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> The important disciplines of concern are Cardiology, Neurology, Surgery, Anaesthesiology,
* Pulmonology, Gynaecology, Venereology, Urology, Hepatology, Ophthalmology, Dermatology,
> Oncology etc.

; The present news-item “Fits.Cardiology” contains numerical/categorical demographic data of patients,
-~ images generated by medical-instruments, clinical/bio-marker tests/knowledge bits for consolidation of
disease. This phase followed by moving for therapeutic treatment with drus, intervention procedures, »
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- Conspectus: “Intelligence Augmented Medicine (I am)” isbroadly spread over human health care?j
; procedures viz. diagnosis of diseases, gold-standard-confirmation-tests, therapeutics, drug-administration, 7
. intervention procedures, surgery (pre-operative, intra-operative and post-operative chores), prognosis, »
: relapse/recurring of the disease, and analysis of morbidity/mortality/bio-chemical/medico-chemical data.
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?{ repair/replacement of heart-valves etc. ?{
%Keywords:Artificial intelligence (Al); Medical diagnosis;Cardiology; Drug therapy; Life style%
¢ change;lintervention, Surgery ; f
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Artificial Intelligence (Al)

Two Al winters and
One Hot Al summer
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General Al, narrow Al, ML and DL
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& A:Venn Diagram of the most commonly used terms in the data science disciplines.

& B: total searches (source: Google Trends) in the last 5 full years of terms related to artificial intelligence
and data science; vertical axis : proportion of a topic with respect to the total number of searches on the
topics.

& C: the most searched term in each country in the same period
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Venn diagram of the different approaches falling under the category of Al
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[deal model
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— » High
Low Explainability

: Model explainability versus performance for some

. Graphical models: probabilistic model such as Bayesian network. Rulebasedlearning: any model uses
- rules (eg, if:then) to make a decision.

~ CNN indicates convolutional neural network; DNN, deep neuralnetwork;

- GAM, generalized additive model; GAN, generative adversarialnetwork;

- KNN, K-nearest neighbor;

: RNN, recurrent neural network;

. SVM, support vector machine; and XGB, extreme gradient boosting
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TABLE 1 Commonly Used Terms in Al

Al A branch of applied computer science wherein computer algorithms are
trained to perform tasks, and have the capability to imitate intelligent
human intelligence.

ML Subfield of Al, a machine learns to perform a task or make decisions
automatically from an available data source without being explicitly
programmed.

DL DL is a type of ML that mimics the operation of the human brain and

includes a class of algorithms called neural networks.

NLP NLP is an area of computer science and artificial intelligence related to the
organization of unstructured narrative text into a structured form that
can be interpreted by a machine and allows for automated information

extraction.
Cognitive Cognitive computing platforms integrate machine learning, reasoning,
computing natural language processing, speech and object recognition,

human-computer interaction, dialog and narrative generation.

Computer vision Computer vision is a branch of computer science concerned with objects
and feature recognition in images or multi-dimensional data, including
digital video frames.

Robotics Robotics deals with the design, construction, operation, and use of robotic
devices that can move and react to sensory input. Robotics also
concerned with creation of computer systems for their control, sensory
feedback, and information processing.

Al = artificial intelligence; DL = deep learning; ML = machine learning; NLP = natural language processing.

NNs
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High-level architecture of CNN
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v" Size of the input mask is the same as the size of the input x.

v Mask will help the network ignore the padded zero elements in x, which has a variable length.

v Network outputs the classification scores

38
=3
Input
Sentence
—
_ -
Thereis
positive evidence
of
anterior wall
myocardial ischemia
: —

Deep learning CNNs for diagnostic classification.

T

Output
Class

v Diagram of a CNN model. It converts an input sentence(through several convolutions), into two

output classes: positive diagnosis or negative diagnosis
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Machine Learning (Mach.Lrn)

M Machine Learning

22

. Supervised Learning

Unsupervised Learning

Deep Learning

Artificial Neural Network (ANN)
Support Vector Machine (SVM)
Decision tree

Random Forest

Naive Bayes classifier

K-nearest neighbor algorithm (k-NN)

Clustering algorithms

Association rule algorithms

Convolutional neural networks (CNN)

Recurrent neural network (RNN)

Deep neural networks (DNN)

Data based

Types of Machine Learning

Types of Learing
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Supervised
learning

Unsupervised
learning

Reinforcement
learning

Machine learns explicitly

Labeled data with clearly
defined inputs

Predicts outcome/future

Resolves classification and
regression problems

Risk of mortality,
readmission prediction
Image Classification
Diagnostics

Machine understand the data
Inputs only
Labels and output unknown

Identify patterns or structure

Novel classification of
diseases

Big data visualization

Image feature elicitation and
segmentation

Machine learns how to act
in certain environment

Focus on making decision
based on previous
experience

Reward based learning
with positive and negative
feedback

Optimization of treatment
policies

Real-time decisions

Robot navigation
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34

Computer Science

Data Science
3 ~ Mathematics

Artificial Intelligence

v" Artificial intelligence algorithms are built from big data, and data mining and data science are
incorporated.

The main branch of artificial intelligence is machine learning and its subtype deep learning.
Ref: Chang AC. Attificial Intelligence in Medicine: Principles and Applications. Elsevier;
2020,

ANIAN

34

Data
Collection

&

o AN | e )

The machine learning workflow
£ Data collection, data processing, feature selection and algorithmic development.
v Ref: Chang AC. Artificial Intelligence in Medicine: Principles and Applications. Elsevier; 2020

34

Data acquisition and
processing | Training Trained

dataset icti
| Feature detection | Dictionary
Feature
— A o

1) =G

Normal Abnormal

v" An example of a convolutional neural network.
v Ref:Alsharqi, et al. Echo Res Pract.2018;5:R115-R125
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Cardiology (Cardia)

Chest pain

-
]
Chest pain High-Sensitivity Early Care Share Testing
i & & b &
n
' | &2
é" '5'9'0
Chest Pain High-Sensitivity Seek Early Care Share the Testing Not
Means More Troponins for Acute Decislon-Making Routinely
Than Pain in the Preferred Symptoms Needed in Low-
Chest Risk Patients

- Palhwaw; Accompanying |dentify
-@

Noncardiac Structured
-@
s
@ / f‘ )
=/ &
Use Cl|n|cal Women May Be Identify Patients Noncardiac Is In. Structured Risk
Decision More Likely to Most Likely to Atypical |s Out. Assessment
Pathways Present With Benefit From Should Be Used
Accompanying Further Testing
Symptoms

Take-Home Messages for the Evaluation and Diagnosis of Chest Pain
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Al +cardiology
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Artificial intelligence and cardiology — a marriage made in heaven or in hell ? Sh A
in 3020
HOPE ? HEAVEN ? HYPE ? HELL ?
1. Al outperforms humans 1. Computers cannot be intelligent
2. Al will democratise cardiovascular 2. Al is not the objective
knowledge 3. Current Al tools are only as good
3. Alis the only way to handle as experts
multimodal big data 4, Earlier and more precise diagnosis /
4. Al will redefine cardiovascular is not necessarily better /
disease 5. Regulation is proposed because y
5. Al can recognise and mimic risks have been recognised i
human emotions //
___..._._-—-——"’”/
1964 1974 1884 1594 2004 2014

Pubmed literature with machine learning (ML) and Al
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04
Al in cardiology
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Alin Imaging (New ACR AlCentral.org)
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Diagnosis

\e=
Atrial Valvular

Fibrillation Hcart
Discase

§ & Coronary A ::_:‘::(;)ed Heart - ‘ >
;" = o A'rtel‘y S . Failure “
= P Disease diagnosis

—

Congenital

Cardiomyopathy Heari T icenoe

Al application in CVD
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Strategies

Data Mining

13

Modeling Ability to
Sense

Artificial
Al Intelligence Ability to

(Tools and Strategies for Learn

Cardiology Treatment)

Big Data Unsupervised

Ability to
Reason

Tools and strategies of Artificial Intelligence for cardiology during COVID-19.
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Supports in Anging Casos Faronts Cvenall SaTactan

s e Specific

Solicitations

of Al while Hobotic implants Parioct Com clinng Emangencas
Treating

Cardiology

Soiutions for Remate Fatient

Friturtstic and Evariasting Solutions Monitoring Devices Srrrt o Effocrussl Moritoring

Features and solicitations of Artificial Intelligence during COVID-19

Reinforcement
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Cooperation

Privacy and Health
Security Literacy

*

Artificial
m;;:;:: e Intelligence
Ethics

Time
optimization

Audit of
Brrors

Al implementation in clinical practice considering ethics
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CENTRAL ILLUSTRATION Role of Artificial Intelligence in Cardiovascular Medicine

] :

: D
[L0)

Johnson, K.W. et al. J Am Coll Cardiol. 2018;71(23):2668-79.

)

£
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Electronic
health @ P
Imaging -Omics
data recm_dﬂ data
Seci 1|illlllllle-«'in::ee;ife‘
meadia
SEnsors
: : Prediction Imaging
Dssgninsss of nsk interpretation
Information flow and inter-links between various data sources
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Al. machine learning (Mach.Lrn ,ML)

+cardiology
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Machine learning will be implemented in clinical practice
when it is feasible and trustworthy and if it is ..

Accurate and

reproducible Transparent and
interpretable

And it adds value to
routine care and Jor

Independently has a positive impact
validated on outcomes

o Y SESEY SUSEY SUSEY SRY SUSRY SUSRY SUIRY SUIRY SN SUINY SUIRY SUNRY SN SRS SRS SRS SRS SR SRR SRR SRR SR SRR SRIRY SRR SRR SRY Sueny i

AAA: CNN: 61b Fit Base—Cardiology 348



2024

Increasi 4 Analytical Method

Al soiutions

Point by poinl dats

Ot e -saries dats [

- Recent developments in machine learning modeling methodsfor hypertension treatment
- HirohikoKohjitani,Hiroshi Koshimizu,Kazuki Nakamura and Yasushi Okuno
- Hypertension Research47,700-707 (2024)

; Application methodology of a machine learning (ML) model.
: DB, database;

, 19
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== | Actual disease situation
Precision or posiive predictive value:

= + — 7 : ROC CURVE
3 M = percentage of corect posiive predictions

B " True False | (TP / TP + FR = TP/ Total positive preditiors) 10
3 positive (TP) L positve (FPj .

1 [ - ,

£l _[ Rk Trug __. Negative prediciive velus: 08+
il i T " [ percentage of conect negaive predictions

negative (FN negative
(FN) l _ETN] 4 (TH! TH + FN = TN/ Tatal negative predictions)

T I l > 084 /
Flacall or sensitivity Spacificty: Acuracy: = 7
percantage of scuraisly prediced parcentage of I of comect 1 g
unhealthy individuals (TR /TP - FN=TP/ | predicted healthy individuss (TP + TN/ Total) & /

Toal urhaathy) (TNJFR + TH = TN/ Total heathy) & 04- /
Y
Global discrimination or odis rafio: F1 score: hamank: mean of precision and sensitiviy 02
TP« TN/ {FP x FH) FT=2VP (2P + FR + FN) 3
00 | | | b
i} 0.2 04 0.6 0. 1.0
1 - Specificity
IVIETIICS commonly usead 1o evaluate supervised classitication algoritnms
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Overview of the Machine Learning Workflow
L _— "
- e Feature
Engineering
Data Sources
= Formatting
= Experimental 'e’t-,% Biological « Cleaning
= Normalization
= Cell Lines = Genoms = Scaling
= Animal Models = Gene Expression = Unsupervisad Learning
= Histology = Protein Expression « Deep Learning
= Clinical Trials - Epigenome
= Microbiome
$ Environmental
o &y cinica
- Weather Macl_'llne Learnir!g ﬁ
= Air Quality = Family History Algorithm Selection w
= Toxins = Vital Signs
= Pollutants * Laboratory Tests i
= Census Data = Medications + Regression =%
- Disease Histary « Decision trees -~~~
i) ut Hi = Ensernble
ﬂ;‘ 1) Wearables zur_qlr.al |5tn|jy « Support . N - Mt
= Clinician Notes Vector machines -~ =~
« Smart Phone Apps o ST
+ Bigmiedical Devices « Neural networks e
« Fitness Devicas » Deep Learning
= Biosensors |

pa £ I £ P -

: — Model N p—

o : —— = DEVﬂDDdEl o Evaluation/ -

ol —— Prediction —
Mew Observations « Parameter Tuning » Optimization
» Feature Selection « Cross Validation
= Error Analysis = Decision Process
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FIGUNE 3 Visusl Rlepresentation of Same Commaon Algori thms in Machine Learning
A Bootstrapping
Bul'n'fd_
Variablas ?eusrurl t';:e
T semples
Rendomly Wariable
w safect
A 1
B Variables
&
Clirss
Bagging Repeat for n trees
B * Original dataset
(lin=arly inseparabla) Kernel trick
DD T D D D S D e DT
Support vector
@ Stavin responder é Jd 5 T L -.- h )
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- }
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™~ ] (=g 1
a =" = -
1 ] ! 05
=4 o 2=
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fram non-responders in 20 - R S e - 2 o
Gene 1 Expression O
C D
Agent —
|
= =
a >
g = 2
6 ™ =]
b
.f;- .-.'\ -
i L \ Environment {x} B
?’ ? \?
Outputs

(A) Random forests : (incorporate both bootstrapping [selection of a subset of samples] and bagging
[selection of a subset of predictive variables] for each individual tree.

