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eampectw.): The paper entitled “Attention is All You Need” by Ashish Vaswani et al. in the year
2017, brought renaissance in Text-sequence-data processing. Also, it has noteworthy influence in

computational paradigm with other data structures.

The new approach became a state-of-knowledge

model and won the favour of data scientists in all application-domains. This model became popular as
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Transformer net (TransF Net) or Transformer neural network (TransF NN). This network, TransF NN,
consists of two modules, viz., attention layer and MLP-NN. They are instrumental in carrying out
Natural Language processing (NLP). The evolution of architecture of TransF NN, attention mechanism,
and hybridization with other approaches, during these few years, revolutionized computational science.
By now, this approach is in the sought-after tools in extracting information/knowldege with multi-modal
data (viz.Text, numerical time-series, sound (speech), image/video sequence, and tactile-sense-output)
with local and global inter-dependencies.

The architectures of Transformer neural nets (TransF-NN) or Transformer nets (TransF-N) employed
in this state-of-knowledge-methods-module for dataTOknowledge transformation are

Sparse transformer (ResidualTop-C_sparse attention)

Pancreas segmentation (PanSeg) Transformer

Co-evolution Transformer

EEG Conformer

Swin Transformer

HRSTNet: High-Resolution Swin Transformer Network
HQRSTNet: High-Quality Resolution Swin Transformer
EfficientNet and Swin Transformer

Squeeze and Excitation-based UNet TRansformers (SE-UNETR)
Squeeze and Excitation-based High-Quality Resolution Swin Transformer Network (SE-HQR-
STNet)

TCN

RS-MOCO

RBMDC-Net

OO OOOCOEOEOOOOO

The results of modelling of tasks (vide infra) with transformer NNs are more accurate in comparison
with NNs, machine learning algorithms or discipline-wise theorical approaches.

£  Computational Quantum Chemistry (CQC): To predict quantum chemical energies and
physical-/chemical-/physico-chemical/chemico-physical energies/properties
o Total Molecular energy, orbitals-energies, HOMO-LUMO energy gap, dipole
moment, electron density, ESP, bond energies, electronic spectra, NMR, Reaction
Pathways, Reaction Mechanisms, Transition State

£  Quantum Monte Carlo (QMC) Simulations
o Approximation of Ground-State Energy in Many-Body Systems

&  Chemistry
o Structure-activity relationship (SXR)
o Biological activity (e.g., drug efficacy, toxicity, or binding affinity) in drug design,
materials science, and toxicology
o Molecular Property Prediction:
= Boiling point, toxicity, or binding affinity
= Solubility of Organic Compounds
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= Nonlinear Solubility is due to nonlinear interactions like hydrogen bonding,
van der Waals forces, and entropy changes upon dissolution,

e SFHformer captures these characteristics through its hybrid spatial
and frequency domain approach

o Predicting Reaction Rates in a Multi-Step Reaction Network
o Adsorption Isotherms
=  Predicting Adsorption on a Surface (Langmuir-Freundlich Isotherms)
o Predicting Toxicity of Chemical Compounds
o for Safety Assessment
o Nonlinear Thermodynamic Equilibria: Chemical Equilibrium in a Multi-Component
System:

* At equilibrium, the functional relation between the concentrations of
reactants and products is nonlinear, more so when there are competing
reactions or there are changes in phase.

e SFHformer accounts for both local interactions (e.g., bond strengths,
charge distributions) and global properties (e.g., temperature,
pressure effects). That is why, it predicts equilibrium concentrations
more accurately, outperforming theoretical and other computing
models

o Predicting Reaction Kinetics (Rate Constants)

(o)

Predicting Molecular Properties for Chemical Engineering

o Predicting Thermodynamic properties (e.g., heat capacity, entropy, enthalpy) and
kinetic properties (e.g., reaction rates, activation energies)

o Predicting Boiling points, melting points

£ Nanomaterials (Physics, chemistry Biology)

o Nanomaterials exhibit unique physical properties (like superconductivity, magnetic
behavior) that are difficult to predict due to their complexity and the high number of
influencing variables (like size, shape, surface properties) involved.

o Nanomaterials exhibit responses like optical absorption, band gaps, and thermal
conductivity

o (Smart)-Nanomaterial Discovery: use of Nanocatalysts in industrial process viz.
hydrogen production, carbon capture, and chemical synthesis is the need of the hour.

