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eampectuo: In the year 2017, Ashish Vaswani et al. published a paper entitled “Attention is All

You Need”.

It revolutionised sequence data modelling. The new model gained popularity as a

Transformer net (TransF Net) or Transformer neural network (TransF NN). The two important modules
are attention layer and MLP-NN to carry out Natural Language processing (NLP). The evolution of

architecture of TransF NN, attention mechanism, and hybridization with other methods, during these
few years, revolutionized computational modelling paradigm. This made a niche in Data Science dealing

with multi-modal data (viz.Text, numerical time-series, sound (speech), and image/video sequence) with
local and global inter-dependencies.
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Natural Language processing (NLP) : Some of earlier models in use were word2vector (2013), MLP,
RecNN (1997-2015), capsuleNN, LSTM, GRU and Transformer (2017-). The advances in modules
with LSTM are Bidirectional-LSTM, LSTM-+attention, LSTM+seq2seq model, LSTM+Reinforced
Lrning, LSTM+self sup Lrning, LSTM+Tranformer, peep- LSTM, and Hierarchical LSTM.

The language models (LMs) are also categorized as Large language models (LLMs), Small language
models (SLMs) and Large/Small language models (LSLMs) based on training data size and number of
parameters.

Transformer models: Attention and MLP NN are the two basic modules of a Transformer invoked in
2017 by Vaswani. Bahadaname (2014) and Luong (2015) invoked the concept of attention in pre-
transformer era. The Transformer model with self-attention layers achieved state-of-the-art results in
machine translation and completely replaced RNNs.

The frames proposed during this decadal period are Generative Pre-trained Transformer (GPT-x: x=1
to 4). BART (Bidirectional and Auto-Regressive Transformers), BERT (Bidirectional Encoder
Representations from Transformers), T5 (Text-to-Text Transfer Transformer), PaLM (Pathways
Language Model), CLIP (Contrastive Language-Image Pre-training), DALL-E (Multimodal models),
BARD, and LLaMA (Large Language Model Meta Al)-2023.

The evolution of Tranformers led to LinFormer, Longformer and Performer with high end technical

features and applications.

A few of Transformer neural nets (TransF-NN) or Transformer nets (TransF-N) architectures used in
this state-of-knowledge-methods-module for dataToknowledge transformation are

APT: Alarm Prediction Transformer,

FastPCI, Swin Transformer Transformer,

Cross-scale prototype learning transformer (Cplformer),

Multiscale Network ( MSNet),

(Automatic Fusion Networks (AutoFuse),

U-shape transformer,

cross-wise transformer module (CTM),

Transformer with Sliding-Window Dissimilarity Cross-Attention (SWDCA),
Neural Networks To Vision Transformers (NN2ViT),

Wavelet-domain Convolution (WeConv), Forest2Seq, RS-MOCO,
Channel-wise Auto-Regressive entropy Model (WeChARM), Interview Training and
Education Module (ITEM),

RBMDC-Net,

RISurConv: Rotation Invariant Surface,

S-JEPA,

REDIR: Refocus-free Event-based De-occlusion Image Reconstruction,
DOLFIN: Diffusion Layout Transformers Without Autoencoder, FasterSTS:
A Faster Spatio-Temporal Synchronous Graph Convolutional Networks,
RP-Net: A Robust Polar Transformation Network,

DMANet: Dual-Modality Alignment Network,

CVT-Occ: Cost Volume Temporal Fusion for 3D Occupancy,

COOCELCOELPOLOE POOPOPOOOOOOD
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£ Transformer network integrated into a chatbot interface,
£ Swin transformers with the U-Net architecture incorporating residual blocks (RBs) and
& Attention mechanism and Trident Transformers (TT).

K?/_)/WOYds: Artificial intelligence (Al); Capsule Neural Nets— MLP-
Attention Mechanism-TransFormer Nets—Hybrid TransFormer Networks-- K(nowledge)Lab
rsr.chem1979

CNN : [C [Computations; Computer; Chemistry, Cell, Cellestial, Cerebrum]
NN [New News; News New; Neural Nets; Nature News; News of Nature;] ]
Fits :[Figure Image Table Script;]

Transformer Net ‘ 2025-53 ‘
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ransformer Net 2025-54

forward estimation backward estimation

Fig. 2: (left) : frame t—1 ; (middle) : frame t ; (right) : the overlapping original frame
t— 1 and the frame t — 1 estimated from frame t. FastPCI produces structure-aware
motion and performs dual-direction motion estimation motivated by two facts:

v" (1) structure consistency: an accurate motion preserves structure of objects, e.g. the
car in red box;

v (2) cycle consistency: point cloud at frame t (right) is predicted from
frame t—1 (left) by the estimated motion, meanwhile frame t—1 can be reconstructed
from frame t (middle) by applying the reverse estimated motion (right).

Input

Pyramid i
PC, € RV Motion | — Motion
Structure Compensation s Motion
: Estimation block Feature
===+ Structure
Feature
N <
@ Concatenation
[ Downsample ]
N/4{  Motion-Structure =l RefineNet
Transformer
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N/32 .
Motion-Structure L = - —0@

Fig. 3: Overview of FastPCI pipeline. Given two input frames PCo € RV*3
and PC; € RV*?, FastPCI estimates both motion and structure using a Pyramid
Convolution-Transformer network. The estimated motion is used to warp the input
frame to produce interpolated frames. RefineNet further refines the interpolated frames,
and outputs the final frames from the fused forward and backward estimates.
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Motion-Structure Transformer.
o @ and © denotematrix multiplication and element-wise subtraction
o Motion-Structure Transformer
o takes a bidirectional point features input
o perform a Dual-Direction Cross-Attention across forward and backward features
o structure motion features are closely related to each other to learn a structure-
aware motion.
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Overview of CrossDiff framework for generating human motion from
textual Descriptions
v" Framework incorporates both 3D and 2D motion data, using unified
encoding and cross-decoding components to process mixed representations obtained
from random projection.
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Fig. 3: Overview of Mixture Sampling
v/ Original noise is sampled from a 2D gaussian distribution.
v" From time-step T to «, crossdiff predicts the clean 2D motion x2d,0 and diffuses it back
to x2d,t—1. In the remaining o steps, crossdiff denoises in the 3D domain and
v' Finally obtains the clean 3D motion
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“he is punching in
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Qualitative results on HumanML3D dataset
v Compared with MDM, T2M-GPT and MLD
+ Generated actions better convey the intended semantics
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Fig. 6: Generating 3D movements without training on paired 3D motion and textual
descriptions.
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Architecture. model-enhanced spatial attention block

Comprising a
o Position embedding layer
o Graph convolutional layer
o Model-enhanced spatial attention layer
o Gate mechanism
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Modules
v' Position embedding layer
v Model-enhanced temporal attention layer
v" Information fusion feed-forward networks
Transformer Net ‘ 2025-57 ‘
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o to decompose the physical components that make up a snow video in a temporal spirit
After that compute supervised losses for labeled data and unsupervised losses for unlabeled

Based on the decomposed component features (F/ B and F’ S ) in representation space,
Develop a Distribution-driven Contrastive Regularization to highlight the snow-invariant

information by replacing the snow-specific feature in ultra-positive samples replacing the

background in negative samples
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Prior-guided Temporal Decoupling Experts framework.
& Input. snowy sequence encoded features
& Model. Physics Transformer Block (PTB)
& Module. Temporal Decoupling Experts module
o To generate physics-specific components (i.e. S, A and T) for recovery.

& Temporal Decomposition Router
To compute the temporal weights Qij from the temporal dimension, which are subsequently employed
to compute a linear combination of all input temporal tokens and Qj; .