(B) Support vector machines. In binary classification, a support vector machine finds a hyperplane that
separates classes. The “kernel trick” projects input data to ahigher dimension before an ensuing support
vector is computed.

(C) Deep learning models comprise layers of stacked neurons that can be used to learn complex

functions.
(D) Reinforcement learning algorithms are used to train the action of an agent on an environment
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A True Relationship Improper Dichotomization
1.0 - o b 1.0 Sah o b N
o ~
= o
0.8 4 = 08
=
- £
£ 3
= 064 g 06+ -
& Fy g
L} =]
B 044 = 04
= ]
=3 £
= - e
02 g 02
| e = ey
| s oyl
|
|
B Good Calibration Poor Calibratson - Overdispersed Poor Calibration - Central Tendency
1.0 ¥ 10 4 ] 1.0+
]
0.8 0.3 0.8
06 06 Z 06 ]
b=} = b=} R
a X - 1l A
[ 3 B B |
e 0.4+ o 04 e 04+ v
oo 0o i X oo
True Predicted True Predicted True Predicted
Probability Probability Probability Probability Probability Probability

v" (A) Visual demonstration of the concept of improper dichotomization on a dependent variable.
o Improper dichotomization obfuscates continuous relationships between predictors and response
variables.

v (B) Concept of “calibration” in predicted probabilities in a supervised learning model.
0 Because many machine learning tasks are framed as binary classification, the calibration of
predicted probabilities is often underappreciated.
o0 Proper calibration of predicted probabilities is often just as important as accurate binary
classification because reduction of probabilities to binary classifications can be understood as a
form of improper dichotomization
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CNN + Cardiology

15

% I
ECG — \\
Echo \\
crea b Comvolution R} = Fooli ng |. Flattening \'%
— p
A7
SPECT Va4
/ Output
CMR e -/ (s scores)
- i ‘-\ /
Ingat from f - - B Hidden  Hiddan Hidden
cardiovascular Convolutional layer Pooling layer layar yar layer
modalities 1 2 N

Risk prediction and probability scores
with a deep CNN with (N) hidden layers
from medical instruments
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Segmentation and identification

Cardiology
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250 250

200 200

150 150
100

100

50

) 4] 50 100 150 200 250
Automatic segmentation and identification of the left and right ventricle
v" Deep learning performed in our department from images obtained with a 1.5-T PhilipsAchieva
resonance system.
v' 12 original images
(A) Neural network identified and segment the left and rightventricles
(B) white color for the left ventricle, light gray color for the myocardium of the left ventricle, anddark
gray color for the right ventricle
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_i
50 100 150 200 250

Al +cardiology

Table Format

T R RTRY AT SRR A SRR SRR SN SR AN SRR SRR SN SR AN SRR SRR SN SR AN SRR SRR SN REEY AN SR SRR SN pRrET &,

e SRR

ML model Description Type of learning
SVM: support vector Used for classification and regression purposes, it involves finding a hyperplane that Supervised
machine best divides a dataset into different claszes. A commonly used model in differentiating

between different cardiac pathologies in echocardiography (4,13,14).
RF: random forests Consists of a large number of individual decision trees that operate ensemble (4,13,14).  Supervised

KL: kernel learning Method of using linear classifiers to solve non-linear problems. Commonly used when Unsupervised
combining cardiovascular data from different sources (4).

CNN: convolutional neural  MNeural networks used to classify images, cluster images by similarity and perform Unsupervised or
network object recognition. Consists of input and output layers separated by deep supervised
hidden layers (Figure 3).

S TR SUTRY SUTRE ST SRIRT SRIRT SRTRE SRTEE Y SRR SRR SR SR SRR SR TR SRR SUT SRIRE SRIRT SRIRE SR SRR SRR SRR SRR SR SRR 6
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Y SRR SRR RN SRE SRR SRR SRR SRR SN PR SRR SRR SR SRR SRR SRR SRR SN RN SRR SRR SR SRR SRR SRR SRR SR SRR )

Training Testing

Application ML maodel it etacat
Differentiating between HCM & physiologic hypertrophy SVM — 139
RF CNMN patients
Differentiating between HCM, cardiac amyloid and PAH CHNMN 12,035 8,666
studies studies
Differentiating between constrictive pericarditis & restrictive SVM KL = 94
cardiomyopathy CNNM RF patients
Classifying still echo image captures into apical 2 chamber, SVM KL 210 clips a9 clips
apical 4 chamber and apical long-axis view RF CHNN
Classifying still echo image captures into 15 standard echo CMNN 240 27
views patients patients
Classifying echo studies according to the ASE/EACVI diagnostic CMNN 6,182 1,546
algorithm for diastolic dysfunction severity studies studies
Assessment of myocardial velocity KL — 55 patients
Detecting wall motion abnormality CHNN - 61 patients
Quantifying MR SVM 5,004 clips -
8 SVM, support vector machine; 8 HCM, hypertrophic cardiomyopathy;
& RF, random forests; & PAH, pulmonary arterial hypertension;

£ MR, mitral regurgitation

AT SHYEE SRR SRR SR PR RN RN RN SR SRR SRYEE SRR SR SRR PR PR S SR S SR S S iy iy sy s s s
A FHEE SRR SRYEE SN PR PR SRR SRR SR SRR SRR SRR SR SRR RN SRR R R SRR SRYEE SRYEE SRY SEERY SEERY SEERY SRR uE sRres

Training Testing
Application ML model dataset dataset AUC
(patients) (patients)

Screening hyperkalemia from a CHNN 449,380 61,965 0.88
2-lead ECG in patients with CKD

Detecting asymptomatic LWV CHNN 44 959 52,870 0.93
dysfunction from a 12-lead ECG

Predicting AF in asymptomatic CMNN 126,526 54,396 0.90
patients in sinus rhythm from a
12-lead ECG

Detecting LV hypertrophy from a CHNMN 12,648 5,476 0.87
12-lead ECG

Predicting gender & age from a 499,727 275,056 0.94
12-lead ECG CNN

Diagnosing arrhythmia from a CMNN 29,163 328 0.97

single lead ECG
Detecting MI from a 12-lead ECG CINN — 290 —

v AF, atrial fibrillation; CKD, chronic kidney disease; LV, left ventricular; M1, myocardial
infarction,;

v" ECG, electrocardiogram

¥ ML, machine learning; CNN, convolutional neural network; AUC, area under the curve
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Electronic health records (HER) 1N

Al +cardiology

; B
:: Electronic health records (HERS) %
A Application Training dataset Testing dataset AUC g
: (patients) (patients) %
: Predicting non-hypertensive HF 700,000 78,214 0.87 %
’ Predicting MI 700,000 76,214 0.85 g
! Predicting clinical deterioration on the wards 161,999 108,000 0.8 %
E (cardiac arrest, ICU transfer or death) %
A Predicting hospital re-admission within 30 days 39,533 16,944 0.52 g
i in HF patients 747 991 0.78 %
; Predicting incidence of HF from EHR events 265,336 33,317 0.78 %
. AUC, area under curve; HF, heart failure; MI, myocardial infarction; ICU, intensive care unit. %

Software for

Al +cardiology

WA SHEE SRR SRR SR RN SRR SRR SRR SR SRR SRR SRR SN RN SRR RN SRR SR SRR SRR SRR SR PR SRR SRR SRR SR aurEs

Elucid's Al analysis software in action.
v" Left image : coronary CT angiography of a vessel showing plague heavy calcium burden.
v’ Right image: processed by Elucid's Al software,
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16

Inflammation was the missing piece

LAD RCA LCX LAD RCA LCX

- = _ - E
Post-hoc CaRi-Heart analysis ravaaled patient had Post-hoc CaRi-Heart analy51s revealed patlent was at
(<50" centile in all vessels, compared with people - , with in all arteries (above the
of the same age and gender), indicative of low 95" centile, compared with people of the same age and gender),
indicative of

AT SUEITE SUEIRE DGR SUY SURY SR SUIRY SUIRY S AU AU AU AU SN SHINY SN SIS NI SRS NI N SR SRENY SRENY SRENY SR SRR

"

*4"\&\"ﬁ\w’%\"ﬁ\w’%\w’%\"#\\W’%\"#\\W’%\"#\\W’%\"#\\W’%\‘<Q‘\’Qf\\"x’f\\‘<Q‘\’Qf\\"x’f\\‘<Q\\’Qf\\"x’f\\‘<Q\\%‘%%%‘%%%‘%%%‘%%%‘%%‘%%%‘%%%‘%%ﬁ

{24 = oo pi® _ A
v One page from an Al report on the coronary plaque from apatient's CTA scan.

+ FDA-cleared software developed Cleerly enables rapid soft plaqueAl assessment,

+  These types of reports may enable a new level of preventive care in cardiology,
O treating patients long before they have symptomatic disease

+ Overcoming previously tedious and time consuming manual task of making these calculations

///// AEELY SEERY SRR SR SRR SRR SRR SRR SN PR RN SRR SR SRR SRR SRR SRR SN R SRR SRR SR SRR SRR SRR SRR SR SR

R ]

AAA: CNN: 61b Fit Base—Cardiology 356



B EERY EEGY RE SUREE SUREE SUEE SUREE SUREE S GREUY SRR SRR SRR SRR RE U EE SUGE SUEE S EE SN SRR SRR SRR SRR SRR RE SR Sy £,

16

h o PlATK

R-PLB

v’ Al-generated coronary tree from a patient's CT scan

+ showing a color code of areas of interest for plaque burden from the Cleerly software
shown at SCCT 2022.

ElucidVivo : :
Histologic
3D View Cross Section Comparison

Lipid-Rich Necrotic Core 3

Calcification 1
Intraplaque Hemorrhage*

Matrix

Fibrous Cap/Perivascular
Adipose Tissue*

*Available in ElucidVive Research Edition anly.

Example of the CT image
v Al plague assessment, cross section of a coronary plaque
v Al assessment and the matching histology for comparison from the same vessel segment

AR AT AR AT AR AT AR AT AR AT MR AT AR AT AR AT AR AR R AT AR AT MR AT MR AT R AT MR AR R AR R

from testing of the Elucid Al soft plaque analysis software.

AR SRR G S S SRR SR SRR S SR SRR SRR G S SR SRR SRR SRR SR SRR S S SR SR SRR Y SR SR
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Cardiac Instruments
Single photon emission computed tomography

(SPECT)

Al +cardiology

Cardiac
Single photon emission computed tomography (SPECT)

v" Delivers images much faster than current models.
v The team presented its findings at the 2022 annual meeting of the Society of Nuclear
Medicine and Molecular Imaging (SNMMI)
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Heart-Flow's new RoadMap

Stenosis software using Al
+  Shows areas of interest for possible stenting
0 based on a patient's CT scan and FFR-CT.
v The software was rolled out commercially in April 2023

s

Literature

s

Al +cardiology

=

H AT SHRE SRR SRYEE SR PR SR RN SRR SR SRR SRYEE SRYEE SR SR PR SRR R R SRR SRYEE SRYEE SRY SRERY SEERY SEERY SEERY R aRres

Publications indexed in PubMed
v" Al, machine learning, and deep learning in cardiology.
v’ The details of the publications by area of interest
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—explainable ai: (Waorldwide) — grtificial intelligence: (Worldwide)

: Google Trends is a free tool that analyzes popularity
. Google Trends shows trend in search terms for (Al)/explainable Al for the past 10 years.
; The y axis represents the normalized relative number of searches of the terms over time

of Google search terms using real-time data.

