Available online at www.joac.info

ISSN: 2278-1862

J.

Journal of Applicable Chemistry

2023, 12 (5): 779-834 (International Peer Reviewed Journal)

CNN-57--Fit (Figure Image TableScript...)BasesPart 5. xAI (Bfit) 2022-2023 Applications

Information Source	<pre>sciencedirect.com;ACS.org ;</pre>		
S. Narasinga Rao M D	K. SomasekharaRao, Ph D	R. Sambasiva Rao, Ph D	
Associate Professor,	Dept. of Chemistry,	Dept. of Chemistry,	
Dept. of General Medicine,	Acharya Nagarjuna Univ.,	Andhra University,	
Government medical college,	Dr. M.R.Appa Rao Campus,	Visakhapatnam 530 003,	
government general hospital,	Nuzvid-521 201, I ndia	l ndia	
Srikakulam , AP, I ndia			
snrnaveen007@gmail.com	sr_kaza1947@yahoo.com	rsr.chem@gmail.com	
(+91 9848136704)	<u>(+91 98 48 94 26 18)</u>	(+91 99 85 86 01 82)	

Conspectus:AI and xAI play pivotal role in the outcome of collaboration of top-class (expert)researchers in science, technology, humanities and engineering. The break-throughs in Health care, environment and defense sector change world scenarios and promote hope for prosperous, peaceful, comfortable and happy human life on the lap of mother Nature.

xAI; The explainability in symbolic expert systems (likeMycin, Dendral etc.,sub set of AI-basedproducts) dates back to early 1980s, the era of Buchanan &Shortliffe.

In 2015, DARPA (Defense Advanced Research Projects Agency), USA initiatedthe disciplinexAI (explainable Artificial Intelligence) with a primary goal of enabling end users/stack-holders to better understand, trust, and effectively manage artificially intelligent intricate systems in civilian life and

Défense operations. xAI-embedded tools/frame-works/products explain the inner process of a models, methods, procedures, data-flows and output of the processes. In 2017, a 4-year XAI research program began with multiple criteria viz. scientific consensus, medical reasoning, knowledge recall, bias, and likelihood of possible harm. The evaluation by clinicians and non-clinicians from a range of backgrounds and countries was planned. By now (year 2023) the state-of-knowledge-xAI outreached all portals of Science/engineering/ technology with a promising future of knowledgeable society.

Application Disciplines of xAI: xAI encompasses now machine learning, NNs, Deep-architectures, Deep learning and in future may be hybridized/integrated/fused or evolve into a new form in all rational endeavours from sub-atomic to astronomical material scale and wide range of energy levels. The basic disciplines with large impact of xAI are physics, chemistry and biology at macro-/ micro-/ nano-/ molecular-/ atomic levels. The applied and trans-areas of concern are medicine, Molecular/material properties, environment, synthesis, proteins etc. The results (Fit: Figure Image Table Script Bases) of typical case studies during 2022Jan to 2023June are documented.

Fit (Figure Image Table) Bases: In continuation of our efforts during last four decades in developing intelligent numerical/ reference/ literal databases, knowledge bits, heuristic rules for hypothesis testing, method selection in Chemical Speciation, Kineto-metrics, Enviro-metrics and Pisci-metrics, here passive data base named Fit. Base incorporating information in xAI-applications is reported.

Med-PaLM2:It is a Medical Large Language model(LLM)of Google. It is the first to perform like an expert (85% accuracy) at the test taken on MedQA data set of US Medical Licencing Examination (USMLE) style questions. This version has 18% improvement from the original Med-PaLM (short for Pathways Language Model). It is also the first AI system reaching 72.5% score on MedMCQA dataset containing Indian AIIMS and NEET medical examination questions.

Keywords: Modelling; xAI; Application disciplines; Medicine (diagnosis, treatment, management), ASD; Mortality model; environment (pollution; water demand), Chemistry Molecular properties; fish; Biochemicals; defence, manufacture/synthesis of chemicals, smart-materials, biochemicals/proteins/genes, Nuclear power plant; Smart cities; Finance service; Health services; Education-Medical;

Chemistry molecular properties

	Input operated by Transformer gives Out with xAI methods		
	Schematic view of the XAI study		

(A) XAI evaluation framework: different prediction models are first trained using state-of-the-art GNN models, which are then interpreted through all XAI methods.

