Available online at www.joac.info

ISSN: 2278-1862

×

Journal of Applicable Chemistry

CNN-616...1amIntelligence Augmented Medicine... Cardiology

Fits (Figure Image Table Script ...) **Base**

Information Source	<pre>sciencedirect.com;ACS.org ;</pre>	
S. Narasinga Rao M D	K. SomasekharaRao, Ph D	R. Sambasiva Rao, Ph D
Associate Professor,	Dept. of Chemistry,	Dept. of Chemistry,
Emergency Medicine dept.,	Acharya Nagarjuna Univ.,	Andhra University,
Andhra Medical College,	Dr. M.R.Appa Rao Campus,	Visakhapatnam 530 003,
King George Hospital	Nuzvid-521 201, I ndia	I ndia
Visakhapathani, A.P., Thula		
snrnaveen007@gmail.com	<u>sr_kaza1947@yahoo.com</u>	rsr.chem@gmail.com
(+91 9848136704)	(+91 98 48 94 26 18)	(+91 99 85 86 01 82)

Conspectus: "Intelligence Augmented Medicine (I am)" isbroadly spread over human health care procedures viz. diagnosis of diseases, gold-standard-confirmation-tests, therapeutics, drug-administration, intervention procedures, surgery (pre-operative, intra-operative and post-operative chores), prognosis, relapse/recurring of the disease, and analysis of morbidity/mortality/bio-chemical/medico-chemical data. The important disciplines of concern are Cardiology, Neurology, Surgery, Anaesthesiology, Pulmonology, Gynaecology, Venereology, Urology, Hepatology, Ophthalmology, Dermatology, Oncology etc.

The present news-item "Fits.Cardiology" contains numerical/categorical demographic data of patients, images generated by medical-instruments, clinical/bio-marker tests/knowledge bits for consolidation of disease. This phase followed by moving for therapeutic treatment with drus, intervention procedures, in the new part and pa

AI	A branch of applied computer science wherein computer algorithms are trained to perform tasks, and have the capability to imitate intelligent human intelligence.
ML	Subfield of AI, a machine learns to perform a task or make decisions automatically from an available data source without being explicitly programmed.
DL	DL is a type of ML that mimics the operation of the human brain and includes a class of algorithms called neural networks.
NLP	NLP is an area of computer science and artificial intelligence related to the organization of unstructured narrative text into a structured form that can be interpreted by a machine and allows for automated information extraction.
Cognitive computing	Cognitive computing platforms integrate machine learning, reasoning, natural language processing, speech and object recognition, human-computer interaction, dialog and narrative generation.
Computer vision	Computer vision is a branch of computer science concerned with objects and feature recognition in images or multi-dimensional data, including digital video frames.
Robotics	Robotics deals with the design, construction, operation, and use of robotic devices that can move and react to sensory input. Robotics also concerned with creation of computer systems for their control, sensory feedback, and information processing.

NNs

CNN

- \checkmark Size of the input mask is the same as the size of the input x.
- ✓ Mask will help the network ignore the padded zero elements in x, which has a variable length.
- ✓ Network outputs the classification scores

やまずをままやます

Machine Learning (Mach.Lrn)

Types of Learing Data based

	Types of Machine Learning	
Supervised learning	Unsupervised learning	Reinforcement learning
Machine learns explicitly	Machine understand the data	Machine learns how to act in certain environment
Labeled data with clearly defined inputs	Inputs only	Focus on making decision
Predicts outcome/future	Labels and output unknown	based on previous experience
Resolves classification and	identity patterns of structure	Reward based learning
regression problems		with positive and negative feedback
Risk of mortality,	Novel classification of	
readmission prediction	diseases	Optimization of treatment
Image Classification	Big data visualization	policies
Diagnostics	Image feature elicitation and segmentation	Real-time decisions Robot navigation

Cardiology (Cardia)

Chest pain

AI +cardiology

AI +cardiology Diagnosis

waran waran wan waran waran waran wan waran waran waran waran wan waran 1 1111 111 116 20

anan anan , yaran waran wan waran waran waran wan waran waran waran waran wan wan

AI. machine learning (Mach.Lrn ,ML) +cardiology

(A) Random forests : (incorporate both bootstrapping [selection of a subset of samples] and bagging [selection of a subset of predictive variables] for each individual tree.