202201

Identificati

on phase

36

| Records retrieved through database search

(n=8381)

Duplicate records removed (n= 2511)

v

Screening

phase

Publications screened on the basis of titles |

and abstracts (n = 5870)

-

Publications excluded (n = 2925)

Unrelated topics (n = 1375)

Language other than English (n = 702)
Non-peer reviewed publications, technical
raports, workshops (n = 848)

Eligibllity
phase

Inclusion

phase

Records assessad for eligibllily (n = 29458)

Publications excluded (n = 2849)

Publication year not between 2010 and

2022 (n = 1348)

Unable to download full-text (n = 25)
Lack of sufficient details (n = 501)

Not related to heart disease, ES, DSS and
Mobile App for ECG interpretation (n =

a75)

Studies included for the review (n = 96)

Flow chart ofPRISMA model

M B R M B R L R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R RO R RO RO R LR R
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®

38

Articles \f'-

Database j, I l_________‘e_\__:

?

|
|
PubMed 4
o Article has j
2 Knowledge? :
| |
ﬁ (I 1
S |
Annotation | | | :
! | 1 1
PoER | | WhatKind of !
¢ ! : : Knowledge? i
I | i 1
Corpus i | :l _________________________ !
! i v
: : Isolate (K) B
l__""j ______
Ontology L/ | Knowledge
'|! :
7 v
: | Translate K
:r-“j """ Into Rule (R) C D
' |
! R P T WE PP UT Uy U8 oF P SrIu
E i i # » Develop
| Lwm=LtRF LVX (L)
\""""'i
I

\ Clinical DB

MPI study
Database

B

Process for rule learning from PUBMED articles.
Processing the articles/ abstracts selected.
Automatically (or manually) isolating the text with the knowledge (K).
Using the text isolated from B and automatically (or manually) translating into production
rules.
Taking the new production rules (R) and automatically (or manually) inserting them into the
new updated expert system (LnX1) called LVX.
Testing LVX with MPI databases to retain rules if accuracy (A) isimproved.
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2022
7%

2010
2021 5%

2020
13%

2019
12%

2018
10%

2017
14%

Percentage distribution of the studies per year

i, i

i, i

i, i

i, i

i, i

Applications

Al +cardiology
Disease prediction , Confirmation

; . 19 ,
Area Application Technigue Method Results ’
Arrhythrmias Prediction of paroxysmal AF Supervised Data: 106 signals from 53 pairs of Sensitivity (100%),
from heart rate variability leaming electrocardiograms for training specificity (95%), :
Algorithms: KNN, SVM, NN accuracy (98%)
Arrhythmias Prediction of AF recumrence Supervised Data: 118 patients with Identification :
after pulmonary vein leaming 56 clinical, laboratory, and of 7 predictors
cryoablation procedural variables from each confirming '
patient univariate statistical A
Algorithms: GB, SVM, analysis A
oversampling
Arrhythrmias Classification of cardiac Supervised Data: PhysioNet/Computing in True positive, 95%; :
arrhythmia alarms in leaming Cardiology Challenge 2015 False positive, 83%
telemetry Algorithm: RF :
Arrhythmias Prediction of hospital Supervised Data: ANZICS registry, 39 566 Area under the
mortality in patients with leaming patients curve of the best 4
resuscitated cardiac arrest Algorithms: LR, GB, 5VM, NN, RF, algorithm: 0.87 (vs ,
from a registry combination (RF, SVM, GM) 0,80 from the A
AFACHE 111 scale
and 0.81 from the 4
ANZROD) A
Arrhythmias Detection of up to 17 types Supervised Data: 1000 ECG signal fragments Accuracy (91%) 4
of arrhythmias from ECG leaming from the MIT-BIH Arrhythmia A
database ]
Algorithm: convolutional NN £
Cardiovascular Prediction of cardiovascular Supervised Data: 378 256 individuals; Area under the ]
risk events at 10 years from leaming demographic data, medical curve of the best £
clectronic medical records records, medical prescriptions, algorithm: 0.76 (vs A
and biological tests 0.72 from the ACC/
Algorithms: RF, LR, GB, NN AHA risk prediction /]
scales) 4
Ischemic heart Prediction of major cardiac Supervised Data: 2930 patients and Area under the /]
disease adverse events in patients leaming 268 variables Algorithms: SVM curve of the best £
with acute coronary and RF together with algorithm: 0,672 A
syndrome from clectronic subsampling and oversampling (significant ¢
medical records techniques improvement vs the
GRACE scale, + 4.8%) 4
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Exaemple Algorithm Class

20

D sedvan tages

Example Appliation
(Ref. 2

Suprervised Leaming
Geml: Predicton of outarme, clesahicitan of
olmerviton, estmaton of & paramete

Regul ey fisgression

Ensembles of decision tees

Sagrpodt veckor imachines

Unsupervissd Lesming
ol DEcoveny of hidden sroctum oo deta,

Straightiorward and automatic soluton
tn hegh-dimensional probiems

Famikisr inbe maetataons for mlstionshin
of variahles to aulcomes

Often best “off-the-shell® algarithm
for praciction or clesification
Fastuse = bection and varishle importsnc
asemsment are buillin
Traeeforms Gnex clesifiers into nonfinesr
i sifoers with the “bemel trick®
Often maioss highly securate
predictions

For groums of comelated
{eatures, sriitrary selection
of single festure (LASS0G

Mo uselul for peediction
thim for deteriptive amalyss
of datiet and variable

Tendency to ovedfit data

Performa nanprobatilistic
clesfaation by default

Computation cn be difficult
in high-cimenssonal spece

Comtnction of 2
prechictive moded for
atube myocandal
nfarction by wéng
protenime
messunements and
clinacel variables (18]

Prediction of
candicrvise il br
event rigk {12

Prediction of m-stent
e enn s
Trom plasma
metshalites (22

explora on af relxtionships between visisbies
Features discovensd by usupenised Lasming

can olben be nconporated inlo supeivesd
lerming modeds

Desesp = aming slgosthime

Tenzx fadnsaztion

Topologsal data anayss

Current sixte-of-the art method b fexture
engineenng; kstures are often wed &5
gt Tor supervised Baming model

‘Wi interest atress incustey and arademis;
rapidy develngng o fware scosystems

Waturd inconpotson of

oo timoekad amdl. o Mk onad data

ntegretabie chstenng and dscovery
of varishle mixtonstips

Computationally expemive
b train

Requires a Lenge ditaset to train
thee maodel

Model int epretabiity can be
difficutt

Modest numder of
sppbeations thus Tarin
pubiBhed candiovis o Lt
feparts

Chaice of factorzation algarithm

& crucial for resulls
Saltware smayiten k= mature

than for othes methads
Commercisl offerngs fequine

liensing. agnesmi

Comstruction of
predictive
repsésen Letions of
patients in an
ety ned Tashion
fram electranic
health recards {36)
Suttypng of mogestive
hieart failire
wilh preserved
wection Faction (34

Subitymng of type 2
diabes
melitu from
electunic
mieclica] records 35}

£ "Deep learning is included as an unsupervised learning method; however, many of the most

a8

v LASSO: least absolute shrinkage and selection operator.

notable applications of deep learning are those that use features learned using deep neural
networks as inputs tosupervised learning models.

In fact, the final neural network layer in a deep learning model is often simply a classification

layer, and in such a case deep learning models may be considered to be an example of

supervised learning.

Intervention Cardiology
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Applns

34

CENTRAL ILLUSTRATION: Artificial Intelligence in Precision Cardiovascular

Medicine

D

Genetics

‘
Gut
mal  \Microbiome

e

Precision Medicine
Platforms

Social Media

0

i

Omic Data

Wearable
Technology

i

L

Artificial Intelligence l

3 -
e S

Cloud
+

. Researchers
| | and Physicians
< ; Big Data
= Analytics
f
Supervised _
Leaming :
Precision Cardiovascular Medicine -

Krittanawong, C. et al. J Am Coll Cardiol. 2017;69(21):2657-64.
Interplay of big data, Al and precision cardiovascular medicine.

v Ref: Krittanawong C, et al. Precision
20167;69(21); 2657-64.

cardiovascular medicine. J AM Coll Cardiol:

enf:]——b

1. More Health Data from
Patients via Mobile applications
& EHR

2. Encrypted Health
Recommendations relayed
back to Individuals (Fatient

remaing anonymous but receives
recommendartions Dasad o
aggregale population datay

Z. Data is encrypled and stored
on a blockchain
{Identity remmains secure while
agoregate data can be utidized
ramaining HIPPA compliant)

|
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_ v" An example of an individual patient’s data can be de-identified, encrypted,
- and stored on the cloud to amass the volume of aggregate patient data necessary for

. the development artificial intelligence solutions to relay back personalized clinical
- inferences.

A FHEE SRR SRYEE SN PR PR SRR SRR SR SRR SRR SRR SR SRR RN SRR R R SRR SRYEE SRYEE SRY SEERY SEERY SEERY SRR uE sRres

Clinical wearable technology

demographics laboratory tosts
Data
=S -
_—
wmee
OGS LGS CTs & CMRs
processing {' 'E
artificial neural network( ANIN)
support vector machine(SWVNh)
decision trec
supervised learnin PR
: P £ naive Bayves{(MNB)
- mechine e aTer s
learnin NI -
el > K-nearest neighbour (KINMN)
regression
AT J A eipervisea lan i { clustering algorithms

association rule-learning algorithms
reinforcement learning

o e convolutional neural networks (CNMNs)
('le,) 5 recurrent neural networks (RNMNs)
deep neural networks (IDNMNs)

applied || '|I

o>

~ cognitive
COIMpuring

Clinical Scenarios

Al application in clinical practice

A FHEE SRR SRYEE SN PR PR SRR SRR SR SRR SRR SRR SR SRR RN SRR R R SRR SRYEE SRYEE SRY SEERY SEERY SEERY SRR uE sRres

" CVD dignosis

Cardiac rehabilitation &

Ok Promte auxiliary tools
Optimize treatment 4 AI

4

in CVD

‘ CVD stratification and typing

Al application in CVD

CVD outcome prediction E i ; Eﬂ
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CENTRAL ILLUSTRATION Applications of Al in IC

Al-assisted Clinmical Decision and Procedure, Data-Driven Therapeutics

ata research, predic

\a. antiplatelet/anticoagulation},
Artificial
Intelligence

Cagnitive computing: Automated clinical decision support in
clinic and catheterization laboratory (decision of treatment
plan, need Feor intervention, procedure planning, e.q. stent
and balloom sizing)

Compuiter wision; Acquisition and interpretation of images,
Including computer-akded diagnosls and Image-gquided
procedures, angio-based FFR

Al-guided Diagnosis, lmage Interpretation
yijeayaya) pue Hupn)uop ajoway

Rebotics: Auromated ar semi-automatad cardiovascular
robotic system

Deep Learning
Research and Development, Population Health, Health Systems

Sardar, P. et al. J Am Coll Cardiol Intv. 2019:12(14):1293-303.

Applications of artificial intelligence (Al)

& Al-guided diagnosis, image interpretation, clinical decision support, data driven therapeutics,
researchand development, population health, efficient administration, workflow and regulation
and Al-assisted interventional procedures.

- EHR : electronic health record,;

. CT-FFR : computedtomography fractional flow reserve;

- IVUS : intravascular ultrasound;

- OCT: optical coherence tomography

European innovation in interventional cardiology

1958: 17 fully implantable card| ker (Stockholm, SE)
1977: 1 percutaneous transluminal angioplasty (Zurich, CH)
1 pereutans " al BAV in AS (Rouen, FR)

1986: 1% y stent implantation (Te FR and Lausanne, CH)
1994 1* percutaneous transluminal septal myocardial ablation (London, UK)
2000: 1" transcatheter pulmanary valve implantation (Londaon, UK)
2002: 1% tr theter aortic valve Impk 1 (Rouen, FR)

2012: 1* transeatheter mitral valve replacement (Copenhagen, DK)

Safety standards ———o

Early feasibility studies ——

Structured device trial strategy e

<
Agile regulatory processes —— Q —/
Collective effort: physicians, trialists, s Improving
regulations

patients, regulators, and industry
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FIGURE 5 Advantages and Challenges of Al in IC Z
#

Advantages and challenges of Artificial Intelligence in 2
Interventional Cardiology y

#

z

#

Precision, accuracy and data driven decisions Complexity and Cost ?
on diagnosis and treatments ’
#

Procedural assistance Lack of human touch, commaon sense 7
#

#

Integration of large and diverse information Concerns regarding privacy and security, .
“black box" design ?

:

Decrease Inter-observer and intra-observer Lack of large well curated clinical or imaging 5
variability data or “Trainingdataset” g
Better in repetitive, laborious, time- Regulation, legal and liability issues ?
consuming job ’
Time saving administrative process, cath lab  Threatto human job 5
workflow Z
#

?