& Then each Expert (an MLP in this work) processes its temporal adaptive tokens to obtain the

corresponding output component tokens. Finally, we employ the decomposed weights
& Temporal Decomposition Router
o To convexly combine all the component tokens.
& Output combined features
& Xk and physics-specific features pj k are subsequently input into the
= Prior-guided recovery module decoder
e To generate the ultimate desnowed results

Fig. 6: Samples of the proposed real-world video dataset for video snow removal.
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Fig.2: Top: video encoding. NeRV-Enc processes the input video z to get video-
specific weights ' using the hyper-network. Bottom: video decoding. NeRV-Dec gen-

erates final NeRV weights 6’ and reconstruct video .
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Using modules from different models in ablation experiments
o (a) from the RB module in fcbformerfor skip connection and decoder
o (b)) for the skip connection
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Image FCBFormer  SSFormer MSPM

Visualization results of different variants on the gastroscopy dataset.
v Yellow part represents the prediction of the model
v" Red part represents the true label
v" Overlap between the two is green
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+BEM +BEM
+DFP +IDFP

Grad-CAM heatmap
v To visualize the influence of BEM and IDFP on the segmentation results

Image Baseline
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Typical failure cases of the proposed method on various datasets.
o First two rows belong to the gastroscopy dataset
o Middle two rows belong to the kvasir-seg
o Last two rows belong to the CVC-ClinicDB.
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Fig. 1. Hlustration of existing empirically-designed fusion strategies (a-f) and our data-driven f
strategy (g) in unsupervised and semi-supervised settings. (a) Early fusion: /¢ and I,,, are concatena
input. (b) Middle fusion: Ir and I,,, enter separate encoders with intermediate features fused. (c)
fusion: I; and I,,, enter separate networks with resultant features fused. (d) Loss fusion: ¥ and S¢/S
mutually constrained by joint loss functions. (e) Feature fusion: multi-task networks are used with ¢
feature shared. (f) Input fusion: S/S,, are fed as input for registration. (g) Data-driven fusion: {
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image; ¥ = registration output; S¢/S,,, = segmentation output for I¢/I,, (for semi-supervised registrati

() AutoFuse (b FG module
Owly fiw porni e piad -vmm:-'

o Cimsmnratan
@ Floresiavem
D tlorert atm
- Conr ek
- Avgp-Poobing L
=) Umesgeiny © C
- Oty
D Nargding. lhany

st | purepd ey

Fig. 2. Overview of the proposed Automatic Fusion network (AutoFuse)

Architecture of
(a) AutoFuse
(b) Fusion Gate (FG) modules
(c) Efficient Large Kernel (ELK) blocks
v" Skip connections of each branch are omitted in this figure for the sake of the
clarity
v" The branches Bm and Bf share the same weights

%

AAA: 66C-Transformers-architectures & Fits 413



Transformer Net

2025-61

Depth Estimation Network

/

Encoder

J \

NER

=

Decnler

Decoder

Auxiliary Supervision Network

D Encoder Gl)nluh' L DAM

Dl A
odue 5 ]
[ Joae, [ R .

Reshape & Reverse &
Reginn Smoct bisg

L2
Com3=3

Rel
Convd=d

h Percer
Madube

Comvi=3

Convi=3
LReL1

two-stage framework of UVZ, including DEN, DGEN, and ASN.

o All subnetworks

o Adopt a standard encoder/decoder architecture, where the red slash indicates that ASN
is only used for the training.
o In the first stage, for a raw image X, DEN and ASN generate the depth map d and the
regression image bX , respectively

o For the second stage, with inputs X and d, DGEN generates the enhanced image Y
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Structure of Dual-Attention Module (DAM)

AAA: 66C-Transformers-architectures & Fits

414



Transformer Net ‘ 2025-62 ‘

Leamable
Qe "D D D Click Prozpns
¢ cPot

mmmm kil oo &

Prompt-activand Masks Predicted Mask ! Image & Label Prompt-actvated Masks
(1) Our model without CPOT (b) Our model with CPOT

Comparison between our model without and with Click Prompt

Optimal Transport (CPOT)
o Without CPOT, all click prompts tend to converge to one point, resulting in homogeneous
prompt-activated masks and inferior mask prediction.
o (b) With the proposed CPOT, click prompts are encouraged to focus on distinct visual regions.
o Consequently, our model with CPOT predicts a more accurate mask by integrating diverse
prompt-activated masks.

( (a) Prompt-Pixel Alignment ) r(b) Click Prompt Optimal Transport

o v, ( Click ’L.
—
Click coord. Encoder

||. Clicks + Prev. Mask

"

|\ Mazk § Mask §*

Matching
\ : - GT
Image g‘ P .
Encod . = ) Mask )
\meeser 1p [. D D] [[ DD }——’[ Concat Decoj‘ler H Seg. loss

Click prommts P. Vienal Features F

Overview of proposed Click Prompt Learning with Optimal Transport (CPlot)

v' Given input image, click disk maps, and previous mask, the Image Encoder extracts visual
features F.

v" The Click Encoder initializes click prompts Pc with click coordinates.

o (a) Prompt-Pixel Alignment aims to align click prompts Pc with the visual features F in the
feature space.

o (b) Click Prompt Optimal Transport adopts optimal transport plan to generate optimized mask
S#* from vanilla prompt-activated mask S. A lightweight mask decoder is used to implicitly
analyze optimized prompt-activated mask with visual features and make mask predictions
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structure of sliding-window dissimilarity cross-attention module
8 (A,B) € {(1,2), (2, 1)} denote two time points
£ @ represents matrix multiplication
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Structures. MBConv and Fused-MBConv
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Table 2. Comparison of network parameters and computational complexity.

Method #Param (M) MACs (G)
STANet-BAM(ResNet18) [4] 12.2 492
STANet-PAM(ResNet18) [4] 12.2 50.2
DTCDSCN(SE-Res34) [7] 41.1 60.9
L-Unet [31] 85

CDNet [32] 14.3

MSCANet [33] 16.4

BiT(ResNetl8) [22] 3.0 35.0
SNUNet [14] 3.0 46.9
ChangeFormer(MiT-b1) [21] 13.9 26.4
IFN(VGG-16) [9] 36.0 316.5
FHD [34] 118

ChangeStar(MiT-b1) [35] 18.4 337
Xuetal [11] 61.4

ChangerEx(ResNetl8) [18] 11.4 239
ChangeStar(ResNet18) [35] 16.4 327
CDNeXt [36] 39.4 315
TransUNetCD [23] 95.5

BAT [27 6.9 403
SWDCA Network 5.4 25.0

The computational complexity, quantified by multiply—accumulate operations (MACs), was evaluated using
bi-temporal image pairs with a resolution of 512 x 512 pixels. The optimal value is indicated in red font, whereas
the second-best value is represented in blue font # means the number of.

Transformer Net 2025-64

' “Final Output

&%

‘\.’

