Available online at www.joac.info

ISSN: 2278-1862

Journal of Applicable Chemistry

2024, 13 (3): 441-520 (International Peer Reviewed Journal)

...CNN - 62b...*l am ...*

...Intelligence Augmented Medical... Neuro Surgery

Part 2. Fits (Figure Image Table Script ...) Base

Information Source	sciencedirect.com;	
S. Narasinga Rao M D Associate Professor, Emergency Medicine dept., Andhra Medical College, King George Hospital Visakhapatnam, A.P., I ndia	K. Somasekhara Rao, Ph D Dept. of Chemistry, Acharya Nagarjuna Univ., Dr. M.R.Appa Rao Campus, Nuzvid-521 201, I ndia	R. Sambasiva Rao, Ph D Dept. of Chemistry, Andhra University, Visakhapatnam 530 003, I ndia
snrnaveen007@gmail.com (+91 9848136704)	<u>sr_kaza1947@yahoo.com</u> (+91 98 48 94 26 18)	rsr.chem@gmail.com (+91 99 85 86 01 82)

Conspectus: "Intelligence Augmented Medicine (I am)" is the pragmatic tool of state-of-knowledge for human health care. It comprises of hierarchical/ hybrid/fused transient disciplines with an inner core focus on disease confirmation and treatment in this decade and with expected higher level of accuracy for coming generation(s) even in economically deprived countries. A set of typical medical specialisations of concern are Neurology, Surgery, Anaesthesiology, Cardiology, Pulmonology, Gynaecology, Venereology, Urology. Hepatology, Ophthalmology, Dermatology, Oncology etc. In this series of medical news highlights, the impacts/benefits of current-state-of-art-of evolved AI-and-medical/surgical tools had been described.

The present news item (Graphics-Flyer/Image-Flyer) "Fits.Base. Neuro Surgery" is also a passive information collection for Neuro-surgery. It incorporates numerical data, figures, images, tables, graphs, literary scripts etc. A few studies described deal with Glioma, Cerebrovascular disorders, Spine Surgery, Hematoma and so on. Robotic Machines and Virtual/real/mixed realities brought renaissance in Neurosurgery. The models employed are No-new- U-Net.", Physics Informed NN, ChatGPT, xAI, ML//CNN-Transformer Models. We had been involved in the active-mode-of-FitsB in the object-oriented-search, picking up knowledge/intelligent bits in the medical (Progress of medical diagnosis, surgery, post-operation health care)/chemical chores.

Keywords:Artificial intelligence (AI); Medical diagnosis, Neurology, Surgery; CNN : [C [Computations; Computer; Chemistry] NN [New News; News New; Neural Nets; Nature News; News of Nature;]]

Neuro Surgery

Neural Nets

prediction or response to certain therapeutics

- Inability to understand how outputs are generated due to complexity of hidden layers
- Raises concerns regarding trust in deep learning predictive models

Physics Informed NN (PINN)

the torque τ as functions of time t.

- (b) The goal state in this optimization task, $\cos \varphi = -1$ at t = 10 s.
- \checkmark (c) The history of loss values over iterations.
- ✓ (d) The illustration of the neural network incorporating the equation of motion into its objective function. The input is t and the outputs are φ and τ.
- ✓ (e) A baseline result of a GA algorithm.

- ✓ (f) A baseline result of an RL algorithm using TD3. Both GA and RL produce wiggling torque scenarios.
- ✓ (g) The result of PINN, which determines swinging the pendulum back and forth to accumulate its energy to reach the goal.
- ✓ (h) Several snapshots of swinging up the pendulum.

Ensemble models in PINN, RL, and GA

- ✓ (a) The learning curve variation. For the RL and GA curves, smoothed lines are shown in solid lines, while the original curves are indicated with transparent colors.
- ✓ (b) The variation of inference results after the training, without exploration noise. The goal states ($\cos \varphi = -1$) are also shown in red dashed lines

