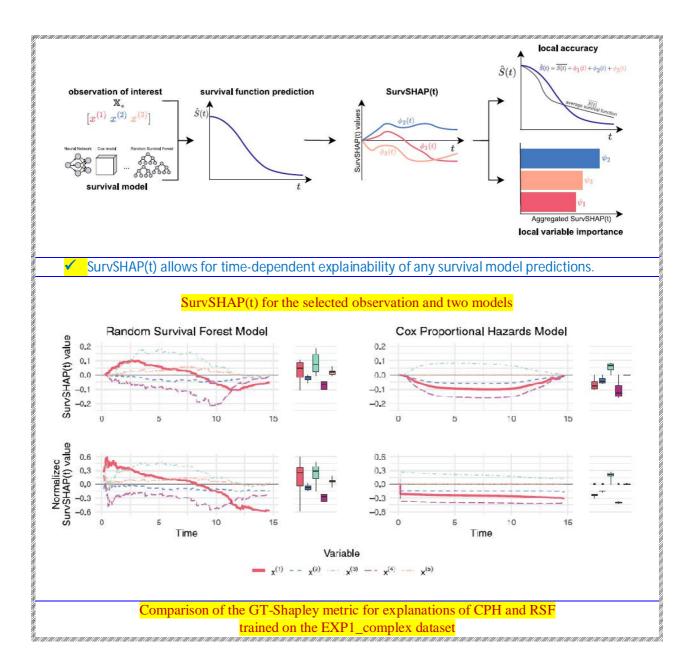


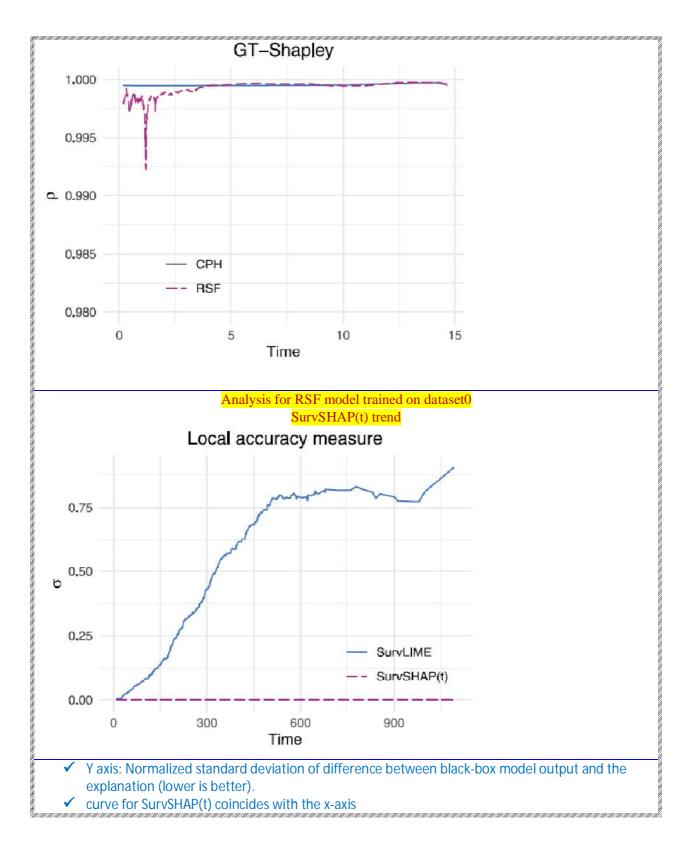
 xAI.		2023-136
	Healthy observation	

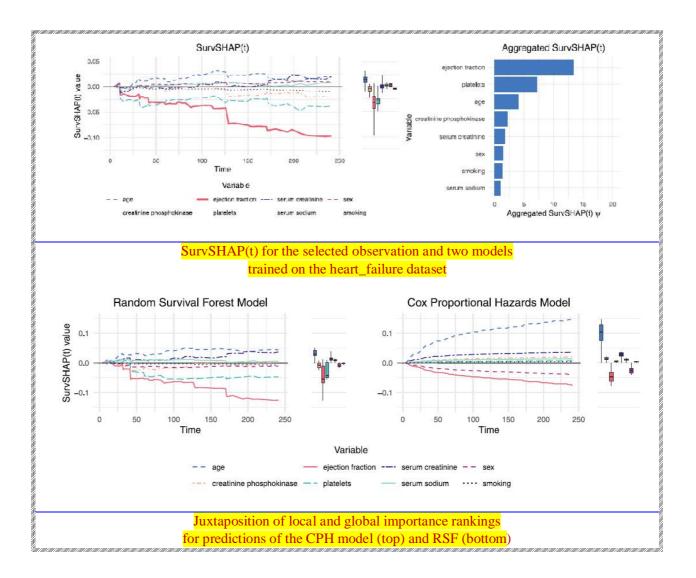


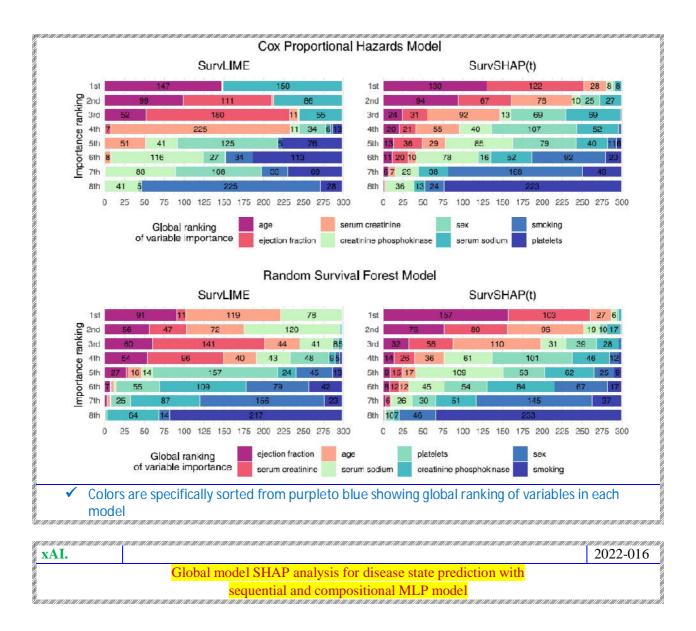


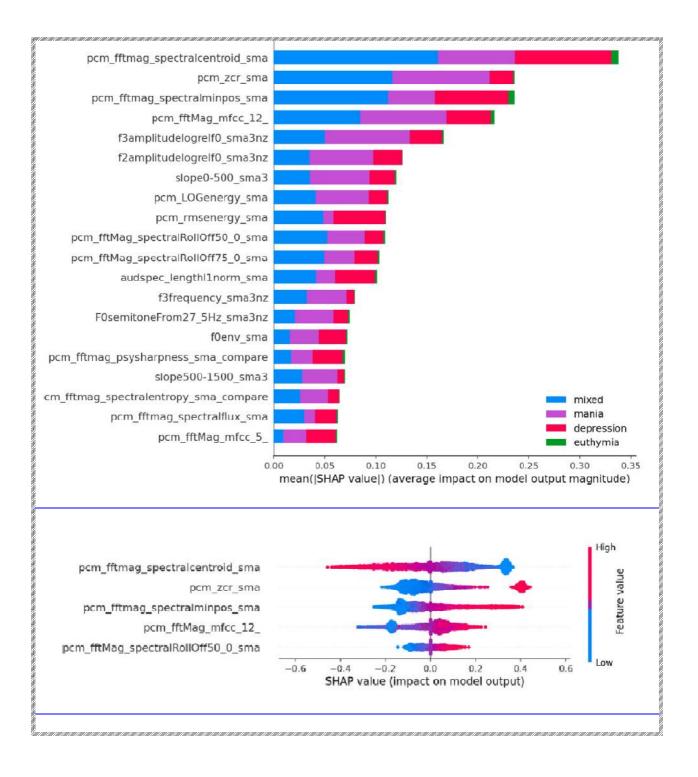
887