Data Collection

N

Object Detection l

Framework. NN2VIT
v For visual anomaly detection

'

224 x 224 x 64

nzxnuxnu
56 % 56 x 256
znxzn.ﬂz
uxuxnz 7 X7%512 11 %4096 1x1x 1000
[ (S (]

(b)

Conv 2-1

Non-maximum Suppression

Convé, Fcb Conv7, Fe7 Conmv8_2 Convy_2 Convin_2

| 1 g | =
19 <19 10 < 10 Sx§ A
1024 512 256 256

Single Shot multibox detector architecture used
for Anomaly Detection

Convil_2

Detection 8732 per class
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p

Image Embeddings
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/

Bottle

A

Transformer Layers

Image Encoder
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(©@ © @ 9]

Mask Decoder

I Image to Token Attn. ‘

f

|

[ Token to Image Attn. I

f

I Self Attn. ‘

Prompt Encoder

t
(x.y.fg/bg)
| (x1,y1),(x2y2)

Points Bhox Label

Decoder
Embeddings

Prompt based fine tuning architecture of the SAM used for Anomaly Segmentation

'/ Transformer Net

2025-65 ‘

#her

SDTB — | SDTB
[ (256) Hm. T‘{ (256)

AN

(a) Overall Pipeline

(b

Text Embedding Set
i90-9-0

) Scene Descrip;‘or Generatio

Architecture. OneRestore

automatic extraction based on visual attributes

(c) SDTB

(a) Overall pipeline, where 32, 64, 128, and 256 represent the number of channels.
(b) Scene descriptor generation, where scene descriptors are fed into each
(c ) Scene Descriptor-guided Transformer Block (SDTB) by manual text embeddings or
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16.31/0.5363 2269/0.8223 24.37/0.8155 21.91/0.8101 19.08/0.7485 24.92/0.8070 23.49/0.8189 25000.8370 PSNR/SSIM

1500004982 24.79/08315 231408206 23.17/0.8240 22.950.7741 2429/08077 22.16/0.8300 263908553 PSNRISSIM

e e | e i e i

e s il R )
‘

Input Images  Restormer SRUDC AirNet PromptiR WGWSNet  OneRestore  Ground Truth

Fig. 6: Comparison of image restoration on low+haze+rain (top) and low+haze+snow
(bottom) synthetic samples.

Input Images AirNet* AirNet WeatherDiff* WeatherDiff  PromptIR* PromptIR“ OneRestore

Fig. 7: Comparison of image restoration on low+haze+rain (top) and low+haze+snow
(bottom) samples in real-world scenarios. * represents the utilization of original weights
published in the author’s code.

|
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| @ = H
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"7 (@) Scere Descriptor-guided Cross-Aftention ea e

Fig. 11: Architecture of proposed Scene Descriptor-guided Transformer Block (SDTB).
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Qualitative comparison with the-state-of-the-art methods on scene synthesis
o Type of scenes: bedrooms (1st row), living room (2nd and 3rd rows) dining room (4th row).
o Reference is the scene from dataset with the same floor plan.

: -~
-
:
. -
3

Failure cases

v' Neglecting window placement (left); overlapping furniture arrangements (mid);
v Objects placed out of boundary in non-standard layouts (right).
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0O 00O

Architecture. WeConvene scheme

Conv(3, s, n) : a convolution layer with 3 X 3 kernel size, stride s, and n filters

TConv(3, s, n) : transposed convolution.
Dashed shortcut connections represent change of tensor size
AE and AD: Arithmetic Encoder and Arithmetic Decoder

3

-
e

F. F,

"B | mean)*
Horlzoetel Detal [F ¥y Vou

= -
Vertical Detadt | Fs i F |
Contionss | 7 & | ComBa | i
Olagonal Deat [F. |
Coeffiies :
|
___________________________________________ |
(b)

o (a) Architecture. forward WeConv network with down-sampling

(b ) Architecture. inverse WeConv (IWeConv) network with up-sampling
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Fig. 4: The details of the proposed WeChA RM modules for LF and HF subbands.

AAA: 66C-Transformers-architectures & Fits

422



Slice coding network eiH for the HF entropy coding

7 Transformer Net ‘ 2025-68 ‘

of T emmERO R T \/
§| WhisperAl = | ChatGPT WitAl Avatar (|| P Concatenated Responses
U: e e ettt L ettt i ettt Lt \): e \
v : Hidden LLM
Convert to jsontotxt | ||| Convert | || !l
5' Concatenate P o ChatGPT
S wav Conversion to Wy Hden
8 T : : eedback
1] |5 '
5{ — Generate Prompt Video Generation ||| Roberta Emotion
0 i o e i S S | e /| Y
B [t
3 : User Il
| —
\______________________________fegdt_mfk/ Scorer
Three layers of ITEM

o The cloud layer hosts Al models from third-party service providers;

o Metaverse layer allows effective communication between the student and the Al models

o While the user interface layer makes the interview simulation realistic, immersive, and easy to
use for students
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(€) ciassification map

@ Search tokens

________ 1 o i e " st | Ledemesmetams = s sl
| TCM Mode| | TCM Module '
I

Initial Reference Online Tracking Online Tracking Online Tracking

Architecture. LMTrack
v LMTrack consists of three parts
o abackbone with unidirectional attention,
o atoken context memory (TCM) module, and
o aprediction head.

o Input of tracking pipeline contains a video frame and reference tokens being collected

o TCM module: utilizes classification maps and attention matrices to analyze the importance
distribution of all reference tokens,

o hen collect the important reference tokens according to this distribution

| Classificationmap | [ S |

Add & Norm |
T

|
( A“'"f“ Map } nfluence | >

Embedding

o
— ={_R;—1]'é_'( R, |

Unidirectional Attention j-th Layer Token Context Memory module

R4 |

v' The unidirectional attention mechanism within the encoder layer is integrated with the token
context memory module

The inputs to the unidirectional attention include search tokens and reference tokens

The token context memory module uses the attention map from unidirectional attention and
predicted results to aggregate reference tokens

AN
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Fig. 1: Rotation Invariant Surface Property (RISP) construction: Given a point p as
the reference point, K (K = 8 in this example) nearest points are selected (middle). For
each neighbor z,, two adjacent neighbors x,_; and z,4 are used to form two triangular
local surfaces (right), based on which rotation invariant properties are constructed.

;- Features

VI Previous layer features
Lo RIse

4= v

.- Pooling

- Self-attention

- Concatenation

. .

KxC Kx(C,+C,) KxC, KxC, Kxl14

Fig. 2: RISurConv operator. For a local point set with p as the reference (red), K
nearest neighbors are labelled as blue. Then, we compute the Rotation Invariant Surface
Properties at each neighbor by constructing local dual triangle surfaces (Section 3),
which is embedded to a high-dimensional space by a shared multi-layer perceptron
(MLP) followed by a self-attention layer to produce refined features. Concatenated
with previous layer features (if any), the features of these local points are further
passed to MLPs, which are then summarized by maxpooling. To further refine the
features, another self-attention layer follows.

Algorithm 1 RISurConv operator.

Input: Reference point p, point set 2, point features f,,.., from previous layer (if any)
Output: Convoluted features f

1: £« {RISP(z;) : Vz: € 2} * Construct Rotation Invariant Surface Properties
(Section 3)

2: f « MLP(f); * Embed each feature to a high-dimensional feature space

3: f « SA(f); * Refine features via self-attention layer

4: f,,, « [fprew.f] ¥ Concatenate the features from the local and the previous layer
(if any)

5: four «— MLP(f:n) * Feature embedding

6: fou: < maxpool(fou:) * Maxpool features
return SA(f,..) * Self-attention and return

Vi
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od

RISurCony
RISurCony
——
RiSurCony

) RiISurConv
RISurCony

Input a
!
- - - -
/ S 5 N é ‘5 Al —
¥ g irplame
/ Z m= <« mip z il =z Car
= = = = o
Segmentation| Classification

Fig. 3: Our neural network architecture comprises five RISurConv layers to extract
rotation invariant features followed by a Transformer Encoder to enhance the learnt
features before fully connected layers for object classification. We add a decoder with
skip connections for segmentation task.