o New nano-materials with desirable properties (e.g., photovoltaic devices,
superconductors)

o Rational design of nanomaterials in specific applications, such as catalysis,
electronics, and energy storage

o Nano-Scale materials for Optical Sensing and Imaging

o Predicting Nanoparticle-Polymer Interactions in Drug Delivery Systems

& Fusion Reactors (e.g., tokamaks)
o Predicting Reactor Decommissioning and Safety
o Modeling Plasma Behavior in Fusion Research
o Design of fusion reactors and energy optimization in nuclear fusion research,
contributing to the goal of clean, sustainable energy
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= Fusion reactors require materials that can withstand extreme conditions such
as high temperatures, radiation, and corrosive environments

& Predicting Optical Properties of Molecules Using Excited States
o Predicting the optical properties of molecules, such as absorption spectra and
fluorescence. This is essential for the design of optical materials and pharmaceuticals
o Design of materials for light-emitting devices and photodynamic therapy.
o Molecular sensors and optical materials of advanced materials for solar cells, LEDs,
and bioimaging, contributing to innovations in photonics and quantum materials
&  Environmental monitoring
o Chemical Sensor Data Analysis: The time-series sensor data from gas sensors (e.g.,
detecting gases like CO2, NO2, or O3) over time and their corresponding chemical
concentrations

Medical Diagnosis
& Medical Diagnosis using Images
o Lung Cancer Detection (CT Scan Image) and Classification
o Tumor Segmentation (MRI Brain Scan)
o Medical Diagnosis of Diabetic Retinopathy Using Eye Imaging Data
o Early Diagnosis of Alzheimer's Disease Using MRI Brain Imaging
o  Brain Tumor Detection Using MRI and PET Scans
& Diagnosis using Time-Series Data
o Sepsis Prediction (Time-Series Data)
o Heart Disease Prediction (ECG Time-Series Data)
& Clinical Decision Support Systems (CDSS)
o Multi-Modal Diagnosis (Image + Time-Series Data)
Bio-Medical research
£  AlphaFold, a model based on Transformer architecture
o To predict 3D-protein structures from amino acid sequences
& Activity of bio-molecules
o Predicting
e  Functional activity of an enzyme
¢ Binding Affinity for Kinase Inhibitors
e  Anticancer Activity (e.g., Inhibition of Kinase Activity)
e Inhibition of HIV-1 Protease
e Activity of Enzyme Inhibitors
e Binding Affinity for HIV Protease Inhibitors
e Drug-Protein Interaction in Alzheimer’s Disease
e Drug Resistance in Cancer Therapy (Optimizing Anti-Cancer Drug
Binding Using Attention Maps)
e ADMET (Absorption, Distribution, Metabolism, Excretion,
Toxicity) Properties
e Toxicity levels (e.g., LD50 values, mutagenicity, or carcinogenicity)
for Chemical Compounds (chemical structures represented by
SMILES or molecular graphs)
e Protein-Ligand Binding Affinity for Drug Discovery
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e Protein-Protein Interactions in Disease Pathways
o Personalized Medicine for Cancer Treatment Using Genomic Data
o Drug Repurposing for Rare Diseases
£ Detecting Mutations in Genes Associated with Brain Diseases

Keyword,s: Artificial intelligence (Al); Heuristic expert systems—
Integrated expert systems--Classical Neural Nets (MLP; SOM; ARTMAP) -- | [REGI3E) F:10)
Capsule Neural Nets — Attention Mechanism--TransFormer Nets — rsr.chem1979
Hybrid TransFormer Networks -- Artificial General intelligence (AGI);
Vitual reality (VR) — Meta Verse (MV)--

CNN : [C [Computations; Computer; Chemistry, Cell, Cellestial, Cerebrum]
NN [New News; News New; Neural Nets; Nature News; News of Nature;] ]
Fits :[Figure Image Table Script;]
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Fig. 1. Overview of the proposed method's stages.
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Fig. 2. Details of the Transformer network used for feature extraction.
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Fig. 3. Conwolutional network architecture used in feature extraction phase.
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Input: Dataset
Output: One sample with the best features
/111 filter phase////1/111]

-Weigh features of dataset according to F-Score algorithm
-Keep high weights according to dimensions of dataset

/11111111] generate generation//////////

-Generate the first generation among selected features randomly from the previous step

-for (each hawk (Xi)) do

-calculate the fitness of sample

-While (fitness<0.65) do
-select one random feature and replace it
-calculate the fitness of sample
/1111711 hho phase/////11/1/
-While (stopping condition is not met) do

-for s=2 to number_of_samples do

Calculate the fitness values of hawks

Set Xrabbit as the location of rabbit (best location)

for (each hawk (Xi)) do

Update the initial energy EO and jump strength J >

EO0=2rand()-1. J=2(1-rand())

Update the E

if ([E[= 1) then > Exploration phase
Update the location vector

if ([E|< 1) then [> Exploitation phase
if (r =0.5 and [E[> 0.5) then [> Soft besiege

Update the location vector

else if (r >0.5 and |[E|< 0.5) then [> Hard besiege
Update the location vector

else if (r < 0.5 and [E[> 0.5) then [> Soft besiege with progressive rapid dives
Update the location vector

else if (r < 0.5 and |[E|< 0.5) then [> Hard besiege with progressive rapid dives
Update the location vector

Fig. 5. Pseudocode of the proposed feature selection algorithm.