(B) Support vector machines. In binary classification, a support vector machine finds a hyperplane that separates classes. The "kernel trick" projects input data to ahigher dimension before an ensuing support vector is computed.

(C) Deep learning models comprise layers of stacked neurons that can be used to learn complex functions.

(D) Reinforcement learning algorithms are used to train the action of an agent on an environment

CNN + Cardiology

Segmentation and identification Cardiology

AI +cardiology Table Format

15 ML model Description Type of learning Used for classification and regression purposes, it involves finding a hyperplane that SVM: support vector Supervised machine best divides a dataset into different classes. A commonly used model in differentiating between different cardiac pathologies in echocardiography (4,13,14). RF: random forests Supervised Consists of a large number of individual decision trees that operate ensemble (4,13,14). KL: kernel learning Method of using linear classifiers to solve non-linear problems. Commonly used when Unsupervised combining cardiovascular data from different sources (4). CNN: convolutional neural Neural networks used to classify images, cluster images by similarity and perform Unsupervised or network object recognition. Consists of input and output layers separated by deep supervised hidden lavers (Figure 3).

1 เกม รถกาน รถกา

Application	N	/IL model	Training dataset	Testing dataset
Differentiating between HCM & physiologic hypertroph	y	SVM RF CNN		139 patients
Differentiating between HCM, cardiac amyloid and PAH		CNN	12,035 studies	8,666 studies
Differentiating between constrictive pericarditis & restrictive cardiomyopathy		SVM KL CNN RF	-	94 patients
Classifying still echo image captures into apical 2 chamber, apical 4 chamber and apical long-axis view		SVM KL RF CNN	210 clips	99 clips
Classifying still echo image captures into 15 standard echo views		CNN	240 patients	27 patients
Classifying echo studies according to the ASE/EACVI or algorithm for diastolic dysfunction severity	liagnostic	CNN	6,182 studies	1,546 studies
Assessment of myocardial velocity		KL	27	55 patients
Detecting wall motion abnormality		CNN	27	61 patients
Quantifying MR		SVM	5,004 clips	-
SVM, support vector machine;	A HCM	A, hypert	rophic car	diomyopat
RF, random forests;	A PAH	I, pulmoi	nary arteria	al hyperten

A MR, mitral regurgitation 8

Application	ML model	Training dataset (patients)	Testing dataset (patients)	AUC
Screening hyperkalemia from a 2-lead ECG in patients with CKD	CNN	449,380	61,965	0.88
Detecting asymptomatic LV dysfunction from a 12-lead ECG	CNN	44,959	52,870	0.93
Predicting AF in asymptomatic patients in sinus rhythm from a 12-lead ECG	CNN	126,526	54,396	0.9
Detecting LV hypertrophy from a 12-lead ECG	CNN	12,648	5,476	0.8
Predicting gender & age from a 12-lead ECG	CNN	499,727	275,056	0.94
Diagnosing arrhythmia from a single lead ECG	CNN	29,163	328	0.9
Detecting MI from a 12-lead ECG	CNN	-	290	-
 AF, atrial fibrillation; CKD, chronic linfarction; ECG, electrocardiogram 	kidney disease;	LV, left ventr	icular; MI, myo	cardial

Application	ML model	Training dataset (patients)	Testing dataset (patients)	AUC
Screening hyperkalemia from a 2-lead ECG in patients with CKD	CNN	449,380	61,965	0.88
Detecting asymptomatic LV dysfunction from a 12-lead ECG	CNN	44,959	52,870	0.93
Predicting AF in asymptomatic patients in sinus rhythm from a 12-lead ECG	CNN	126,526	54,396	0.90
Detecting LV hypertrophy from a 12-lead ECG	CNN	12,648	5,476	0.87
Predicting gender & age from a 12-lead ECG	CNN	499,727	275,056	0.94
Diagnosing arrhythmia from a single lead ECG	CNN	29,163	328	0.97
Detecting MI from a 12-lead ECG	CNN	-	290	
 AF, atrial fibrillation; CKD, chronic linfarction; ECG, electrocardiogram ML machine learning; CNNL convolution 	kidney disease;	LV, left ventr	icular; MI, myo	cardial