|!\Icthod IFurnmt Input Size Paranls.l:
VoxNet [21] voxel 30° 0.90M
= SubVolSup |24] voxel 30° 17.00M
Z|PointNet [23] Xyz 1024 x 3 3.50M
E|PointCNN |17| Xyz 1024 x 3 0.60M
E|PointNet++ [25] xyz + nor 1024 x 6 1.40M
T [DGCNN |Jd] Xyz 1024 x 3 1.84M
RS-CNN [20] XyZ 1024 x 3 1.41M
Pt Transformer [43] Xyz 1024 x 3 -
Pt Transformer v2 |34||xyz 1024 x 3 -
Spherical CNN |[7] voxel 2 x 642 0.50M
RIConv [41] Xyz 1024 x3 0.70M
~|SPHNet |22] Xyz 1024 x3 2.90M
Z[SFCNN [27] Xyz 1024 x3 -
Z|ClusterNet [3] Xyz 1024 x3 1.40M
E|lGCAConv [40] Xyz 1024 x3 0.41M
Z[RIF [16] Xyz 1024 x3 o
Z|RI-GCN [15] xyz + nor 1024 x6 4.38M
3S|RIConv++ [42] xyz 1024 x3 0.40M
T|RIConv-++ [42] xyz + nor 1024 x6 0.40M
Ours (w/0 normal) Xyz 1024 x3 14.0M]|
Ours (w/ normal) xyz + nor 1024 x6 14.0M|e
RIConv++ VN-DGCNN RiConv PointNet++

Fig. 4: Qualitative comparisons (Red indicates wrong).
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Table 6: Ablation study on the Self-
Attention module.

I\‘Iodcl|SA1 SA2 Transformer EncoderlAcc.

A v v v 96.0

B v v 95.6

C v v 95.2

D v v/ 94.3

E 92.8

/ Transformer Net 2025-73

b DGL-LifeSci DGL-KG
E
~ NN GNN M Passi Graph
= H essage-Passing rap
g?' St Modules Interface Algorithm
Q
=
g .
a DGL Runtime
T
Z PyTorch MXNet TensorFlow
=
£
~.':°' GPU(s) CPU Cluster
=

DGL (deep graph library) structure
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Network forward and supervision
|

~N

l

|

— 1

Segmentation

Vo = (Pi}fay] Piece detection || Comnectivity Path detection

Dpieet = {d}{2Y| Vpiece = {ViP***}| | Epiece = {e1,7) Vpatn = {V;Ph)]
l H l H H
A
; V;,::‘ Vpiece V, path
N K )31.4 £ e
"\ V, piece
eo,z\ J €01 O
=
(a) Pixel-wise modeling (b) Piece-wise modeling (c) Path-wise modeling (ours)

wml Graph2Path

rd

Lane graph

— Network forward

~ - Network supervision

Topology modeling

+_ Topology modeling

Fig.1: Modeling comparison. (a) Pixel-wise modeling [22] utilizes a predefined
Graph2Pixel algorithm to rasterize the lane graph into a segmentation map and a di-
rection map on dense BEV pixels, and heuristic Pixel2Graph post-processing is needed
to recover the lane graph from the predicted segmentation map Vyice1 and direction map
Dyixel (direction map is not drawn here for simplicity). (b) Piece-wise modeling [6] uti-
lizes a predefined Graph2Piece algorithm to split the lane graph into a set of pieces and
the connectivity matrix among pieces, and then it merges the predicted pieces Vpjece to
the graph with the Piece2Graph algorithm based on predicted connectivity Epiece. (€)
The proposed path-wise modeling translates the lane graph into complete paths with
a predefined Graph2Path algorithm to traverse the graph. We perform path detection
and adopt a Path2Graph algorithm to recover the lane graph.

Path queu'es vpath = {Vipath ?’:1

Bipartite Matching Loss

Path2Graph
——— |

E

Fig. 3: Overview of LaneGAP.
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Partial skeleton
sequence