Diagnosis of Cerebrovascular disorders with Al/robotics

Author	Year	Type of	Title	Time	Sample	Al/robotics	Key objective	Key findings
Akiyama et al. [41]	2020 (September)	study Retrospective review	Deep Learning-Based Approach for the Diagnosis of Moyamoya Disease	2009 to 2016	size 84	subtype Deep learning algorithm	Moyamoya disease diagnosis	Al analyzing T2-weighted images showed high accuracy results in distinguishing between atherosclerotic disease and Moyamoya disease at the level of the basal cistern, basal ganglia, and centrum semiovale.
Kordzadeh et al. [33]	2019 (March)	Prospective cohort study	The Role of Artificial Intelligence in the Prediction of Functional Maturation of Arteriovenous Fistula	2012 to 2016	266	Deep learning neural network model	AV fistula maturation prediction	With 10 given patient attributes, AI could predict functional maturation of AV fistula with >80% accuracy (p < 0.01).
Lang et al. [35]	2020 (October)	Retrospective review	Evaluation of an Artificial Intelligence-Based 3D- Anglography for Visualization of Cerebral Vasculature	2019	15	Deep learning neural network model	Cerebral anglography optimization	An Al-based 3DA technique based only on a single contrast-enhanced run that functions with approximately half of the radiation required for the conventional subtraction technique shows comparable results to standard 3D DSA with a significant reduction in patient radiation does.
Silva et al. [26]	2019 (November)	Retrospective cohort study	Machine Learning Models can Detect Aneurysm Rupture and Identify Clinical Features Associated with Rupture	2002 to 2018	615	Machine learning algorithm	Aneurysm rupture detection	The model can accurately classify aneurysm rupture status based on proviously established predictors. The model suggests that location is significantly more important than size when estimating rupture risk. The ML techniques show promise in clinical neurosurgical applications.
Faron et al. [27]	2019 (June)	Retrospective review	Performance of a Deep- Learning Neural Network to Detect Intracranial Aneurysms from 3D TOF-MRA Compared to Human Readers	2015 to 2017	85	Deep learning neural network model	IC aneurysm diagnosis	Statistical analysis revealed no significant differences in overall sensitivity between the neural network, reader 1, and reader 2. Human readers detected a significantly higher portion of aneurysms (<3 mm) compared to the neural network in this study. In a clinical setting, neural network algorithms may potentially increase detection rates of cerebral aneurysms.
Zhu et al. [28]	2020 (May)	Retrospective review	Stability Assessment of Intracranial Aneurysms Using Machine Learning Based on Clinical and Morphological Features	2014 to 2018	1897	Machine learning random forests (RF) and support vector machine (SVM) and automated	IC aneurysm diagnosis	ML models displayed better performance than the statistical LR model and PHASES score in intracranial aneurysm stability assessment.

PRISMA Literature Scrutiny

AAA→CNN 62b-I am(Intell. Augmented Med.)Neuro Surgeon

447

- ✓ Search strategy: ["artificial intelligence" OR
 - o "machine learning" OR "deep learning"
 - OR "natural language processing" OR
 - "support vector machine" OR "naïve
 - o bayes" OR "Bayesian learning" OR
 - o "artificial neural network" OR "random
 - o forest" OR "machine intelligence" OR
 - o "k-nearest neighbor" OR "decision tree"
 - OR "data mining" OR "fuzzy" OR
 - o "computational intelligence" OR
 - o "computer reasoning"] AND
 - ["neurosurgeon" OR "neurosurgery" OR
 - o "skull base surgery" OR "spine surgery"
 - o OR "brain surgery" OR "cerebrovascular
 - o surgery" OR "endovascular" OR
 - o "neurosurgical"].
- \checkmark No limitations with respect to the language
- \bigcirc or year of publication of articles.
- \bigcirc search yielded 731 results which were
- \triangle subsequently sorted by citation count.
- ! Top-50 most-cited articles

! relevant to the scope of this review were retrieved.

Rank	Year	Title	Citation Count	Average Citations per Year	First Author	Last Author	Journal (IF)	Country
1	2018	Machine learning and neurosurgical outcome prediction: a systematic review	159	31.00	Senders	Amaout	World Neurosurgery (2.21)	USA
2	2014	Machine learning for outcome prediction of acute ischemic stroke post intra-arterial therapy	102	11.11	Asadi	Mitchell	PLoS Cne (324)	Australia
3	2018	Natural and artificial intelligence in neurosurgery: a systematic review	101	20.20	Senders	Smith	Neurosurgery (5.315)	USA
4	2009	Atlas-based segmentation of degenerated lumbar intervertebral discs from MR images of the spine	90	6.93	Michopoulou	Todd- Pokropek	IEEE Transactions on Biomedical Engineering (4.538)	England
5	2020	EEG based multi-class seizure type classification using convolutional neural network and transfer learning	94	30.67	Raghu	Kubben	Neural Networks (9657)	India
6		Examining the ability of artificial neural networks machine learning models to accurately predict complications following posterior lumbar spine fusion	78	14.40	Kim	Cho	Spine (3.241)	USA
7	2020	Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions: a systematic review	75	24.33	Murray	Hui	Journal of Neurcinterventional Surgery (3.572)	USA
8	2020	Classification of brain tumors from MRI images using a convolutional neural network	70	23.33	Badza	Barjaktarovic	Applied Sciences-Basel (2.838)	Serbia
9	2018	Soatio-spectral classification of hyperspectral images for brain cancer detection during surgical operations	68	13.20	Fabelo	Sarmiento	PLoS One (3.24)	Spain
10	2010	Use of an artificial neural network to predict head injury outcome.	67	4.92	Rughari	Tranmer	Journal of Neurosurgery (5.403)	USA