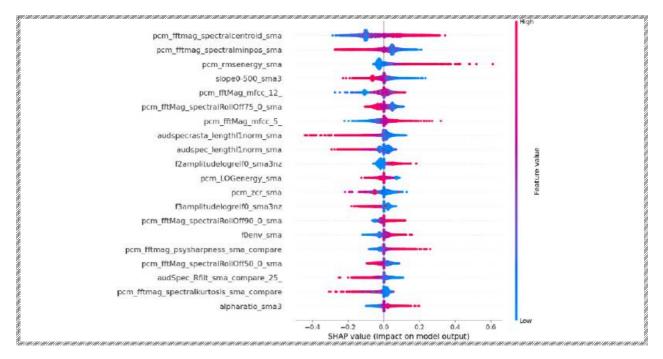

00.1.000.1.000.1.0	xAI.		2023-027
SULVING AND A		cal interpretability of the classified 256x256 bins for three impact energy classes	

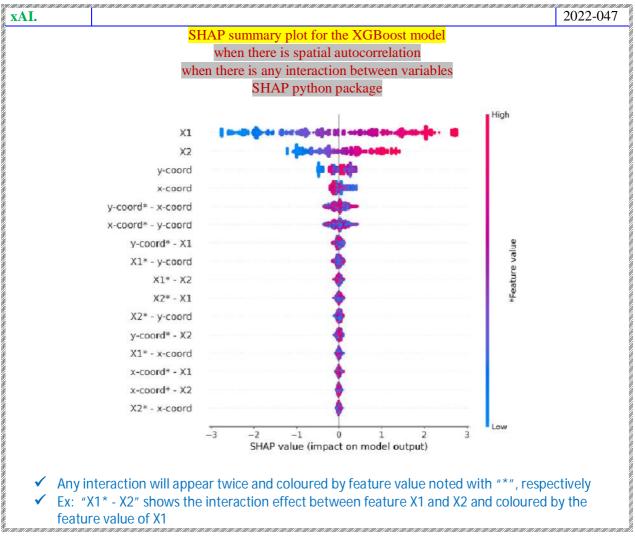


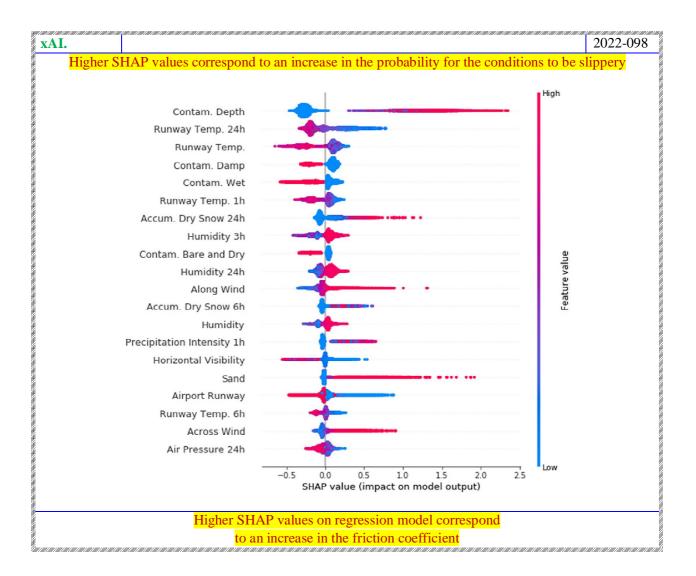

SHAP. MedData→xML(xAIM)