&
&

=

OO
o=}

From sensor or pose
estimator

Previous Work

Reconstructed
skeleton sequence

Y
<& I
—— <
Predict low-level 3D
Pretext: coordinate locations z ‘J\
X
Masked
| \‘6& g
Prediction S-JEPA (Ours)
—
Predict high-level
~~~~~~~~~~~~~~~~~~~~ v 3D features skeleton sequence

representations

Fig.1: Comparison between the prediction targets of previous work and
S-JEPA (ours). Instead of raw 3D coordinates, S-JEPA predicts the abstract repre-
sentations of 3D skeletons, embedded by a transformer encoder, effectively learning
more informative high-level depth and context features for the action recognition task.

Partial

skeleton sequence

Masking f‘\

,,,,,,,, - ™
t
!

i

Standard joint
® Target joint
® View joint
© Masked joint

skeleton
sequence

View encoder

Mask tokens
at idxtergets

n

F, € RV G

EMA

Target encoder

Predictor

Predicted B
representations G

%

| -

3
R |

Rp € RNexCe \ 4

CE Loss:
—p2log(p1)

Fig. 2: Overview of S-JEPA. First, diverse skeleton views are obtained by applying
geometric transformations on the 3D skeletons. The view skeletons are passed through
the view encoder, after which learnable mask tokens are inserted at the locations of
masked joints to get the view features F,. The predictor takes F,, as input and outputs
the predicted representations R, of the missing joints at the locations of the mask
tokens. The target representations R, are obtained by the target encoder, which takes
unmasked 3D skeletons as input, and is updated through the Exponential Moving
Average (EMA) of the view encoder weights after each iteration (sg denotes stop
gradient). The centering and softmax operations aid in stabilizing the training loss. At

fine-tuning and test times, only the target encoder weights are used.
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a1
s GPT-2
N ’ ’ s a
R g S k @ R 1 t-1 t-1
LSTM block LSTM block
Prefix prompt Datasets

Architecture. PLDT

linear decoder

emb.+pos.enc.

Algorithm 1

I: Input: offline datasets D, task demonstrations P, embedding layers embed, trans-

2

former with causal masking GPT, feature processor InnerLSTM , learning rate «,

. def PLDT (r, s, a, t):
sample trajectory 7 of length K from D

4 sample the highest reward segment t_ of length K’ from P
5: combine the two trajectory into t* = (1, 7)
6: the observation o; in the ™ is extracted by InnerLSTM, get o] = InnerLSTM (o;)
7: Tinpur = stack [embed (o} ,a;,r¢) + Epos)
8: hidden_state = GPT (Tinpur)
9 hidden_action = unstack(hidden_state).action
10: return pred(hidden_action)
11: for (r,s, a, t) in dataloader do
122 Prediction action : apreq = PLDT (r, s, a, t)
13- Loss function :loss=) (a - ap,ed)2
14 0 =0-avygloss
15: end for
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Autoregressive Model (e.g. GPT2)

Prefix X (source table) YV (target utterance)
Z ' , ‘
graduate Yao, Education, LGD [SEP] Yao is graduated from LGD.
P eee P, = %5 P b » ¥ sen Y
1 e-s k 1 2, e m 1 2 - n
Py =[..... k] X =[1.2...., m] Y, =[1,2,...,n]

Figure 2 Prefix tuning architecture.
Full-size @ DOI: 10.7717/peerjcs.2490/fig-2

LSTM block

Datasets

Figure 3 LSTM block.
Full-size & DOI: 10.7717/peerjcs.2490/fig-3

%
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Motion Trajectory Extraction

>
S S s P
= .S ‘ S

>

P )

200000

Point Cloud Sequence

b
Appearance Reconstruction

Fig. 1: The architecture of our method. We integrate three pretext tasks into the same
masked autoencoder framework, i.e., motion trajectory prediction, semantic contrast,
and appearance reconstruction. Note that we employ CorrNet3D to extract the motion
trajectories of the point cloud sequences. f; represents the obtaining, masking and
embedding operations of the point tubes.

%

AAA: 66C-Transformers-architectures & Fits 431



Point Cloud Sequence Corresponding Points Alotion Trajectory

Fig. 2: Example of motion trajectory extraction of the point cloud sequence.

Table 1: Performance comparison of action recognition with different methods o1

MSRAction-3D dataset.

Algorithm Accuracy (%)
MeteorNet [20] 88.50
PSTNet [9] 01.20
PSTNet+-+ [10] 92.68
Supervised Learning Kinet [45] 93.27
PPTr [39] 92.33
PSTNet + PointCPSC [30] 92.68
PSTNet + CPR [29] 93.03
End-to-end Fine-tuning PSTNet + PointCMP [28] 93.27
P4Transformer + M2PSC (ours) 93.03
PST-Transformer + M2PSC (ours) 94.84

/ Transformer Net | 2025-78 |

Case Study Single Single — Fault Diagnosis Tasks
( Both Feature-based
(s imed TIA) Skwle Crox - and Dati-based)
Cross -_— Complete Transfer

Limited Transfer
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"instruction”: "You are a bearing fault diagnosis expert. Based on the

following features, you need to conduct fault diagnosis:",

"input”: "The time-domain mean of the vibration signal is ... The

frequency~-domain mean is...",
"output”: "The diagnosis result is an inner ring fault.”,
"history™: []

Figure 2 Example of textualized model input

Fault
Diagnosis Results

Fme-tuned
vl

{ PrLErGul ed ][ LoRA ]f’mc-mning f——

trai nset

Data set
ruct

[ Time-dom ain ] ( Frequency-dom ain J
Feature Feature

7Y
| D training

( Feature Extraction )
E] frozen

Vibration signal

Framework of feature-based LLM fault diagnosis
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Figure 4 Framework of data-based LLM fault diagnosis
Transformer Net 2025 ‘
Mild Cognitive Impairment Dementia
Amyloid status: Positive — Gender: M — MMSE: 28 — Age: 76 yrs Amyloid status: Positive — Gender: M — MMSE: 13 — Age: 68 yrs
Sum Ref FDG Gen FDG FDG_Bias Ref Amy GenAmy AMY_Bias Sum  Ref FDG Gen FDG FDG_Bias Ref Amy Gen Amy AMY_Bias

ooat | A
R\ | “\
) )

[}

Control Dementia
Amyloid status: Negative — Gender: F — MMSE: 26 — Age: 76 yrs Amyloid status: Positive — Gender: F — MMSE: 17 — Age: 74 yrs

Sum

Ref FDG Gen FDG FDG_Bias Ref Amy Gen Amy AMY_Bias Sum Ref FDG Gen FDG FDG_Bias Ref Amy GenAmy AMY_Bias

Four different subjects depicting various clinical statuses (normal, MCI, DEM)
for FDG, FBP, and FMM
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“Sum” column displays dual tracer images (combined FDG and Amyloid [FBP and FMM)]),
“Ref FDG” represents the reference FDG

“Gen FDG” denotes the generated FDG, and

“FDG_Bias” signifies the difference map between reference and generated FDG

“Ref Amy” represents reference Amyloid,

“Gen Amy” refers to generated Amyloid, and

“Amy_Bias” indicates difference map between reference and generated Amyloid

AN N N N N N N

The image range spans from 0 to 3 SUVR, whereas the difference map range is between —0.2

and +0.2 SUVR
o Subject-related metrics, including amyloid status, gender, MMSE, and age, are summarized

atop each panel

(o)
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Architecture. REDIR Network
o The model incorporates the UNet registration module with STN, and the SNN filter module,
which integrates a Temporal-Spatial Attention Mechanism.
o The registered target features are then transmitted to the CNN decoder module through
perceptual mask module event-based synthetic aperture imaging (E-SAI)
o REDIR: Refocus-free Event-based De-occlusion Image Reconstruction

Coarse-aligned

FezureMap Fine-aligned
: Coarse-aligned zg Event
gy = l 1
g d ’\gg.{hi_.gscj@/

Event Registration Module
v/ STN is utilized to predict matrices and perform affine transformations in each layer of UNet

Aligned I'SA connection [Conv |
Event | |
TSA

Temporal Attention Mechanism Spatial Attention Mechanism Temporal-Spatial Attention
Mechanism

Fig. 4: TSA-SNN Occlusion Event Filtering Module
v SNN module incorporates a Temporal-Spatial Attention Mechanism for skip connection
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/" Frequency-Aware Deraining Block

(h) Prior Gated Feed Forward Network (PGEN)
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Hlustration of our FADformer framework
Contains
v" Fused Fourier Convolution Mixer (a, FFCM) and
v" Prior-Gated Feed Forward Network (b, PGFN) with
v" Frequency domain Contrastive Regularization (c, FCR)
o For single image deraining

Tnpat (11.99/0.3100) DualGON (30.060.9200)  SPDNet (29.66