A FHEE SRR SRYEE SN PR PR SRR SRR SR SRR SRR SRR SR SRR RN SRR R R SRR SRYEE SRYEE SRY SEERY SEERY SEERY SRR uE sRres ////V//S’(ﬁ

Applications of Robotics in IC

Cardiovascular
robotic platform

Robotic
assistant

Tele-
intervention

Supply
chain robots

Microbots

Interventional
training
simulator

A AR AR AR AR A M A M A M A M AR AR AR AR A M A M M Mt
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Future Perspective

Al +cardiology

AR SHRE SRR SRYEE SR PR SRR RN RN SR SRR SRYEE SRYEE SR PR RN SRR SRR R SRYEE SRR SRYEE SRY SEERY SEERY SEERY SRR R aRreE

Future Catheterization Laboratory With
Acrtificial Intelligence-Enabled Technologies

Semi-autonomous Vascular Robotic System égg?}ﬁg:gdv?eﬁ% Srﬁse}ggurem sitERE
Performs many procedural steps with manipulation of patient anatomy in a
minimal assistance from a remote holographic display for procedural guidance.

human operator. Includes machine
learning and computer vision

algorithms. Connected to a cloud
supercomputer.

Can also display pre-procedural images and
| other elements of the medical record.

Voice-Assisted Control of Systems
Allows for control of various
technologies through an integrated
voice-activated assistant. _
(1] A .,
Clinical Decision Support System
Collects data from the electronic medical record, medical
literature, guidelines, regulatory warnings, and other
internet-based public information. Provides analysis of
intra-procedural progress that integrates this data with
procedural imaging and patient status. Includes predictive
analytics with the use of cognitive computing to support
optimal clinical decision making.

Artificial intelligence-enabled future catheterization laboratory with
Clinical decision support system,
Voice-powered virtual assistant,
Augmented reality platforms, and
Semiautonomous/
Autonomous robotic system
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VR, AR, Mixed Reality
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46

Augmented RealityCardiac Holographic Display for Procedural Guidance

A\

|

A

G

. . Augmented Reality System
Semi-autonomous Vascular Robotic System Real-time viewing, measurement, and
Performs many procedural steps with manipulation of patient anatomy in a
minimal assistance from a remote holographic display for procedural guidance.

human operator. Includes machine
learning and computer vision

algorithms. Connected to a cloud
supercomputer.

Can also display pre-procedural images and
other elements of the medical record.

Voice-Assisted Control of Systems
Allows for control of various
technologies through an integrated
voice-activated assistant.

"

Ciinical Decision Support System
Collects data from the electronic medical record, medical
literature, guidelines, regulatory warnings, and other
internet-based public information. Provides analysis of
intra-procedural progress that integrates this data with
procedural imaging and patient status. Includes predictive
analytics with the use of cognitive computing to support
optimal clinical decision making.

Al-enabled future catheterization laboratory
& Clinical decision support system,
£ Voice-powered virtual assistant,
£ Augmented reality platforms,
£ Semiautonomous/autonomous robotic system
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FIGURE 3 Auwgmented Reality Cardiac Holographic Display for Procedural Guidance

Expert systems (ES)
Fuzzy logic

Non-expert |

user
Query |
. User
- # Interface
Advice

Knowledge |
Base [} |

Knowledge
from an expert

Expert user I

Components or structure of an expert system
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Range of logical values in Boolean and fuzzy logic

|
0 0 011 1

(«) Boolean Logic.

|
1 0 0

02

|
04 06 08 11

(h) Multi-valued Logic.

36

MNeural knowledge |

Rule: IF-THEN |

I Inference engine

!

| Explanation facilities

i

| User interface

4

3

Y
z )

Whe N T

ki ks

The architecture of a neuro-fuzzy inference system

Layer 5

R A R N SR SR SR SN SRR N SR SRR SR SN SR SN SR SN SR SN SN
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LV Expert systems (LVX)

Fuzzy logic

38
NORMAL PATIENT KNOWI.EDGE
DATABASE & STUDY BASE
CRITERIA ACQUISITION
) l | Rules
PARAME'I'ER i Image file
INPUT INFERENCE
LIST r ENGINE
l PROCESSING A
, EI " . :.___:,-x & S
£ S‘IGMGID ' QUANTIFICATION
FIT . JUSTIFICATION
Patient ENGINE
Quantitative
l Parameters
B
O
PARAMETER 3 | CF VALUES
KNOWLEDGE CONVERTTOCF — % | gop
LIBRARY g MPI REPORT
Ry

Flow diagram for LV X Expert System.
v’ This diagram shows the flow of how a patient’s MPI study is acquired, processed, and quantified
?  to extract perfusion, function, and viability parameters.
?  These parameters are converted to certainty factors (CF).
?  Then the input to the LV expert system (LVX).
v The expert system is comprised of
I knowledge base, the inference engine and the justification engine.
I The trapezoidal blocks indicate domain expert knowledge;
I the rectangular blocks indicate software algorithms.
I The parameter knowledge library is only generated once and then regenerated only when
the knowledge that creates the parameter input list is enhanced by more experience or
more data.
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Annotation Results for 7769457 . txt.20mi in processed

=7xml version="1.0"7>

=Document =

=Pmid>7762451 </Prnid >

<Journal = Journal of Nuclear Medicine </ Jourral >
< Tithe >Using gated
infarct or artifact, <fTitle >

=Abstract >Perfusion-scan fixed defects may result From soft B s stteruation, Ceorescng et
specificity For caronary diseasse and myocardial infarction (MI). Gsted S9mTc-sestamibl SPECT
may help differentiste ME from artifact since fived defects with decreased Function (wall motion
and thickening) probably represent ML, whereas attenuation artifacts ether hawve normal
Function or at least do not demonstrate markedhy leﬂxeﬂ Function. METHODS: Ungated resting
and gated stress S9mTc-sestamitl SPECT was pes d in 551 patients ref d For
evalustion of coronary disssse. From resting snd summed gated stress images, 180 patients
{33%.) ware identified with isolated fixed defects. Function of the defects was assecced
subjectively from gated stress images and results were correlated with chrécal (history andfor
ECG Q-waves) evidence of MI. RESULTS: OF 102 patients with Fixed defects and chrical MI, 95
(96%) had abnormal defect Function. Of 78 patients with ro clinical MIL 18 (25%) had decreased

to ch. ize fooed myocardial defects as

Furction of the defect, possibly indicating silert ML In 60 of the 76 pationts (7795%) with no chrical
MI, defect function veas normal. Becauss most (219%) of fixed defects with normal systolc
Furction occurred in women with anterior ficed defects ($679%) or men with rferor fixed defects
(43%), these were most kely sttenuastion artifacts. By reclassfying patients with fived defects
and normal Function as normal, patients with unexplained foced defects (no clrecal MID decressed
From 14% to 3%, CONCLUSION: Gating provides a valuable adiunct to 99mTc-sestamibti
characterizing Fixed defects and improving test specificky. </Abstract >

® end=

= _§ Conclusion

- end =

sMeshTarml s> |
Legend . |
=< Co + [l Mer e oY
<.
[ SelectAs | [ Deselectas | [ rode unselected |

Clhick In Text to Ses Annotation Dek.ail

. § Annotatiors
= 4 Ontology
= _1 ontclogy (CSPECTT)
® begin= 1812
® end= 1817
= _4 Merlindcromnym

= 4 MarinAcromym ("SPECT")
® begin = 1812

1817

& expandedForm = single photon en|

= 4 Conchusion ("Gating provides a valuabl |
@& begin = 1758

1893

Document annotation viewer and analyzer.
Output of an Annotation Viewer and Document Analyzer using IBM’s Unstructured

Information Management Architecture
o]

manually compare the results of the automated knowledge ranking.
The different sections of the abstracts are automatically identified and annotated using the

ontology terms for the nuclear cardiology domain

to facilitate the human experts visualize the information from a pertinent abstract and

38

Integratung artificial intelligence and natral language processing

Pl : BC1 BAl1 2> oUTl P2
BCl - ICONFEF] LV _aztifact BRC2:
LV stress perfusion_is_ _abnormal
BEAL: HASZS (FATIENT, { [GENDER] . DEFECT) } BEAZ
LV artifact))

= HAS (EATIENT, FUNCTION)
oUTl - ITF GENDER AND DEFECT AND FUNCTION ouUT2 -
FUNCT ION

THEN CONF LV_artifaot
LV_stress_ perfusion_is_abnormal

DEFECT =
FUNCTION:
GENDER :
POSITION:

[moT]
[HNOT]
(Gendexr is (male) [}

(inferior |lanterior)

LY perfusion_ defect is

Gendexr

- reversible (
LYV resting function is abnormal
is{female))

RCZ RAZ 23 OoUTZ2

[COoONE] [NOoT)

HAS (FATIENT,

ITF LV_artifact AND

THEN CONE

(DEFECT .

POSITION )

FUNCTION.,

DEFECT AND

A Exalnpla_ rule extraction pattern

Applying Pattern Pl generates two rules., RrR1
R1 = IF i=(female) AND HOT
LV_perfusion_defect_is_reversible(anterioxr)

AND HOT LV _rTe=sting function

Gender

and RZ:

is abnormal

reversible{(inferior)

THER STRONG_EVIDEHCE LV_artifact
RZ2: IF Gander_ is(male) AND
NOT LV perfusion_ defect is
NOT LV_resting function_is_ abnormal
THEH STRONG EVIDEHCE LV_artifact

Applying Pattexn P2,
B3: IF
NOT LWV _resting_ function
STRONG EVIDENCE NHOT LV

AT
THEHR -

using the cutput of Pattern P1l.
LV artifact AND HOT LV perfusion_
abnormal

'—t—ra‘:ﬁ_parfu:'lc\-n_

to
defesct_is

is

AND

generate

__abneormal

rule R3:
_reversikble AHD

B: Production rules generated using rule patterns in Ao

Pattern development for production rules extraction.

A. Example of two rule patterns, Pland P2, developed. The antecedent of pattern P1 requires the text to

specify thepatient’s gender, the type of defect (e.g., fixed defect), and heart function (e.g., “*normal
systolicfunction’’). If matched, the system stores the variable bindings for reuse of other patterns,

andoutputs a production rule.

B. When Pattern P1 is applied to a semantic network; it generated theresulting assertions (Rule 1 and Rule
2). Then, pattern P2 is applied, using values extracted bypattern P1, resulting in Rule 3.

L REEEE N PR N PR N PR N I R S R S R PR M RS N PR N PR A PR M S R S R S N R N RS M R N R N
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Natural Language Processing (NLP)

38

Free text report

Feature Identifying report sections
Extraction { Segmentation)

Sentence splitting
(Boundary detection)

Stemming, spelling,
abbreviations
{(Word normalization)

Part-of-speech tagging
(Syntactic analysis)

Concept recognition
(Semantic analysis)

Concept absent or present
(Megation detection)

NLP
Features

Feature
Processing

Machine

Rule
ybrid Learning

Based H

s?r:fkm [ Report classification }{Information extraction ]

b

Gﬁprmanm evaluation / implemantatiD

Natural Language Processing Pipeline
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Certainty Factors

Anterior wall ischemia

There_is

positive_evidence

negative_evidence

of

anterior_wall

Myocardial ischemia

Classic machine learning NLP techniques.
v’ Support vector machines, random forests, and Bayesian systemsuse vector representations of text
forclassification task.

Stenosis

L

Coronary artery calcification
£ ldentification, segmentation, and scoring Using Al
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v Al-Coronary arteries (A)
v Segments them (B)
v"Identifies and classifies coronary plaques, and measures the severity of stenosis (C,D).