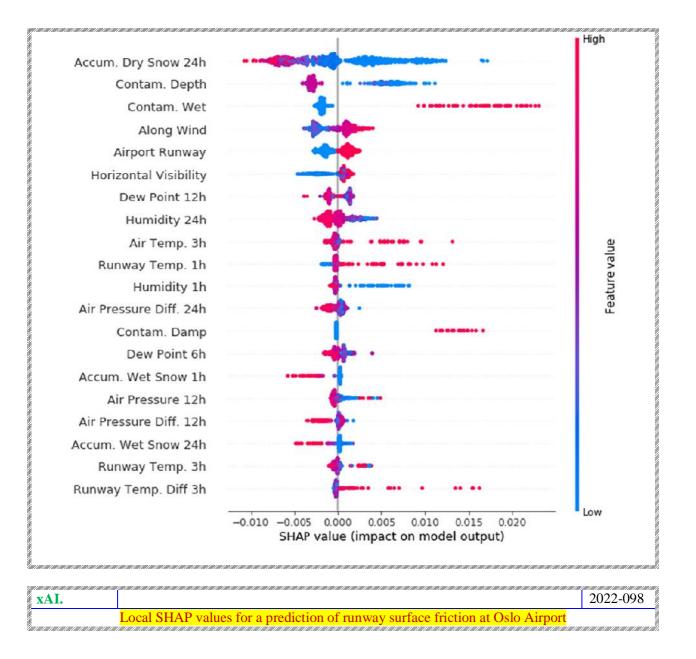

	xAI.	n na na mananana na mananana na mananana na manana na manana na manana na manana na manana na manana na manana Medical	2023-139
Survival model predictions			

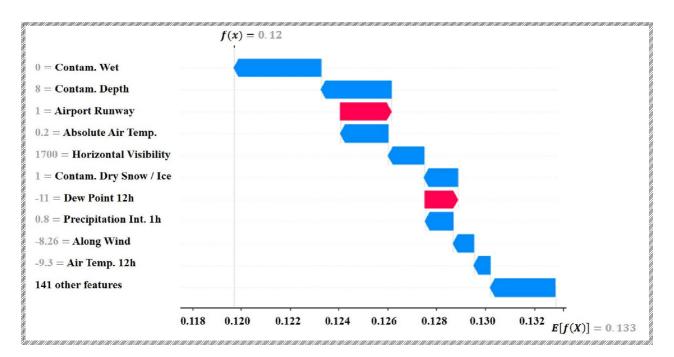


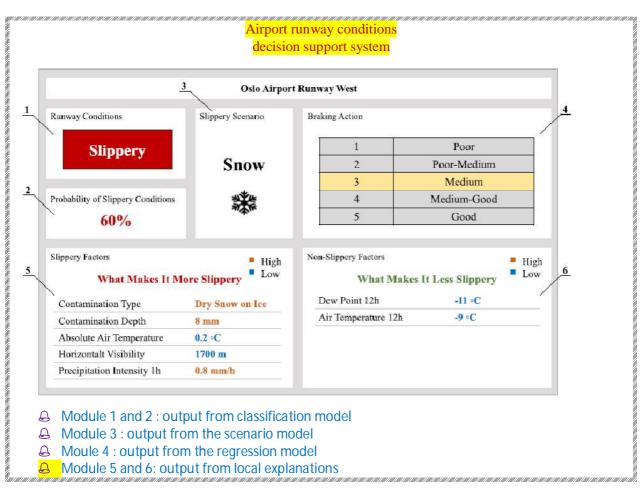


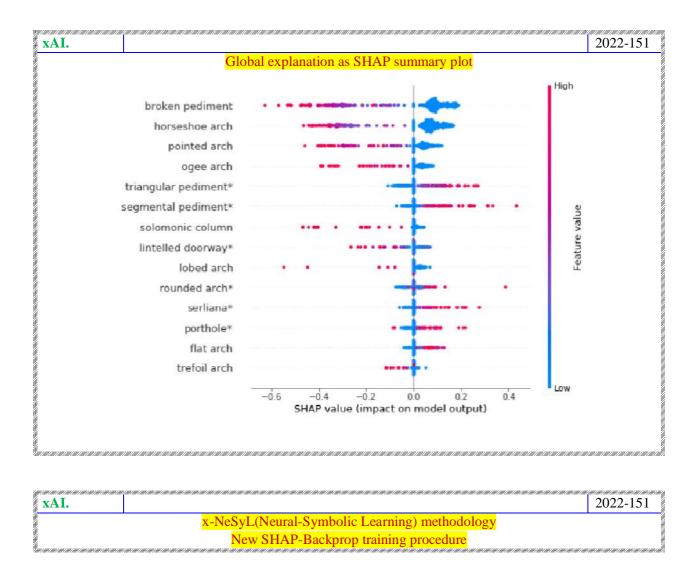

xAI. Medical, heart_failuredataset	2023-139
Explanation for the selected observation	
RSF model trained on the heart_failure dataset	