Restoamer (‘0 5000.9384) DRSformer (30.860.9369)  Ours (31.53/0.9415) Ground Teuth (+ /1)

Input (25.8810.8146) DualGON (41.650.9913) SPDNet (41.600.9894) IDT (41.97/0.9902)

Rainy Image (PSNR(dB) SSXMD Restormer (41.980.9905)  DRSformer (42.34/0.9911) Ours (42.97/0.9920) Ground Truth (+e0 /1)

Fig. 4: Qualitative results on synthetic rainy images include the first two rows from
the Rain200H and the last two from Rain200L. See supplement for more visualizations.
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SMamba-Unet framework
v" Primarily comprising a patch embedding layer, a Mamba-based encoder module, a Mamba-
based decoder module, and a final projection layer

Vision Mamba Module
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Framework. vision Mamba module and improved 2D selective scan (ISS2D) module
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[ — S
L]
------ —
<. - D D
Xr Transformer Based Diffusion Process Real Sample

(a) Dolfin. The layout tensors are directly fed as input to the transformer-based diffusion block. The model
processes the input and generates the desired samples without using an autoregressive decoding process.

@‘@‘ ........ I_ET_:L]‘

Diffusion Blocks ‘

(b) Dolfin-AR. The diffusion process starts with the input tensor z,, and it passes through the transformer-based
diffusion block. During each autoregressive step %, the noise ¢, is sampled, and both €, and other inputs are used

to sample the next noise €, 1. Finally, the previous sample x;_ is generated based on the sampled noise using
DDIM (Song et al., 2022).

Dolfin model.
v" Gaussian noise on the original input space directly applied
o DOLFIN: Diffusion Layout Transformers Without Autoencoder

Noise Variance
A A
Linear Lavyer
-
Layer Norm
-
Transformer Encoder
=<1
Time Embed Patchify
T
Input
Transformer structure

Consists of
o L transformer layers
o alayer norm and
o alinear layer.
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e
Set-
s trans-
former
VMF Loss ¢ Predictive Info-NCE Loss Class | Loss

Set- ®
o trans- Square
former )

Clustering-oriented
part representation

Overview of few-shot RSIs recognition framework

o Start with dense sampling to generate discrete tokens of RSIs, to which 2D positional codes are
assigned successively.

o These tokens are then clustered into distinct parts with guidance of von-Mises-Fisher (vMF)
loss function, and

o The parts are combined into global remote sensing scenes through a Set-Transformer with the
constraint of Predictive Info-NCE loss.

o Finally, the feature representations of global remote sensing scenes are

o classified with a prototype-based classification head.

von Mises-Fisher distribution von Mises-Fisher distribution

Tensors with unclear semantics Appemcmce Appommce  Appeacace

-
unway

vMF Loss

Clustering-oriented part representation
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v Von-Mises-Fisher (vMF) mixture model is employed to represent a multi-part distribution,
where each component corresponds to a recurring part

Fig. 4. Hierarchical contextual prediction for compositional representation. It consists of bottom-up composition and top-down prediction. The
p is © ined by the Predictive Info-NCE Loss function.

-20 -1 —-310 -3 o = 1

(b)
Distribution of cluster centers u that used for AID dataset
o Each point represents a cluster centroid (i.e., part).
o Figure (a), each centroid is clustered closely, resulting in posterior representations of tokens
that cannot be distinguished.
o Figure (b) depicts the scenario where each cluster centroid is separated. Here, posterior
representations of the tokens can be treated as distinct parts
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TABLE 11
OVERALL ACCURACY(%) ON AID DATASET

Method S-way 1-shot S-way 5-shot
MAML [5] 43.20 + 0.77% 60.37 £+ 0.75%
MetaSGD [27] 45.01 £+ 0.98% 62.58 + 0.80%
LLSR [39] 45.18 61.76
MatchingNet [40] 33.87 50.40
RS-MetaNet [28] 58.51 + 0.84% 73.76 + 0.69%
DLA-MatchNet [41] 61.99 + 0.94% 75.03 + 0.67%

our method 65.48 + 0.68% 79.91 + 0.41%

Transformer Net ‘ 2025-85 ‘

Enhanced
Target image

imaj NefiF
£ o

Geometry-driven Multi-reference Texture transfer (GMT) model

v GMT: Enhancing Generalizable Neural Rendering via Geometry-Driven Multi-Reference
Texture Transfer

Concatenate

Summatica

e 606

X2 Upsample

Fi Fren lmagn foature

Encoder

EF‘

YCN

« superscript Indicates scale >

xalpha oy o Gy
E — E Corr ﬁ o arefine
grem fmHL,

Fig. 2: Overall framework of the Geometry-driven Multi-reference Texture transfer
(GMT) model. When generalizable NeRFs (G-NeRF) renders novel view image I™°™
with N source images {I;"°}/L, and a target camera pose P‘", the process inher-
ently generates alpha point cloud X%?"° for volume rendering process. Using a"¢/"¢
extracted from a and correlation values Corr, RayDCN enables feature alignment
considering scene geometry. Subsequently, TPFormer conducts multi-reference feature
aggregation and the model generates final output 7°*".
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Corr Jren I;n
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. i . #
e Ol S0 <SP
MLP = —
()} "'~~.‘.:£ﬁ'"
3 N £ K -
Ray casting @ Waghted szm Offiet e
Hipo + a7\ i
Po +Pn @ Concatenate Po + pu) I E
{5 1D ponts (el Projected coordinates Input kernel Deformed kernel

Ray-imposed Deformable Convolution (RayDCN)
v" It has a deformed kernel shape considering scene geometry and aggregates the source features
of multiple rays

: Convolutson E e / _.|I

MLP

£ (7 + MLP(AdD)L,

Texture-Preserving Transformer (TPFormer)
v’ TPFormer aggregates features from multiple source views while preserving textures from the
source image

'/ Transformer Net 2025-86 ‘

Unseen Instance Object
Single View Observation

Single Reference Object
3D Semantic Features

2D Semantic Features

Matching Network
With Inlier Probability

Category-level pose estimation using 3D semantic features
from a pretrained foundation model.
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o For a single reference object per category, 2D semantic features are projected into 3D space
o Then train a transformer matching network which is used
o To estimate the pose of unseen objects in the category from a partial observation.

+ This approach is robust to the visual appearance of object instances

(1) Partial 3D Semantic Features (2) Full 3D Semantic Features Proposed Features (3) Baselines
Geometric and Geometric
Semantic Features Features

< &

Color Features
<) from Texture

(2) Feature Fusion I ©) i | (4) Pose Estimati —I

-—-------‘.-------—-

n

Ve s ad B
> - \ / /\\ Vi 1

I 1

] X e |

! AL AN

]

1 1
\

. ¢
Full Point Swwwm--- Repeat NTimes = = = = = = -
Coordinates | Encoding Intier

Overview of present transformer matching network

o Objective: To match partial input and full model points with semantic features
First embed normalized point coordinates as geometric features with positional encoding and
Add them with semantic features
The embedded features are fused with self- and cross-attention layers for multiple iterations for
global perceptions
Predict the inlier probability for both partial 3D semantic features and full features, and
Multiply them in the assignment matrix from cosine similarities to reduce outliers.
Finally, 9D object poses of novel instances are retrieved by Umeyama algorithm [27] with
RANSAC [7] from the dense correspondences

i&

Assignment Matrix

N N N N N N
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(1) Multiple GT from Axis-Symmetry (2) Constrained Single GT

Camera Camera &
View View

N
disambiguate

Disambiguating the symmetrical poses
v (1) Since multiple ground truth poses can exist for axis-symmetry objects
v (2) Ground Truth(GT) pose is constrained to intersect the object xz-plane with the camera
origin coordinate system.

e W)
g M
: 4}'.‘u|tn\!“ e, (| .
‘l Y :! 4 —
| "

.A “' 28 s -" ‘. :

Figure 9. Visualization of predicted 3D bounding boxes on SUN
RGB-D dataset [24]. Green is predicted, red is the ground truth.

Figure 8. Visualization of predicted 3D bounding boxes on Wild6D