いるいるいろいろいろ

Electronic health records (HER) in Al +cardiology

Application	Training dataset (patients)	Testing dataset (patients)	AUC
Predicting non-hypertensive HF	700,000	76,214	0.87
Predicting MI	700,000	76,214	0.85
Predicting clinical deterioration on the wards (cardiac arrest, ICU transfer or death)	161,999	108,000	0.8
Predicting hospital re-admission within 30 days	39,533	16,944	0.52
in HF patients	747	321	0.78
Predicting incidence of HF from EHR events	265,336	33,317	0.78

AUC, area under curve; HF, heart failure; MI, myocardial infarction; ICU, intensive care unit.

Software for AI +cardiology

Cardiac Instruments Single photon emission computed tomography (SPECT)

AI +cardiology

E. Testing LVX with MPI databases to retain rules if accuracy (A) isimproved.

Applications AI +cardiology Disease prediction , Confirmation

<u> </u>	··· ··· ··· ··· ··· ··· ··· ··· ··· ··			
Area	Application	Technique	Method	Results
Arrhythmias	Prediction of paroxysmal AF from heart rate variability	Supervised learning	Data: 106 signals from 53 pairs of electrocardiograms for training Algorithms: KNN, SVM, NN	Sensitivity (100%), specificity (95%), accuracy (98%)
Arrhythmias	Prediction of AF recurrence after pulmonary vein cryoablation	Supervised leaming	Data: 118 patients with 56 clinical, laboratory, and procedural variables from each patient Algorithms: GB, SVM, oversampling	Identification of 7 predictors confirming univariate statistica analysis
Arrhythmias	Classification of cardiac arrhythmia alarms in telemetry	Supervised learning	Data: PhysioNet/Computing in Cardiology Challenge 2015 Algorithm: RF	True positive, 95%; False positive, 83%
Arrhythmias	Prediction of hospital mortality in patients with resuscitated cardiac arrest from a registry	Supervised learning	Data: ANZICS registry, 39 566 patients Algorithms: LR, GB, SVM, NN, RF, combination (RF, SVM, GM)	Area under the curve of the best algorithm: 0.87 (vs 0.80 from the APACHE III scale and 0.81 from the ANZROD)
Arrhythmias	Detection of up to 17 types of arrhythmias from ECG	Supervised learning	Data: 1000 ECG signal fragments from the MIT-BIH Arrhythmia database Algorithm: convolutional NN	Accuracy (91%)
Cardiovascular risk	Prediction of cardiovascular events at 10 years from electronic medical records	Supervised learning	Data: 378 256 individuals; demographic data, medical records, medical prescriptions, and biological tests Algorithms: RF, LR, GB, NN	Area under the curve of the best algorithm: 0.76 (vs 0.72 from the ACC/ AHA risk prediction scales)
lschemic heart disease	Prediction of major cardiac adverse events in patients with acute coronary syndrome from electronic medical records	Supervised learning	Data: 2930 patients and 268 variables Algorithms: SVM and RF together with subsampling and oversampling techniques	Area under the curve of the best algorithm: 0.672 (significant improvement vs the GRACE scale + 4.8%