	Uses o	s of Application and of AI in Neurosurgery 50 Highest-Cited Articles	
Area of Application	Number of Articles	Use of Al	Number o Articles
Spine	13	Prediction model	16
Endovascular	12	Diagnostic and/or imaging aid	14
Neuro-oncology	9	Assisting or enhancing other technologies	8
Trauma	5	Guiding a personalized treatment plan	4
Functional neurosurgery	3	Improvement of surgical technique	3
Education	2	Big data management and analysis	1
Pediatric neurosurgery	1	Non-specific	4
Endoscopic neurosurgery	1		
Non-specific	4		

GOF ML Models

12 Performance of ML Models and Clinical Experts

First author, year of publication	Output	Input features	Outcome measures	ML models	Clinical experts	P-value
Diagnosis						
Diagnostic tumor classifi	cation					
Kitajima, 2009 ³⁹	Differentiate pituitary adenoma, craniopharyngioma, Rathke's Cleft ^a	Age, MRI	AUC	0.990	0.910	NA ^d
Yamashita, 2008 ⁴⁰	Differentiate brain metastases, glioma grade II-V, malignant lymphoma ^a	Age, history of brain tumor, MRI	AUC	0.95	0.90	NA ^d
Bidiwala, 2004 ³⁷	Differentiate pediatric posterior fossa tumors: medulloblastoma, cerebellar astrocytoma, ependymoma	Age, gender, symptoms, signs, CT, MRI	Sensitivity Specificity PPV	73%-86% 86%-93% 73%-86%	57%-59% 82%-83% 62%-63%	.074 ^c 77 ^c 17 ^c
Arle, 1997 ²⁶	Differentiate pediatric posterior fossa tumors: astrocytoma, PNET, ependymoma/other	Age, gender, MRI, MRS	Accuracy	95%	73%	<.001 ^c
Tumor grading						
Juntu, 2010 ³⁸	Differentiate between benign and malignant soft-tissue tumors including neural tumors	MRI	Accuracy Sensitivity Specificity AUC	93% 94% 91% 0.92	90% 81% 92% 0.85	.61 ^c . 009^c 1.00 ^c NA ^d
Zhao, 2010 ⁴⁴	Classify glioma into grade I-IV	Age, MRI	Accuracy overall Accuracy LGG Accuracy HGG Kappa value AUC	82% 82% 85% 0.68 0.870	65% 62% 66% 0.47 0.71	.001 09 .008 NA ^d .004
Emblem, 200933	Classify glioma into grade I-IV	MRI	AUC	NA	NA	.5697
Abdolmaleki, 1997 ⁵⁴	Differentiate between low and high-grade astrocytomas ^a	MRI	Accuracy AUC r	89% 0.91 0.87	80% 0.84 0.56	.003 <.001 ^c NA ^d
Christy, 199552	Classify glioma into grade I-IV	MRI	Accuracy	61%	57%	84 ^c

12

First author, Year of publication	Experts	ML models	Size training set	Validation method	Size test set	Ground truth
Diagnosis						
Diagnostic tumor classific	ation					
Kitajima, 2009 ³⁹	5 general radiologists + 4 neuroradiologists ^a	ANN	43	LOOCV	2	Histological diagnosis
Yamashita, 2008 ⁴⁰	9 radiologists ^a	ANN	126	LOOCV		Histological diagnosis
Bidiwala, 200437	1 neuroradiologist	ANN	33	CV (NOS)	-	Histological diagnosis
Arle, 199736	1 neuroradiologist	ANN	80	5-FCV	-	Histological diagnosis
Tumor grading						
Juntu, 2010 ³⁸	2 radiologists	SVM, ANN, DT(C4.5)	60-100	10-FCV	2	Histological diagnosis
Zhao, 201 044	1 neurosurgeon + 1 neuroradiologist	SVM	106	5-FCV	2	Histological grading
Emblem, 2009 ³³	4 neuroradiologists	FCM	14	<u>_</u>	50	Histological grading
Abdolmaleki, 199754	3 neuroradiologists	ANN	43	-	36	Histological grading
Christy, 199552	1 radiologist	ANN, LR	52	-	29	Histological grading
Other applications						
Campillo, 201353	1 neurosurgeon + 1 hospital hygienist physicians	NA	3785	-	1225	Patients identified by expert, NLP or ICD-10 code database
Duun-Henriksen, 2012 ⁵¹	1 neurophysiologist	SVM	10	-	10	NA
Tankus, 200943	1 human observer (NOS)	LDA	12	LOOCV	-	Synthetic database with
1011110, 2002	(100)	ELCIP 1	0000	LUUCI		known ground truth
Sinha, 2001 ⁴⁸	9 pediatric EM attendees + 6 pediatric EM fellows	ANN	382	2	351	CT imaging