Table 1. Details of the dataset used

Class Database Train Test Total
Pneumonia COVIDx-CT 3419 854 4273
Tuberculosis PTB 401 100 501
Covid-19 SARS-CoV-2 CT 1986 496 2482
Lung cancer CIA 4355 1088 5043
Normal - 4302 1292 5594
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PCA Visualization of Original Training and Test Sets
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Fig. 6. The distribution of training and testing data after dimensionality reduction using PCA.
Table 2. Evaluation of different classifiers into the dataset with and without feature selection
Without With
Dataset Classifier
Acc (%) Sp (%) Sn (%) F1-score Acc (%) Sp (%) Sn (%) F1-score
SVM 73 68 86 87 97 95 97 97
RF 91 93 93 93 98 96 98 98
Pneumonia
XGBoost 93 94 92 93 98 97 98 98
DNN 87 89 89 89 96 95 97 96
SVM 83 85 84 85 97 95 98 96
RF 89 91 92 92 97 96 98 97
Tuberculosis
XGBoost 89 92 91 92 98 96 99 98
DNN 84 86 86 86 96 95 97 96
SVM 59 58 61 63 96 95 98 98
RF 90 93 93 94 97 97 99 99
Covid 19
XGBoost 94 94 93 93 98 98 99 99
DNN 69 82 87 87 96 95 98 98
SVM 66 68 69 69 98 97 98 97
RF 90 92 91 91 99 98 99 97
Lung cancer
XGBoost 93 94 97 97 99 98 99 98
DNN 78 69 88 88 98 97 98 97
SVM 65 64 66 66 97 96 98 98
RF 91 93 91 91 98 Bz 59 98
Normal
XGBoost 92 93 95 95 98 99 99 99
DNN 72 58 86 86 97 96 98 97
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Table 3. Comparison with other methods on the dataset

Method Class Accuracy (%)
Deep learning 2° 2 89.5
DCNN 2 93.64
CNN 2 2 98
AE-CNN * 2 80.29
VDSNet 2 73
eKNN with ACO # 2 97.5
Ensemble learning 2® 2 98.56
3DDCNN ¥ 2 98.51
Proposed method 5 98.53

/ Transformer Net | 2025-17 Covid-19
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The structure of the Squeeze and Excitation-based High-Quality Resolution Swin Transformer
Network (SE-HQRSTNet) architecture.
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BN: Batch Normakization, Conv: Convolution, Deconv: Deconvelution, FC: Fully Connected, MLP: Multilayer Perceptron,
RelU: Rectified Linear Unit and SE: Squeeze-and-Excitation Block

Squeeze and Excitation-based UNet TRansformers (SE-UNETR) architecture. H:height; W:

N

Vi
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LN: Layer Normalization, MLP: Multilayer Perceptron, W-MSA: Window-based Multi-head Self-Attention,
SE Block: Squeeze-and-Excitation Block and SW-MSA: Shift Window-based Multi-head Self-Attention

(a) The Swin Transformer block, and (b) multi-resolution feature fusion (MRFF) block.
H:height;W: width; D: depth

Original Image Ground Truth UNETR SE-UNETR HRSTNet SE-HQRSTNet
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Visual comparison between the ground truth and prediction of the models segmentation for 3
computed tomography (CT) scan
samples of COVID-19 patients. SE: Squeeze-and-Excitation, UNETR: UNEt TRansformers,
HRSTNet: High-Resolution Swin Transformer Network,
HQRSTNet: High-Quality Resolution Swin Transformer Network
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gEL R Comparison of results of our models with previous studies