Example Algorithm Class	Advantages	Disadvantages	(Ref. #)
Supervised Learning Goals: Prediction of outcome, classification of observation, estimation of a parameter			
Regularized regression	Straightforward and automatic solution to high-dimensional problems Familiar interpretations for relationship of variables to outcomes	For groups of correlated features, artistrary selection of single feature (LASSO)	Construction of a predictive model for acute myocardial infaction by using proteomic measurements and clinical variables (19
Ensembles of decision trees	Often best "off-the-shelf" algorithm for prediction or classification Feature selection and variable importance assessment are built in	More useful for prediction than for descriptive analysis of dataset and variables Tendency to overfit data	Prediction of cardiovascular event risk (19)
Support vector machines	Transforms line ar classifiers into nonlinear classifiers with the "kernel trick" Often makes highly accurate predictions	Performs nonprobabilistic classification by default Computation can be difficult in high-dimensional space	Prediction of in-stent restenosis from plasma metabolites (22)
Unsupervised Learning Goals: Discovery of hiddlen structure in a data, exploration of relationships between variables. Features discovered by unsupervised learning can often be incorporated into supervised learning models			
Deep learning algorithms	Current state-of-the art method for feature engineering; batures are often used as input for supervised learning model Wide interest across industry and academia; rapidy developing software ecosystems	Computationally expensive to train Requires a large dataset to train the model Model interpretability can be difficult	Construction of predictive representations of patients in an unsupervised fashio from electronic health records (36)
Tensor factorization	Natural incorporation of multimodal and multidimensional data	Modest number of applications thus far in published cardiovascular reports Choice of factorization algorithm is crucial for results	Subtyping of congestiv heart failure with preserved ejection fraction (3
Topological data analysis	Interpretable clustering and discovery of variable relationships	Software exosystem less mature than for other methods Commercial offerings require licensing agreement	Subtyping of type 2 diabetes mellitus from electronic medical records (35

LASSO: least absolute shrinkage and selection operator.

Intervention Cardiology AI +cardiology

AI +cardiology Applns

✓ An example of an individual patient's data can be de-identified, encrypted, and stored on the cloud to amass the volume of aggregate patient data necessary for the development artificial intelligence solutions to relay back personalized clinical inferences.

EHR : electronic health record;

CT-FFR : computedtomography fractional flow reserve;

- IVUS : intravascular ultrasound;
- OCT: optical coherence tomography

Advantages and challenges of Artificial Intelligence in Interventional Cardiology				
Advantages Challenges				
Precision, accuracy and data driven decisions on diagnosis and treatments	Complexity and Cost			
Procedural assistance	Lack of human touch, common sense			
Integration of large and diverse information	Concerns regarding privacy and security, "black box" design			
Decrease Inter-observer and intra-observer variability	Lack of large well curated clinical or imaging data or "Training dataset"			
Better in repetitive, laborious, time- consuming job	Regulation, legal and liability issues			
Time saving administrative process, cath lab workflow	Threat to human job			

Future Perspective AI +cardiology

VR, AR, Mixed Reality AI +cardiology

<text><text>

Expert systems (ES) Fuzzy logic

LV Expert systems (LVX) Fuzzy logic

B. When Pattern P1 is applied to a semantic network; it generated theresulting assertions (Rule 1 and Rule 2). Then, pattern P2 is applied, using values extracted bypattern P1, resulting in Rule 3.

Natural Language Processing (NLP)

Stenosis

- AI-Coronary arteries (A) \checkmark
- Segments them (B) \checkmark

✓ Identifies and classifies coronary plaques, and measures the severity of stenosis (C,D).

Year	Methods	Sensitivity	specificity	PPV	NPV	Accuracy
2015	SVM	93%	95%	NA	NA	94%
2020	DL	94%	63%	94%	59%	NA
2010	Computer-aided	100%	65%	58%	100%	100%
2011	Supervised Learning	97.62%	67.14%	NA	99.77%	NA
2012	CAST	>90%	40%-70%	NA	> 95%	NA
✓ DL,	deep learning; SVM, V. negative predictive	support vector value; NA, not	machine; PPV, applicable	positive pr	edictive value	е;

- NPV, negative predictive value; NA, not applicable \checkmark
- CAD, coronary artery disease; \checkmark
- QCA, quantitative coronary angiography;CCTA, coronary CT angiography; \checkmark
- CAST, computer-aided simple triage; \checkmark

AAA: CNN: 61b Fit Base—Cardiology

allalla lialla

expected higher likelihood of ischemia with an abnormal resting ECG or those incapable of performing maximal exercise.

ACS: acute coronary syndrome; CAC, coronary artery calcium; CAD, coronary artery disease; ECG, electrocardiogram.