GOF SUN-

22 Evaluation of GOF Metrics and Clinical Outcomes of Artificial Intelligence Models in Neurosurgery Diagnosis and Treatment

Author, Year, Country	Specialty	AI Model Types Used In the Study	Evaluation Metrics and Clinical Outcomes
Merali et al., 2021, Canada ^[6]	Spinal Neurosurgery	DL (CNN)	Cervical Spinal Cord Compression Detection: Accuracy: 94% Sensitivity: 88% Specificity: 89%
Hallinan et al., 2022, Singapore ^[7]	Spinal Neurosurgery	DL (CNN)	Spinal Metastases Detection: Internal test sets: Sensitivity: 97.6% Specificity: 93.6% External test sets: Sensitivity: 89.9% Specificity: 98.1%
Doerr et al., 2022, United States ^[9]	Spinal Neurosurgery	DL (CNN)	Injury Classification Accuracy: 86.8%
Kim et al., 2020, Republic of South Korea ^[12]	Spinal Neurosurgery	ML (Random forest, XGBoost, Bayesian generalized linear model, decision- making tree model, k-cluster analysis, logistic regression analysis and neural network analysis)	Operation time Accuracy: 97.5% Reoperation occurrence Accuracy: 95.2%
Hopkins et al., 2020, United States ^[13]	Spinal Neurosurgery	ML (DNN)	Prediction of Postoperative SSI Accuracy: 78.7%
De la Garza Ramos et al., 2022, United States ^[14]	Spinal Neurosurgery	ML (ANN)	Prediction of Perioperative Blood Transfusion: Accuracy: 77%

AAA→CNN 62b-I am(Intell. Augmented Med.)Neuro Surgeon

AI +{Surgery [neuro]}

AI + Neuro Diseases

Future of AI + Sun {:SUrgery [Neuro]}

ChatGPT (AI) Is Ready to DoChemistry and NeuroScience/Surgery

Neuro Diseases Surgery planning

resonance angiography.

- ✓ Deep learning models can be used for performing each of the described steps individually or in a more comprehensive fashion (bottom pathway of figure).
- ✓ EGFRvIII = epidermal growth factor receptor variable III,
- \checkmark IDH = isocitrate dehydrogenase,
- \checkmark MGMT = O6-methylguanine-DNA-methyltransferase

Representative image of trigeminal involvement in FLAWS.

- ✓ The arrowhead illustrated the cisternal trigeminal nerve, root entry zone (REZ) and nuclear zone (patient 15).
- ✓ From left to right are INV2, INV1, UNI and FLAWS images from the FLAWS-MP2RAGE
- ✓ sequence.

ひ き ひ き き む き き き き き

✓ FLAWS-MP2RAGE, fluid and white matter suppression based on the magnetisation-prepared 2 rapid acquisition gradient echoes

Table 1 Clinical and trigeminal nerve involvement characteristics									
Num	Age, y	Diagnosis	Disease duration, y	EDSS	Disease-modifying treatment [*]	Location [†]	CVS (Y/N)	Facial sensory symptom	Trigeminal neuralgia (Y/N
Patient 1	20 s	RRMS	1	2	Siponimod	R:a,c L:a	N	N	N
Patient 2	20 s	RRMS	1	3	Ofatumumab	R:a,c L:a,c	N	N	N
Patient 3	30 s	RRMS	2	1	Siponimod	R: c L: c	R: Y L: N	N	N
Patient 4	30 s	RRMS	0.3	1	Dimethyl fumarate	R: a	N	Maxillary	N
Patient 5	50 s	RRMS	5	2.5	NA	R: a, b	Y	N	N
Patient 6	30 s	RRMS	5	2	Dimethyl fumarate	R:a,c L:a	R: Y L: N	N	N
Patient 7	30 s	RRMS	5.5	1	Ofatumumab	R: a	Y	N	N
Patient 8	205	RRMS	2.5	2	Teriflunomide	R:a,c L:a,c	R: N L: N	N	N
Patient 9	30 s	RRMS	2	0	Siponimod	L:a	N	Maxillary	N
Patient 10	30 s	RRMS	11	2	NA	R: a, b, c L: a	R: Y L: Y	N	N
Patient 11	30 s	RRMS	6	2	Teriflunomide	R:a L:a	N	Maxillary, mandibular	N
Patient 12	20 s	RRMS	2.25	1	NA	L: a, c	L: N	N	N
Patient 13	20 s	RRMS	2	4.5	NA	R:a L:a,b,c	R: Y L: Y	Maxillary	Y
Patient 14	20 s	RRMS	4.5	7	Siponimod	R: a, b, c L: a	N	N	N
Patient 15	30 s	RRMS	2	6	Siponimod	R: a, b, c L: a, c	R: Y L: Y	N	N