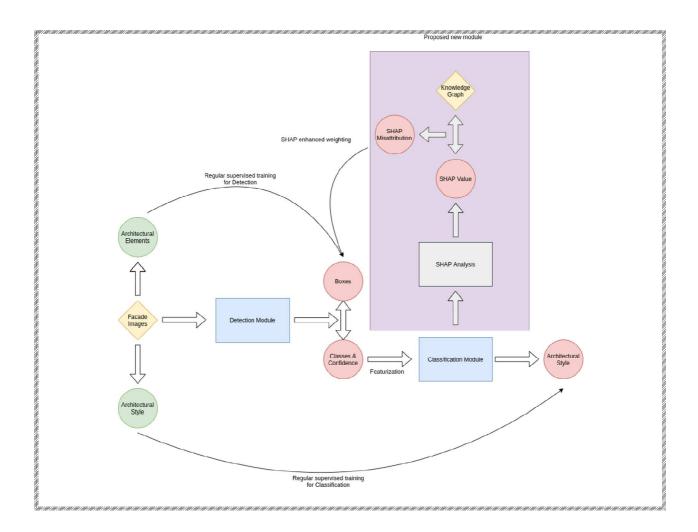


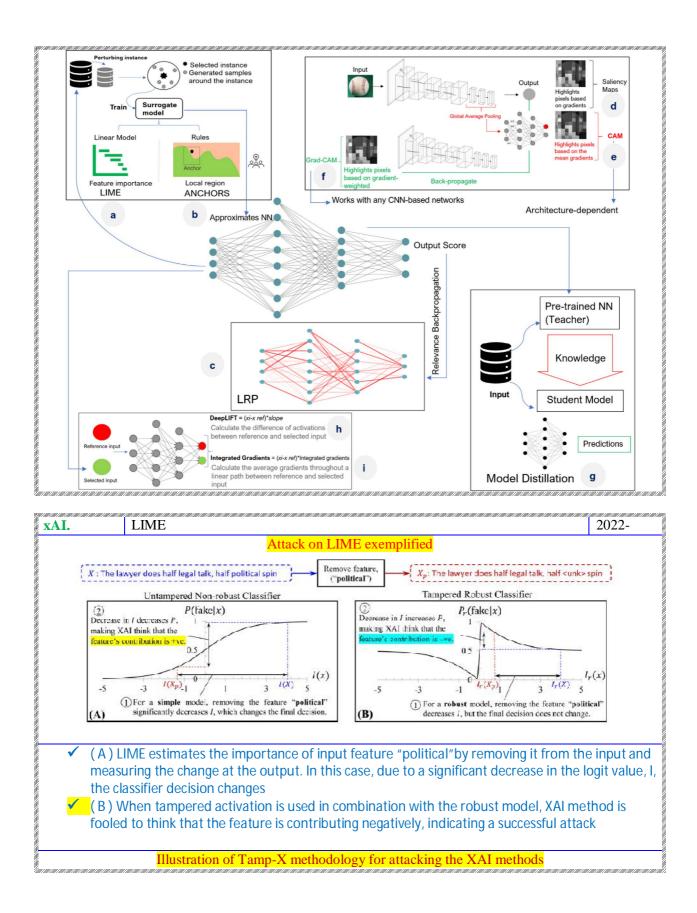


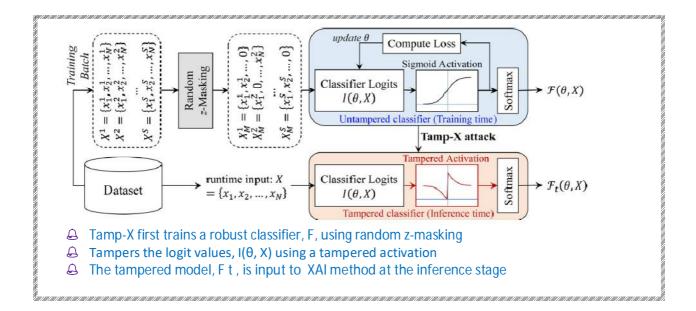




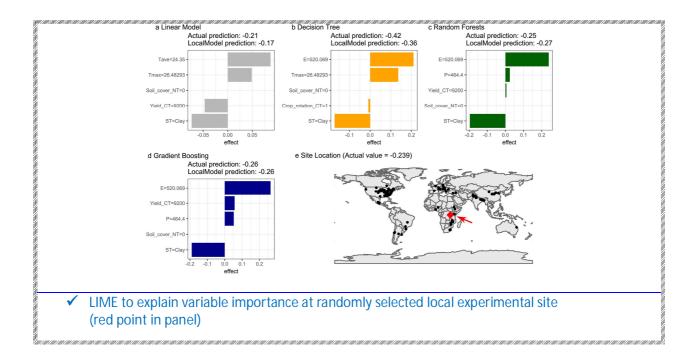


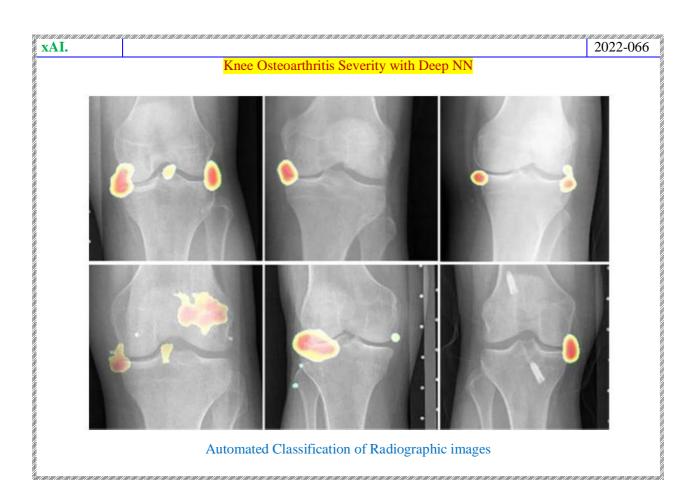






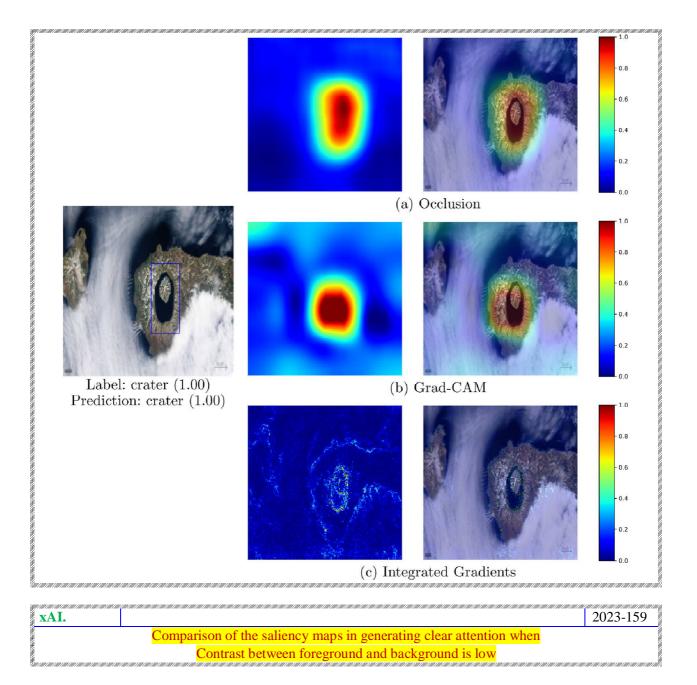
Local InterpretableModel-Agnostic Explanation (LIME)

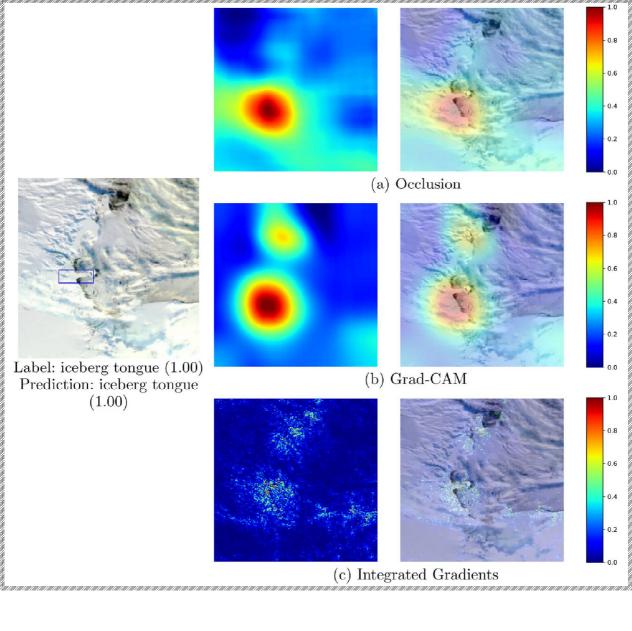

誘	4/169/169/169/169/169/169/169/169/169/169	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1119111166
	xAI.	2022-183	3
		LRP-Anchors-LIME	



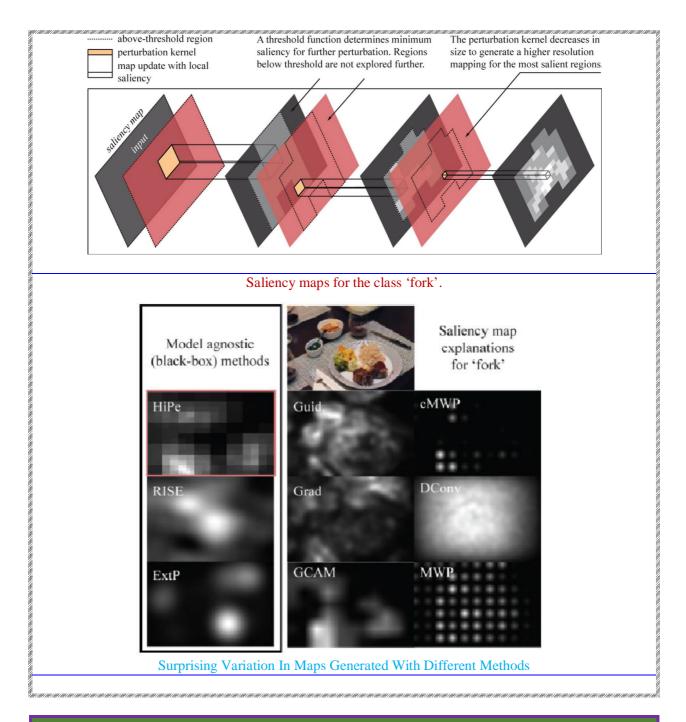
H		AI studie	s using LI	ME to ex	plain mode	l prec	liction res	ults
Author	Objective	Subject	Application	Data type	Sig. features	ML/ DL	Classifier	Result
Dindorf et al [43]	Gait Classification in Patients after Total Hip Arthroplasty	20 THA 27 normal	<mark>Gait analysi</mark> s	inertial measurem ent unit (IMU)- based system	hip, knee, and pelvic sagittal motion and ankle rotation in the transversal plane	ML	SVM	ACC: 100%