Author Dataset Splitting Type Method: Dice
Miiller et al. (3) COVID-19-CT-Seg 5-Fold 3D U-Net:0.761
Maetal. (4) COVID-19-CT-Seg 5-Fold nnU-Net:0.673
Wang et al. (5) COVID-19-CT-Seg 5-Fold 3D U-Net: 0.704
Singh et al. (25) COVID-19-CT-Seg Train:70% LungINFseg:0.8034
Validation:10%
Test:20%
Aswathy et al. (7) COVID-19-CT-Seg Train:60% Cascaded 3D U-Net:0.820
Validation:20%
Test:20%
Our method COVID-19-CT-Seg 5-Fold UNETR:0.8519
SE-UNETR:0.8581
HRSTNet: 0.8663
SE-HQRSTNet: 0.8684
Zheng et al. (26) MosMed 5-Fold 3D CU-Net:0.668
Our method MosMed 5-Fold UNETR:0.6901
SE-UNETR:0.6935
HRSTNet: 0.7072
SE-HQRSTNet: 0.7089

SE: Squeeze-and-Excitation ,UNETR: UNEt TRansformers , HQRSTNet: High-Quality Resolution Swin Transformer Network,
HRSTNet: High-Resolution Swin Transformer Network.

" Transformer Net ‘ 2025-23
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Figure 1. Architecture of DICTT.

Transformer Net 2025-34

Table 1
Existing CT (light gray) and MRI-based (gray) pancreas segmentation methods

Methods Approach Dataset Performance/Dice
Attention U-Net: Learning Where toLook for the Pancreas Attention mechanisms (layers) areintegrated within the U-Net to focus on NIH (8) 83.1+3.8

(Oktay et al.,2018) thepancreas region to avoid false positives.

Fully automated pancreassegmentation with two-stage A two-stage 3D model is designed with thefirst stage for coarse pancreas NIH (8) 86.0+4.5

3Dconvolutional neural networks (Zhaoet al.,2019) segmentationand the second stage for refinedsegmentation.

AAA: 66E-Transformers-architectures & Fits 559



Automated pancreas segmentationand volumetry using deep This paper performs four individualthree-dimensional pancreas 1006 in-house 84.2

neuralnetwork on computedtomography (Lim et al.,2022) segmentationnetworks on 1006 participants. CTscans
Automated pancreas segmentationusing recurrent A recurrent adversarial learning frameworkis developed to enhance the NIH (8) 88.72+3.23
adversariallearning (Ning et al.,2018) pancreassegmentation robustness.
Deep Q-learning-driven CT pancreassegmentation with A combination of deep Q-network andgeometry-aware U-Net NIH (8) 86.91+4.9
geometry-awareU-Net (Man et al.,2019) introducereinforcement learning to improve thepancreas segmentation

performance further.
Pancreas segmentation in MRI usinggraph-based decision The paper conducts pancreatic detectionwith spatial intensity context and 78 in-house 76.1+8.7
fusion onconvolutional neural networks (Caiet al.,2016) pancreassegmentation by graph-based decisionfusion. T1 MRlIscans
Hierarchical 3D Feature Learning forPancreasSegmentation A multiheaded decoder structure is designedto predict intermediate 40 In-house 77.5%+8.6
(Proietto Salanitriet al.,2021) segmentation maps,and the final segmentation result comesfrom the T2scans

aggregation of each levelprediction.
Improving deep pancreassegmentation in CT and MRI The paper proposes recurrent neuralcontextual learning and a direct 79 in-house 80.5%+6.7
imagesvia recurrent neural contextuallearning and direct loss lossfunction and involves training the networkto learn contextual T1 MRIscans
function (Caiet al.,2017) information fromneighboring pixels in the image.

2025-34
PanSegNet (volumetric pancreas segmentation network)

Input Output
Scan

gl

— — —p  — —_— —_— — —

Linear self-attention

> Activation + Norm 3D nnConv Blocks /,/" | S ‘{ —

Skip Connection Linear Self-Attention .

\

— SoftMax

V:Nxd

Upsampling blocks

Output layer
oL

PanSegNet is based on a combination of nnUnet with linear self-attention mechanism. Linear self-
attention is obtained by converting the self-attention mechanism with linearization operation, as
described below. The architecture accepts volumetric input, therefore appreciating the full anatomy
details compared to pseudo-3D approaches

pK):dxN

#(Q):Nxd
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Traditional self-attention Linear self-attention

i |p(s): NxN - O:Nxd G:dxd — O:Nxd
Q:Nxd || K:Nxd || V:Nxd p(KN:dxN || V:iNxd || ¢(Q):Nxd
T S T T A 4
X:Nxd X:Nxd

Comparison of traditional self-attention mechanism (left) vs. linear self-attention mechanism
(right). Xis input, Ois output. Red fonts show the specific changes we apply to self-attention to
linearize

Table 7
Quantitative segmentation performance evaluation and Comparison with diverse state-of-art methods across multi-center TIW and T2W MRIs.