dataset [37]. Green is predicted, red is the ground truth.
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Figure 10. t-SNE visualization of 3D semantic features from partial
3D features (red) and full 3D features (blue) inside the attention

region before and after feature fusion.
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Overview of the core components in DeepFilter

~ Baselines: We compare DeepFilter with three categories of baselines as follows:
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Identification methods: AR, MA and ARIMA [20];

Statistical methods: Lasso Regression (LASSO) [23], Support Vector Regression (SVR) [41],
Random Forest (RF) [21], and eXtreme Gradient Boosting (XGB) [22];

£ Deep methods: Long Short-Term Memory (LSTM) [26], Gated Recurrent Unit (GRU) [25],
Transformer [28], Informer [42], AttentionMixer [7] and iTransformer [43].

© o

v GRU decoder for transformer-based baselines performed to produce quality variable prediction

Methods H=1

MAE R2
Dataset: Hegang Station
AR O. 1 35:}:0.000 0.064&0'000
MA 0.133:t(]_[](]0 01 ]O:tO'OOO
ARIMA 0.13540.000 0.063+0.000
LASSO 0.045 0000 0.28210.000
SVR 0.023 5000 0.890L0.000
XGBoost 0.01640.000 0.943L0.000
LSTM 0.0214+0.001 0.84610.011
GRU 0.02340.001 0.832L0.008
Transformer 0.01540.002 0927 £0.022
Informer 0.042 10017 0.56210.269
iTransformer 0.01410.001 0919410 026
AttentionMixer 0.011 10003 0.96210.012
DeepFilter 0.01240.001 0.96310. 006
Dataset: Jinan Station
AR 0.106 40000 0.744_L0.000
MA O] IZiU_OOU 0.710i0‘000
ARIMA 0.101+0.000 0.759+0.000
LASSO 0.02940.000 0.74210.000
SVR O%] :tﬂ_[_]()() O.MOi0.000
XGBoost 0.031 +0.000 0-903:t0.000
LSTM 0.01 5:&0.000 0.948i0,001
GRU 0.01640.001 0.939Lp 005
Transformer 0.01640.004 0.955+0.023
Informer O.OIS:H).UUQ 0'9]7i0.013
iTransformer 0.01 2:}:0_000 0971 +0.005
AttentionMixer 0.01 ]:t0.00-l 0.981 +0.012
DeepFilter 0.010:12(].0(]2 0.986:t0,003

Comparative Study On The Hegang And Jinan Datasets

Over Four Forecast Horizons
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capturing ghmp - P L'(ét)
of vanable scale - *coords((?'ﬂ

s2x 32 np

action (a4 ) = position and scale
the next ghmpse

Architecture: AdaGlimpse

Consists of two parts:
o A vision transformer-based Encoder with a task-specific head (see Sec. 3.2) and a

o Soft Actor-Critic RL agent (see Sec. 3.3).

v' At each exploration step, the RL agent selects the position and scale of
the next glimpse based on the information about previous patches, their coordinates,
importance, and latent representations

Actor net Critic net
o |elenfd—a pewm— | |,
é 2 R 2 % "IE > Q(s¢,at)
T ) S L TR R e
= 2 = 2 =
et ] e
Q S | O
L EE: |' — Hp — '- i

Fig.3: RL agent: RL module of AdaGlimpse uses two networks: the actor and the
critic. The actor predicts the action a; (position and scale of the next glimpse) based
on state s; = (ét, 0, P/I\t). The critic estimates the Q)(s¢, a¢), corresponding to the
expected cumulative reward for taking this action.
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A)

B)

b

bee eater
88%

weevil
26%

mantis
76%

hopper
33%

C) snail
D) 22%

agama
49%

hopper
36%

Fig. 4: Glimpse selection step-by-step: AdaGlimpse explores 224 x 224 images fron
ImageNet with 32 x 32 glimpses of variable scale, zooming in on objects of interest anc
stopping the process after reaching 75% predicted probability. The rows corresponc
to: A) glimpse locations, B) pixels visible to the model (interpolated from glimpses fo

preview), C) predicted label, D) prediction probability.

Model and training configuration
v" Model and training configuration details specified

Parameter name Value
Encoder
ViT type base
native patch size 16
transformer embed dim 768
transformer blocks 12
attention heads 12
mlp ratio 4
Decoder
transformer embed dim 512
transformer blocks 8
attention heads 16
mlp ratio 4
RL agent
hidden dim 256
action distribution TanhNormal
sac target entropy value —3
sac initial alpha value 1
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Training

training epochs 100
backbone pre-training epochs 600
backbone Ir 1
rl agent Ir 5% 104
backbone weight decay rate 10~
rl agent weight decay rate 10—*
Ir scheduler type one cycle
Ir warmup epochs 10
minimum Ir "
initial random action batches 10000
initial frozen backbone epochs 10
rl loss function L2
rl batch size 256
backbone batch size 128
replay buffer size 10000

Transformer Net ‘ 2025-89

e

Three images from the ShanghaiTech PartA test set

v" Left to right: scenario problems for the three counting tasks:
v" Scale change, occlusion, and crowded places

la, —1 | Multichannel
[—» ""‘:::T' ]—» CSAModule -—»  Attention ——
= Module

VGG-16 First
ten layers

CSFNet general framework
o Terminal Network is {C(512,512,1) - C(512,512,1) - C(512,256,1) - C(256,128,1) -
C(128,64,1) - C(64,1,1)},

o where C(I,0,K) denotes a convolutional layer with an input channel I, an output channel O, and
the convolutional layer with kernel size K
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Image from the Shanghai parta dataset, complete with corresponding predicted and
True Density plots.
Red circles : Variation in head size
White circles : Decrease in counting accuracy due to the difficulty in coping with the scale
variation during the test

v

i I ’. M .‘ i ’. 2
: r :

CONN: CNN CONN: CNN:
kerael3, dilation rates 1 kemel:3, dilation rate: 2 kernel:3, dilation rate: 3 kernel:3, dilation rate: 4
CONN .
kemel:1, dilation rate: 1 . Concat

General framework:MRFF Module

- Pixel Sigmaoid Multiply " Pinel
% 30O 1*1ICONY, mea
y " o "W o n RELULBN . biraction ‘ Fauo . plxels e Additicn

General framework CSA Module
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Table 2: Comparison of CSFNet with other advanced counting methods
in ShanghaiTech dataset

Part A Part B
Method
MAE MSE MAE MAE
MCNNI[10] 110.2 173.2 264 41.3
CSRNet[14] 68.2 115.0 10.6 16.0
DSPNet[37] 68.2 107.8 8.9 14.0
C-CNNI37] 88.1 141.7 14.9 22.1
DNCLI[37] 135 112.3 18.7 26.0
ED-CNN][40] 69.8 114.7 10.2 14.9
ICC[42] 76.9 130.1 8.4 152
TransCrowd-token[43] 69.0 116.5 10.6 19.7
TransCrowd-GAP[43] 66.2 105.1 9.3 l16.1
AutoScale_loc[44] 65.8 1121 8.6 13.9
MACC+SM[44] 67.7 113.0 9.8 129
MSC-FFNJ[32] 65.8 105.9 7.6 1.8
CCD Net[46] 70.0 118.3 - -
DA?Net[33] 74.1 128.4 79 13.2
T>CNNI[47] 85.3 137.4 18.8 29.2
CSFNet(ours) 66.1 103.2 7.5 11.8
Transformer Net ‘ 2025-92
N x( Nx N N xC NxC NxC
| — Nxn o C
HEEN |
® SREEE ® =
| » v ' Ix1Conv {_
(a) The process of traditional graph computation (b) The process of Faster graph computation
Process of graph computation with different methods
" . Spatial- Temporad Synchronous Graph Convolusonal Layers e
or| 'E e :l'
' y o Lo 3
= =
b o
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Architecture. FasterSTS

Td, Td,,

Td, =d, d,

Temporal feature graph

Ix1Conv

Computation process of the spatio-temporal
Synchronous graph convolution kernel

Transformer Net 2025-93 ‘

Figure 1: Demonstrating rotation-invariant face detection in complex, real-life scenarios
with inevitable in-plane face rotations captured during gatherings, sports, and artistic
performances.

RP-Net: A Robust Polar Transformation Network for
Rotation-Invariant Face Detection
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up left down right

(a)

(b)

- B B
Illustration of polar transformation applied to a rotating face

v' The polar coordinate system translates rotation into displacement along the 0 -axis.

+  This transformation allows for uniform representation of rotated faces through the
translation equivariance of convolutional neural networks.

MobileNetV2+FPN

Backbone

/ Predicion Head

1 _l Feanme-loss Restoranion Module I~ Region of Interest

-
1
]

| Polar Transformation Module {--! Algament
Architecture: RP-Net for
Rotation-Invariant Face Detection

v" Initial stages use a lightweight network for face region extraction
v' Subsequent stages : apply Polar transformation for orientation normalization.
v/ Final output: includes landmark localization with ASCR strategy for precise facial mapping.
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RelU
@ Sismoid function