Glioma

Landscape of diffuse gliomas

✓ Note that EB and DB denote the encoder and decoder block layers, individually.

CNN-Transformer brain segmentation network from mpMRI

Future Prospects with exoscope-Assisted Spine Surgery

Nn_U-Net "No new U-Net."

The MGAoversegmented the tumor in this particular patient \checkmark

- The top row are examples from Center A,
- o Bottom row are examples from Center B.

のあるのののののの

o Red arrows are used to indicate false positives in the tumor segmentation

boxplot showing performance of the MGA and nnU-Netmodels side by side

Telecommunications' room of Neurosurgery Research

AI + neurosurgery system

- T1, T1Gd, T2, and FLAIR with a 0
- patch spatial resolution of $192 \times 224 \times 160$. 0

The CNN network has 24 convolution neural blocks (blue boxes),

- four downsampling blocks (orange boxes),
- four upsampling blocks (grey boxes), and
- final softmax output layer (green box). \checkmark

 \checkmark

AI+Neurosurgey system for glioma

modify and adjust the segmentation results as necessary.

✓ (c) The Segment Statistics module computes intensity and geometric properties for each segment

	28	8			
Assessment of the usabil					
presentation, rating 1 (=s			3 (e) to 5 (e)	=strong	
1. Use frequently 2. Unnecessarily complex 3. Easy to use		M			
4. Support needed 5. Functions well integrated 6. Inconsistency		\mathbb{X}			
7. Quick to learn 8. Cumbersome to use					
9. Confident using					

AI ; Software; GOF (Accuracy)

atest advances in	31 artificial intelligence methods and softwares along with their respec	ctive accuracy m	atrices.		
Study	Aim	Study Type	AI method and software	Accuracy matrices	N
(Rava et al, 2021) ²⁵	To evaluate an application's capacity to detect and locate LVOs in AIS patients.	Retro prospective	CTA	Accuracy = 81% Sensitivity = 73% Specificity = 90%	303
(Adhya et al, 2021) ²⁸	Utilise emerging approaches for diagnosis of anterior circulation artery blockages by assessing relative vascular densities.	Prospective	RAPID-CTA	Sensitivity = 80% PPV = 87%	310
(Morey et al, 2021) ²⁷	To reduce time-to-treatment and improving clinical outcomes.	Retrospective	Vin.ai LVO	Sensitivity = 82% Specificity = 94%	55
(Meng et al, 2022) ²⁰	Use deep learning pipeline to detect large vascular occlusion (LVO) and predict functional outcomes based on CTA images to optimize LVO patient care.	Retrospective	Inception-V1 I3D	Sensitivity = 89% Specificity = 66% Accuracy = 96%	8650
(Matooukas et al, 2022) ²⁹	Evaluate the precision of AI software in a multihospital stroke network.	Prospective	Vis LVO	Sensitivity = 91.1% Specificity = 93.8% Accuracy = 91.2%	1822
(Bathla et al., 2022) ³⁰	LVO identification at the level of the picture to speed patient triage for mechanical thrombectomy.	Retrospective	4D-GTA/CT perfusion (CTP) images using neural network (NN) models	Sennitivity = 86.5% Specificity = 89.5% Accuracy = 85.5%	306

