Available online at www.joac.info

ISSN: 2278-1862

Journal of Applicable Chemistry

2023, 12 (5): 704-778 (International Peer Reviewed Journal)

CNN-56--Fit (Figure Image TableScript...) BasesPart 4. xAI (Bfit) 2022-2023 AI (1950-2023)

Information Source	<pre>sciencedirect.com;ACS.org ;</pre>	
S. Narasinga Rao M D Associate Professor, Dept. of General Medicine, Government medical college, government general hospital, Srikakulam, AP, I ndia	K. Somasekhara Rao, Ph D Dept. of Chemistry, Acharya Nagarjuna Univ., Dr. M.R.Appa Rao Campus, Nuzvid-521 201, I ndia	R. Sambasiva Rao, Ph D Dept. of Chemistry, Andhra University, Visakhapatnam 530 003, I ndia
snrnaveen007@gmail.com (+91 9848136704)	<u>sr_kaza1947@yahoo.com</u> (+91 98 48 94 26 18)	rsr.chem@gmail.com (+91 99 85 86 01 82)

Conspectus: The start of first order logic based Symbolic Expert Systems dates back to 1960s as tools in the sub-goals of Artificial Intelligence domain. Dendral, Mycin, Xcon/Xsel were earliest the then large expert system products intended for use in organic structure elucidation in chemistry, medical diagnosis and to assist in the ordering of DEC's VAX computer systems. Xcon/Xseluse toautomatically select the computer system components based on the customer's requirements. The limitations of ESs of those days were knowledge base was human extracted and antecedents were deterministic. Further they were implemented for complex real-life scenarios. The I/O transformation was transparent and thus, explanation is straight forward to all levels of users/stake holders.

Linear models, regression trees and fuzzy-logic systems are popularly known now as machine

learning tools. Here, data flow/model structure are transparent. The vivid crystal-clear explanation renders them to be called as white-box approaches.

Neural networks of first generation viz. Adaline (Adaptive Linear Neuron), Madaline (Multiple Adaptive Linear Neuron), SLP/MLP, Fuzzy-ARTMAP, SOM, RecNN compute with floating point data and incorporating probability scores. It led to generation of robust models of high accuracy in data-driven mode. Butthe black tinge increases with complexity of model. This is the major stumble block to utilize these methods in Medicine, Defence, communication and industry. It necessiated the need to develop transparent models and explanations in multiple modes (visual, If-then-Else rules, numerical derived parameters, 2D-plots, Scripts etc.). With concerted efforts of DARPA, NSF and other agencies, a new trans-disciple called e**X**plainable Artificial Intelligence (**x**AI) emerged. The evolution of xAI is at a jet speed and serves different categories of stake holders viz. Human Experts (Hes) with specific domain knowledge, common-man using xAI-imbedded/assisted services, experts in other field but not in discipline imbedding xAI, investors, managers and policy makers involved in approvals/sanctions. The future ventures in Science/ Technology/ products or Toolswill be largely based on Trust-worthy/ Responsible/ Safe/ethical AI.

Keywords:Modelling; Artificial Intelligence; Symbolic expert systems; Second Generation AI – Neural Networks; Machine Learning; Deep Level neural architectures; Deep Learning; convolution Networks; ALEX; Capsule Nets; explainable Artificial Intelligence (xAI); Applications; DARPA Stipulations; NSF; European union;

Artificial Intelligence [1950-2023 ...]

Explanation

Input, output, parameters, Network flow

Input & Output

Augmentation.Input

xAI.	Input augmentation	2023-054
Input Input	augmentations to maximize AI network generalizability and minimize overfit	ting

DARPA

7	xAI.		2022-159
		Expected effect through application of XAI	

xAI LiteratureSearch

	xAI.		2023-105
		Number of XAI publications added per year from 1976 to 2021	
74	9 2011 2017 2011 2011 2017 2011 2017 2011 2011 2017 2		. 2017 2011 2017 2011 2011 2017 2011 2011 2017] .

xAI.	NAMANAN MANANANANANANANANANANANANANANANA	2023-123

Recent research published in 2020 and 2021 has focused on must of these challenges and research directions

Challenges and research directions	2017	2018	2019	2020	2021	Total
Towards more formalism	1	4	4	11	11	31
Explanations and the nature of user experience and expertise	1	1	2	6	2	12
XAI for trustworthiness AI	1	1	0	4	5	11
Multidisciplinary research collaborations	0	1	1		5	10
Interpretability vs. performance trade-off	0	1	1	3		7
XAI for non-image, non-text, and heterogeneous data	0	0	0	3	3	6
Explainability methods composition	0	3	0	1	1	5
Causal explanations	0	1	0	3	1	5
Challenges in the existing XAI models/methods	0	1	1	1	2	5
Contrastive and counterfactual explanations	0	0	1	0	2	3
Communicating uncertainties	0	0	0	2	0	2
Time constraints	1	0	0	1	0	2
Natural language generation	0	0	0	1	0	1
Analyzing assumption-free black-box models, not assumption-based data models	0	0	1	0	0	1
Reproducibility	0	0	0	1	0	1
The economics of explanations	0	1	0	0	0	1