ECG

CG features in different ca	rdiovascular conditions.
Cardiovascular condition	Common ECG features
Atrial Fibrillation (AF)	Absence of P-waves
	Irregularly irregular R-R intervals
	Fibrillatory waves (f-waves) instead of P-waves
	ST-segment depression or elevation
Myocardial Infarction (MI)	ST-segment elevation (STEMI)
	ST-segment depression (NSTEMI)
	T-wave inversion
	Q-waves (pathological Q-waves)
Atrial Flutter	Sawtooth-shaped flutter waves (F-waves)
	Regular R-R intervals (2:1, 3:1, etc.)
	ST-segment changes (often with rapid ventricular response)
Ventricular Tachycardia	Wide QRS complexes (>0.12 s)
(VT)	Absence of P-waves before QRS complexes
	Regular or irregular rhythm
Ventricular Fibrillation	Chaotic and irregular QRS complexes
(VF)	Absent P-waves and T-waves
	"Quivering" appearance of the ECG trace

Diagnosis	Number of cases
Normal	212069
Artifacted or bad performance	1138
Incomplete right branch block	26375
Complete right branch block	2407
Incomplete right branch block with narrow QRS	Not registered
1st degree atrioventricular block	565
Wolff-Parkinson-White preexcitation	163
Complete arrhythmia due to atrial fibrillation	181
Long QT	Not registered
Short QT	Not registered
Sinus tachycardia	2248
Sinus bradycardia	21439
Nodal/ectopic atrial rhythm	Not registered
Sinus arrhythmia	Not registered
Cardiac arrhythmia	2164

ECG NN, Brain Maker

		44	
Study	Study type	Study population	Key findings
Smith	Randomized	500 patients with	AI-enhanced ECG
et al.	Control	CAD	significantly improved
(2019)			accuracy in detecting CAD
			compared to traditional ECG
			interpretation [75]
Zhang	Prospective	800 patients with	AI-enhanced ECG showed
et al.	Cohort	suspected heart	higher sensitivity and
(2019)		disease	specificity in detecting
			myocardial infarction (heart
			attack) [76]
Chen	Prospective	1200 asymptomatic	AI-augmented ECG
et al.	Cohort	individuals	demonstrated higher
(2020)			sensitivity and specificity in
			predicting future
			cardiovascular events [77]
Park	Randomized	1500 individuals	AI-augmented ECG allowed
et al.	Control	with hypertension	early detection of
(2020)			hypertensive heart disease,
			facilitating personalized
			treatment plans [78]

Patel	Retrospective	800 patients with	AI-assisted ECG provided
et al.		heart failure	real-time heart function
(2021)			monitoring, enabling
			personalized treatment
			adjustments [79]
Li et al.	Retrospective	600 patients with	AI-supported ECG
(2021)		arrhythmias	interpretation demonstrated
			improved accuracy in
			identifying complex
			arrhythmia patterns [80]
Lee et al.	Meta-analysis	15,000 ECG records	AI interpretation
(2022)		from diverse	demonstrated higher
			accuracy in detecting various
			arrhythmias compared to
			standard methods [81]
Chen	Meta-analysis	10,000 diverse ECG	AI-aided ECG analysis
et al.		records	showed a significant
(2022)			reduction in false negatives,
			enhancing the detection of
			heart conditions [82]
Wang	Cross-	600 patients with	AI-augmented ECG
et al.	sectional	suspected ACS	expedited the diagnosis of
(2023)			acute coronary syndrome,
			leading to quicker
			intervention and care [83]
Kim	Cross-	400 elderly patients	AI-assisted ECG improved
et al.	sectional		risk stratification for
(2023)			cardiovascular diseases in
			the elderly population [84]

- Clinical and stress variables can be obtained from electronic medical records for use as classification features with machine learning.
- ✓ Imaging variables (including perfusion, functional, and computed tomography (CT) features) can be obtained from interpretation software.
- These classification features enable machine learning predictions for disease diagnosis or cardiovascularrisk.
- ✓ Deep learning can be directly applied to images to provide image segmentation to quantify features for machine learning or provide direct predictions

ある ままままま まる まままままま

- ✓ The four top lines indicate the state of the network, what task it is presently performing, which files are used, etc.
- ✓ The left column shows the input: the presence or absence of delta waves and their polarity and the electrical axis of the QRS complex.
- The two columns in the middle (NN = neural network and gold) represent the output, to the left (NN) the output calculated by the neural network, to the right the gold standard (the location determined during surgery).
- ✓ The two bar charts to the right show histograms of the weight matrices of the hidden and output neurons.
- \checkmark AS = anteroseptal; RL = right lateral; RPS = right posteroseptal; PS = posteroseptal;
- \checkmark LPS = left posteroseptal;LL = left lateral.