Multi-center TIW MRI Pancreas segmentation

Methods Modality Dice (%) Jaccard (%) Precision (%) Recall (%) HD 95 (mm) ASSD (mm)
nnUNet 2D 80.19 80.01 80.19 81.01 20.99 175
SSformer 2D 78.81 77.01 76.67 75.89 23.09 254
SwinUNETR 2D 76.01 75.21 73.21 74.11 27.78 298
MedSegDiff 2D 83.75 82.11 81.78 80.99 18.97 1.56
SynergyNet 2D 85.78 84.37 84.09 84.44 17.88 0.95
VNet 3D 7315 74.01 72.11 84.92 71.47 2.99
TransBTS 3D 75.89 74.18 74.87 73.92 26.44 3.01
MedNext 3D 80.05 79.99 83.33 80.02 17.77 1.67
nnFormer 3D 82.11 83.28 83.23 81.11 18.45 1.98
nnUNet 3D 80.09 81.29 83.87 81.98 18.12 179
nnUnet-Res 3D 83.02 84.01 82.91 82.54 17.92 1.52
PanSegNet 3D 86.02 85.78 84.18 84.76 17.47 0.92

/ Transformer Net ‘ 2025-40 ‘
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Block diagram illustrating the step-by-step process for constructing the developed model

Images fMRI (Beta Value (3D))
256 x 256 x 3

Subject3  Subject2  Subject1

g 81x106x82 82x106x84 81x104x83

amgmnammmw

4 +

ROI(1D)
Features (3D) for each subject: 512 vector with the size of (1 x 144)
for all images: 6 x 6 x 2048

Figure 4. Model architecture; pre-trained image encoder extracts features from images. The transformer
network extracts features from fMRI signals and tries to construct an fMRI space similar to visual
space. Then object categorization is done using the FC network

True category: human True category: human True category: non-human
Predicted category: human Predicted category: non-human Predicted category: non-human
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Transformer Net 2025-51 ‘
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Implementation details of the network architecture for
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Fig. 5. Implementation details of the network architecture for
SegN.

Transformer Net 2025-70
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Figure 1 A brief chronology of polyp segmentation.
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models™

v' Before 2015, methods relied on hand-crafted features combined with machine learning

algorithms.

v" Since 2015, U-Net [20] and FCN [21] have significantly advanced the development of deep

learning techniques in polyp segmentation.
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Figure 3 A comprehensive evaluation is conducted on 23 representative deep-learning models,
including U-Net [20], UNet++ [101], SFA [22], PraNet
[26], ACSNet [25], MSEG [30], EU-Net [31], SANet [8], MSNet [9], UACANet-S [34], UACANet-
L [34], C2FNet [35], DCRNet [53], BDG-Net [50], CaraNet
[44], EFA-Net [102], CFA-Net [75], M2SNet [103], Polyp-PVT [33], HSNet [46], DuAT [62],
ESFPNet [72], and FeDNet [70], with SAM [104] excluded.
We
report the average Dice and MAE values for each model across five datasets (i.e., ETIS-
LaribPolypDB [91], CVC-ColonDB [5], CYVC-ClinicDB [7], CVC-300
[92], and Kvasir-SEG [93]).
To Note that the models represented in the top left corner are better, i.e., they have larger Dice
scores and smaller MAE values. In this context, the green triangles represent Transformer-based
models, while the red diamonds signify CNN-based models

_ Transformer Net 2025-70

Table 1 Summary of polyp segmentation methods (published from 2019 to 2021)

= Year Method Pub. Backbone Description Code
1 2019 SFA[22] MICCAI light UNet Boundary-sensitive loss; selective feature N/A
aggregation
2 2019  ResUNet++ ISM ResUNet Squeeze and excitation blocks; atrous https//github.com/DebeshJha/
[23] spatial pyramid pooling (ASPP); attention ResUNetPlusPlus
blocks
3 2020 PolypSeg [24] MICCAI U-Net Improved attention mechanism; N/A
separable convolution
4 2020 ACSNet [25] MICCAI ResNet34 Adaptively select; aggregate context https//github.com/ReaFly/ACSNet
features through channel attention
5 2020 PraNet [26] MICCAI Res2Net Parallel partial decoders; reverse attention  https//github.com/DengPingFan/PraNet
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45