22
Diagnostic performance of artificial intelligence in coronary stenosis

Year Methods Sensitivity specificity PPV NPV Accuracy
2016 SVM 093% 05% A NA 0495
2020 DL 945 63% 94% 59% INA
2010 Computer-aided 100% 85% 58% 100% 100%
2011 Supervised Leaming 97.62% G7.14% MNA 99.77% NA
2012 CAST =90% 40%—70% MNA > 95% NA

v DL, deep learning; SVM, support vector machine; PPV, positive predictive value;
v" NPV, negative predictive value; NA, not applicable

v" CAD, coronary artery disease;
v" QCA, quantitative coronary angiography;CCTA, coronary CT angiography;
v" CAST, computer-aided simple triage;

24

- Central + Left-sided - Stabbing + Right-sided + Sharp
= Pressure « Dull = Tearing + Fleeting
= Squeezing = Aching = Ripping = Shifting
- Gripping - Burning = Pleuritic
- Heaviness - Positional
- Tightness
- Exertional /stress-related
« Retrosternal

High Low

=
Probability of Ischemia

Index of Suspicion That Chest “Pain” Is Ischemic in Origin on the Basis of Commonly Used
Descriptors
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Top 10 Causes of Chest Pain in the ED Based on Age (Weighted Percentage)

1844 y of Age 4564y of Age . 65-79 y of Age . 280y of Age
L B B B
O, 0% b Y 0%
s A [ ama
. o En g 113
2% i it 0%
£l 3 i 108 lid
o I =T | e e [ —— i | [STSTer—— o | [T T —
mMonspecific dhest pain w Nompecific chest pain

m M enenes (e chas pain
W Menspeeife chast pain

mCoronany shercekrosis W Corarary ather osclar sk
Pain B Carerdry @ hiradcled ok
m Painfi r empiration @
¥ m Carc b dyshythmia = Congestiee heart failure
Asieingl i B Paiifud repiation
u fcute myossrdial infarction  Acute rryecandia | infarction
8 i, musc sk ebetal W ALure myarardial infardisn
wFairdul respiartion o PTeumeEa
W Arsiety #l Cardisc dywhipthrmin
m Cargesties haart failure m Painful resgination
m Superiical @riuson FrVp——— v
u Cardlas dymiyehmia Abgominal pain = Cardimc ywrhythmia
W Pnausmania
m Esophageal dsordar WPneurmania Abdaminal prn
m Escpragsal discrder
I i S leetan Svher & unspeciied krwmr res piratery Grbmr & wnpecified ke mapratony
. m5upacficialing g divesse tiszae
Qiher & unspecilied lownr espiriory silhclion Tither merysus st apmptons & = Cther cistailatony d)eate
m Eszantial hyparfen don rtnrdrrs

Created using data from Hsia RY, et al (3). EDindicates emergency department.

24
Chest Pain and Cardiac Testing Considerations

Acute Chest Pain
Evaluation Risk of
ED evaluation Major CAD Events
Stable Chest Pain
Evaluation
Outpatient evaluation

Anatomic or

Anatomic or
functional testing
functional testing

-———————————————»

The choice of imaging depends on the clinical question of importance, to either a) ascertain the
diagnosis of CAD and define coronary anatomy or b) assess ischemiaseverity among patients with an
expected higher likelihood of ischemia with an abnormal resting ECG or those incapable of performing
maximal exercise.

ACS: acute coronary syndrome; CAC, coronary artery calcium; CAD, coronary artery disease; ECG,
electrocardiogram.
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24
Patient-Centric Algorithms for Acute Chest Pain

Evaluate for stable
chest pain
(Section 5)

Acute chest
pain?

History

+
physical examination

Evaluate for
noncardiac causes
(Section 4.3)

Potential
cardiac cause?

Evaluate based on
suspected etiology
using patient centric
algorithms
Y Y 4 Y Y
Acute caransry Acute aortic Pulmonary Acute Valvular heart
syndrome (not d boli icarditi di
including STEMI) syndrome embolism myopericarditis isease
(Section 4.1) (Section 4.2.1) (Section 4.2.2) (Section 4.2.3) (Section 4.2.4)

STEMI, ST-segment—elevation myocardial infarction
ECG: electrocardiogram;
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General Approach to Risk Stratification of Patients with Suspected ACS

24

Patient With Acute
Chest Pain

v
History
+

physical examination

-2

r

Obvious noncardiac
cause

'

h 4 Y

Obvious nonischemic
cardiac cause

,

Other cardiac testing
as needed

Possible ACS

¢ r

Low risk Intermediate risk
dii u::::ic Moderate-
testingg may be | _, S€vere
indicated abnormality

—-

ACS: acute coronary syndrome; CDP, clinical decision pathway;

)

High risk

ECG

Al improves diagnosis and treatment for patients
& Al-enabled clinical tools have tobe easily available and used
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I 1 IT
aVF

ECG views of the heart.
v’ Image created by Nicholas Patche, Boston Medical Center (CC BY-SA 4.0).

37

Q
S
QRS duration

PR interval

B QT interval

Waves reflected in an ECG corresponding to a cardiac cycle

ER PR R P R PR i S R T T s R R R S R S R S R P R

AAA: CNN: 61b Fit Base—Cardiology

381



36

R
+1 mVv —
+0.5 |-
P T
voltage &.
0 -
Q S
os L PR <ggg> ST
segment ; ianq Seoment
b PR T _
interval = QT interval -

time >

A typical ECG waveform for one cardiac cycle measured from the lead Il position

36

.

ECG Cloud
Processing
Centre

A generic design architecture of an ECG mobile
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ECG features in different cardiovascular conditions.

Cardiovascular condition

Commeon ECG features

Atrial Fibrillation (AF)

Myocardial Infarction (MI)

Atrial Flutter

Ventricular Tachyeardia
(VT)

Ventricular Fibrillation
(VF)

Absence of P-waves

Irregularly irregular R-R intervals

Fibrillatory waves (f-waves) instead of P-waves
ST-segment depression or elevation
ST-segment elevation (STEMI)

ST-segment depression (NSTEMI)

T-wave inversion

Q-waves (pathological Q-waves)
Sawtooth-shaped flutter waves (F-waves)
Regular R-R intervals (2:1, 3:1, etc.)

ST-segment changes (often with rapid ventricular

response)

Wide QRS complexes (=0.12 s)

Absence of P-waves before QRS complexes
Regular or irregular rhythm

Chaotic and irregular QRS complexes
Absent P-waves and T-waves

“Quivering” appearance of the ECG trace

37

Set of 15 diagnoses and number of cases in the database.

Diagnosis Number of cases
Normal 212069
Artifacted or bad performance 1138
Incomplete right branch block 26375

Complete right branch block 2407

Incomplete right branch block with narrow QRS

Not registered

1st degree atrioventricular block 565
Wolff-Parkinson-White preexcitation 163
Complete arrhythmia due to atrial fibrillation 181
Long QT Not registered
Short QT Not registered

Sinus tachycardia

Sinus bradycardia
Nodal/ectopic atrial rhythm
Sinus arrhythmia

Cardiac arrhythmia

2248

21439

Not registered
Not registered
2164
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37

MNoise filtering

L

Identification and measurement of R-waves

-

Identification and measurement of Q and S waves

|

Identification and measurement of P and T waves

r

Identification of possible Delta wave

r

Identification of structure rSR' in lead V1

Stages for the identification and measurement of waves

EERETEREE NEL NP TEAEL MEL NP TELEE MEL NP TELEE M REELE MRS WEREELE NEC WEREELE NEC NERLEL, NECTLIE UL NECTEID LD NECTEID NED NECTEIE D NECTE I NECIE S N T IESL AL T IEst

37
ECG

1400 : : T : : : : :
E 1200
Ll
==
=
E— 1000
=T

a00 i i i i i i i i

o 200 400 G000 800 1000 1200 1400 1600 1800
Samples
Bandpassed filtered ECG

S0o : ! ! ! ! : : !

200
z
=t
= 100
= ]

100 i i i i i i i i

a 200 400 s00 800 1000 1200 1400 1500 1800

Samples

Second-order Butterworth bandpass filter in ECG (Fazel-Rezai et al., 2011)

37

N M A A

Possible QRS patterns to be detected
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(f) ECG on noise level 0.1,
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Il
VAN
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&

]

(h) ECG on noise level 0.3,
classified as "F"

MIT-BIT ECG signals on different noise levels.
v The original classification label is N (normal).

& Then, MLP classified it as V (premature ventricular contractionand ventricular escape).
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() ECG on noise level 0.003
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(e) ECG on noise level 0.01

~ (d) ECG on naise level 0.005
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l,'\u\
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(f) ECG on noise level 0.03

NUWANAY

{(g) ECG on noise level 0.05

' (h) ECG on noise level 0.1

CPSC2018 ECG Lead I on different noise levels

NN, Brain Maker

44

Specificity: 62.8 %~

> Accuracy: T4 %

J

Bl Accuracy Bl sensitivity B Specificity
ECG-Al algorithm in LVD prediction

Sensitivity: 80 %
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Study Study type Study population ~ Key findings

Smith Randomized 500 patients with ~ Al-enhanced ECG
etal.  Control CAD significantly improved
(2019) accuracy in detecting CAD

Zhang  Prospective 800 patients with

etal.  Cohort suspected heart
(2019) disease

Chen Prospective 1200 asymptomatic
etal.  Cohort individuals
(2020)

Park Randomized 1500 individuals

etal.  Control with hypertension
(2020)

compared to traditional ECG
interpretation [75]
Al-enhanced ECG showed
higher sensitivity and
specificity In detecting
myocardial infarction (heart
attack) [76]

Al-augmented ECG
demonstrated higher
sensitivity and specificity in
predicting future
cardiovascular events [77]
Al-augmented ECG allowed
early detection of
hypertensive heart disease,
facilitating personalized
treatment plans [78]

AAA: CNN: 61b Fit Base—Cardiology

387



Patel Retrospective

800 patients with Al-assisted ECG provided

et al. heart failure real-time heart function ;
(2021) monitoring, enabling :
personalized treatment g
adjustments [79] :
Li et al. Retrospective 600 patients with Al-supported ECG :
(2021) arrhythmias interpretation demonstrated 7
improved accuracy in !
identifying complex Z
arrhythmia patterns [80] J
Lee et al. Meta-analysis 15,000 ECG records Al interpretation :
(2022) from diverse demonstrated higher 4
accuracy in detecting various g
arrhythmias compared to :
standard methods [81] :
Chen Meta-analysis 10,000 diverse ECG  Al-aided ECG analysis :
et al. records showed a significant :
(2022) reduction in false negatives, ;
enhancing the detection of ;
heart conditions [32] :
Wang Cross- 600 patients with Al-augmented ECG g
et al. sectional suspected ACS expedited the diagnosis of :
(2023) acute coronary syndrome, 5
leading to quicker !
intervention and care [63] :
Kim Cross- 400 elderly patients  Al-assisted ECG improved Z
et al. sectional risk stratification for s
(2023) cardiovascular diseases in :
the elderly population [84] :
E:
E:
47
iy Extracted || @Classification Features DEPRARE AN S
__/ w from medical [
= I records or ¢ @
Clinical Stress manually & & o e
Variables Variables | ® @ ® ( ® @
" ‘ & & o o o o
. Quantified ® © © @ © ©
. b with . Machine Learning
Perfusion Interpretation
Images Software e
Image
Segmentation

!
.

ted CT Images

Risk Prediction

@ (Bl

Death  Gardiovascular
Events

Coronary Revascularization

Deep Learning

Outline of ML and DL approaches to disease diagnosis or risk prediction.

i, 0 A0, e AR AT, A AR M AT M AR AT A A A A A AN A A AN, T A, T A, T A AR, Th A, TR AN B
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v' Clinical and stress variables can be obtained from electronic medical records for use as
classification features with machine learning.

v’ Imaging variables (including perfusion, functional, and computed tomography (CT) features) can

be obtained from interpretation software.

v These classification features enable machine learning predictions for disease diagnosis or
cardiovascularrisk.

v" Deep learning can be directly applied to images to provide image segmentation to quantify
features for machine learning or provide direct predictions

v’ Each input neuron at the left side represents the presence or absence and polarity of a delta
wave in one lead.
o 13" neuron: axis of the QRS complex.
0 six output neurons represent possible accessory pathway locations.
£ AS = anteroseptal; RL = right lateral;
£ RPS =right posteroseptal; PS = posteroseptal;
8 LPS = left posteroseptal; LL = left lateral.

£ 30

2:32 BrainMaker v2.0 Copyright(C)1989 Ccalifornia Scientific Software 0:00

System File Operate Options Display Print

Waiting Files: wpwnum2.srt Learn Rate: 1.000 Teolerance:
Fact: 1 Total: 1 Bad: 1 Last: 0 Good: 0 Last: 0 Run: 1
+ NO - NN GOLD
I oG as: B 22
II: 19
III: _ rL : IR 16
AVR: r _ 13
AVL: o res: R 10
AVF: : 7
Vi1: rrs: N 4
v2: -87654321012345678
V3: : - rs: R 11
V4: _ 9
V5: L : I
ve: o 5
as: 3
1

87654321012345678
Layout of the standard output of the neural network.
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v’ The four top lines indicate the state of the network, what task it is presently performing, which
files are used, etc.

v’ The left column shows the input: the presence or absence of delta waves and their polarity and
the electrical axis of the QRS complex.

v The two columns in the middle (NN = neural network and gold) represent the output, to the left
(NN) the output calculated by the neural network, to the right the gold standard (the location
determined during surgery).

v The two bar charts to the right show histograms of the weight matrices of the hidden and output :

neurons.
AS = anteroseptal; RL = right lateral; RPS = right posteroseptal; PS = posteroseptal;
LPS = left posteroseptal;LL = left lateral.