Nanayakk ara et al [44]	Characterizing risk of in- hospital mortality	39,566 patients	ICU	EHR/EMR	lack of a motor response, low urine output, hypothermia, and higher age	ML	Ensemble	AUROC: 0.870
Uddin et al. [45]	prediction of depressive symptoms in a large textual dataset	277,552 free-text posts	Mental health	NLP	Depressed, I, Not, That, Motivation	DL	LSTM	ACC: 99.77%
Uddin et al [46]	Human activity recognition	Public- MHEALTH 10 subjects	ADL	physiologi cal signals (EOG + accelerom eter)	Not specified.	DL	LSTM	SEN: 99.00%
Magesh et al [48]	Early Detection of Parkinson's Disease	Public- PPMI 430 PD 212 normal	CDS	Imaging data	Superpixel generation	DL	VGG16	ACC: 95.20% SPE: 90.90% SEN: 97.50% AUROC: 0.940
Palatnik de Sousa et al. [49]	Classification of Lymph Node Metastases	220,026 image patches	CDS	Imaging data	Superpixel generation	DL	VGC19	AUROC: 0.9683
Neves et al [47]	Interpretable heartbeat classification	Public-MIT- BIH 47 subjects	CDS	1D-signal	ECG heatmap	DL	CNN	SEN: 89.50% AUROC: 0.680