The interpretations are quantitatively assessed and compared with experienced medicinal chemists.

(B) XAI benchmarks including two particular subgraphs (two synthetic benchmarks), the conjunction of multiple substructures, or a local transformation between two molecular graphs (i.e., property cliff).

(C) XAI-assisted fingerprints: the high-frequency key substructures predicted by XAI methods are encoded as fingerprints to input machine-learning models for predicting properties.

 $AAA \rightarrow CNN-57 \rightarrow xAI(Bfit) \ 2022-2023$

Bi0-Chemical factors in fish

AAA→CNN-57→ xAI(Bfit) 2022-2023

Sensitivity scores for example molecules known to be readily metabolized

Environment

AAA→CNN-57→ xAI(Bfit) 2022-2023

=

$$\begin{array}{l} \overbrace{t_{a}^{*} = -0.49 - 8.95B_{1} - 6.42B_{2} + 5.72B_{3} + 4.22B_{4} \\ B_{1} = \sigma(-1.52 + 4.79t^{*} + 3.98t_{a_{-1}^{*}} - 1.10v^{*} - 0.95t_{c_{6}}^{*} - 0.04t_{c_{3}}^{*}) \\ B_{2} = \sigma(-2.38 + 4.96t^{*} - 3.27p^{*} + 1.24t_{c_{6}}^{*} + 0.74v^{*} + 0.68t_{c_{5}}^{*} - 0.66u^{*} - 0.02t_{a_{-1}}^{*}) \\ B_{3} = \sigma(3.76 - 5.00t_{c_{2}}^{*} - 5.00t_{c_{5}}^{*} - 3.87t_{c_{4}}^{*} - 3.76t^{*} - 1.25u^{*} + 0.69v^{*} - 0.32p^{*}) \\ B_{4} = \sigma(5.00 + 4.70t_{c_{3}}^{*} - 4.44t^{*} - 3.73u^{*} - 3.58t_{a_{-1}}^{*} - 1.10t_{c_{4}}^{*} + 0.89t_{c_{2}}^{*} - 0.85p^{*} + 0.48s^{*}) \\ \overbrace{t_{a}^{*}}^{*} = 4.04 - 15.14B_{1} - 7.52B_{2} + 6.77B_{3} + 3.89B_{4} \\ B_{1} = \sigma(-1.83 + 5.00t^{*} - 1.86t_{c_{3}}^{*} + 1.02t_{a_{-1}}^{*} + 0.30t_{c_{6}}^{*} - 0.22t_{c_{4}}^{*} - 0.20p^{*}) \\ B_{2} = \sigma(-1.03 + 1.58t_{c_{5}}^{*} + 1.05t_{c_{1}}^{*} + 0.96t^{*} - 0.28s^{*}) \\ B_{3} = \sigma(3.28 - 5.00t_{c_{1}}^{*} - 5.00t_{c_{3}}^{*} - 3.91t_{c_{4}}^{*} + 1.62t_{c_{5}}^{*} - 0.08p^{*}) \\ B_{4} = \sigma(0.93 + 4.96t_{c_{4}}^{*} - 4.74u^{*} + 4.11t^{*} + 3.07t_{c_{3}}^{*} - 2.79t_{a_{-1}}^{*} - 1.64s^{*} - 0.75v^{*}) \end{array}$$

Nuclear power plant

Z	916716716716716716716716716716716716716	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
	xAI.	Nuclear power plant	2022-
		Structure of diagnostic algorithm in the RIDA	
Ÿ/)			181181181181181181181181181181181