ANIAN

32

Saikhe Grog
, Intell§

36
Development Dt Measured Heart Disorde
Tite/AppNatie Objective Platform Alc:t::_sf::gn Parameters Detected
i Atrial
Captures a medical- F 4a T o
kardiaMobile grade single lead ECG signal "o and Ultrasound g Tbektion:
N 108 Heart rate bradycardia,
slectheat Ty tachycardia
Captures a medical-grade 6 Detailed ECG Atrial
— . lead ECG signal for Android and traces, Heart Fibrillation,
KardisMhileL, comprehensive analysis 105 Ultzasouid rate, weight, bradycardia,
heart condition blood pressure tachycardia
A companion application
g S ; i ECG traces, ;
CardiaxMobile ECG ~ designed for cardiac health  Windows and Wi-Fi Heartrate, QRS - us Riythm
menitoring with 12 Android lox. P Arrythmias
channels/ Lead complex, Pd, PQ
a ‘:ctixﬂih:: ll.;:\nn(;tlt%\nth Java and ECG s and
cardiolyse ol ; : : OTG USB cord other 17 None
existing cardio appliance Android
Qs parameters
Mobile application for 1 lead H EL:J t;mf_lsj{v
Beat2Phone ECG signals to monitor heart Android Bluetooth eG?:S 11'a (ﬁ . None
rate and posture Dealion
Timestamp
A 12-Lead Mobile ECG
TouchECG application for interpreting Android Bluetooth i a'cfs' Arrhy thmias
ECG signals cart rate

TS R hOTR R ODOTR OB OCDOTR R Oh TR RR TR SRR TR RR TR R TR R D TR R D TR R D TR R DL TR WM TR WM WMy
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Appraisal of mobile applications for ECG interpretation

36

ECG Features

1

Hybrid

qtinterval

Ficlucial Non-Fiducial
1
1 1 1 |
Peaks < Percent residual difference
Intervals Sepmisrits 118,30,31,58,67,74,79,1 Wistne = 16.73,129]
130,31,37,74,125] 131,74,85,127] SA38 (74,82,125,126)
-l prsegment | —'{ nPeaks ] —I pWidth | Waeled sethiod
| [4.6,1%,34,27,30,40 58 50,64

—! stSegment | _{ qPenks | _| greWidth | J67,68,73,77,129,130]

i 2

Correlation coefficient)
Cross-comelation analysis
16,72,73,129]

ECG phase spacence
[6, 73]

Auto-correlation
[6,65.73,74]

|| ECG morphological features

[6,73,78]

ECG stream
132]

Window remaval methad
[73]

" |[98,99,100,101,102,103,104,
107]

Kernel-based method using
CNN/GRU

Taxonomy of features for ECG interpretation and diagnosis

Fiducial + Contextual details
[28,30,55,105,108]

Fiducial + Non-Fiducial
|5.18,37 53,87, 106, 109]

36

ES and DSS Development Methods

for ECG Interpretation

"1 161, 158]. [67],
L 931 |

Y Y Y Y L 4 " v Y
Fuzzy Hybrid Big data
Kniowledge ; Supervised unsupervised .
(37], [40}, (61], ! ! Ensemble | [Neural based| | 1421, (521 181 analytics
St [82], [83] Lesrning LN [104] [881.190]
' Density H AN
Statistical - [OmOgenous 1200, [33], [35],
Expert B based |
oo |y 2 | R b R
[31L [57], [T1) [69] .
Cinear
4 Deep learning
ECG data > (551, 1e7), Heterogenous| [ | rs0] (69], [76), 851, [98),
> 28, 331,19 1881 > (o) | [100), [101], [102]. [103].
Mroetor] |[108) [mﬂo[gl_on. [108),
—_— 311171, [18), [39), LT |
Expert |[55]. (651, [86]
[y nerpratation | |
and ECG data
na | instance
based

Taxonomy of methods for ES/DSS development in ECG interpretation
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2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

oo

|

=1}

w

FS

W

P

[ary

=

B Knowledge based @ Fuzzy M supervised [ unsupervised
B Ensemble M Neural based M Hybrid M Big data

Trends in publications on ES/DSS-based ECG interpretations in the last decade

E:

44

Integrating Al-Enhanced ECG Analysis into Clinical Practice

Provide training programs for
healthcara professionals on Al
applications in ECG analysis.

Training and Education

Familiarize clinicians with Al-generated
razults and thalr intarpretation.

Integrate Al-powered ECG analysis
software into existing electronic haalth
record (EHR) systems.

Al System Integration
Ensure seamless communication

between Alalgorithms and clinical
wiorkflows.

Enable Al-ganerated ECG intarpretations
to sarva as decision suppaort for
healthcare providers.

Enhance diagnostic accuracy and
efficiency with Al aszistance.

Continuously monitor the Al system’'s
performance and gather fesdback from
clinicians.

Clinical Dacision Support

Continuous Improvement

Use feedback taimprove Al models and
enhance accuracy over time.

Integrating Al-enhanced ECG analysis into clinical practice
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Percentage distribution of the methods for ES/DSS development for ECG interpretation.

36

. Knowledge
Hybrig Bigdats -

3%
7% 11%

Neural based

34%
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11%
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A

Traditional methods

JAL==:R

Expert
s Features
Deep learning methods

35

f %
0 .‘
l.. 'n"
ox’ "
o X
=3
ML Methods

-—*

y
é
é
2
y
é
Oufput [
4
y
é
é
;
§

Diagnosis

Diagnosis
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35

A Traditional methods

W—é@—'

Expert
Features

ECG ML Methods ~ Diagnosis

Deep leaming methods

ECG Deep Neural Network Diagnosis

Comparison of existing models for automatic diagnosis of ECG abnormalities
(A) Two-stage traditional methods using feature engineering; (B) end-to-end deep learning methods
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ECG Signals _4&_

Convld

Dense J ' l

1

Sigmoid (9)
P N

T,

PP A e i1 —

Ry TR T g T g g S

Deep neural network architecture for cardiac arrhythima diagnosis
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ECG Dataset Predictions Shap values Interpretability

- - -

i 9x15000x12 Patient Level

I’

Trained
Model

[}
[}

9%15000%12 o Patient Level
1

1

|

1

i :

i . N . N Population
1 J : Level

1

1

1

1
1
9X15000X12 g Patient Level

1
: 9x15000%12 = Patient Level [i

g ———

_________

Interpretability of the deep learning model using SHAP values
at both the patient level and population level

3

o1

o TV T VTV 1T T
S ﬂ‘ﬂgﬂm*ﬂ_}ﬁuﬂ“ﬂﬁﬂﬁﬁuﬁum

PIPVE . Ll\ foc il A ] i \ ) L
J

|
eRBBB;_*ﬁ‘ﬂﬂ'{'\ﬁﬂﬁ‘ﬁfﬂdﬁ',v
JENNFTEENESNWNEEL
v Explanation of the model’s prediction results for several ECG instances from different patients

v The features with high contribution (i.e., SHAP values) are highlighted in orange.
v Only the last 10 s of top 2 influential leads are displayed due to the limited space

SEYLENE

34
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A convolutional network model for Al based autonomous view classification,

& Stepping stone for an eventual machine learning pipeline for automateddiagnosis and disease
surveillance.

& From Alshargi, et al. Echo Res Pract. 2018;5: R115-25, with permission
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A Entire Population: (N = 1181)

Area

@ wL: Quantitative + Clinical | 0.94 + 0,01**

B wL: Quantitative Only 0.90 + 0,01*

0 o 0.88 + 0.01

*Beotter than TPD (p<0.001)

“Better than TPD and ML Quantitative (p<0.0001)
ML - Machine Lemrning

0.0 TPD - Totad Perfusion Defich

00 02 04 06 08 10
1 - Specificity

Entire Population: (N = 1181)

Area

[ ] ML: Quantitative + Clinical | 0.94 + 0.01*

Sensitivity

w Expert 1: MPS « Clinical | 0,59 4 0.01

) Expert 2: MPS « Clinical | 0.85 4+ 0.01

*Better than Expert 1 and Expert 2 (p < 0.0001)
ML = Mach ne Learning
MPS - Myocardial Perfusion SPECT

0.0 -

0.0 0.2 04 0.6 0.8 1.0
1 - Specificity

Machine learning for improving CAD diagnosis.
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I Machine learning-based integration of clinical and imaging information achieved
higher diagnostic accuracy for detection of significant CADthan expert readers or TPD
in a large population.

v’ Reprinted with permission: Arsanjani R, Xu Y, Dey D, et al Improved accuracy of myocardial
perfusion SPECT for detection of coronary artery disease by machine learning in a large
population. J NuclCardiol2013;20:553-62.17

Diagnostic safety of a ML score

47
18% < "
. Reader Diagnosis {normal)
16% ! B TPD<1%
164
B MLS<0.29

14% .
i wr
T o 0 B %
o )
i 10% uﬁ Fo— # .
'i’ m ! TR —r)
o - e ;
% 9% 85 0%,
n
&
= 6%
3 ; wEET
E 4% | | $

2% ; i I

D% = — L =i =

Any CAD Any HR CAD LMCA 250% pLAD 270% 3-Vesse| CAD
n=1309/207% n=539/2079 n=143/107¢ n=286/2079 n=223/2079
(B3%) [26%) [7%) {14%) {11%)

Diagnostic safety of a ML score (MLS) for automated cancelation of rest imaging.

v’ Frequency of false-negative test results among patients categorized as low-risk by expert

v" visual interpretation (Reader Diagnosis), stress total perfusion deficit (TPD), and MLS.

v’ Frequency of all categories of obstructive coronary artery disease (CAD) was significantly
lower for patients identified as low-risk by MLS.

0 LCx, left circumflex artery;

0 LMCA, left main coronary artery;

0 pLAD, proximal left anterior descending artery;

0 RCA, right coronary artery;

0 TPD, total perfusion deficit

Ref: Journal of Nuclear Cardiology,Eisenberg et al., Diagnostic safety of a machine learning-based
automatic patient selectionalgorithm for stress-only myocardial perfusion SPECT, Epub ahead of print,
(2021),
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Accuracy

Complexity

53

B0y
60)
40)
i |
20 ---=~ PDF
80|
60)
Bp.n.b
P, 0
20f
g5th percentlie of X7,
100| 500} Number;
80 400| Rejection frequencies
b=10s0 360 (%)
|
g.‘.é_- X i —
&
r 100| AF
7 | ]
[ 6 NSR
5 5
Fon + ‘ —
2 3 3 AFBs
2 2 [E—
1 1
Ref.

p=2

Violin plots of Sobolev test statistics based on ARRI Poincar’e plots.

47

A Machine-learning Prediction of Myocardial Infarction g

Contrart Doneity Difforancs (30}
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v’ Panel A shows that the prognostic accuracy of the ML model incorporating all available

information was higher compared to the imaging components in isolation.

v" Panel B outlines feature importance, highlighting the potential gains in accuracy from

combining multimodality imaging information with clinical variables.

0 This research was originally published in INM. Kwiecinski et al. Machine Learning with 18F-

Sodium Fluoride PET and Quantitative Plaque Analysis on CT Angiography for the Future
Risk of Myocardial Infarction. J Nucl Med. 2022;631:158-165. SNMMI

& Kwiecinski et al. developed a machine learning algorithm that integrated clinical
factors,computed tomographic plaque characteristics, and 18F-sodium fluoride positron
emission tomographyquantitation to predict risk of myocardial infarction

53

0
Affim
[+K

N e .

e H e — - : 2 e
T os 06 0402 0 D2 04 06 08 1 1 b8 06 04 02 0 02 04 08 08 1 T Dbe 0804020 02 04 08 08 1

A Fim+1 A fTims1 A rrime
(a) AF (b) NSR (c) APBs
Spherical and circular projections of ARRI Poincar’e plots for AF, NSR, and APBs.
v’ The upper half shows the three-dimensional Poincar’e plot its projection onto the spherical
surface,
v’ Lower half shows the two-dimensional Poincar’e plot and its projection onto the circular
surface of ARRI. (a) AF; (b) NSR;(c) APBs.
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Comparison of four-class classification performance with other methods.

s
E:
Author Method F1(%) !
E:
AF NSR O ~ :
4
Teijeiro et al., Engineered features + LSTM 85.5 90.3 73.7 56.2 /
2018 (ECGs) .5
Sadr et al., 2018 Engineered features (RRIs) 75.0 90.0 68.0 32.0 :
Hong etal., 2019 Engineered features + CNN 81.3 91.2 75.1 56.7 :
(ECGs) !
Fang et al., 2021 Engineered features + CNN 83.0 90.0 75.0 - :
(ECGs) .
Owur ME (RRlIs) 85.3 88.5 71.4 41.6 Z
E:
§
53
9 0.6
4 -
@ 2
=
3
=0
E— |
<2
-4l
& 06 ]
0 z 4 5 g 70 56 04 02 0 02 04 06
Time (s) Arrim
(@) (b)

R-peak detection and pseudo-ARRI Poincar’e plot under noise conditions.
v (a) R-peak detection in random noise; (b) Contour plot of the pseudo-ARRI Poincar’e plot
generated by noise

Bp, b

Fp,n

0.8
0.6

b=2

& 0.6

b=10 08
0.6

0.8
0.6
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Blocks (We)

Comparative Accs of single-block models with fixed Wp,
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Tralning sets
SiMU

CPSG2021
| ArDB
B LrarDe

B vimic

0 caorr

ca0$17 NSRDB WESAD
Tesﬁng sets (9) (h)

Cross-dataset validation results.

v’ Each octagon represents a particular testing database, and a corner of each octagon represents a :

specificperformance metric. (a) SIMU; (b) CPSC2021; (c) AFDB; (d) LTAFDB; () MIMIC
I1; (f) MITDB; (g) C2017; (h) NSRDB and WESAD.