an a	variable importance	2022-
	Local Interpretable Model-Agnostic Explanations (LIME)	

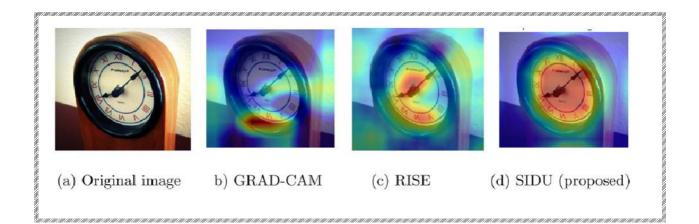

Saliency maps



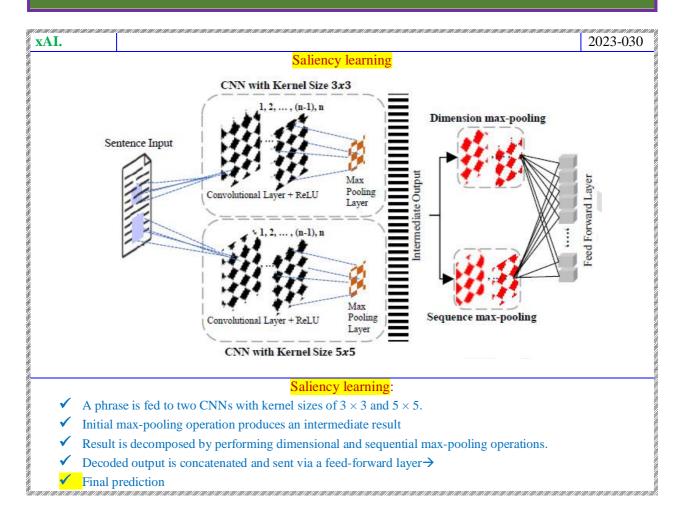
List	st of X	AI studies	that atte	mpted to	provide					
A	Author	Objective	Subje	ect Ap	plication	Data type	ML/DL	Classifier	Technique	Results
	hmed et al. [84]	mental health treatment	Online fo website, medi	social	CDS	Text	DL	BiLSTM	Attention network	SEN: 89.00% AUROC: 0.880
	Dong et al. [81]	coding of clinical notes	3 Pub datase MIMIC-I 50, II shieldi	ts II, III- med I-	ical coding	Clinical notes	זמ.	GRU	HI AN	AUROC: 0.919
н	Iu et al. [83]	medical codes prediction from clinical text	Public M III 11,37 summa	n med	ical coding	Clinical notes	זמ.	CNN	Attention layer	AUROC: 0.900
									2	2023-150
	List	of XAI stu			ner meth		otain salio DL	ency maps of Technique	2	2023-150
I .	List Obje ped prieu	of XAI stu ective 9 Tw natric con monia roosis 278 1/	dies tha Subject o dataset 403 solidation 47 non solidation 0 bacterial 193 viral	t used oth	ner meth	iods to oł	otain sali	ency maps o	2 or heatmaps	2023-150
Author Liz et al.	List Obje pred pred diag evalua canc Barr	of XAI stu ective 9 Tw iatric 5 monia nosis 278 12 156 ation of cer in 51 e iett's est	dies tha Subject 0 dataset 403 solidation 47 non solidation 0 bacterial	t used oth	Data type	Data	Dtain salio DL models	ency maps of Technique	2 pr heatmaps Results SEN: 72.00%	2023-150


Ghorban i et al. [73]	interpretation of echocardiogra ms	1,624,780 video sampled images	CDS	Video	echocardio graphy	Inception- Resnet v1	SmoothGrad	Pacemaker AUROC: 0.890 Enlarged left atrium AUROC: 0.860 Left ventricular hypertrophy
Chang et al. [74]	Web Diagnostic System for Phenotyping Psychiatric Disorders	L,674,760 video sampled images 288 SCZ 244 normal 888 patients Public COVID 5,538 precursonia 8,066 normal 1,489 patient 64 COVID 57 normal	CDS	Image	sMRI	DNN	z-score	AUROC: 0.790 <u>Gray matter</u> ACC: 84.00% SPE: 80.62% SEN: 89.47% <u>White matter</u> ACC: 90.22% SPE: 91.23% SEN: 89.21%
Gu et al. [75]	Visually Interpretable Image Diagnosis Network	888 patients	CDS	Image	СТ	CNIN	importance estimation network	ACC: 82.57%
Wang et a1. [76]	COVID-19 Detection	Public COVIDx 266 COVID 5,538 pneumonia 8,066 normal	CDS	Image	Chest x- ray	CNIN	GSI inquire	ACC: 93.30%
Guuraj et al. [77]	COVID-19 Detection	1,489 patient	CDS	Image	Chest CT	CNN	CSI inquire	ACC: 99.10% SPE: 99.90% SEN: 97.30%
Ieracitan o et al. [69]	COVID-19 Detection	64 COVID 57 normal	CDS	Image	chest X- ray	CNN	Saliency	ACC: 80.00% SPE: 78.60% SEN: 82.5%