		36			
Title/App Name	Objective	Development Platform	Data Acquisition Interface	Measured Parameters	Heart Disorde Detected
kardiaMobile	Captures a medical- grade single lead ECG signal to detect heart rhythm	Android and iOS	Ultrasound	ECG traces, Heart rate	Atrial Fibrillation, bradycardia, tachycardia
kardiaMobile6L	Captures a medical-grade 6 lead ECG signal for comprehensive analysis heart condition	Android and iOS	Ultrasound	Detailed ECG traces, Heart rate, weight, blood pressure	Atrial Fibrillation, bradycardia, tachycardia
Cardiax Mobile ECG	A companion application designed for cardiac health monitoring with 12 channels/Lead	Windows and Android	Wi-Fi	ECG traces, Heart rate, QRS complex, Pd, PQ	Sinus Rhythm Arrythmias
cardiolyse	A healthcare mobile application to connect with existing cardio appliance device	Java and Android	OTG USB cord	ECG tracs and other 17 parameters	None
Beat2Phone	Mobile application for 1 lead ECG signals to monitor heart rate and posture	Android	Bluetooth	ECG traces, Heart rate, HRV. GPS location Timestamp	None
TouchECG	A 12-Lead Mobile application for interpreting ECG signals	Android	Bluetooth	ECG traces, heart rate	Arrhythmias

₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩

AAA: CNN: 61b Fit Base—Cardiology

CNN + Cardiology

Diagnostic safety of a ML score

Machine learning-based integration of clinical and imaging information achieved

Reprinted with permission: Arsanjani R, Xu Y, Dey D, et al Improved accuracy of myocardial

perfusion SPECT for detection of coronary artery disease by machine learning in a large

higher diagnostic accuracy for detection of significant CADthan expert readers or TPD

Ref: Journal of Nuclear Cardiology,Eisenberg et al., Diagnostic safety of a machine learning-based automatic patient selectionalgorithm for stress-only myocardial perfusion SPECT, Epub ahead of print, (2021),

!

in a large population.

population. J NuclCardiol2013;20:553-62.17

う ま み み ま み み み み み み み

 \checkmark

Accuracy Complexity

- ✓ Panel A shows that the prognostic accuracy of the ML model incorporating all available information was higher compared to the imaging components in isolation.
- ✓ Panel B outlines feature importance, highlighting the potential gains in accuracy from combining multimodality imaging information with clinical variables.
- This research was originally published in JNM. Kwiecinski et al. Machine Learning with 18F-Sodium Fluoride PET and Quantitative Plaque Analysis on CT Angiography for the Future Risk of Myocardial Infarction. J Nucl Med. 2022;631:158-165. SNMMI
- G Kwiecinski et al. developed a machine learning algorithm that integrated clinical factors, computed tomographic plaque characteristics, and 18F-sodium fluoride positron emission tomographyquantitation to predict risk of myocardial infarction

Author	Method	F1(%)			
		AF	NSR	0	~
Teijeiro et al., 2018	Engineered features + LSTM (ECGs)	85.5	90.3	73.7	56.2
Sadr et al., 2018	Engineered features (RRIs)	75.0	90.0	68.0	32.0
Hong et al., 2019	Engineered features + CNN (ECGs)	81.3	91.2	75.1	56.7
Fang et al., 2021	Engineered features + CNN (ECGs)	83.0	90.0	75.0	
Our	MB (RRIs)	85.3	88.5	71.4	41.6

Module		Complexity (FLOPs)	# Parameters
Blockp	CONV _{p,j}	$\mathcal{O}(Np^2n)$	$Np^{2} + 1$
	$S_Pool_p(MB)$	$\mathscr{O}\left(Nbn^2 + Npn^2\right)$	0
	$S_Pool_p(MF)$	$\mathscr{O}(Npn^2)$	0
Batch Normalization		C(NM)	2N(M-1)
MLP		$\mathcal{O}(N^2M^2 + NMC)$	C +
		,	(NM - N + 1 + C)[N(M - 1)/2]
Total	MB	621.45 K	1,770
	MF	357.39 K	1,770
Segmentation Classification

CAD

https://doi.org/10.1016/j.jcmg.2021.04.030.19

sex, and body mass index are contributing positively to model output (myocardial infarction [MI]) while height contributes negatively (non-MI).