53
Complexity and parameters of the proposed model.

Module Complexity # Parameters
{FLOPs)

Block, CONV,; {iﬁ“{szn} Np? + 1

S_Pool,(MB) 4 (an: + anﬂ) 0

S_Pool,(MF) £ (Npn?) 0
Batch Normalization A (NM) 2N(M-1)
MLP £ (N*M2 +NMC) €+

(NM=N+1+C)N(M-1)/2]

Total MB 021.45K 1,770

MF 357.39K 1,770

e R B M RRLRR M RRLRR N RRRR MR BB HRRRR HRRRER BB RRR N RRORR M RRORR N RRORR RS CRORR RN CRUORRRR CRUORR R W

AAA: CNN: 61b Fit Base—Cardiology

404



Segmentation
Classification

T

Rough depiction of the process of image segmentation.
A) Displays the original DICOM image of the cross-section of the heart, supplied by Mimics
Materialize. Student Edition.
B) Displays the mask made from a selection of target regions.
C) Displays the calculated 3D geometry to be meshed

Entire Population: (N = 1181)
A
1.0
o.e " ———
0.8 ’
o.7 ’ [ | Area |
= 0.6 [- ML Guantiathve + Clinkcal | 0.94 2 0,00~ 1
g 05 | v Guanthtative Oniy [o90 =000 Jl
0.4 } 4 4
- \ = o u-n.ux .01
o2 "Bettor than TPD (Sc0.001)
I ~Beter thaan TPD and ML Quantitative (o0<c0.0001)
o.1 o ML — Bachine Lomrmsdng
0.0 TP Totmd Forfu sl on Dwefic it
[+ s } o2 0.4 0.6 o.8 1.0

1 - Specificity
Entire Population: (N = 1181)

= o7 1 | Area
= 0.6 r
¥ =1 | @m ML O uantitative « Clinical | 084 = 0.01~
= oS 3 " e
'§ A | . Expers 1: MPS o Clinlcad oED s+ 00T
o | O3 Expern 2: MRS < Climicas oss s 001 ]\
o.2 cBetter han Expert 1 and Expert 2 (5 < 0.0001)
PAL — Bmchyires Lo s riosg
o.1 MPS — Myocardisl Perfusion SPECT
oo 4
0.0 o2 o4 0.6 0.8 1.0

1 - Specificity
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0 1/8 2/8 3/8

Ground
Truth

Proposed
Method

4/8 5/8 6/8 7/8
Ground

Truth

Proposed
Method

Deep learning-based LV segmentation in MPI.
v The axial views of patient #33 (abnormal) at different slices of gating phase 0 with
segmentations of ground truth and proposed method.
v’ The black lines indicate the contours of endocardial and epicardial surface.
I RefWang T et al, A learning-based automatic segmentation and quantification method
on left ventricle in gated myocardial perfusion SPECT imaging: a feasibility study, J
NuclCardiol 2020;27:976-987
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B CAD attention map
A Perfusion : 72 years old, Male

D Gated SPECT

Stress ESV fi.IOmI

—

CAD
CAD Probability (0-1) ] probability

Global 0.88
CAD
LAD 0.86

disease

LCX 0.28
disease

C CAD probability map

RCA 0.31
disease

Deep learning with explainable artificial intelligence for CAD detection.

+ CAD-DL model trained on full spectrum of SPECT polar maps (perfusion, wall motion, and wall
thickening) and variables obtained automatically from image data (age, sex, and LV volumes) has

been shown to out-perform quantitative stress TPD and expert reader diagnosis.

v’ Architecture includes generation of ‘‘CAD attention maps’” providing visualization of DL-based

rationale for predictions—

& Explainable Al. This example shows 72-year-old male with 85% stenosis in proximal left anterior

descending (LAD).

a. Stress images, with visual assessment interpreted as equivocal.

b. CAD attention map highlighting image regions contributing to prediction.
c. CAD probability map showing a high probability of LAD disease.

d. LV volumetrics.

' Ref: Otaki Y et al Clinical Deployment of Explainable Artificial Intelligenceof SPECT for Diagnosis of

: Coronary Artery Disease. JACC: Cardiovasc Imaging. 2021.
. https://doi.org/10.1016/j.jcmg.2021.04.030.19

AAA: CNN: 61b Fit Base—Cardiology

407


https://doi.org/10.1016/j.jcmg.2021.04.030.19

51
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o Segment | Segment 2 Segment 3
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High cholesteral i ’
Sex - e
Body Mass Index —..— 4
L3
>
Height -.— g
Waist-Hip Ratio ‘- B
Diabetes l'
Townsend deprivation }-
T Low
-20 -15 =10 =05 00 035 15

SHAP value (impact on model output)

Clinical examples and interpretation.
A: Attention map generated by gradient-weighted class activation mapping (Grad-CAM) and saliency

in cardiac T1 mapping.

Segment 5

Segment 4

Segment 5

-
2

Cc

Prediction probabilines

Non-M1
v [ 074

Segment 6

Segment 6

3

Feature
£
Rody Mass Index

Diabeles

Wiaist-Hip Hatio

Value

B: Global list ofinformative predictors from Shapley additive explanations (SHAP). High cholesterol,
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. sex, and body mass index are contributing positively to
- model output (myocardial infarction [MI]) while height contributes negatively (non-MI).

- C: Local features contributions for a specific subject inthe model. It shows the prediction probability for £

- each class the subject might belong to. The color indicates whether the feature contributes
- to MI or non-MI classes while the numbers in the table represent the effect size in the model.

52
Niifnber of vessels with severe Number of vessels with severe plaque 270% 0
e I | sve: suoker &
L PMH - MI or LEBE No
¢t i Pl Left main Plague No calcification
Left main Plague _ 2" pbtuse marginal stenosis degree No
stenosis
Ever smoker _ Stenosis degree in marginal arteries No or
minimal (0-24%)
Calcified plagque only No
Left main stenosis 250% . Mixed plaque o
Left main mixed plaque lo
; ie 3
0 005 01 015 02 Left circumflex stenosis 250% No
Importance Score ; o
Patient characteristics

LIME explanation for a correctly predictéd patient with a low risk of MACE

52
Mixed plaque only |
Number of vessels with severe plaque 270% 1
. ; Ever Smoker Yes
Left circumflex stenosis 250% | DMH - MI or LBBB Yo
Left Main Plaque Mixed Plaque
Left main Plaque D 2" obtuse marginal stenosis Mo stenosis
Stenogis degree in marginal arteries No or
Number of vessels with severe inimal (0-24%
== Miotmal (9-200)
plaque 270% Calcified plague only No
Mixed plaque Yes
Eversmoker Left main mixed plaque No
Left circumflex stenosis 250% Yes
0 005 01 015 02 025
Importance Score . . L
P Patient characteristics

LIME explanation for a correctly predicted patient with a high risk of MACE
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PDP* Shows the marginal effect of 1 or 2 predictorson | G, A * M, D MNone
the outcome
ALE™ Shows the average effect of features on the G, A * M, D Mone
outcome
Class activation map™ Build discriminative image regions to show the LS t D Classification™,;
regions used by the model Regression™
RxREN® Extract rules that drive the model using classified G, S = D None
and misclassified data
NNKX Knowledge extraction from multilayers trained LS * D MNone
model
SHAP Provide feature importance list locally and globally | G, L A *t M, D Classification3*-2¢;
based on game theory Regression™
LIME®® Explain the contribution of each feature toward the | L, A il 7 M, D None
outcome for one single instance
Layer-wise relevance Generate a heat map in the input space to L5 t D MNone
propagation™ reveal the contribution of each voxel in the model
outcome
Guided Visualize the learning of the intermediate layer of LS t D Segmentation®™;
backpropagation® deep leaming models Classification*®
DeepLIFT*! Shows the additive features attribution to the LS =t D None

model outcome

PO e

Seq25eq*? Visualize and debug sequence-to-sequence tool LS *t D None

SmoothGrad™ Improve the sensitivity maps generated on the LS T D Classification and
input image by removing the noise Regression*

Saliency maps™ Generate saliency maps, which shows the LS t D Classification®
contribution of each pixel toward the model output

DeepTaylor* Generate heat maps, which shows the LS T D Nane
contribution of each pixel toward the model output

DeConvMet®* Generate heat maps, which shows the LS t D None
contribution of each pixel toward the model output

Pattern attribution®® Generate heat maps, which shows the LS t D None
contribution of each pixel toward the model output

Integrated gradients® Generate heat maps, which shows the LS t D Nane
contribution of each pixel toward the model output

Grad-CAM'® Generate heat map, which shows the contribution | L, S t D Classification'®2440484850
of each pixel toward the model output Segmentation®!

Grad-CAM++7 Improved version of Grad-CAM LS t D Nane

TCAVE Features attribution LS : D Classification®;

Segmentation®

. A indicates agnostic; ALE, accumulated local effects; D, deep learning;

- DeConvNet, deconvolution network; DeepLIFT, deep learning important features; G, global; Grad-

- CAM, gradient-weighted class activation mapping;

L, local; LIME, local interpretable model-agnostic explanations; M, machine learning; NNKX, neural
- network knowledge extraction;

. PDP, partialdependence plot; RXREN, rule extraction by reverse engineering; S, specific; Seq2Seq,

- sequence-to-sequence models; SHAP, Shapley additiveexplanations; TCAV, testing with concept

- activation vectors; and XAl, explainable artificial intelligence.
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Major adverse cardiac events

(MACE)
42
Patient Imaging variables Physician
* mm I 0
Myocardal MACE iskprediction y
Perfusion SPECT Machine Learning Model
Imaging
Stress test and — Eﬂ
Normal read vs ML score i
Clinical variables 50
S0 99 97 93 » '
P
- 4
n 40 4 :
; 80 69 <
0 i < ‘ 30
€ 60 330 .| L
0 <
0 40 2% , e e
& 19 | Observed - Predicted ol
% 0 | 10+ | -_H,-:-’R 110
0 — 0 pelcalieniing E-""i“r“*",'a‘ [ SR R S | 0
S I I 0 5 101520 253035404550 55 60 65 70 75 80 85 90 95 100
A K A
Percentile of ML score Percentile of ML score

Prediction of MACE by machine learning.
I Major adverse cardiac events (MACE)

v Composite machine learning (ML) risk scores were derived from imaging and clinical data
which could be presented to physicians as an annualized event risk. 19% of patients with
normal visual diagnosis (red arrow) were in the 95th percentile of MACE risk computed by ML *

v Ref: Betancur et al, Prognostic Value of Combined Clinical and Myocardial Perfusion Imaging -
Data UsingMachine Learning. JACC: Cardiovascular Imaging. 2018;11:1000-9
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Top 10 most important features in ML model

Mixed plaque only
Number of vessels with
severe plaque 270%
Left main stenosis 250%

Calcified plague only
Left circumflex stenosis
250%

o e T o

o U wvi
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& co6n 28
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Being an ever Smoker

Stenosis degree of left
circumflex marginal artery

Feature importance ranking of the machine learning model for predictive MACE.
v’ Only the top 10 most important features were labelled

Mixed plaque (calcified and noncalcified)
Number of vessels with severe plaque = 70%
Left main plaque type

Left circumflex midsection stenosis degree
PMHX of MI or LBBB

Left circumflex obtuse marginal stenosis degree
Calcified plaque only

Left main stenosis 2 50%

Ever smoker

Left circumflex stenosis =2 50%

-
I
N

(=]