AAA→CNN 62b-I am(Intell. Augmented Med.)Neuro Surgeon

のあったいまいまいたいまいま

CARA HANDA HANDA HANDA HANDA HANDA

Hematoma volume

Neuro-oncologic imaging

Predictive maps of tumor infiltration

Barrier	Proposed solution
Requirement of large datasets to train existing ML programs	 Creation of international databases as repositories for training data for brain tumours. Collaboration between neurosurgical oncology units. Synthetic multi-parametric MRI image generation.
Selection bias of training data	 Ensure a wide range of demographics used to train ML programs. Use of international databases as repositories for training data.
Patient confidentiality concerns when sharing patient data between units to train ML platforms	 Robust scrutiny of data governance for existing databases. Development of technologies in accordance with existing ethical and legal frameworks. Synthetic multi-parametric MRI image generation.
Slow progress in advancing ML programming	 International collaboration between ML programming teams. Publishing code for all newly developed ML platforms, making code widely available for further development and serutiny.
"Black box" conundrum	 Ensure that human users can understand and trace all predictions and decisions made by tuture ML platforms.
Poor contextualisation of uncertainty by ML programs	 Ensure that ML platforms developed for use in brain tumour management are used in tandem with clinicians, who are better able to contextualise and explain uncertainty.

Brain MR neuro-oncologic imaging

ο

- B, Glioma-specific module could make personalized predictions of molecular markers, survival, and treatment responses (precision diagnostics), thereby recommending optimal treatment plan(s), which would be continuously updated on the basis of follow-up imaging (precision therapeutics).
 - CNS = central nervous system, DTI = diffusion tensor imaging, EGFR = epidermal growth factor receptor, EGFRvIII = epidermal growth factor receptor variable III, IDH = isocitrate dehydrogenase, MGMT = O6-methylguanine-DNA-methyltransferase, TTFields = tumor-treating fields

AI-Brain

- wide range of clinical tasks,
 - from logistical andsecretarial in nature, to
 - critical diagnostic, decision-making, and interventional tasks

Learning (Machine - AI)

 \checkmark

 It may be utilized for bureaucratic tasks like resource allocation, or potentially in the control mechanisms of autonomous surgical robots and adjuncts

machine learning and deep learning may see increasing use in the future

 ✓ 3, Feature selection refers to the selection of relevant data characteristics that are considered

relevant to making an informed decision based upon the data present, and the desired task. For both nonautomated and limited machine learning capabilities, feature selection must be conducted by the human operator. A deep learning algorithm is able to perform both feature selection and classification tasks (4) itself.

✓ 4, Classification

entails the analytical portions of the task, whereby the data are stratified into categories, for example, whether a tumor appears malignant or not. Humans perform these tasks traditionally, based upon their knowledge and experience; this may however entail nonquantitative intuitive cognitive processes. Traditional machine learning algorithms use the data that have already been censored (ie, it is fed only data that the human operators feel are relevant for it to complete its job) to classify the data into

✓ the categories relevant to the task at hand. A deep learning algorithm is autodidactic, and can perform feature selection and classification itself. Both feature selection and classification processes may, if subsequently analyzed, be significantly different from how a human would approach data analysis tasks.

 ✓ 5, The output consists of the diagnosis, prognosis, or decision fulfilling the purpose of the clinical workflow

AI + Surgery Neuro-Pre- / Intra- / Post-Operative

AI +

Neuro [Diseases /surgery]

(C,D) The anatomical relationship of the corticospinal tract, superior fronto occipital fasciculus, and corpus callosum transverse fibers with the cavernoma is shown in sagittal and axial **MRI** tractographyimages. Due to the mass effect of the cavernoma, displacement of the superior fronto occipital fasciculus was observed. fronto occipital fasciculus was observed.

The research algorithm was created for time efficiency compared with the time-consuming RL algorithm.

- \checkmark The goal is to find the most ideal cranial entry points.
- ✓ Machine learning was not used in this method.
- Cranial entry points were scored using the equivalent areas and tumor location in Table 1 and compared with each other.
- With this algorithm,
 - it was possible to sort by five most ideal entry points, 10 entry points, or worst entry points.

- In addition, this algorithm provided a linear access path to tumor tissue in the shape of a rectangular prism or cylinder. The entrance area in the images was determined as 1.5 cm2.
- The algorithm has been adjusted to allow this area to be increased or decreased.