47

49
50

2023

2023

2023

2023

2023

2023
2023

DuAT [62] PRCV

PolypSeg+ [63] TCYB

APCNet [64] ™

RA-DENet [65] CBM

EFB-Seg [66] Neurocom-

puting

PPNet [67] CBM
Fu-TransHNet  arxiv

[68]

ResNet50

ResNet50

Res2Net

ConvNet

P2T
HardNet68

convolution
Dual-aggregation Transformer; global-to-local
spatial aggregation; selective boundary
aggregation

Adaptive scale context module; lightweight
attention mechanism

Attention-guided multi-level aggregation
strategy; complementary information from
different layers

Improved reverse attention; distraction
elimination

Boundary Embedding; semantic offset field
learned

Channel attention; pyramid feature fusion
CNN and Transformer; multi-view learning

httpsz//github.comv/Barrett-python/
DuAT

https//github.comv/szuzzb/
polypsegplus

N/A

N/A

N/A

N/A
N/A

Table 4 Benchmark results of 24 representative polyp segmentation models (18 CNN-based and 6 Transformer-based models) on five
commonly used datasets in terms of SPE and SEN. The top three results are displayed in bold, italic, and underlined fonts
Method Pub. ETIS-Larib CVC-ColonDB QVC-ClinicDB CVC-300 Kvasir
SPE SEN SPE SEN SPE SEN SPE SEN SPE SEN
U-Net [20] MICCAI 2015 0.703 0484 0.798 0525 0.947 0835 0.965 0.768 0.949 0857
UNet++[101] MICCAI 2018 0727 0415 0828 0497 0.927 0795 0957 0738 0.986 0.807
SFA[22] MICCAI 2018 0.781 0633 0.861 0703 0919 0.802 0934 0.889 0.965 0.799
PraNet [26] MICCAI 2020 0.805 0.688 0874 0.740 0990 0911 0.988 0941 0978 0912
ACSNet [25] MICCAI 2020 0.775 0738 0.873 0.760 0.956 0.909 0.984 0.959 0973 0.907
MSEG [30] arxiv 2021 0844 0740 0912 0.753 0.992 0924 0.989 0934 0.985 0.900
EU-Net [31] CRV 2021 0871 0.872 0939 0.851 0.986 0.960 0.982 0.969 0974 0.934
SANet [8] MICCAI 2021 0.943 0.904 0.952 0811 0.989 0.952 0.989 0.971 0.986 0915
MSNet [9] MICCAI 2021 0.893 0.796 0931 0775 0975 0933 0.988 0931 0.981 0911
UACANet-S[34]  ACMMM 2021 0.887 0833 0958 0.801 0.991 0.942 0.992 0.959 0976 0911
UACANet-L[34]  ACMMM 2021 0932 0813 0953 0.754 0992 0943 0.993 0940 0983 0923
C2FNet [35] 1JCAI 2021 0902 0.745 0.894 0752 0973 0.941 0.988 0952 0974 0.904
DCRNet [53] ISBI 2022 0.756 0.747 0.884 0.777 0.959 0913 0972 0.945 0973 0.903
BDG-Net [50] SPIE MI 2022 0.879 0.820 0.949 0.827 0.990 0.942 0.992 0.957 0.984 0918
CaraNet [44] SPIE MI 2022 0910 0.812 0.947 0.858 0.991 0.955 0976 0927 0.982 0912
EFA-Net [102] arxiv 2023 0918 0.866 0.940 0.820 0975 0934 0.988 0.950 0.987 0914
CFANet [75] PR 2023 0910 0.804 0.953 0.761 0.991 0.960 0.990 0.952 0.985 0.926
M2SNet [103] arxiv 2023 0893 0.796 0931 0775 0.975 0933 0.988 0931 0.981 0911
Polyp-PVT [33] arxiv 2021 0962 0902 0965 0829 0992 0959 0993 0943 0987 0928
HSNet [46] CBM 2022 0955 0.868 0.965 0.821 0.992 0.949 0991 0.547 0.986 0913
DUAT [62] PRCV 2023 0.941 0891 0962 0841 0992 0956 0991 0956 0984 0933
ESFPNet [72] MI 2023 0.961 0917 0961 0837 0992 0940 0991 0967 0985 0910
FeDNet [70] BSPC 2023 0945 0.893 0.966 0845 0.991 0.954 0.992 0.950 0.987 0924
SAM-B[104] arxiv 2023 0717 0415 0621 0.246 0681 0309 0730 0412 0904 0510
SAM-H [104] arxiv 2023 0.768 0525 0811 0.480 0877 0.547 0873 0685 0934 0.769
SAM-L[104] arxiv 2023 0810 0.567 0813 0.500 0834 0623 0904 0.756 0935 0774
%
Transformer Net 2025-71
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The proposed RBMDC-Net architecture
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(a) Convolution blocks in U-Net (b) Residual bottleneck module

E

3x3 Conv BN+ReLU
rate =1

3x3 Conv s BN4ReLU
rate =3

Structure of multiscale dilated convolution module.
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MULTI-LEVEL FEATURE GUIDANCE MODULE

e \ g D
2
-
=
s — o}
Smdcm U -
X
§ P @ Up-sampling
“ I 3x3 Conv + 3x3 Conv

Squeeze Excitation
ReLU

FIGURE 5. Structure of SE module.