Example of the pop-up window in diagnosis evidence derivation function interface (a) Click None None e for diagr osis (196-1096) HEATER FRAM None Parameter 5 None Paramete None Paramete None Paramete None Paramete None Parameter None Parameter None Paramete None (c) Click **Overall Evidence Table** Evidence for unsel (b) Click 4 value_man ZINST66 \$4.35% 1.22% 1.8% 0.69% 0.67% 0.57% ZINSTE BPV145 QPR256 W3298.45 CENALS BURGINIDE RANGES (d) Click PATRE VALVE POR HEATER PRACTN 14144 ATE STORAGE TANK LEVELON RAGE LODINE CONCENTRATION 0.49% 0.37% 0.37% 0.32% YOOLED TEMPERATURE MARON KBCDO L993 SURE RELIEF TANK TEMPERAT LINE OUTLET TEM DEGATE FUNE OUTLET FREE PROPHEATERS MANUAL 0.37% BTV418 2COND EAM DOMP VALVE POS DENSER WATER LEVEL ZUNTE LOOP I DELTA TEMP(NOR) PRZ TEMPERATURS (a) Graph pop-up window when clicking diagnostic evidence variable (compared with normal operating

condition);

(b) Table pop-up window of entire contribution percentage in diagnostic evidence variables;

(c) Pop-up window for providing evidence of undiagnosed scenarios (undiagnosed scenarios are selectable); (d) Graph pop-up window when clicking undiagnostic evidence variable (compared with selected undiagnostic scenario) Interface result for scenario of PRZ spray valve opening:

(a) The result of training status diagnosis function;

(b) The result of scenario diagnosis function;

(c) The result of diagnosed scenario verification function;

(d) The result of symptom satisfaction evaluation function;

(e) The main symptom variables of symptom satisfaction evaluation function;

(f) The result of diagnosis evidence derivation function

 $AAA \rightarrow CNN-57 \rightarrow xAI(Bfit) \ 2022-2023$

(a) Update contents;
(b) Collected results of the training status diagnosis function;
(c) Collected results of the diagnosis scenario function;
(d) Collected results of the diagnosed scenario verification function

Study	Data representation		Local explanations			Global explanations					
	Actual data	SP	SD	BC	BDP	Heatmaps	0	РСР	II	<u>Matrix</u>	0
ExplainExplore [71]				~				~			
SUBPLEX [87]		~		~					~		
MELODY [86]	~		~	~			*		-	*	
explAiner [85]	~			~		~			~		
RuleMatrix [67]	~		~	~						v	
DeepVID [72]	~	~				~			1	1	
Krause et al. [84]				~						~	
iForest [68]	v	V		V			r				~
Li et al. [73]		~		~							
Botari et al. [75]		~			~						
Baptista et al. [79]		~			~						
So [83]					v						
Lamy et al. [80]		~					~				
Cho et al. [90]							~			~	
Lauritsen et al. [88]		~					v		~		
J. Li et al. [81]		~				-					
Kim et al. [78]	V					~	-				

1	1 121 121 121 121 121 121 121 121 121 121 121 121 121 121 121 121 121 121		107110711071107110711071107110711071107
	xAI.	Mortgage industry	2022-067
		Trust in the model, explanation satisfaction	
新学		? Proposed explanation would help the reviewer complete their task	
74	***************************************		507 (101 / 101 (101 / 101 (101 / 101 / 101 / 101 / 101 / 101 / 101 / 101 / 101 / 101 / 101 / 101 / 101 / 101

Input image

xAI. Education

xAI. Medical

components and then attributing relevance proportionally to the amount of the change in model output

(E) Post-hoc decomposition relevance approaches are propagation-based techniques explaining an algorithm's decisions by redistributing the function value (i.e., the neural network's output) to the input variables, often in a layer-by-layer fashion.