- This algorithm can be useful in tubular operative systems or rigid endoscopic systems.
- In this study, we took these points (the most ideal 4,900 points) as the starting points of RL. Image(A,B) are the ideal best rated and image (C) the worst-rated sample entry points

Recent research in the eld of neurosurgery by analyzing images with artificial intelligence			
Study	Journal	Article title	Algorithms used in the study
Scherer et al. ³²⁾ (2016)	Stroke	Development and validation of an automatic segmentation algorithm for quantification of intracerebral hemorrhage	RF
Urbizu et al. ⁴² (2018)	J Neurosurgery	Machine learning applied to neuroimaging for diagnosis of adult classic Chiari malformation: role of the basion as a key morphometric indicator	7 machine learning algorithms trained : NB, DT, K-NN, LR, SVM, LDA
Paliwal et al. ²⁷⁾ (2018)	Neurosurg Focus	Outcome prediction of intracranial aneurysm treatment by flow diverters using machine learning	SVM, LR, K-NN, ANN
Hale et al. ¹⁴⁾ (2018)	Neurosurg Focus	Machine learning analyses can differentiate meningioma grade by features on magnetic resonance imaging.	K-NN, SVM, NB, ANN
Huang et al. ¹⁸⁰ (2019)	<mark>J Neurosurgery</mark> Spine	A computer vision approach to identifying the manufacturer and model of anterior cervical spinal hardware	KAZE feature extractor, K-means clustering, SVM
Burström et al. ⁷⁷ (2019)	J Neurosurgery Spine	Machine learning for automated 3-dimensional segmentation of the spine and suggested placement of pedicle screws based on intraoperative cone-beam computer tomography	Multiple segmentation algorithms trained (not mentioned)
Staartjes et al. ³⁷⁾ (2020)	J Neurosurgery	Neural network-based identification of patients at high risk for intraoperative cerebrospinal fluid leaks in endoscopic pituitary surgery	DL

AAA→CNN 62b-I am(Intell. Augmented Med.)Neuro Surgeon

tudy	Journal	Article title	Algorithms used in the study
(alagara et al. ¹⁹⁾ (2018)	J Neurosurgery Spine	Machine learning modeling for predicting hospital readmission following lumbar laminectomy	DT
itaartjes et al. ³⁶¹ (2018)	Neurosurg Focus	Utility of deep neural networks in predicting gross-total resection after transsphenoidal surgery for pituitary adenoma: a pilot study	DL
Vuhlestein et al. ³⁶⁾ (2019)	Neurosurgery	Predicting inpatient length of stay after brain tumor surgery: developing machine learning ensembles to improve predictive performance	29 machine learning algorithms trained
Hernandes Rocha et al. ¹⁵⁾ (2019)	J Neurosurgery	A traumatic brain injury prognostic model to support in-hospital triage in a low-income country: a machine learning-based approach	9 machine learning algorithms trained : K-NN, Bayesian GLM, etc.
Goyal et al. ¹¹ (2019)	J Neurosurgery Spine	Can machine learning algorithms accurately predict discharge to nonhome facility and early unplanned readmissions following spinal fusion? Analysis of a national surgical registry	7 machine learning algorithms trained : predictive hierarchical clustering, classification algorithm
5iccoli et al. ³⁵¹ (2019)	Neurosurg Focus	Machine learning-based preoperative predictive analytics for lumbar spinal stenosis	7 machine learning algorithms trained : RF, XGBoost, GLMs, BDT, K-NN, GLMs, ANN
Tunthanathip et al. ⁴⁰⁾ (2019)	Neurosurg Focus	Machine learning applications for the prediction of surgical site infection in neurological operations	DT, NB with Laplace correction, K-NN, ANN
Lee et al. ²⁰ (2019)	World Neurosurgery	Prediction of IDH1 mutation status in glioblastoma using machine learning technique based on quantitative radiomic data	Classification algorithms : K-NN, SVM, DT, RF, NB, LDA, GBM
Senders et al. ³⁴⁾ (2020)	Neurosurgery	An online calculator for the prediction of survival in glioblastoma patients using classical statistics and machine learning	15 machine learning algorithms trained
Staartjes et al. ³⁷⁾ (2020)	J Neurosurgery	Neural network-based identification of patients at high risk for intraoperative cerebrospinal fluid leaks in endoscopic pituitary surgery	DL
Hopkins et al. ¹⁷⁾ (2020)	J Neurosurgery Spine	Using machine learning to predict 30-day readmissions after posterior lumbar fusion: an NSQIP study involving 23,264	DL

Robots + [Surgery + Neuro-]