C: Local features contributions for a specific subject in the model. It shows the prediction probability for each class the subject might belong to. The color indicates whether the feature contributes to MI or non-MI classes while the numbers in the table represent the effect size in the model.

XAI	Aim	Properties	Input	Model	Application
PDP ²⁵	Shows the marginal effect of 1 or 2 predictors on the outcome	G, A	*	M, D	None
ALE ²⁶	Shows the average effect of features on the outcome	G, A	*	M, D	None
Class activation map ²⁰	Build discriminative image regions to show the regions used by the model	L, S	+	D	Classification ²⁷ ; Regression ²⁸
RxREN ²⁹	Extract rules that drive the model using classified and misclassified data	G, S	*	D	None
NNKX ³⁰	Knowledge extraction from multilayers trained model	L, S	*	D	None
SHAP ³¹	Provide feature importance list locally and globally based on game theory	G, L, A	*†	M, D	Classification ³²⁻³⁴ Regression ³⁵
LIME ³⁶	Explain the contribution of each feature toward the outcome for one single instance	L, A	*†	M, D	None
Layer-wise relevance propagation ³⁷	Generate a heat map in the input space to reveal the contribution of each voxel in the model outcome	L, S	t	D	None
Guided backpropagation ³⁸	Visualize the learning of the intermediate layer of deep learning models	L, S	t	D	Segmentation ³⁹ ; Classification ⁴⁰
DeepLIFT ⁴¹	Shows the additive features attribution to the model outcome	L, S	*†	D	None
	model outpointe	1			4
Seq2Seq ⁴²	Visualize and debug sequence-to-sequence tool	L, S	*†	D	None
SmoothGrad ¹⁹	Improve the sensitivity maps generated on the	L, S	+	D	Classification and

Seq2Seq42	Visualize and debug sequence-to-sequence tool	L, S	*†	D	None	
SmoothGrad ¹⁹	Improve the sensitivity maps generated on the input image by removing the noise	L, S	+	D	Classification and Regression ⁴³	
Saliency maps ²¹	Generate saliency maps, which shows the contribution of each pixel toward the model output	L, S	+	D	Classification ¹⁸	
DeepTaylor ⁴⁴	Generate heat maps, which shows the contribution of each pixel toward the model output	L, S	+	D	None	
DeConvNet ⁴⁵	Generate heat maps, which shows the contribution of each pixel toward the model output	L, S	+	D	None	
Pattern attribution ⁴⁶	Generate heat maps, which shows the contribution of each pixel toward the model output	L, S	+	D	None	
Integrated gradients ⁴⁷	Generate heat maps, which shows the contribution of each pixel toward the model output	L, S	+	D	None	
Grad-CAM ¹⁶	Generate heat map, which shows the contribution of each pixel toward the model output	L, S	+	D	Classification ^{18,34,40,48,49,50} ; Segmentation ⁵¹	
Grad-CAM++52	Improved version of Grad-CAM	L, S	+	D	None	
TCAV ⁵³	Features attribution	L, S	+	D	Classification ⁵⁴ ; Segmentation ⁵⁵	

A indicates agnostic; ALE, accumulated local effects; D, deep learning;

DeConvNet, deconvolution network; DeepLIFT, deep learning important features; G, global; Grad-CAM, gradient-weighted class activation mapping;

L, local; LIME, local interpretable model-agnostic explanations; M, machine learning; NNKX, neural network knowledge extraction;

PDP, partialdependence plot; RxREN, rule extraction by reverse engineering; S, specific; Seq2Seq, sequence-to-sequence models; SHAP, Shapley additiveexplanations; TCAV, testing with concept activation vectors; and XAI, explainable artificial intelligence.