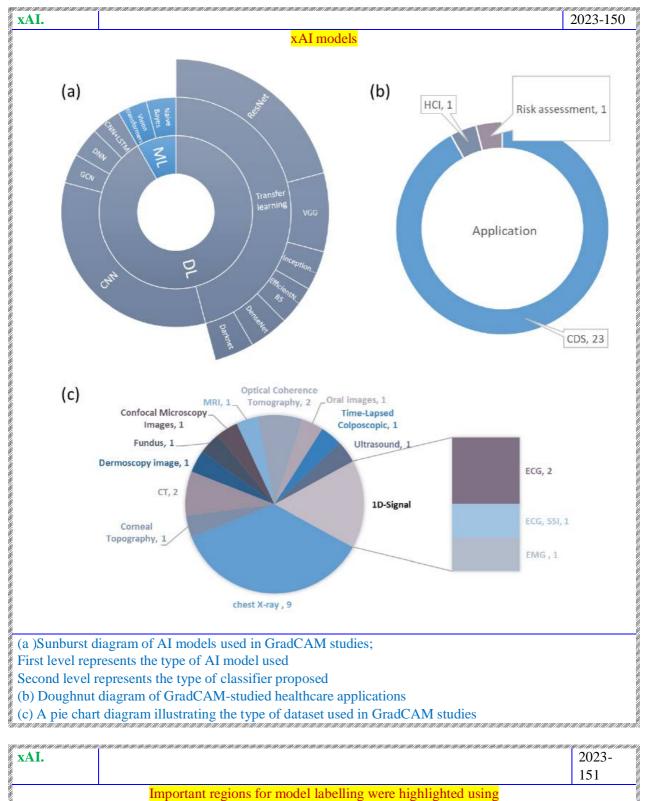
xAI.		2023-159
	Accuracy of saliency maps in highlighting shape oftarget objects	

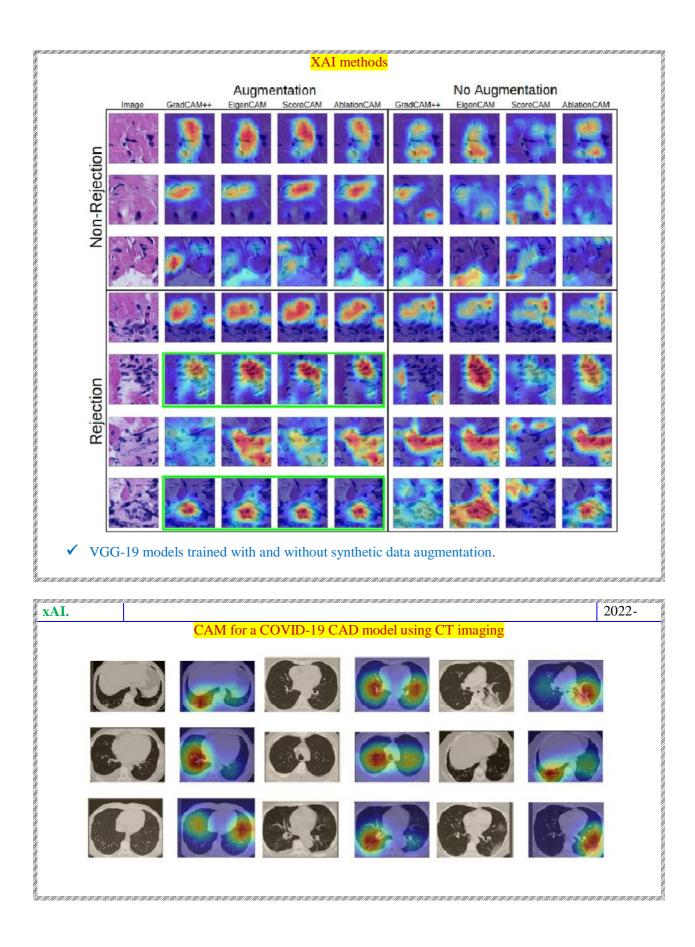


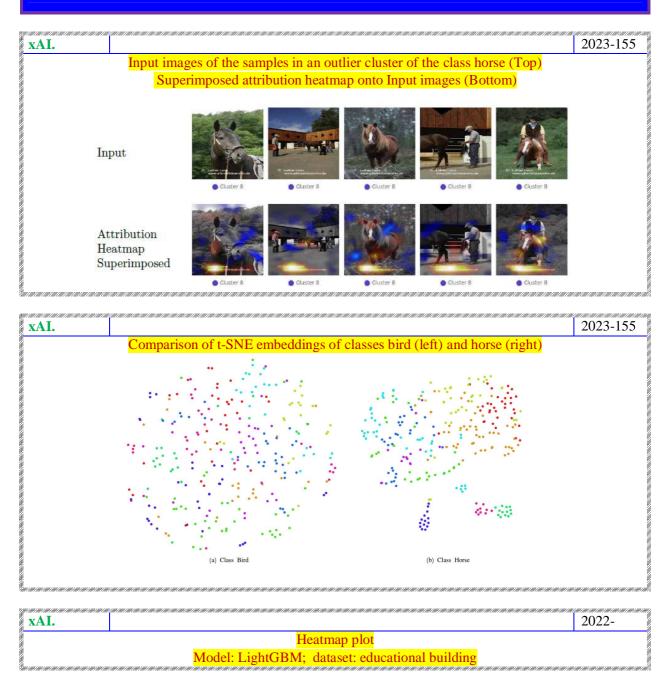
xAI.	en and an	2022-115
	Saliency Mapping with Hierarchical Perturbation	