Recent research published in 2020 and 2021 has focused on most of these challenges and research directions

Phases	Challenges and research directions	2017	2018	2019	2020	2021	Tota
Design							
	Communicating data quality	0	0	0	0	2	2
	Sparsity of analysis	0	0	0	1	0	1
Development							
	Knowledge infusion	0	2	0	4	0	6
	Rules extraction	0	1	0	1	2	4
	Developing approaches supporting explaining the training process	0	1	1	2	0	4
	Developing visual analytics approaches for advanced DL architectures	0	1	0	1	0	2
	Developing model debugging techniques	0	1	0	1	0	2
	Model innovation	0	0	0	0	2	2
	Using interpretability/explainability for models/architectures comparison	0	0	0	1	0	1
	Bayesian approach to interpretability	1	0	0	0	0	1
	Explaining competencies	0	0	1	0	0	1
	Interpretability for natural language processing	0	0	0	0	1	1
Deployment							
	Human-machine teaming	0	4	2			12
	XAI and security	0	1	0	3	3	7
	XAI and reinforcement learning	0	1	1	1	3	6
	XAI and safety	0	0	0	3	1	4
	Machine-to-machine explanation	0	2	1	0	0	3
	XAI and privacy	0	1	0	1	0	2
	Explainable AI planning (XAIP)	1	1	0	0	0	2
	Explainable recommendation	0	0	0	2	0	2
	Explainable agency and explainable embodied agents	0	0	1	0	1	2
	XAI as a service	0	0	1	0	1	2
	Improving explanations with ontologies	0	0	0	0	1	1

Human-machine teaming

XAI and security

XAI and reinforcement learning

XAI and safety

Machine-to-machine explanation

XAI and privacy

Explainable AI planning (XAIP)

Explainable recommendation

Explainable agency and explainable embodied agents

XAI as a service

Improving explanations with ontologies

Knowledge infusion

Rules extraction

Developing approaches supporting explaining the training process

Developing visual analytics approaches for advanced DL architectures

Developing model debugging techniques

Model innovation

Using interpretability/explainability for models/architectures comparison

Bayesian approach to interpretability

Explaining competencies

Interpretability for natural language processing

	•/////////////////////////////////////		2023 145			
2	XAI.		2023-143			
Research publications xAI						
- 73	9/19/19/19/19/19/19/19/19/19/19/19/19/1		1.001.001.001.001.001.001.001.001.001			

Keyword Search

	Boolean search strings used for journal databases
Database	Boolean search strings
Scopus	(TTTLE-ABS (explainability) OR TTTLE-ABS (explainable)) AND (TTTLE-ABS (machine AND learning) OR TITLE-ABS (deep AND learning)) AND (TTTLE-ABS (medical) OR TTTLE-ABS (clinical) OR TTTLE-ABS (health) OR TTTLE-ABS (healthcare) OR TTTLE- ABS (biomedical)) AND (LIMIT-TO(DOCTYPE, "ar"))
PubMed	(explainability[Title/Abstract] OR explainable[Title/Abstract]) AND (machine learning[Title/Abstract] OR deep learning [Title/Abstract]) AND (medical[Title/Abstract] OR biomedical[Title/Abstract] OR health[Title/Abstract] OR healthcare[Title/Abstract] OR clinical[Title/Abstract])
Web of Science	(AB-(explainable) OR AB-(explainability)) AND (AB-(machine learning) OR AB-(deep learning)) AND (AB-(medical) OR AB-(biomedical) OR AB-(health) OR AB-(healthcare) OR AB-(clinical))
IEFE	(("Abstract":"explainable" OR "Abstract":"explainability") AND ("Abstract":"machine learning OR "Abstract":"deep learning"))

1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	xAI.		2023-150
		PRISMA systematic filtration of journal articles	

xAI.			2023-140
	ribution of the reviewed surveys	Distribution of the surve	<mark>y</mark>
over years 2010 to 2021		Lengths by general focus cat	tegory

xAI.	2022-153	877
	"AI and machine learning" "XAI and interpretable machine learning"	
	<mark>in agricultural science</mark>	

Black--To--white boxthrough grey box Al methods

726

- Top branch shows the process of a black-box model. It provides only results such as classes (e.g., COVID or non-COVID).
- Middle and bottom branches: Two XAI methods;
- Middle branch: Example of saliency map
- Bottom branch: Prototype method