Major adverse cardiac events (MACE)

Data Cardiology

Cardiac Instruments

AI +cardiology +Instrum

From Arafati A, et al. Artificial intelligence in pediatric and adult congenital cardiac MRI: an unmet clinical need. Cardiovasc Diag Ther 2019;9:S310–25. Obtained with permission

V

- ✓ Polar maps with clinical recommendation (left) and
- ✓ personalized explanations of the ML recommendation (right) are shown in two cases:
- ✓ A :a case with a ML score below the score threshold to recommend cancelling the rest scan and
- ✓ B :a case with a ML score higher than the threshold. The individual contributions of the top 10 features to the overall risk for each patient are shown (blue bars = decreasing risk, red bars = increasing risk). Grey dotted line indicates baseline cohort risk. Red dotted line indicates risk threshold, matching stress cancellation rate for the stringent clinical criteria.
- ✓ Reprinted with permission: Hu LH et al Prognostically safe stress-only single-photon emission computed tomography myocardial perfusion imaging guided by machine learning: report from REFINE SPECT. Eur Heart J Cardiovasc Imaging. 2021 <u>https://doi.org/10.1093/ehjci/jeaa</u>134.22

attenuation correction (CTAC), and

- ✓ DLAC for 4 patients: (A) normal female, (B) abnormal female, (C) normal male, and (D) abnormal male. SSS, TPD, and defect extent (BLK) are displayed for all polar maps.
- ✓ Ref: Hagio T, et al "Virtual" attenuation correction: improving stress myocardial perfusion SPECT imaging using deep learning. Eur J Nucl Med Mol Imaging. 2022 Mar21. https://doi.org/10.1007/s00259-022-05735-

PET 18F-FDG

LVEF, EDV, and ESV for the single subject are given for each dose-reduced image and the fulldose reference.

 Ref: Ladefoged CN, et al Low-dose PET image noise reduction using deep learning:application to cardiac viability FDG imaging in patients with ischemic heart disease. Phys MedBiol. 2021;66:054,003.24

PET + CT Carotid plaque inflammation

(A) CT (a) and PET(b) images of right carotid artery [black ROIs (red arrows)] in patient with high-grade stenosis and inflamed atherosclerotic plaque (extended lipid core and limited calcification), (c) Example ROIsmanually placed around carotid artery wall on PET images, (d) Surgically derived histological and immunohistochemical analysis (CD31, cluster of differentiation 31; CD68, cluster of differentiation 68), (e) Corresponding values for target-to-background ratio (TBR) and textural features chosen for plaque vulnerability (opt. thresh, optimal threshold to detect increased histological and immunohistochemistry-based plaque characteristics; info.correlation1GLCM, first measure of information

ま あ あ ま あ あ ま あ あ あ あ あ

correlation; rlnuGLRLM, run length non-uniformity; lzlgeGLSZM, large zone low gray level emphasis; SDIH, intensity histogram standard deviation, varianceGLCM, joint variance).

(B) one patient with left carotid artery atherosclerotic plaque with low inflammation (limited lipid core and extended calcification). Both cases demonstrate texture analysis can potentially provide valuable complementary information to TBR

Ref: Kafouris PP et al Fluorine-18fluorodeoxyglucose positron emission tomography-based textural features for prediction of eventprone carotid atherosclerotic plaques. J NuclCardiol. 2021;28:1861–1871

Coronary CT angiogram

Central Figure Legend: (A1) Presence of positive remodeling (yellow arrows) and low attenuation plaques (LAP, red arrow) are the most important determinants of plaque vulnerability. (A2) Stable plaques lack both these features. Major adverse cardiac events by the presence of 1 or both features in a follow up of —patients for 2 years (A3), and 300 patients for up to 10 years. (A4) Patients with HRP had 45 and 10 folds higher likelihood of ad- verse outcomes, respectively. Presence of obstructive disease over and above HRP features (A5) and interval progression in plaque magnitude (A6) increased the likelihood of adverse events further. Greater number of adverse plaque characteristics were associated with greater of adverse outcomes (A7) and the HRP characteristics were associated with abnormal fractional flow reserve regardless of luminal stenosis (A8). (Reprinted with permission of Elsevier)

Mitral valve

3D printing Cardiology

48 The second se

Robotics

Cardiology

Risk stratification AI + Cardiology