AAA→CNN 62b-I am(Intell. Augmented Med.)Neuro Surgeon

0.00

TABLE 1. Milestones Along the Path From Robots to Al in Medicine					
Pre-1946	Automatic machines and calculating device but not Al. Wondrous ancient automata described				
920s	The word "robot" replaces the word "automaton"				
928	Eric. a battery-powered, aluminum-skinned robot with 11 electromagnets and a motor that could move its hands and head and be controlled remotely or by voice presented at the Model Engineer's Society in London				
1930s	Industrial robots introduced in the United States				
939	Elektro, a 7-foot tall, walking, talking, voice-controlled, humanoid robot weighing 120 kg presented at the World's Fair. It could smoke, speak 700 words and move its head and arms				
949	Manchester Mark 1, first stored program computer, installed. Named "The Electronic Brain"				
950	Alan Turing writes "Can Machines Think?"				
955	Logic Theorist – first AI program presented and funded by the RAND Corporation				
956	Dartmouth Summer Research Project on Artificial Intelligence				
963	DARPA funds AI at Massachusetts Institute of Technology				
965	Edward Feigenbaum introduces expert systems at Stanford (The Heuristic Programming Project)				
968	The famed science fiction writer, Arthur C. Clarke, predicts that by 2001, machines will be smarter than humans				
970s	Automated, computer-assisted EKG readings				
973	Image analysis of digitized retinal angiography				
973	Expert system assistance for renal disease				
978	Mirsky and others predict no more than 3 to 8 years before human intelligence is surpassed by computers				
978	CASNET introduced for expert system computer-assisted diagnosis of glaucoma				
1981	The PC is introduced with the PC DOS operating system				
1980s	Early investigation of machine vision adaptations to medical image analysis				
1983 1988	Two expert medical systems, the "Internist-I" and "Cadeuceus" introduced Computer-assisted resection of subcortical lesions				
1988	Automated computer-assisted detection of peripheral lung lesions				
1990	Human Genome Project begins				
1997	An IBM computer defeats Gary Kasparove in chess				
1997	Dragon Software introduces first public speech recognition system				
1998	Image Checker computer-assisted diagnostic system for mammography introduced				
2000	Proliferation of cheap storage and increasing computer power				
2000	Introduction of DL for medical applications				
2004	Early reports of computer-assisted diagnosis of retinal disease				
2007	IBM Watson introduced				
2010	Passage of the Patient Protection and Affordable Care Act. EMRss proliferate				
2010	Computer-assisted diagnosis in endoscopy				
2011	Digital assistant introduced commercially				
2012	Computer-assisted segmentation of sectional brain images				
2012	Computer-assisted brain tumor grading				
2017	Chatbots introduced for patient intake				
2018	Al trials for gastroenterology diagnosis begin				
2018	FDA approves Viz.Al, Al-assisted clinical decision support system for stroke triage				
2020	Stacked neural networks applied to EKG interpretation				

Automated cytology	Trend analysis
Frozen section screening	Clinical trials management
Computer-assisted radiological review	Preoperative communication
Image fusion applications	Postoperative follow-up
Radiosurgical planning	FQR system
Robotics	Informed consent
Allergy screening	Human resource management
Medication allergy screening	Revenue cycle management
Electronic medical records analysis	Quality management systems
Personalized implants	Chatbots for websites
Electrophysiological monitoring	Patient communications
Neuro-intensive care decision support	Scheduling
Tight glycemic control systems	Workflow optimization
Surgical modeling	Selected writing tasks

Unanswered research questions That may pave the way For future research

48

1. Can AI fully replace neurosurgeons and what would be its consequences?

2. It has shown that neurosurgery benefits from AI, but what are the cons?

3. How effective is AI in neurosurgery compared with other fields of medicine?

4. How long will it take until the full implementation of AI in neurosurgery?

5. Can the practice of AI use in other fields of science be considered in neurosurgical procedures, what are some of the ways?

6. Can AI be used equally in all types of neurosurgical procedures?

7. If the human factor is absent, will patients trust AI?

8. Will AI be as accurate in complex cases as in simple tasks?

9. Why the higher accuracy of AI compared to specialists in specific cases doesn't lead to their total replacement?

10. The role of IQ in neurosurgery. Does the lower IQ of AI-powered robotics limit their use in Neurosurgery??

Relationship between artificial intelligence, machine learning and deep learning.

50

Brain-computer interface (BCI) Overview

Virtual reality& Medicine related timeline

66 [With virtual reality] we can plan out how we can approach a tumor and avoid critical areas like the motor cortex or the sensory areas. Before, we didn't have the ability to reconstruct it in three dimensions; we'd have to do it in our minds."

- △ A, After preprocessing steps, multimodal MR images are segmented by using automated or manual methods.
- B, This is followed by feature extraction with use of a variety of different techniques.
- C, Machine learning methods are then trained on the features to generate models of underlying molecular markers and predict survival. Deep learning models can be used for performing each of the described steps individually or in a more comprehensive fashion (bottom pathway of figure).
- \checkmark EGFRvIII = epidermal growth factor receptor variable III,
- \checkmark IDH = isocitrate dehydrogenase,
- ✓ MGMT = O6-methylguanine-DNA-methyltransferase

のまままままます