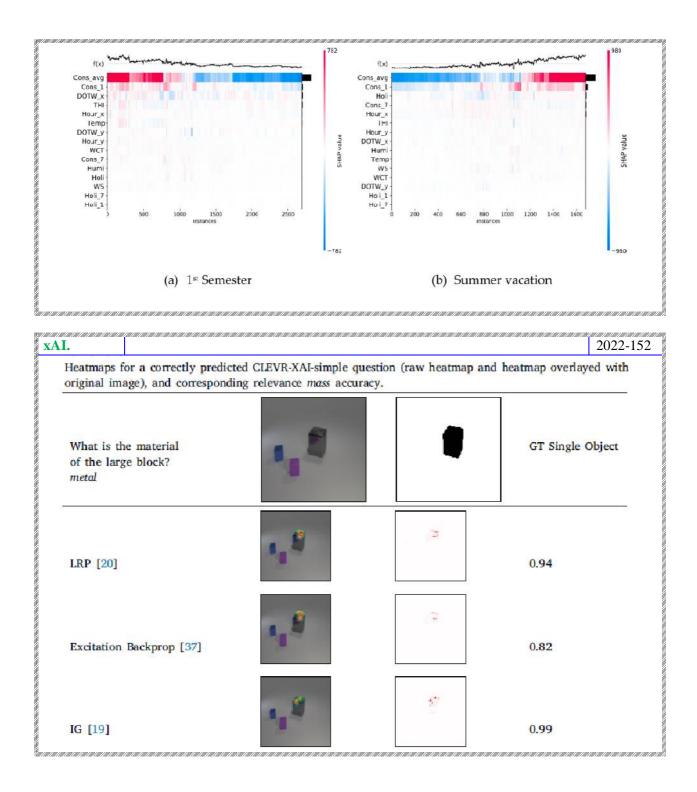


Failure of Saliency maps

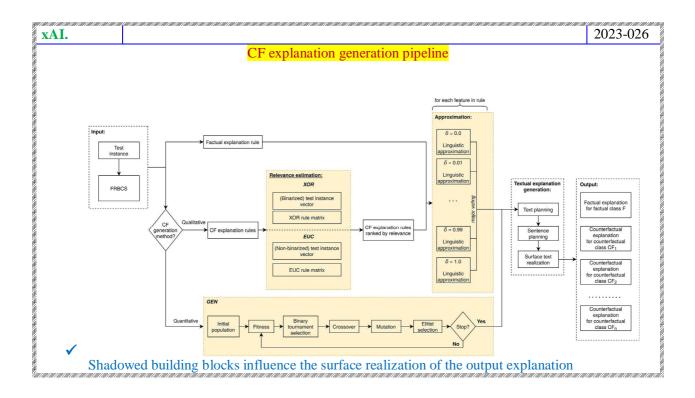

xAI.		2022-124
	Example of failure of saliency maps to capture entire object class 'clock'	


Saliency Learning

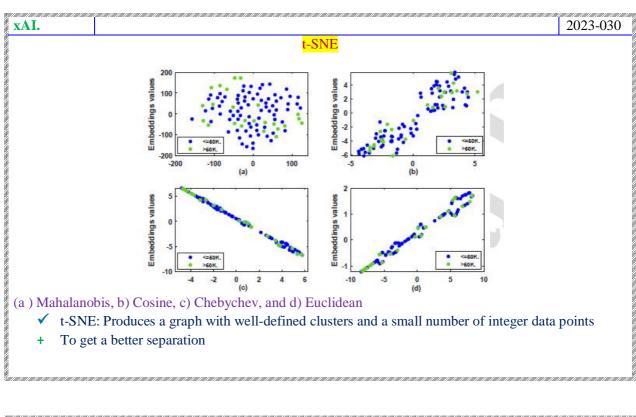

CAM

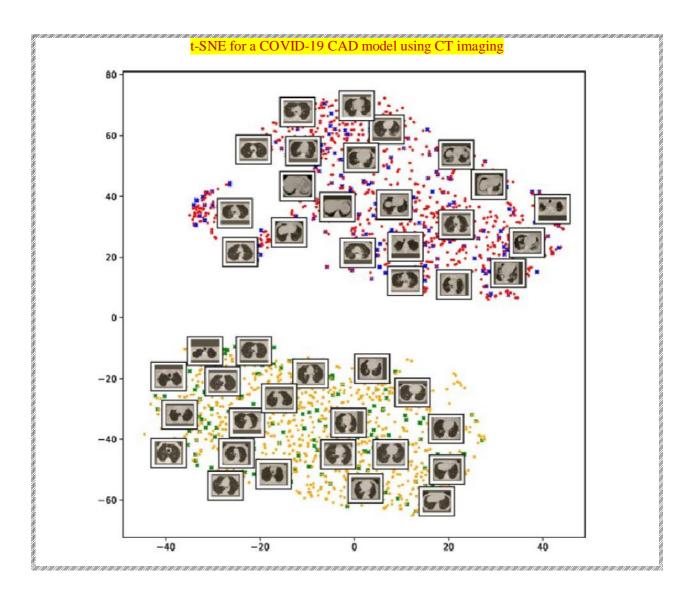


Grad-Cam++, Eigen-CAM, Score-CAM, and Ablation-CAM



Heatmap




Counterfactual explanations

t-SNE

				ŝ
1	xAI.	Medical	2022-	
1				2