TABLE 4. Ablation experiment on the onginal dataset.

Method F1 (%) Mcce (%) Jaccard (%)
U-Net 0.8738 0.8772 0.7786
U-Net+RBM 09183 09178 0.8496
U-Net+MFGM 0.9190 09186 0.8512
U-Net+MDCM 0.9245 0.9241 0.8603
U-Net+RBM+MFGM 0.9290 0.9285 0.8678
U-Net+tMFGM+MDCM 0.9251 0.9247 0.8612
U-Net+RBM+MDCM 0.9263 0.9259 0.8631
RBMDC-Net 0.9313 0.9308 0.8717
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Learned model for — a‘j“’
classification task | | (lass 1000

.
Learned model for 1 c'a:” i
classification task Il )
———  (lass 5
Pre-trained VGG19
Class 1
(b) Class 2
- Class 1000
Softmax
Classification

Classificationn
L J L J
T i
Unchanged layers Modified layers

Fig. 3. Deep learning framework. (a) A transfer learning framework (b) Modifying VGG19 for
the application
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Tra|n|ng labels

Fine-tuned VGG19
Training
features

Classifier

(Softmax
SVM
KNN)

Fine-tuned VGG19 Predicting

Testing test data

features

Fig. 5. Overall framework for HCE classification.

(e)

Fig. 9. Misclassified samples.

(a) CA type misclassified as ICC by softmax-based classifier, but correctly classified by SVM.
(b) SM type misclassified as polycystic by softmax-based classifier, but correctly classified by
SVM.

(¢) SC type misclassified as ICC for both softmax-based classifier and SVM.
(d) PC type misclassified as ICC for both softmax-based classifier and SVM.
(e) ICC type missclassified as PC for both softmax-based classifier and SVM.

/ Transformer Net 2025-91
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Contact map matrix

113435670300

I

MSA

Beomumwewme

Target sequence

) UCCCUGAACA) )
Retrieve CGCAUGAACG  Predict

UGCCUGAACA CGCCUGAACG
GGCCCGCGAA

UCCGUAGUCA ( N\ ¢
&

4} denotes distance < 10 A

Our Study — RNA Contact Prediction

Downstream Task

Figure 1. Our study is focused on RNA contact prediction, i.e., predicting the contact map matrix for an
RNA sequence.
The contact map indicates the proximity between each nucleotide, with those closer than a threshold

(10 A" ) being deemed in contact.

Correct predictions of the contact map can benefit downstream tasks, e.g., by acting as constraints for

filtering 3D RNA structure predictions
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Target sequence :
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Fixed
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S
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Figure 2. Overview of our three-stage method (from top to bottom).
Adapted Feature Extraction: First, a projection layer is

used to translate the RNA MSA sequences into protein language
(e.g., from nucleotide “AUCG” to amino acids “HETL” ). Then,
we leverage a fixed large-scale pre-trained protein contact prediction
transformer model (called Co-evolution Transformer model

(CoT)) to extract attentive (i.e., contribution) features at different
layers. Feature Fusion: Features from different layers are processed
by separate convolution blocks before being concatenated.
Classification: The aggregated features are sent into a standard
Convolutional Network (ConvNet) classifier with three layers of
convolution
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Kidney tumor
30 UNet

Kidney and Tumor
Segmentation

Transformer Network for
Kidney Segmentation

Kidney Tumor 30 UNet for
Tumor Segmentation

Figure 1. Proposed dual-stage kidney and tumor segmentation framework
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Figure 2. Proposed Kidney Tumor 3D UNet network architecture
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Overall structure of the MM-HiFuse model. Stem is used to process multimodal images of different
sizes input in the early stage, convert

them into suitable tensors, and input them into the backbone. Then, features are extracted through the
backbone and output to two task branches
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MHF block detail display. The MHF block in the backbone consists of a self-attention branch and

a convolution branch.