Importance Score

0.01 0.02 0.03 004 005 006 0.07 0.08 0.09

Permutation feature importance scores for the top ten features in the ensemble model for predicting

MACE risk.
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Data

or=1ge o] [e]e)Y;

34
A \
hi-definition
medicine data augmented
i o I cognitive
ANSCrplomics, .
& other omics > Capaclt}f oy
9 new actionable
R extended knowledge
o genomics decisions by
E integrated data
o J
ﬂ‘. _____________________ LS
_E guessing limit of human cognitive capacity
a ' human
dafa-driven A cognitive
-
earlier 1950 2000 2005 2015
time (progress & tech advances)
Escalating volumes of data are changing the decision-making process. The accelerated rate of data
production,volume and variety now supersedes the limits of human cognitive capacity.
v Ref: Rossi RL, Grifantini RN. Big data: challenge and opportunity for translational and
industrial research in healthcare. Front Digit Humanit; 2020

Cardiac Instruments

Al +cardiology +Instrum
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MRI

Selguer=1ge{e] le]e)Y;

A FHEE SRR SRYEE SN PR PR SRR SRR SR SRR SRR SRR SR SRR RN SRR R R SRR SRYEE SRYEE SRY SEERY SEERY SEERY SRR uE sRres

"An example of cardiac MR lautomated assessment software from Arterys

+  Showsdynamic blood flow and velocities and to perform auto quantifications. ,,
+ Alg. now integrated into several MRI vendors' post-processing software

Y SR SEIRE SUEEY S SUEEY SR SEINE SHEBY ST SHEBY SN SRS Y SRS SHIRE SUEEY SRS SEY SRS SEINE SUEEY ST SUEEY SNINE SEINE SHEBY ST SHEEY

Original mage

Ground-truth

v" A sample image of segmentation performed on cardiac MRI data from a patient with CHD.
¥ The myocardium is green and blood pool is red.
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v From Arafati A, et al. Artificial intelligence in pediatric and adult congenital cardiac
MRI: an unmet clinical need. Cardiovasc Diag Ther 2019;9:5310-25. Obtained with
permission

42
A suspected angina Personalized contribution of features for MACE risk
Cancel’
rest . I Age 53 yfo
' | Body mass index 51
i |
Female
: E Stress TPD 2 (8%)
il [ Exercise duration 9 min
I iy - r =
MOD-diagnosis: abnormal ] | No past BCI
Clinical selection rules: 555 = 4, '
EF =70%, EDV =71 ml 1 Paak heart rate 144 bpm
Weight 141 kg

]

.-,

| Stress TPD (4%)

|

Obtain rest scan b Exercise stress
o

Remaining features

MACE in 6.8 years of follow-up I—

B Atypical angina Personalized contribution of features for MACE risk
Cancelr
rest DM
Age 60 y/o
Adenosine
Stress TPD (0%)

Stress TPD 2 (1%)

Clinical selection rules: 555 =0,
EF = 54%, EDV =80 ml

Past PCI
Resting heart rate 57 bpm

No abnormal motion

Peak heart rate 96 bpm

Cancel rest scan Inpatient

Admission for unstable angina — R?“Hining features

94 days after MPI " obt o ¥ £
Machine learning prognosis-based safe-selection for stress-only SPECT.
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v" Polar maps with clinical recommendation (left) and
v" personalized explanations of the ML recommendation (right) are shown in two cases:

v A :acase with a ML score below the score threshold to recommend cancelling the rest scan and

v B :acase with a ML score higher than the threshold. The individual contributions of the top 10
features to the overall risk for each patient are shown (blue bars = decreasing risk, red bars =
increasing risk). Grey dotted line indicates baseline cohort risk. Red dotted line indicates risk
threshold, matching stress cancellation rate for the stringent clinical criteria.

v Reprinted with permission: Hu LH et al Prognostically safe stress-only single-photon emission
computed tomography myocardial perfusion imaging guided by machine learning: report from
REFINE SPECT. Eur Heart J Cardiovasc Imaging. 2021 https://doi.org/10.1093/ehjci/jeaal34.22

SPECT MPI1

42

A Mormal temale, 162.6 cm |, |04 8Bkg B Abnormal female, 171.9¢m, T2.dkg

$55=0 585=2} 855 =13 S85=11

70 = 19.4% TPD) = 0% TPD = 31.6% TPD = 19.9% TPD = 15.7%
BLK = 26,7 BLK = 0% BLK = 80% BLK =3.7% BLK = 16.T%
€ Normal male, 180 3cm, 87 5kg D Abnormal male, 175 3em, 107 3kg

DLAC NAC CTAC DLAC

555 5553 38511 5856

TPD - 18.6% TPD = | 3% TPD = 4.6% TPD = 12.2% TPD = 2.4%
BLE = 20% BLK = (% BLK = 1% BLK = 35% BLK = 14.46% BLK = 14.3%

“Virtual’” attenuation correction for SPECT MPI imaging using deep learning.

v Examples of virtual deep learning-based attenuation correction (DLAC) polar maps. Polar
maps and blackout maps are shown for non-attenuation correction (NAC), CT-based
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attenuation correction (CTAC), and

v DLAC for 4 patients: (A) normal female, (B) abnormal female, (C) normal
male, and (D) abnormal male. SSS, TPD, and defect extent (BLK) are displayed for all polar
maps.

v Ref: Hagio T, et al ““Virtual’” attenuation correction: improving stress myocardial perfusion
SPECT imaging using deep learning. Eur J Nucl Med Mol Imaging. 2022 Mar21.
https://doi.org/10.1007/s00259-022-05735-

PET

18F-FDG

42

Deep learning for noise reduction in low-dose FDG-PET imaging.

v’ Static (top two rows) and gated (bottom two rows).18F-FDG PET images from a representative
patient showing the effect of applying de-noising (Al1% and Al10%) to the low-dose images (1%
and 10%). Low-dose CT (LDCT) shown for reference in mediastinum CT window. Extent (Ext),

i, B S BN B BRI B TR B TR TR B FEE B AR B B B FNE SR M SR M AR M SR AR, A AR A AT, A AR, A AR AT, A . T A, T A AR, Th AR, Th S, B S 1
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LVEF, EDV, and ESV for the single subject are given for each dose-reduced image and the full-
dose reference.

v Ref: Ladefoged CN, et al Low-dose PET image noise reduction using deep learning:application to
cardiac viability FDG imaging in patients with ischemic heart disease. Phys MedBiol.
2021;66:054,003.24

PET + CT

Carotid plague inflammation
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Radiomic-based textural analysis for carotid plaque inflammation.

(A) CT (a) and PET(b) images of right carotid artery [black ROIs (red arrows)] in patient with high-grade
- stenosis andinflamed atherosclerotic plaque (extended lipid core and limited calcification), (c) Example
- ROIsmanually placed around carotid artery wall on PET images, (d) Surgically derived histological
- andimmunohistochemical analysis (CD31, cluster of differentiation 31; CD68, cluster of differentiation
- 68), (e) Corresponding values for target-to-background ratio (TBR) and textural features chosen for
- plague vulnerability (opt. thresh, optimal threshold to detect increased histological and
- immunohistochemistry-based plaque characteristics; info.correlationlGLCM, first measure of information

g8
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. correlation; rinuGLRLM, run length non-uniformity; 1z1lgeGLSZM, large zone low gray level
- emphasis; SDIH, intensity histogram standard deviation, varianceGLCM, joint variance).

- (B) one patient with left carotid artery atherosclerotic plaque with low inflammation (limited lipid core

- andextended calcification). Both cases demonstrate texture analysis can potentially provide valuable

. complementary information to TBR

- Ref: Kafouris PP et al Fluorine-18fluorodeoxyglucose positron emission tomography-based textural

. features for prediction of eventprone carotid atherosclerotic plaques. J NuclCardiol. 2021;28:1861-1871

Coronary CT angiogram

-

Coronary CT angiogram of the left anterior descending artery (LAD)

: (a) topologically in volume rendered technique,
: (b) visually in curved multiplanar reformat, and
. () quantitatively in straightened multiplanar reformat across different 3D views.

. This patient demonstrates high atherosclerotic plaque burden that is comprised primarily of non-
 calcified (yellow and red) rather than calcified plaque (blue).The ability to visualize both stenosis and
: plague makes this modality unique among non-invasive imaging
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3D- volume rendered image of
coronary arteries revealing largely normal vessels.

+ The negative predictive power exceeds 99% for obstructive disease.
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without obstructive disease.

v" The image demonstrates the ability to visualize the lumen clearly despite high calcium burdens

50

A 62 year old man with atypical chest pain.
v" Computed tomographic angiography reveals severe atherosclerosis (mostly calcified plaque)
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50
Central Figure Legend: (A1) Presence of positive remodeling (yellow arrows) and low attenuation
plaques (LAP, red arrow) are the most important determinants of plaque vulnerability. (A2) Stable
plaques lack both these features. Major adverse cardiac events by the presence of 1 or both features in a
follow up of —patients for 2 years (A3), and 300 patients for up to 10 years. (A4) Patients with HRP
had 45 and 10 folds higher likelihood of ad- verse outcomes, respectively. Presence of obstructive
disease over and above HRP features (A5) and interval progression in plagque magnitude (A6) increased
the likelihood of adverse events further. Greater number of adverse plaque characteristics were
associated with greater of adverse outcomes (A7) and the HRP characteristics were associated with
abnormal fractional flow reserve regardless of luminal stenosis (A8). (Reprinted with permission of
Elsevier)
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Image Acquisition
Feature-based models - . Image-based models
Segmentation
.g_ Ci ti CMR ind
E Shap v w LS P
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Overview of the 2 common paths that cardiac imaging studies might follow using
cardiac magnetic resonance (CMR)

- CNN, convolutional neural network; DeepConvNet, deep learning with CNN; DL ,deep learning;

- DNN, deep neural network; NNKX, neural network knowledge extraction;

- XA, explainable artificial intelligence; Grad-CAM, gradient-weighted class activation mapping;

* LIME, local interpretable model-agnosticexplanations; SHAP, Shapley additive explanations; and
LV, left ventricle; RV, right ventricle;
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Mitral valve

42

Probability estimates by

Elipsoid machine learning

.—u
"Correct VP"
probability

VP1
VP2
VP3
VP4
VP5

\n"ip 6
VP7 Valve plane by

Potential machine leaming

localizations

Opposite point to apex

Machine learning localization of mitral valve plane in MPI.
I Atwo-class support vector machine (SVM) model was trained from mitral valve plane (VP)
positions verified by 2 experts to estimate the most likely VP localization in left ventricle.

0 Ref: Betancur J et al Automatic valve plane localization in myocardial perfusion
SPECT/CT by machine learning: anatomic and clinical validation. J Nucl Med.
2017;58:961-7.12
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3D printing

or=1ge o] [e]e)Y;
48
Medical Imaging Image Acquisition
1
Integration of
Mult-Modalty Datasets
CT ||CMR || Utrasound :ﬁ;?;::ﬁiﬂ !
- (eneration
Image Segmentation of ST
1
Mesh
Visualzation Construction
Elimination of
30 Printing Unnecessary
Anatomy
‘|
MeshLab !
. Further
CLIP| | DPL| |FOM Folyjet Mesh
refinement
Meshiiver

Flowchart outlining the process of 3D printing in cardiology, from image acquisition to 3D printing.

£\ The chart also includes the software available for use.
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Model of the heart and major arteries using a polyjet 3D printer

Robotics

Cardiology

49

Tele-
intervention

Supply
chain robots

FIGURE 4 Applications of Robotics in M

Cardiovascular
robotic platform

Interventional
training
simulator

Robotic

assistant

Abbreviations as in Figure 2.
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Risk stratification

Al + Cardiology
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Patient Profiling
Collect patient data

Link with ECG data

:

‘ Al Risk Azssessment

Risk prediction

isk Factors for CVDs

Arrhythmias, Heart Failure, Cardiomyopathies
Risk Stratification
Categorizs ‘:?‘,I?.O risk groups
Identify High-Risk Fatients
Immediats "!nterce-nt?:.-r
Treatment Planning
Tailor treatment plans
Personalized Interventions
|

Follow-up strategies

End
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' patient Profiling |

Collect patient data

I Link with ECG data ‘

| Al Risk Assessment ‘

Risk prediction
v

[k ractors o v

Arrhythmias, Heart Failure, Cardiomyopathies

risk Stratification J

Categorize into nsk groups

| Identify High-Risk Fatients |

Immediat=s intervention

v

[ Treatment Planning i

Tailor treatment plans

l Personalized Interventions |

Follow-up strategies

= .

Al enhance risk stratification for cardiovascular disease
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