 $AAA \rightarrow CNN-57 \rightarrow xAI(Bfit) \ 2022-2023$

!

xAI.	Medical, Emotion	2023-161
in The contraction of the contra	LI DANARANAN MARANANAN MANARANAN MANARANAN MANARANAN MANARANAN MANARANAN MANARANAN MANARANAN MANARANAN MANARANA	


	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	191191191191191191191191191191191
xAI.	Medical, Emotion	2023-161
?	EN DEN DEN DEN DE	















23	9/189/189/189/189/189/189/189/189/189/18			4/
ある	xAI.	Medical, Emotion	2023-161	
ġ,				G

















(F) Plotting the SHAP interaction value of 'white blood cells' with 'blood urea nitrogen' shows that

high white blood cell counts increase the negative risk conferred by high blood urea nitrogen. (G) Plottingthe SHAP interaction value of sex vs. age in the mortality model shows how the differential risk of men andwomen changes over their lifetimes"

![](_page_41_Figure_1.jpeg)

#### Electricity price forecast

	yanananan ang ang ang ang ang ang ang ang	Electricity price		2022-163
			Framework for collaborative intelligence	
			in forecasting day-ahead electricity price	
7.iii	9/1007/1007/1007/1007/1007/1007/1007/100	1997 (1997 (1997 (1997 (1997 (1997 (1997 (1997 (1997 (1997 (1997 (1997 (1997 (1997 (1997 (1997 (1997 (1997 (19		1997   1997 (1997   1997   1997   1997 (1997   1997   1997   1997   1997   1997   1997   1997   1997   1997   1

![](_page_42_Figure_0.jpeg)

![](_page_43_Figure_0.jpeg)

Feature	es based on time series characteristics.
N≗	Description
1-5	Average, Median, Std. dev., Max., Min.
6	Max. – Min.
7-9	First, Second, Third value
10-12	2 Last, Second last, Third last value
13	Spectral Shannon entropy
14-1	5 Stability, Lumpiness
16-1	8 Max level shift, Max var shift, Max kl shift
19	Crossing points
20	Flat spots
21	Hurst
22-2	5 PACF features: (x, diff1, diff2, seas)-pacf5
26-2	7 Holt's linear trend method: $\alpha$ , $\beta$
28-3-	4 STL features: nperiods, seasonal period and strength,
	trend, spike, linearity, peak
No	Description
35-37	Holt–Winter's seasonal method: $\alpha$ , $\beta$ , $\gamma$
38-41	Heterogeneity: (ARCH, GARCH)-ACF, -R ²
42	Non linearity
43	ARCH statistic
44-47	Correlation: Embed2, AC9, FirstMin, trev
48-49	Distri.: HistogramMode, OutlierInclude
50	Entropy: SampEn
51-52	Forecasting: LocalSimple, LoopLocalSimple
53	Non-linear time-series analysis: FluctAnal
54-55	Stationary: Std1thDer, SpreadRandomLocal
56	Symbolic transformations: MotifTwo
57	Others: Walker
58-66	ACF features: (e, x, diff1, diff2, seas)-acf1, (e, x, diff1,

diff2)-acf10

ERANALAN MARTANAN MAR

N≏	R-package::function	Description
	fitAR::fitAR	AR(p) fitting
2	fGarch::garchFit	GARCH fitting
3	forecast::Arima	ARIMA(p, d, q)(P, D, Q)
4	forecast::dshw	Double-Seasonal Holt-Winters method
5	forecast::ets	Exponential smoothing state space model
6	forecast::(s)naive	(Seasonal) naïve model
7	forecast::nnetar	Feed-forward neural network with one
		hidden layer
8	forecast::tbats	TBATS model
9	forecast::thetaf	Theta method
10	forecTheta::dotm	Dynamic optimized Theta model
11	forecTheta::dstm	Dynamic standard Theta model
12	forecTheta::otm	Optimized Theta model
13	forecTheta::stheta	Standard Theta method
14	forecTheta::stm	Standard Theta model
15	glmnet::glmnet	Generalized linear model with lags
16	greybox::alm	Advanced linear model with lags
17	greybox::lmCombine	Linear model with combined lags
18	greybox::lmDynamic	Linear model with combined lags
19	greybox::stepwise	Linear model with stepwise selection of
		lags
20	MAPA::mapaest	Mutliple aggregation prediction
		algorithm
21	nnfor::elm	Extreme learning machine
22	nnfor::mlp	Multilayer perceptron
23	PSF::psf	Pattern sequence based forecasting
24	rugarch::arfimafit	ARFIMA fitting
25	rugarch::ugarchfit	GARCH fitting
26	smooth::ces	Complex exponential smoothing
27	smooth::es	Exponential smoothing in SSOE
		state-space form
28	smooth::gum	Generalized exponential smoothing
29	smooth::msarima	Multiple seasonal state-space ARIMA
30	smooth::sarima	State-space ARIMA
31	smooth::sma	Simple moving average in state space
		form
32	stats::HoltWinters	Holt-Winters filtering
33	TSPred::fittestMAS	Moving average smoothing
34	xgboost::(gblinear)	Regularized linear model with lags as regressors