After a series of complex transformation processes (including channel attention, spatial attention,

and IRMLP), the fusion feature is finally output
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’ Transformer Net 2025-107 ‘

Hx:" [[] Frozen m
w, € R® [[] Trainable w € R
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(a) Overview of proposed EDoRA paramter-efficient fine-tuning approach.
It depicts the overall parameter updation process of EDoRA, before and after
fine-tuning (b) Feature updation via EDoRA adaptation. [© symbol represents

concatenation, x symbol represents product, X represents input features, X

represents output features.]

Experiment 1 Experiment 2
MI Dataset EEG Conformer S| Dataset
Feature Extractor Transformer Encoder Classifier
S| Dataset L [ EDoRA m ] i MI Dataset
Feature Extractor Transformer Encoder GJ Classifier

EEG Conformer

Framework of the proposed method. Two experiments are performed in

this work, and in these experiments EEG Conformer model is pre-trained on
one dataset, and then fine-tuned on other dataset with only EDoRA adapter
on each operation of transformer encoder of EEG Conformer and vice-versa.
[Freezed weights are shown with lock]
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Examples of images from the three selected datasets: First row (Red) and second
row (Green) present respectively examples from the meta-train and the meta-test datasets
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| Transformer Net ‘ 2025-144 ‘
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BN: Batch Normalization, Conv: Convolution, Deconv: Deconvolution, FC: Fully Connected, MLP: Multilayer Perceptron,
ReLU: Rectified Linear Unit and SE: Squeeze-and-Excitation Block

ransformer Ne -
T f Net 2025-145
I
H,nmn HxWxD x84
{ {
o 0
HxWxDx64
Embedded
Patches
1 ’
H WD H. W, D H W D
TR i h i Fhiak ke
Zg - ( ’
H W, D '
H WD H WD Hy WDy 056
Nom | R PPy 4
4 ' ' ‘ SE Block
' ‘ ’ Deconv 2x2x2 SE block
L . Deconv 2% 2% 2,Conv3x3x 3 BN,ReLU
x12 16 16 16 ﬂlmgxm ¥
Iy vt J Conv3x3x3 BNRelU
H W D '
e T - Convix1x1

Squeeze and Excitation-based UNet TRansformers (SE-UNETR) architecture.
H:height; W: width; D: depth
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Sq@e and Excitation-based High-Quality Resolution Swin Transformer Network (SE-

HQRSTNet) architecture.
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LN: Layer Normalization, MLP: Multilayer Perceptron, W-MSA: Window-based Multi-head Self-Attention,
SE Block: Squeeze-and-Excitation Block and SW-MSA: Shift Window-based Multi-head Self-Attention
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(a) Swin Transformer block, and (b) multi-resolution feature fusion (MRFF) block. H:height;W:
width; D: depth

Original Image Ground Truth UNETR SE-UNETR HRSTNet SE-HQRSTNet

Visual comparison between the ground truth and prediction of the models segmentation for 3
computed tomography (CT) scan
samples of COVID-19 patients. SE: Squeeze-and-Excitation, UNETR: UNEt TRansformers,
HRSTNet: High-Resolution Swin Transformer Network,
HQRSTNet: High-Quality Resolution Swin Transformer Network
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Architecture of the proposed SwinE-Net
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Multidilation convolutional block and multifeature aggregation block

EfficientNet (CNN)

Input Low-level feature map  High-level feature map

Ground truth

Examples of visualizing low-level and hlgh -level feature maps of EfﬁcnentNet and Swin
Transformer

Swin Transformer (ViT)
Low-level feature map

High-level feature map
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Decoder based on the attentive deconvolutional network
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Input Ground truth Before After
Examples of feature visualization before and after applying the attention module. The green
circle of the feature map shows feature refinement, and the red
circles show noise reduction
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Qualitative evaluation of polyp segmentation results in the seen datasets.

ClinicDB
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Qualitative evaluation of polyp segmentation results in the unseen datasets

EndoScene

ResNet (CNN) DenseNet (CNN) Swin Transformer (ViT)

Low-level feature map ~ High-level feature map | Low-level feature map  High-lovel foaturc map | Low-level feature map ~ High-level feature map

p - L

Examples of visualizing low-level and high-level feature maps of ResNet and DenseNet compared
with Swin Transformer

AAA: 66E-Transformers-architectures & Fits 590



SwinE-Net  Ground Truth

Infected region segmentation in the COVID-19 CT segmentation dataset

Kvasir ClinicDB EndoScene

Input

Predicted Polyp

Ground Truth

Examples of the colorectal polyp segmentation using the proposed SwinE-Net.
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