.Mnm_

Multplication

.Elcum—m
Addition

Flowchart. ASCR method
v" Shows how the PSS and PCS submodules methodically assign differential weights to the
spatial and channel dimensions of the polar feature map V to refine the precision of face
alignment

(a) MTCNN (c) RP-Net (Ours)

Comparison of face detection performance in a challenging rotational scenario
using (a) MTCNN, (b) PCN, and (c¢) RP-Net

_ Transformer Net | 2025-94 |

Inter- and Intra- Modality Alignment

Overall architecture. DMANet method for VI-RelD.
v" "MGFML’ denotes the multigranularity features mutual learning module.
v" During the test, we only retain baseline model and MGFML module after Stage 4 to achieve the

cross-modality retrieval
o DMANet: Dual-Modality Alignment Network for Visible-Infrared Person Re-Identification
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| Transformer Net 2025-95
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Architecture. MoE layer used in MoEAD

Parameter Sharing Decoder
e | —
- E & Recomstructed Fearure Map
. I —]
Asomaly Mop . . —
Output Comparision Module
________________ '
| @AM  (© Resize&Conmcat | '
:\ © Mizw: @ Frozen ’: E
............... :
Backbone Module E i* block
! Neighbor Mazked Attention
ImageIsput  CNX backboue (@) Fo OO OO QueryEmbedding

SMoE Layer

.I. D ") n(n-1) possible paths

w)  #(n-1) possible paths

.E. D wi  n(n-1) possible paths

n experts ' D Top 1 chosen expert :
____________________________________________ ]
5 ' EI Top 2 chosen expert 1
'
¥y Nt - - -
Classic MoE Layer
MoE L. i
e up:‘:'::; » D D E] |:] » n’(n’-1) possible paths
=or &
~ 2 >
x n er;erts

SMOoE layer compared with the classic MoE layer.

+ Two stacked MoE layers
enhance the selectable paths through multiplication, thus strengthening the gating
selection ability

+ Compared to a layer with a larger number of experts, this approach achieves a similar effect
with fewer trainable parameters
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(a) Ablation studies on architecture design.

MoE Stacked Att-Shared MoE-Shared|Params FLOPs - AUROC P-AUROC
4.6M 2.16G 96.1 96.3
v 2.8M 2.16G 95.7 96.1
v 109M 2.17G 97.4 96.9
v v 9.1M 2.17G 97.2 96.8
v v 4.6M 217G 97.1 96.8
v v v 2.8M 217G 97.1 96.8
v v 19.3M 2.18G 98.1 97.2
v v v 17.56M 2.18G 97.9 97.1
v v v 6.7M 2.18G 97.7 97.0
v v v v 4.9M 2.18G 97.7 97.0
V Transformer Net 2025-96
Detection Techniques
Deep Learning Models ML Models
Fosd :I':“’a’d Recurrent NN BOSSVS J::el
ANN | CNN GRU | 1stm | CNN- | AdaBoo | .. Ridge TST

LSTM st

Implemented Machine and Deep Learning models for Cyberattack detection
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Data
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Data
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Data pre-
processing
ER Hyper-
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Data ? tuning
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Model
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interpretation
Model
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Framework. Classification
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Fig. 13. SHAP plot for feature importance at Stage-3.
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= E“"-E

Histoey BEV Cumrent BEV History BEV Current BEV HistoryImage  Cumrent Image History BEV ~ Cument BEV
Bry Br BroxsreBra Br I I Br guymBr,y Br
(a) Self Attention (b) Warp and Concat (c) Image Cost Volume (d) 3D Cost Volume

Fig. 1: Comparison of Temporal Fusion Methods. Illustrated are four key ap-
proaches: (1) Temporal Self-Attention [20], leveraging attention mechanisms for tem-
poral integration; (2) Warp and Concat [8,35,37], combining features across frames and
fusing them through convolution; (3) Cost Volume Construction in image space [25],
constructing cost volume from image input of different frames and leveraging plane-
sweep volumes for depth map generation; and (4) Our Proposed Method, which involves
constructing a temporal cost volume in 3D space to enhance feature refinement. In the
figure, (A) and ® represent coordinate alignment and element-wise product, accord-
ingly.

Cost Volume Temporal Module

o9
u Vi fey o PH_ga

O ;o Yoo

Vi1 Vi Cost Volume Features

. ~- ’ .' ' | F € RH-WrExKxNxC

History 3D
Volume Features
Vy. € REXWx2xE

Fig. 2: Overall Architecture of CVT-Occ. The image backbone extracts multi-
scale features from multi-view images, which are transformed into 3D volume features
denoted as V € R *W*#*C The Cost Volume Temporal Module samples points along
the line of sight within the current volume and projects them onto K — 1 historical
frames, resulting in K x N 3D volume features. These features are concatenated to
construct cost volume features F € RF*WxZx(KxN)xC  Gonyolution layers are then
applied to generate weights W € R¥*W>*Z  refining the depth of 3D voxel. Finally,
an occupancy decoder produces 3D semantic occupancy predictions. In the figure, (),
(©), and @ represent coordinate alignment, concatenation, and element-wise product,
respectively.

AAA: 66C-Transformers-architectures & Fits

460



Transformer Net 2025-98

Pronunciation Pal

LOST ios

To cause (something) to cease to be in one's possession or capability due to unfortunate or unknown circumstances, events or reasons.

Pronunciation Analysis

The correct pronunciation of "lost" is: /lost/

You said: /loust/.

To correct the phoneme, try to open your mouth a bit wider when voicing the vowel.

DD-/t/

nn-/l/
+ Nasalized sound with closure of soft palate

Home Login Register

- Sudden release of tongue from roof of mouth

Profil

Demonstration of Feedback Engine

: Transformer Net | 2025-100 |

Mask Disperser
shifted Data Cube Coded Measurement

Original HSI Data
“ Modulate & Dispersion ‘ Sampling .

(a) SD-CASSI System

{ 4
(7] @ { Down ;| {DConvax3]
Element-wise Dilatation Conv
Division Add Downsample (dilatation=2)
> —_—
Phase | Phase [l &inference

(" Diffusion | ' 3

_f_'?.c.e_?iw, ~

condition '
Ground Truth (d) Denoiser
Stage-2 Stage-N ]

Measurement y -

- ) Il
GC-GAP ’ - \;' ", GC-GAP " \_L
Denoiser E Projection enoiser i :v'-’ —HL Projection l I Denoiser J [

Mok 4 (e) Deep Unfolding Network

Reconstruction
=

(a) The single disperser CASSI imaging process. HSI data cube is captured by
a monochromatic sensor.

(b) GC-GAP projection.

(c) Latent encoder.

(d) Simplified Denoiser.

(e) The measurement y and masks A pass through an N-stage DUN, where
each stage is composed of a GC-GAP projection and a denoiser.

The denoiser follows a U-shape structure and consists of five Trident Transformers (TT), where each

~ TT is assisted with prior knowledge zGT generated from the diffusion model
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Table 8 The results of evaluation indicators in each season

Season Model MAE MSE RMSE R? PICP PINAW ws
IVMD-BO-QRB 21.12 1079.12 3285 0.73 56.18% 1551% 47.47%
IVMD-BO-QRTT 2122 102208 3197 074 3146% 4688% 16.71%
IVMD-BO-QRTLT 21.67 108900 3300 074 5169% 31.15% 35.59%
S IVMD-BO-QRTBT 21.79 111222 3335 0.74 83.15% 1799% 68.19%
IVMD-MOBO-QRB 20.69 109098 3303 074 9214% 1294% 80.22%
IVMD-MOBO-QRTT 2153 101124 3180 074 9663% 1821% 79.03%
IVMD-MOBO-QRTLT 19.72 996.03 3156 076 9191% 1456% 78.53%
IVMD-MOBO-QRTBT 1998 106080 3257 076 9640% 1511% 8183%

Transformer Net 2025-20
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Transformer Net ‘ 2025-22 ‘

VerrsrisTrarEIEITLe”

Overall structure of the SCACD-Net. (a) Feature extraction network. (b) Cross-attention
difference feature extraction network. (¢) Cascaded feature fusion network.
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Fig. 3 Cross-Attention difference Feature Extraction Module.

m ﬁlﬁ’m — | fusion | —| fusion
1'256 32'32 *512*32*7 .51 2'32‘7 '512'32'32
m I m] tusion |

1761271616 1'512"32'32 17512*32*32
—f— 0
11024°8"8
17512°32°32
i i . | o e ) i o o] o i 1

Fig. 4 Cascade feature fusion network.
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(a) (b)
Fig. 5 (a) Feature Fusion block. (b) Channel Attention Mechanism (CAM)
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