# Smart Cities Role of xAI

 $AAA \rightarrow CNN-57 \rightarrow xAI(Bfit) 2022-2023$ 

91.001.007/007/007/007/007/007/00

![](_page_46_Figure_0.jpeg)

![](_page_46_Figure_1.jpeg)

![](_page_46_Figure_2.jpeg)

 $AAA \rightarrow CNN-57 \rightarrow xAI(Bfit) \ 2022-2023$ 

# xAl Impact ... Financial Service

![](_page_47_Figure_1.jpeg)

![](_page_48_Figure_0.jpeg)

### Translation of one language -To-another

![](_page_48_Figure_2.jpeg)

#### AAA→CNN-57→ xAI(Bfit) 2022-2023

![](_page_49_Figure_0.jpeg)

### One-class SVM

![](_page_49_Figure_2.jpeg)

#### $AAA \rightarrow CNN-57 \rightarrow xAI(Bfit) 2022-2023$

![](_page_50_Figure_0.jpeg)

![](_page_50_Figure_1.jpeg)

![](_page_51_Figure_0.jpeg)

![](_page_51_Figure_1.jpeg)

![](_page_52_Figure_0.jpeg)

#### Imbalanced-classes

### SMOTE Synthetic Minority Over-Sampling Technique

	xAI.		2022-069
		Summary of SMOTE variants	

AAA→CNN-57→ xAI(Bfit) 2022-2023

![](_page_53_Figure_0.jpeg)

ID	Dataset	Features	Instances	Minority	Majority	IR
D1	Pima	9	768	268	500	1.86000
D2	Phoneme	6	5404	1586	3818	2.40000
D3	Vehicle	19	846	199	647	3.25000
D4	Abalone-9-vs-13	9	892	203	689	3.39000
05	Yeast-3-vs-R	9	1484	163	1321	8.10000
06	Ecoli-3-vs-R	8	336	35	301	8.60000
07	Page-Blocks-0-vs-R	11	5472	559	4913	8.78000
38	Yeast-0-3-5-9-vs-7-8	9	506	50	456	9.12000
09	Abalone-9-vs-16	9	756	67	689	10.2800
010	Glass-3-vs-R	10	214	17	197	11.5800
011	WineQuality-Red-4-vs-5	12	734	53	681	12.8400
012	Yeast-1-vs-7	9	459	30	429	14.3000
013	Ecoli-4-vs-R	8	336	20	316	15.8000
014	Abalone-13-vs-R	9	4177	203	3974	19.5700
D15	Abalone-9-vs-19	9	721	32	689	21.5300
016	Abalone-9-vs-20	9	715	26	689	26.5000
017	Yeast-4-vs-R	9	1484	51	1433	28.0900
018	WineQuality-Red-6-vs-8	12	656	18	638	35.4400
D19	Abalone-17-vs-7-8-9-10	9	2338	58	2280	39.3100
020	Yeast-6-vs-R	9	1484	35	1449	41.4000
021	WineQuality-White-3-vs-7	12	900	20	880	44.0000
022	WineQuality-White-3-9-vs-5	12	1482	25	1457	58.2800
)23	Poker-8-9-vs-6	11	1485	25	1460	58.4000
)24	Abalone-20-vs-8-9-10	9	1916	26	1890	72.6900
025	Poker-8-9-vs-5	11	2075	25	2050	82.0000

![](_page_54_Figure_1.jpeg)

![](_page_55_Figure_0.jpeg)