2023xAI. Black-box to white box xAI Black-Box Model Method Explanation Type Scope Functionality LIME Local Surrogate Model LORE Local Surrogate Model Anchors Local Surrogate Model Occlusion Input Perturbation Any Local Input Perturbation Permutation Feature Importance Global Shapley Feature Importance Global Game Theory SHAP Both Game Theory Guided Backpropagation Local Backpropagation Integrated Gradients Local Backpropagation Feature Importance Layerwise Relevance Propagation Local Backpropagation Neural Network DeepLift Local Backpropagation Testing with Concept Activation Vectors Global Human Concepts Activation Maximization Global Forwardpropagation Deconvolution Local Backpropagation CNN Class Activation Map Local Backpropagation Grad-CAM Local Backpropagation Attention Flow /Attention Rollout Local Network Graph Transforme Transformer Relevance Propagation I ocal Backpropagation Rule Extraction Global Simplification Any Tree Extraction Global Simplification White-Box Model Model Distillation Global Simplification CNN Attention Network Global Model Adaption Model Adaption KNN Attention Network Global Prototypes Global Example (Train Data) Example Based Any Critisisms Global Example (Train Data) Global Fictional data point Counterfactuals Partial Dependence Plot Global Marginalization Visual Explanations Any Individual Conditional Expectation Global Marginalization Accumulated Local Effects Global Accumulation

xAI. 2023-079 Model improvement with XAI

Explanation modes

	xAI.	an a	2023-149
9			

Workflows

xAI.

Application of XAI

Trade-off between performance and explainability of AI models

Transfer functions (TFs)

LO, L1, L2, Linf Norms

Architectures

Computational Nets (CNs)

Models

Explanatory texts by ECDM-SDAM	methodology to justify its final ranking
 Positive explanatory text The user should book at the restaurant <i>The Ivy</i> since it obtains the highest overall rating. Its criterion of greatest interest, <i>food</i>, reaches a rating of 8.9 out of 10. The pie, crab, steak tartare, and liver stand out positively. Two of the expert sentences that most benefit this restaurant being selected as the best are: <i>"good service and delicious food"</i> and <i>"constantly the best."</i> 	 Negative explanatory text The restaurant <i>The Oxo Tower</i> is high quality although it is the last one of the ranking, so we identify its weakest points. Its most detrimental criterion is <i>drinks</i>. The acoustics, manager, and waiter stand out negatively. Two of the expert sentences that most harm to this restaurant being selected as the last one are: "poor service, meagre portions" and "not worth the trip".

SDAM: Subgroup Discovery and Attention Mechanisms

Restaurant	Rule	NWRAcc	Support	Confidence
The Ivy	$\{meal\} \rightarrow positive$	0.52	0.027	1
The Ivy	$\{pie\} \rightarrow positive$	0.51	0.022	1
The Ivy	$\{crab\} \rightarrow positive$	0.51	0.022	1
The Ivy	$\{menu\} \rightarrow positive$	0.51	0.022	1
The Ivy	{steak tartare} → positive	0.508	0.16	1
The Ivy	$\{liver\} \rightarrow positive$	0.508	0.16	1
The Oxo Tower	$\{drinks\} \rightarrow negative$	1	0.036	1
The Oxo Tower	$\{acoustics\} \rightarrow negative$	0.75	0.023	1
The Oxo Tower	$\{manager\} \rightarrow negative$	0.58	0.018	1
The Oxo Tower	$\{waiter\} \rightarrow negative$	0.58	0.018	1

canking 1 ositive sentences for he Ivy (food criterion)	 Good service and delicious food. Food and service as always terrific. The food, service and sense of occasion was truly perfect.
canking 2 ositive sentences for The y (restaurant criterion)	 Constantly the best Always very good Will definitely revisit for a special occasion.
egative sentences for The xo Tower (any criterion)	 Not worth the trip Poor service, meagre portions Overall, therefore, it is poor value and plays to the tourist market.

Convolution-2D-3D

+ LEN provides explanations of a black-box classifier

xAI.	an a	2023-025
	Adversarial image search	

AI.	Similarity Difference and Uniqueness (SIDU)	2022-12
	Block diagram of SIDU.	

1 1	4.4	C 11	· · · ·	
HOU	v diagran	i of predi	ction proc	ess in models
1 10 1	a ulugi uli	i or preur	cuon proc	Cos in models

Finicipal hyperparameters of Denoising Genera	tive Adversarial Network.
Parameter	Value
2D representation width	20
2D representation height	20
2D number of channels	1
Base number of filters	64
Kernel size	(3, 3)
Strides	(2, 2)
Dropout rate	0.5
Learning rate	2e-4
Max epochs	2000
Regularization L1 lambda	100

xAI.	2022-138
Overview of the FogNet3D parallel processing of features –	
spatial-wise (blue) and variable-wise (red)	

Scenario	Method name
Binary Fault Detection	PCA
and Diagnosis	KPCA
	Two-class SVM
	AE
	SAE
	DAE
	RNPCA
	DSAE
Multi-class	SVM
Fault Detection	
and Diagnosis	AE
	SAE
	DAE
	DSAE

Differences in detection of CH artifacts (top) and BDs (bottom)

AAA→CNN-56→ BFit 4.xAI.AI (1950-2023)

